Pattern Generation Revisited

David Antos, Petr Sojka

Faculty of Informatics
Masaryk University Brno

Czech Republic

What is this lecture about

e How TEX hyphenates words

e Generation of patterns

e Using PATGEN

e Why PATGEN doesn’t suit us today

e PATLIB and OPATGEN, system architecture
e Pattern recognition in typesetting

e Future applications

PrevPg NextPg = Back Next Quit ... 1/15

How TgX hyphenates words

e Before 2" pass of paragraph breaking, all words

e TEX finds all patterns of the word, all hyphens

e Pattern is a subword, with hyphenation information between symbols

— n2at henbat
e Hyphenation information—numbers
— odd—allow breaking—covering
— even—disallow breaking—inhibiting

e Patterns compete—higher value wins

PrevPg NextPg ' Back Next Quit

2/15

Example of application of patterns

hyphenation e Patterns hold context of
in a hyphenation point occurrence
1t i o
n2a t e Pattern recognition—a kind of
2i o intelligence (magic?)
h e2n
.h y3p h
h e n a4
h e nba t
.hO0y3pOh0e2n5a4t2i0oOln.
hy-phen-ation

PrevPg NextPg = Back Next Quit ... 3/15

Pattern generating process

e We want minimal set of patterns
e Generating completely covering minimal patterns is NP-complete
e Good iterative methods for “near optimal” solution
e One way to do it:
— dic-tio-nary with marked hy-phen points
— we repeat going through the dictionary making levels
* odd—covering

* even—inhibiting

PrevPg NextPg = Back Next Quit ... 4/15

— candidate choosing rule—we take subwords (k-character subword)
* and count the number of their good and bad work
* hen(35,4)a

— not all the candidates are good

* pattern choosing rule—linear function over the number of
good and bad work of the pattern compared to a threshold:
good _count x good wt — bad_count * bad wt > threshold

— we put good candidates into pattern set with current level number
* henba

— they still make errors, next level will correct errors of patterns
selected so far

— exception list at the end of the whole process, to correct remaining
errors

PrevPg NextPg = Back Next Quit ... 5/15

How good the generation process is

e Input data =~ MB
— patterns = tens of KB
— covering > 98 %
— with error < 0.1 %
— usual number of levels < 5
e Results depend on parameter setting

e Nobody knows how to set the parameters

PrevPg NextPg ' Back Next

Quit

6/15

Generating with PATGEN

PATGEN

— Frank Liang, 1982, 7-bit ASCII

— later modified for accents, 8-bit ASCII,... (Peter Breitenlohner,

Yannis Haralambous, Karl Berry,. . .)
Patterns for tens of languages exist
— from a dictionary

— first levels by hand

PrevPg NextPg ' Back Next

Quit

7/15

Why PATGEN does not suit us today

e Monolithic structured code, difficult to maintain
e Only ASCII, approx. 240 symbols

e () handles UNICODE

e Static data structures

e Difficult to use for purposes other than hyphenation

PrevPg NextPg = Back Next Quit ... 8/15

PATLIB and OPATGEN

e PATtern manipulating LIBrary—from scratch

e O (Q7) PATtern GENerator—handles UTF-8 UNICODE encoding
e Generalisation of PATGEN

e Implementation: C++ in CWEB

e http://www.fi.muni.cz/"xantos/patlib

o GPL

PrevPg NextPg = Back Next Quit ... 9/15

PATLIB architecture

e PATLIB

— Finite language store (pattern manipulator) implemented using
packed trie (see the Proceedings)

* Insert pattern
* delete pattern
* ...low-level operations
— Generator
* handles creating patterns using the same strategy as PATGEN
* easy to change

e OPATGEN is in fact “only” the word list input/output interface

PrevPg NextPg = Back Next Quit ..10/15

Pros and cons
e What do we get
— implementation using logical operations
— any strategy of generating is easier to implement
— generality and flexibility
— user manual :-)
e What do we pay for it

— performance loss

PrevPg NextPg = Back Next Quit .. 11/15

Generalisation, abstraction

e Hyphenating point — point of interest

e Patterns capture information related to points of interest
e Patterns compress information on points of interest

e General, not tight to hyphenation

e Using of patterns is effective, information retrieval is linear wrt. the
“word length”

e May be implemented as Pattern Translation Process (PTP)

e Some can be done as QTP in Omega

PrevPg NextPg = Back Next Quit .. 12/15

Examples of usage

e Hyphenation of compound words
— we want to prefer breaking on word boundaries
— needed for German (Wort-silben-trennung)
e Context dependent ligatures
— ligatures over compound word boundaries are wrong
— English: shelfful vs. shelfful
— Czech: séflékar vs. séflékat (doctor in chief)
e Fraktur long s versus short s

— morphology dependent

PrevPg NextPg = Back Next Quit ..13/15

e End of sentence

— different space width

— \@ and \, in I“TEX (sorry, the slides are in ConTEXt)
e Thai segmentation

— word/sentence boundaries are not present in the input Thai
transcription, needed for line-breaking

e Arabic letter hamza

— five hamza variants, depending on context
e Adding Greek accents
e Adding Czech accents to 7-bit ASCII texts

— e-mail,. ..

PrevPg NextPg = Back Next Quit ..14/15

PrevPg NextPg = Back Next Quit .. 15/15

Performance loss

e 10-15 times to PATGEN
e (Caused by
— breaking the program into logical layers
— using dynamic memory
— alphabet symbol is an object, not mere number

— not (yet, if ever) optimised

PrevPg NextPg = Back Next Quit .. 16/15

