
Extending TEX, why?

The first TEX . . .

\scantokens: . . .

Is TEX (easily) . . .

NTS— . . .

Addendum

Home Page

Title Page

JJ II

J I

Page 1 of 23

Go Back

Full Screen

Close

Quit

Extending TEX in a Literate Way

Bernd Raichle

EuroTEX 2001, Kerkrade/NL

– Extending TEX, why?

– The first TEX extension

– \scantokens: example of a TEX extension

– Is TEX (easily) extendible?

– NTS—a solution?

Extending TEX, why?

The first TEX . . .

\scantokens: . . .

Is TEX (easily) . . .

NTS— . . .

Addendum

Home Page

Title Page

JJ II

J I

Page 2 of 23

Go Back

Full Screen

Close

Quit

1. Extending TEX, why?

When Knuth started, TEX was intented for one purpose:

To enable Donald E. Knuth to typeset his book series
“The Art of Computer Programming”

And TEX was meant to be used by two persons only:

– Donald E. Knuth

– his secretary.

Nonetheless TEX was used by more and more persons, and Knuth added new
features. He saw . . .

– the need for extensions,

– the problems of extensions:

· selecting necessary extensions vs. “featurism”,

· no fixed/stable kernel program for a complete typesetting system,

· when to finish!

Extending TEX, why?

The first TEX . . .

\scantokens: . . .

Is TEX (easily) . . .

NTS— . . .

Addendum

Home Page

Title Page

JJ II

J I

Page 3 of 23

Go Back

Full Screen

Close

Quit

1.1. TEX extensions

There is a need for TEX extensions:

– pdfTEX,
– ε-TEX,
– Omega,

– NTS,
– etc.

1.2. TEX and its Restrictions

Extensions are possible in different parts of TEX:

– Removing the restrictions of the internal representation in tex.web and
the standardized files like tfm (e.g., 256 glyphs per font, limited number of
heights, depths, widths per font).

– Better support on the input level, i.e., text file encodings (e.g., Unicode) or
the programming language (e.g., imperative instead of macro language?).

– Better support for color, for new output formats (e.g., PDF).

– Implementing typesetting concepts not supported by TEX (e.g., typesetting
on a grid)

– etc.

Extending TEX, why?

The first TEX . . .

\scantokens: . . .

Is TEX (easily) . . .

NTS— . . .

Addendum

Home Page

Title Page

JJ II

J I

Page 4 of 23

Go Back

Full Screen

Close

Quit

2. The first TEX extension

The first TEX extension was implemented by Knuth and is integrated into the
source code of TEX82 since 1980:

– the text output commands \write, \openout, \closeout, \immediate

– the command \special

This extension was one of the most important, otherwise TEX users were not
able . . .

– to create a table of contents or list of figures automatically,

– to communicate with other programs (BibTEX, makeindex, xindy etc.) via
text files,

– to incorporate pictures,

– to rotate text (e.g., landscape printing),

– to use colors,

– etc.

Extending TEX, why?

The first TEX . . .

\scantokens: . . .

Is TEX (easily) . . .

NTS— . . .

Addendum

Home Page

Title Page

JJ II

J I

Page 5 of 23

Go Back

Full Screen

Close

Quit

3. \scantokens: example of a TEX extension

From the ε-TEX manual:

\scantokens{...} absorbs a list of unexpanded tokens, converts it into a cha-
racter string that is treated as if it were an external file, and starts to read from
this ‘pseudo-file’. A rather similar effect can be achieved by the commands

\toks0={...}

\immediate\openout0=file

\immediate\write0{\the\toks0}

\immediate\closeout0

\input file

In particular every occurrence of the current newline character is interpreted as
start of a new line, and input characters will be converted into tokens as usual.

The \scantokens command is, however, expandable and does not use token
registers, write streams, or external files. Furthermore the conversion from TEX’s
internal ASCII codes to external characters and back to ASCII codes is skipped.

