
Fonts and PDF via pdfTEX

Tom Kacvinsky

EuroTEX 2001, Kerkrade, The Netherlands

Overview

• Overview of PDF file format

• Overview of font objects in PDF files

• How pdfTEX treats fonts

• Debugging font problems in PDF files

• Conclusion

Overview of PDF file format

• Described in chapter 3 of PDF Reference Manual, second edition.

• Basic building blocks are called objects

• Objects are built out of boolean values, numbers (real and integer),

strings, names, arrays, dictionaries, streams, and the null object.

Boolean objects

• true or false

Number objects

• Integers: one or more decimal digits optionally preceded by a sign

• Real numbers: one or more decimal digits, with leading, embedded or

trailing period (decimal point), with an optional sign

• Number objects may not be specified with different radixes

String objects

• Sequence of unsigned bytes.

• There are limits on how a string can be.

• Strings are delimited by (and) (binary encoded strings) or < and >

(hexadecimal encoded strings)

• The escape mechanism in a string is \. Used to escape parentheses,

amongst other things.

• If a binary encoded string contains matching (and), then the paren-

theses to not need to be escaped.

• If a binary encoded string contains an unmatched (or), it must be

escaped, as follows: \(and \)

• \ is used to include other character codes in a binary encoded string.

Examples include \ itself (\\), newlines (\n), and nonprinting ASCII

characters

• \ is used to introduce octal representation of character codes. An ex-

ample is \001, the octal representation of TAB.

String objects (continued)

• \ is used for line

• For hexadecimal encoded strings, white space characters are ignored.

White space characters are space, tab, carriage return, line feed, and

formfeed.

• In a hexadecimal encoded string, two hexadecimal digits form one byte;

if the count of hexadecimal digits is not even the hexadecimal encoded

string is padded with one 0 at the end.

Example String objects

(Hi!\243 \(here we begin\

a parenthetical)

(Hi!\243 \(here we begin a parenthetical)

<4869 2109486F772061726520796F753F205C2868657>

<48692109486F772061726520796F753F205C28686570>

Name Objects

• Name objects start with a /. The slash is not part of the name.

• Name objects are unique

• Names cannot include delimiter or white space characters

• Names are case sensitive

• / by itself is a legal name, but I don’t recommend using it!

• Example: /FooBarBletch

Array Objects

• Delimited by [and]

• Contains other objects (names, arrays, dictionaries, and even other ar-

rays)

• Again, there are implementation limits for arrays.

• Example: [42 (Barfulicious) /TomIsWeird]

Dictionary Objects

• Delimited by << and >>

• Contains key/value pairs. Keys are name objects, and values are any

kind of object, including other dictionaries

• If a key’s value is null, the that key is treated as being absent

• Dictionaries are the main building blocks of PDF files

• Dictionaries in PDF file customarily have a /Type key with a value that

determines what kind of dictionary it is, and sometimes a /Subtype for

further identification of the dictionary’s purpose. The object used for

both /Type and /Subtype is a name object.

• Example: << /Conference << /EuroTeX (2001) >> /Foo 12 >>

• Weirdness: The specification states that if a dictionary contains two

entries with the same key, the value is undefined. However, evidence

points to the fact that the last occurence of the key is the key whose

value is taken. I believe that Martin Schröder reported this on the

pdfTEX list.

• streams can be external to a PDF file; we will ignore this case.

Direct vs. Indirect objects

• An indirect object is an object that is labeled for later reference. The

label consists of a positive number (the object number) and a nonneg-

ative “revision” number. The PDF reference calls this latter number a

generation number, but I think revision is a better name.

• The label is the object and revision numbers followed by obj. The object

data then follows, and the data is followed by endobj.

• Nonlabled objects are direct objects.

• Later on, we will see that some PDF data structures must use indirect

objects. They do so by using indirect references (their wording; I would

use reference). This is done by using the object number and revision

number followed by R. For example, if the object number is 2, and the

revision number is 0, then an indirect reference for object 2 is “2 0 R”.

Stream Objects

• Used to get more data than a string object, for unlike string objects,

stream objects have no implementation limits (at least in theory).

• Delimited by stream and endstream

• stream objects must be indirect objects.

• The stream keyword must be followed by either \r\n or by \n, but

not by \r. There are valid reasons for this, as explained in the PDF

Reference Manual.

• stream objects can be compressed and encoded. The compression and

encoding information is specified using a dictionary object.

General structure of stream objects

dictionary

stream(\r\n|\n)

<data>

endstream

Some keys used in stream dictionaries

• Length: (Required) An integer value that is length of the data, not

counting any end of line tokens before the endstream keyword.

• Filter: (Optional) name or array of names giving decompression and

decoding information for data in stream.

• DecodeParams: (Optional) dictionary or array giving information for

decompression/decoding filters specified in Filter.

• There are more dictionary items, but these are not germane to streams

contained within a given PDF file.

• For our purposes, the most common decompression filter is FlateDe-
code. The data that is decoded is thus FlateEncoded, which is the

same data compression method as described in IETF RFC 1950. Or,

more commonly, the gzip compression method.

An indirect object

12 0 obj

<< /Filter /ASCIIHexDecode /Length 44 >>

stream

48692109486F772061726520796F753F205C28686570>

endstream

endobj

File layout

• Header

• Body

• Cross reference (xref) table

• File trailer

• For this talk, the salient file sections are the body, xref table, and the

trailer.

Body section

• The body section is a sequence of indirect objects. Some objects are

used to define “global” data, and some objects are used to describe

page data.

The xref table

• The main idea behind the xref table is quick lookups of indirect objects.

• Each entry of the xref table is offsets from the beginning of the file to

ann indirect object.

