
Tutorial: don’t be afraid of
XSLT

Berend de Boer – eurotex 2001

What
an XSLT

processor

XSLT basics

XSLT style
sheets

Bonus

Tricks

Tips

close



What anXSLT processor

With an XSLT processor you can transform XML into:

1. XML .
2. XHTML .
3. Plain text; TEX macro’s.
4. Calculate things like summaries for a ‘spreadsheet’.

What
an XSLT

processor

XSLT basics

XSLT style
sheets

Bonus

Tricks

Tips

close



XSLT basics

? XSLT stands for ‘eXtensible Stylesheet Language: Transformations.

? XSLT is a language for transforming the structure of an XML

document.

? XSLT is itself XML .

? XML is hierarchical, it consists of a root node, that has child
nodes, that can have child nodes, etc. XSLT operates on those
nodes. It can generates (result) nodes. Everything is a node.

? Selecting or filtering things

? It’s harder to learn than you think: basics are easy. Things
you probably want to do have a significant learning curve.

What
an XSLT

processor

XSLT basics

XSLT style
sheets

Bonus

Tricks

Tips

close



XSLT style sheets

XSLT code is written in the form of stylesheets.

There are four kinds of XSLT stylesheets:

1. Fill-in-the-blanks stylesheets.

2. Navigational stylesheets.

3. Rule-based stylesheets.

4. Computational stylesheets.

What
an XSLT

processor

XSLT basics

XSLT style
sheets

Bonus

Tricks

Tips

close



Fill-in-the-blanks

Stylesheet has the same structure as the desired output.

1 <xsl:stylesheet >
2 <xsl:template match =" / " >
3 \begin{document}

4 \chapter{ <xsl:value-of
5 select =" /conference/title " / >}

6 \section{ <xsl:value-of
7 select =" /conference/day[1]/title " / >}

8 \section{ <xsl:value-of
9 select =" /conference/day[1]/title " / >}

10 \end{document}
11 </ xsl:template >
12 </ xsl:stylesheet >

What
an XSLT

processor

XSLT basics

XSLT style
sheets

Bonus

Tricks

Tips

close



Navigational

Like fill-in-the-blanks, but uses named templates as subroutines
to perform commonly-needed tasks.

1 <xsl:stylesheet >
2 <xsl:template match =" / " >
3 \begin{document}

4 \section{Day 1}
5 <xsl:call-templates name=" presentation>
6 </xsl:call-templates>

7 \end{document}
8 </xsl:template>
9 </xsl:stylesheet>

What
an XSLT

processor

XSLT basics

XSLT style
sheets

Bonus

Tricks

Tips

close



Rule-based

Preferred format. Consists primary of rules describing how differ-
ent features of the source document should be processed. It makes
minimal assumptions about the structure of either the source doc-
ument or the result document.

1 <xsl:stylesheet >

2 <xsl:template match =" program " >
3 \begin{document}
4 <xsl:apply-templates / >
5 \end{document}
6 </ xsl:template >

7 <xsl:template match =" day " >
8 \section{ <xsl:value-of select =" @weekday" / >}
9 \begin{itemize}

10 <xsl:apply-templates / >
11 \end{itemize}
12 </ xsl:template >

What
an XSLT

processor

XSLT basics

XSLT style
sheets

Bonus

Tricks

Tips

close



13 <xsl:template match =" presentation " >
14 \item <xsl:value-of select =" title " / >
15 </ xsl:template >

16 </ xsl:stylesheet >

What
an XSLT

processor

XSLT basics

XSLT style
sheets

Bonus

Tricks

Tips

close



Computational

When there is a need to generate nodes in the result tree that do
not correspond directly to nodes in the source tree.

This example counts the number of presentations per day:

1 <xsl:stylesheet >

2 <xsl:template match =" program " >
3 \begin{document}
4 <xsl:apply-templates / >
5 \end{document}
6 </ xsl:template >

7 <xsl:template match =" day " >
8 \section{ <xsl:value-of select =" @weekday" / >}
9 Number of presentations: <xsl:value-of select =" count (item/presentation) " / >

10 </ xsl:template >

11 </ xsl:stylesheet >

What
an XSLT

processor

XSLT basics

XSLT style
sheets

Bonus

Tricks

Tips

close



This example outputs in XML the authors and per author the pre-
sentations they have. This XPath expression gives us all authors:

1 <xsl:for-each
2 select =" day/item/presentation/author " >
3 <xsl:value-of select =" . " / >
4 </ xsl:for-each >

What
an XSLT

processor

XSLT basics

XSLT style
sheets

Bonus

Tricks

Tips

close



We want the authors only once of course.

1 <xsl:stylesheet >
2 <xsl:template match =" program " >
3 \begin{document}

4 \begin{enumerate}
5 <xsl:for-each
6 select =" day/item/presentation/author
7 [not(. =preceding::author)] " >
8 <xsl:sort select =" . " / >
9 \item <xsl:value-of select =" . " / >

10 \begin{enumerate}
11 <xsl:for-each
12 select =" //title
13 [current() =preceding-sibling::author] " >
14 \item <xsl:value-of select =" . " / >
15 </ xsl:for-each >
16 \end{itemize}
17 </ xsl:for-each >
18 \end{enumerate}

What
an XSLT

processor

XSLT basics

XSLT style
sheets

Bonus

Tricks

Tips

close



19 \end{document}
20 </ xsl:template >
21 </ xsl:stylesheet >

What
an XSLT

processor

XSLT basics

XSLT style
sheets

Bonus

Tricks

Tips

close



Bonus

There are certain things you might want to do with program.
xsl .

1. Strip of the ‘h’ or ‘u’ in the time attribute.

2. Writing a comma separated list of authors.

3. determine maximum number of columns required: this to de-
termine final table parameter, i.e. how many l’s for example.

What
an XSLT

processor

XSLT basics

XSLT style
sheets

Bonus

Tricks

Tips

close



Strip last character

Let’s strip the last character of the time attribute:

1 <item time =" 9.45h " ><presentation / >
2 <break time =" 10.30h " type =" coffee " / >
3 <item time =" 11.00u " ><presentation / >

Main loop, doesn’t strip anything yet:

1 <xsl:for-each select =" //break|//item " >
2 <xsl:value-of select =" @time" / >
3 <xsl:text >&#xa ; </ xsl:text >
4 </ xsl:for-each >

What
an XSLT

processor

XSLT basics

XSLT style
sheets

Bonus

Tricks

Tips

close



Writing a comma separated list of authors
What
an XSLT

processor

XSLT basics

XSLT style
sheets

Bonus

Tricks

Tips

close



Tricks

1. <xsl:text> to get white space.

2. <xsl:output> for text output.

3. encoding issues, so specify encoding.

4. Context versus current node is not clear to me. If one doesn’t
work I try the other (p437).

What
an XSLT

processor

XSLT basics

XSLT style
sheets

Bonus

Tricks

Tips

close



Tips

1. Everything in XSL is a node.

2. You can walk along any axis: children, parents, attributes (up,
down, left, right).

3. A variable is a node.

4. If a variable is a node, that node is the root node, and the root
node can have children.

5. You cannot update things (functional programming):

1. Use recursion.

2. Don’t try to do two things at once (example).

6. Everything is a node, stupid.

What
an XSLT

processor

XSLT basics

XSLT style
sheets

Bonus

Tricks

Tips

close


