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What anXSLT processor

With an XSLT processor you can transform XML into:

1. XML .
2. XHTML .
3. Plain text; TEX macro’s.
4. Calculate things like summaries for a ‘spreadsheet’.
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XSLT basics

? XSLT stands for ‘eXtensible Stylesheet Language: Transformations.

? XSLT is a language for transforming the structure of an XML

document.

? XSLT is itself XML .

? XML is hierarchical, it consists of a root node, that has child
nodes, that can have child nodes, etc. XSLT operates on those
nodes. It can generates (result) nodes. Everything is a node.

? Selecting or filtering things

? It’s harder to learn than you think: basics are easy. Things
you probably want to do have a significant learning curve.
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XSLT style sheets

XSLT code is written in the form of stylesheets.

There are four kinds of XSLT stylesheets:

1. Fill-in-the-blanks stylesheets.

2. Navigational stylesheets.

3. Rule-based stylesheets.

4. Computational stylesheets.

What
an XSLT

processor

XSLT basics

XSLT style
sheets

Bonus

Tricks

Tips

close



Fill-in-the-blanks

Stylesheet has the same structure as the desired output.

1 <xsl:stylesheet >
2 <xsl:template match =" / " >
3 \begin{document}

4 \chapter{ <xsl:value-of
5 select =" /conference/title " / >}

6 \section{ <xsl:value-of
7 select =" /conference/day[1]/title " / >}

8 \section{ <xsl:value-of
9 select =" /conference/day[1]/title " / >}

10 \end{document}
11 </ xsl:template >
12 </ xsl:stylesheet >
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Navigational

Like fill-in-the-blanks, but uses named templates as subroutines
to perform commonly-needed tasks.

1 <xsl:stylesheet >
2 <xsl:template match =" / " >
3 \begin{document}

4 \section{Day 1}
5 <xsl:call-templates name=" presentation>
6 </xsl:call-templates>

7 \end{document}
8 </xsl:template>
9 </xsl:stylesheet>
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Rule-based

Preferred format. Consists primary of rules describing how differ-
ent features of the source document should be processed. It makes
minimal assumptions about the structure of either the source doc-
ument or the result document.

1 <xsl:stylesheet >

2 <xsl:template match =" program " >
3 \begin{document}
4 <xsl:apply-templates / >
5 \end{document}
6 </ xsl:template >

7 <xsl:template match =" day " >
8 \section{ <xsl:value-of select =" @weekday" / >}
9 \begin{itemize}

10 <xsl:apply-templates / >
11 \end{itemize}
12 </ xsl:template >
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13 <xsl:template match =" presentation " >
14 \item <xsl:value-of select =" title " / >
15 </ xsl:template >

16 </ xsl:stylesheet >
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Computational

When there is a need to generate nodes in the result tree that do
not correspond directly to nodes in the source tree.

This example counts the number of presentations per day:

1 <xsl:stylesheet >

2 <xsl:template match =" program " >
3 \begin{document}
4 <xsl:apply-templates / >
5 \end{document}
6 </ xsl:template >

7 <xsl:template match =" day " >
8 \section{ <xsl:value-of select =" @weekday" / >}
9 Number of presentations: <xsl:value-of select =" count (item/presentation) " / >

10 </ xsl:template >

11 </ xsl:stylesheet >
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This example outputs in XML the authors and per author the pre-
sentations they have. This XPath expression gives us all authors:

1 <xsl:for-each
2 select =" day/item/presentation/author " >
3 <xsl:value-of select =" . " / >
4 </ xsl:for-each >
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We want the authors only once of course.

1 <xsl:stylesheet >
2 <xsl:template match =" program " >
3 \begin{document}

4 \begin{enumerate}
5 <xsl:for-each
6 select =" day/item/presentation/author
7 [not(. =preceding::author)] " >
8 <xsl:sort select =" . " / >
9 \item <xsl:value-of select =" . " / >

10 \begin{enumerate}
11 <xsl:for-each
12 select =" //title
13 [current() =preceding-sibling::author] " >
14 \item <xsl:value-of select =" . " / >
15 </ xsl:for-each >
16 \end{itemize}
17 </ xsl:for-each >
18 \end{enumerate}
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19 \end{document}
20 </ xsl:template >
21 </ xsl:stylesheet >
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Bonus

There are certain things you might want to do with program.
xsl .

1. Strip of the ‘h’ or ‘u’ in the time attribute.

2. Writing a comma separated list of authors.

3. determine maximum number of columns required: this to de-
termine final table parameter, i.e. how many l’s for example.
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Strip last character

Let’s strip the last character of the time attribute:

1 <item time =" 9.45h " ><presentation / >
2 <break time =" 10.30h " type =" coffee " / >
3 <item time =" 11.00u " ><presentation / >

Main loop, doesn’t strip anything yet:

1 <xsl:for-each select =" //break|//item " >
2 <xsl:value-of select =" @time" / >
3 <xsl:text >&#xa ; </ xsl:text >
4 </ xsl:for-each >
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Writing a comma separated list of authors
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Tricks

1. <xsl:text> to get white space.

2. <xsl:output> for text output.

3. encoding issues, so specify encoding.

4. Context versus current node is not clear to me. If one doesn’t
work I try the other (p437).
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Tips

1. Everything in XSL is a node.

2. You can walk along any axis: children, parents, attributes (up,
down, left, right).

3. A variable is a node.

4. If a variable is a node, that node is the root node, and the root
node can have children.

5. You cannot update things (functional programming):

1. Use recursion.

2. Don’t try to do two things at once (example).

6. Everything is a node, stupid.
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