Extending TEX, why?

The first TEX . . .

\scantokens: . . .

Is TEX (easily) . . .

NTS— . . .

Addendum

Home Page

Title Page

JJ II

J I

Page 6 of 23

Go Back

Full Screen

Close

Quit

\scantokens: example of a TEX extension . . . (cont.)

a. The first steps: simple

1. Define the new primitive

If possible reuse an existing command code to keep the change simple. In our
case, we can use the internal command code for \input and \endinput.

primitive("scantokens",input,2);
@!@:scan_tokens_}{\.{\\scantokens} primitive@>

2. Provide a print form for trace, log, and string output

@x [25] m.377 l.7779 - e-TeX scan_tokens
input: if chr_code=0 then print_esc("input")

@+else print_esc("endinput");
@y
input: if chr_code=0 then print_esc("input")@/

else if chr_code=2 then print_esc("scantokens")@/
else print_esc("endinput");

@z

Extending TEX, why?

The first TEX . . .

\scantokens: . . .

Is TEX (easily) . . .

NTS— . . .

Addendum

Home Page

Title Page

JJ II

J I

Page 7 of 23

Go Back

Full Screen

Close

Quit

3. Call the appropriate function when the command token appears in the input
stream

@x [25] m.378 l.7782 - e-TeX scan_tokens
if cur_chr>0 then force_eof:=true
@y
if cur_chr=1 then force_eof:=true@/
else if cur_chr=2 then pseudo_start@/
@z

Extending TEX, why?

The first TEX . . .

\scantokens: . . .

Is TEX (easily) . . .

NTS— . . .

Addendum

Home Page

Title Page

JJ II

J I

Page 8 of 23

Go Back

Full Screen

Close

Quit

\scantokens: example of a TEX extension . . . (cont.)

b. The next steps: necessary work

Implement the action which should be done when the command token appears in
the input stream, which should be equivalent to . . .

\toks0={...}

%\immediate\openout0=file

\immediate\write0{\the\toks0}

%\immediate\closeout0

\input file

– Scan the argument resulting in a token list,

procedure pseudo_start;
var old_setting:0..max_selector; {holds |selector| setting}
@!s:str_number; {string to be converted into a pseudo file}
@!l,@!m:pool_pointer; {indices into |str_pool|}
@!p,@!q,@!r:pointer; {for list construction}
@!w: four_quarters; {four ASCII codes}
@!nl,@!sz:integer;
begin scan_general_text;

Extending TEX, why?

The first TEX . . .

\scantokens: . . .

Is TEX (easily) . . .

NTS— . . .

Addendum

Home Page

Title Page

JJ II

J I

Page 9 of 23

Go Back

Full Screen

Close

Quit

– convert the token list into a string,

old_setting:=selector; selector:=new_string;
token_show(temp_head); selector:=old_setting;
flush_list(link(temp_head));
str_room(1); s:=make_string;

– write the string to a pseudo file, release the string,

@<Convert string |s| into a new pseudo file@>;
flush_string;

– start reading this pseudo file.

@<Initiate input from new pseudo file@>;
end;

Extending TEX, why?

The first TEX . . .

\scantokens: . . .

Is TEX (easily) . . .

NTS— . . .

Addendum

Home Page

Title Page

JJ II

J I

Page 10 of 23

Go Back

Full Screen

Close

Quit

We should not forget to declare and initialize the variable which points to a linked
list of open pseudo files.

@<Glob...@>=
@!pseudo_files:pointer; {stack of pseudo files}

@ @<Set init...@>=
pseudo_files:=null;

At this place we have (hopefully!) not forgotten that it is possible to nest \scantoken
calls:

\scantokens{\scantokens{...}}

This means that at the same time, more than one pseudo files can be “open”:
To have only a variable pointing to one open pseudo file is not sufficient, it has
to point to a list of open pseudo files.

Extending TEX, why?

The first TEX . . .

\scantokens: . . .