• There may be more than one cross reference table. These are referred

to as sections. There is one section to begin with; each modification of

the file may result in an additional xref table being added to the file.

• Each xref table itself might have more than one section.

• For more details on the cross reference table, see the PDF Reference

Manual, second edition (or variants thereof), sections 3.4.3, 3.4.5, and

G6.

Example xref table (taken from PDF Reference,
Example 3.5)

xref

0 1

0000000000 65535 f\n

3 1

0000025325 00000 n\n

23 2

0000025518 00002 n\n

0000025635 00000 n\n

30 1

0000025777 00000 n\n

File trailer

trailer

<dictionary>

startxref

<byte offset to last xref section>

%%EOF

Discussion of file trailer

• There can be more than one xref table. This is accounted for in the

dictionary after the trailer keyword. The particular entry is the Prev
key, and its entry is an offset to the previous cross reference section.

• The Root dictionary is an indirect reference to an object that contains

the Document catalog.

The Document catalog

• For this talk, the entry in the document catalog of interest is the Pages
dictionary, and indirect reference to the root page in the page tree.

• There are other entries in the Document that contain information for

bookmarks, etc...

The Pages object

• For this talk, the entry in the document catalog of interest is the Pages
dictionary, and indirect reference to the root page in the page tree.

The page tree and Pages indirect objects.

• Acrobat Distiller makes the page tree a balanced tree, for quick lookups

of particular pages. Think of binary trees and the binary search algo-

rithm.

• The nodes in the page tree are called Kids. Each node in the page tree

(except the root node) has a Parent node.

• The leaf nodes in the tree are the indirect objects that contain page

layout information. These leafs are called Pages, and are dictionary

objects.

The Page indirect object.

• Key entries are Resources and Contents indirect objects.

• The Resources indirect object is a dictionary that contains information

about resources are used on that page.

• The Contents indirect object is a stream or array of streams (remember

that streams are indirect objects) that contains the contents of the page

(the page description).

Resource dictionary entries

• The ProcSet array. This array contains names of procedure sets used

by the page. These procedure sets are for text operators, general pdf

operators, or image operators.

• The Font dictionary. The keys are names used by the text operators

and whose values are indirect references to Font objects.

• The XObject dictionary. The keys are named resources and whose

values are indirect references to objects used by the page. For the

XObject resources, it helps to think of graphics (bitmap or vector) that

are used by the page.

Wow! It is past time for an example.

Fonts!

Supported font formats

• Type 0 (composite fonts)

• Type 1 (both regular Type 1 fonts and MM Type 1 fonts). In practice,

only regular Type 1 fonts are used. If an MM font is used, it is already

interpolated (that is, the interpolated MM font is a regular Type 1 font).

• Type 3

• True Type

• CID keyed fonts. The supported formats for CID keyed fonts are CID-

FontType0 (Type 1 outlines) and CIDFontType2 (True Type outlines)

Objects related to fonts

• Font dictionary object. This is the top level font object. It contains en-

coding information and some metric information (namely, glyph widths).

• FontDescriptor dictionary object. This object is used by the top level

Font object for certain fonts. It contains information about the font

(more metric information, glyph complement, etc...)

• FontFile, FontFile2, and FontFile3 stream objects. These stream

objects are used to embed fonts in the PDF file. This is regardless of

whether the font is fully embedded or is subsetted.

We will restrict our discussion to Type 1 fonts.

Type 1 Font objects
• Type Required; Name object; always Font

• Subtype Required; Name object; always Type1

• BaseFont Required; Name object that gives PS name of font. Used
when printing PDF file to a PS device. Subsetted fonts have a Base-
Font with a six character prefix, each character of said prefix is from
the letters A-Z, followed by a +, followed by the “usual” name of the
font. An example is /AGFTYW+CMR10.

• FirstChar Required; first character code defined in Widths array

• LastChar Required; last character code defined in Widths array

• Widths Required; array that gives glyph widths

• FontDescriptor Required; must be an indirect reference to a dictionary
object.

• Encoding Optional; Can be a name (for a predefined encoding) or a
dictionary that describes the encoding of the font.

• ToUnicode Optional; A stream object that maps character codes to
Unicode values; useful for cut and paste and text searches.

Required entries in Type 1 FontDescriptor objects

• Type Name object; always FontDescriptor

• Ascent Number; maximum height of glyph above baseline, excepting

accented glyphs.

• CapHeight Number; maximum height of flat capital letters

• Flags Number; bitfield describing properties of the font (italic, roman,

symbol, smallcap, etc...)

• FontBBox Array of numbers; Numbers in array are described in glyph

coordinates (usually 1000 units per EM). The FontBBox describes the

smallest rectangle that encloses all glyphs in the font.

• FontName Name; must match the BaseFont name as given in the

Font object.

• ItalicAngle Number; describes angle of dominant “vertical” strokes

of glyphs in the font; measured in degrees counterclockwise from the

vertical

• StemV Number; width of dominant vertical stems in the font.

Some useful optional entries in Type 1
FontDescriptor objects

• FontFile stream object; used for embedding of Type 1 “PFA” fonts

• FontFile3 stream object; used for embedding of Type 1 “CFF” fonts

• CharSet string; list of glyphs in a subsetted font. An example is

(/a/d/e/ff/i/l/n/r/t).

Example of a FontFile stream object

27 0 obj

<<

/Length1 1521

/Length2 8099

/Length3 532

/Length 8981

/Filter /FlateDecode

>>

stream

<8981 bytes deleted>

endstream

endobj

Example of a FontFile3 stream object

8 0 obj

<<

/Filter [/ASCII85Decode /FlateDecode]

/Length 482

/Subtype /Type1C

>>

stream

<482 bytes deleted>

endstream

endobj