Is TEX (easily) . . .

NTS— . . .

Addendum

Home Page

Title Page

JJ II

J I

Page 11 of 23

Go Back

Full Screen

Close

Quit

\scantokens: example of a TEX extension . . . (cont.)

Here is the code to write the string into a pseudo file, i.e., a list of nodes in TEX’s
main memory, one node contains all characters of one line and is padded with
spaces at the end.

@ @<Convert string |s| into a new pseudo file@>=

str_pool[pool_ptr]:=si(" "); l:=str_start[s];

nl:=si(new_line_char);

p:=get_avail; q:=p;

while l<pool_ptr do

begin m:=l;

while (l<pool_ptr)and(str_pool[l]<>nl) do incr(l);

sz:=(l-m+7)div 4;

if sz=1 then sz:=2;

r:=get_node(sz); link(q):=r; q:=r; info(q):=hi(sz);

while sz>2 do

begin decr(sz); incr(r);

w.b0:=qi(so(str_pool[m])); w.b1:=qi(so(str_pool[m+1]));

w.b2:=qi(so(str_pool[m+2])); w.b3:=qi(so(str_pool[m+3]));

mem[r].qqqq:=w; m:=m+4;

end;

w.b0:=qi(" "); w.b1:=qi(" "); w.b2:=qi(" "); w.b3:=qi(" ");

if l>m then

begin w.b0:=qi(so(str_pool[m]));

if l>m+1 then

begin w.b1:=qi(so(str_pool[m+1]));

if l>m+2 then

begin w.b2:=qi(so(str_pool[m+2]));

if l>m+3 then w.b3:=qi(so(str_pool[m+3]));

end;

end;

end;

mem[r+1].qqqq:=w;

if str_pool[l]=nl then incr(l);

end;

info(p):=link(p); link(p):=pseudo_files; pseudo_files:=p

Extending TEX, why?

The first TEX . . .

\scantokens: . . .

Is TEX (easily) . . .

NTS— . . .

Addendum

Home Page

Title Page

JJ II

J I

Page 12 of 23

Go Back

Full Screen

Close

Quit

\scantokens: example of a TEX extension . . . (cont.)

Here is the code to start reading the pseudo file.

\begin{verbatim}
@ @<Initiate input from new pseudo file@>=
begin_file_reading; {set up |cur_file| and new level of input}
line:=0; limit:=start; loc:=limit+1; {force line read}
if tracing_scan_tokens>0 then

begin if term_offset>max_print_line-3 then print_ln
else if (term_offset>0)or(file_offset>0) then print_char(" ");
name:=19; print("("); incr(open_parens); update_terminal;
end

else name:=18

To distinguish the pseudo file from other file descriptors, either 18 (no tracing) or
19 (tracing) is used as TEX’s internal name index.

Extending TEX, why?

The first TEX . . .

\scantokens: . . .

Is TEX (easily) . . .

NTS— . . .

Addendum

Home Page

Title Page

JJ II

J I

Page 13 of 23

Go Back

Full Screen

Close

Quit

\scantokens: example of a TEX extension . . . (cont.)

c. The finishing steps: more work

After converting the argument of \scantoken into a pseudo file, this file was
“opened” to get read by TEX’s input mechanism.

If the current file name index 18 or 19 is seen, the input mechanism is reading
from the current pseudo file instead of any other file:

@x [24] m.362 l.7538 - e-TeX scan_tokens, every_eof
if not force_eof then
@y
if not force_eof then

if name<=19 then
begin if pseudo_input then {not end of file}

firm_up_the_line {this sets |limit|}
else force_eof:=true;
end

else
@z

Extending TEX, why?

The first TEX . . .

\scantokens: . . .

Is TEX (easily) . . .

NTS— . . .

Addendum

Home Page

Title Page

JJ II

J I

Page 14 of 23

Go Back

Full Screen

Close

Quit

The line read function pseudo_input copies the characters of one line from the
main memory into the input buffer:

function pseudo_input: boolean; {inputs the next line or returns |false|}
var p:pointer; {current line from pseudo file}
@!sz:integer; {size of node |p|}
@!w:four_quarters; {four ASCII codes}
@!r:pointer; {loop index}
begin last:=first; {cf.\ Matthew 19\thinspace:\thinspace30}
p:=info(pseudo_files);
if p=null then pseudo_input:=false
else begin info(pseudo_files):=link(p); sz:=ho(info(p));

if 4*sz-3>=buf_size-last then
@<Report overflow of the input buffer, and abort@>;

last:=first;
for r:=p+1 to p+sz-1 do
begin w:=mem[r].qqqq;
buffer[last]:=w.b0; buffer[last+1]:=w.b1;
buffer[last+2]:=w.b2; buffer[last+3]:=w.b3;
last:=last+4;
end;

if last>=max_buf_stack then max_buf_stack:=last+1;
while (last>first)and(buffer[last-1]=" ") do decr(last);
free_node(p,sz);
pseudo_input:=true;
end;

end;

Extending TEX, why?

The first TEX . . .

\scantokens: . . .

Is TEX (easily) . . .

NTS— . . .

Addendum

Home Page

Title Page

JJ II

J I

Page 15 of 23

Go Back

Full Screen

Close

Quit

When reaching the end of a file . . .

@x [23] m.329 l.7047 end_file_reading - e-TeX scan_tokens
if name>17 then a_close(cur_file); {forget it}
@y
if (name=18)or(name=19) then pseudo_close else
if name>17 then a_close(cur_file); {forget it}
@z

. . . we have to make sure to release the used main memory:

procedure pseudo_close; {close the top level pseudo file}
var p,@!q: pointer;
begin p:=link(pseudo_files); q:=info(pseudo_files);
free_avail(pseudo_files); pseudo_files:=p;
while q<>null do

begin p:=q; q:=link(p); free_node(p,ho(info(p)));
end;

end;

Extending TEX, why?

The first TEX . . .

\scantokens: . . .

Is TEX (easily) . . .

NTS— . . .

Addendum

Home Page

Title Page

JJ II

J I

Page 16 of 23

Go Back

Full Screen

Close

Quit

\scantokens: example of a TEX extension . . . (cont.)

d. The hard steps: Unthought dependencies

The argument token list of\scantokens can contain the \dump command.

When dumping the format file we have to close all open pseudo files, otherwise
the used main memory is not released. The used main memory structures are
written to the format file without any reference to them: memory leak!

@ @<Dump the \eTeX\ state@>=
while pseudo_files<>null do pseudo_close; {flush pseudo files}

There are more possible problems to think about:

– Have we thought about \endinput inside \scantokens?

– What about \newlinechar, \endlinechar?

– etc.

Extending TEX, why?

The first TEX . . .

\scantokens: . . .

Is TEX (easily) . . .

NTS— . . .

Addendum

Home Page

Title Page

JJ II

J I

Page 17 of 23

Go Back

Full Screen

Close

Quit

4. Is TEX (easily) extendible?

The answer is: No!

There are many reasons:

– To extend TEX you have to know its internals: data structures, functions,
procedures, WEB macros, restrictions, dependencies.

– TEX is a monolithic program.

– tex.web is 600 pages of documented source code (Volume B, “TEX: The
Program”).

– TEX is written in WEB in a style where the code for one thing is spread all
over the WEB source code.

Extending TEX, why?

The first TEX . . .

\scantokens: . . .

Is TEX (easily) . . .

NTS— . . .

Addendum

Home Page

Title Page

JJ II

J I

Page 18 of 23

Go Back

Full Screen

Close

Quit

– TEX was written in 1977–1982

· using a subset of Pascal (∗1971–1974) because Knuth’s used Com-
piler had not supported all constructs or was not free of bugs,

· with memory constraints (64K of TEX main memory was unusual at
the beginning),

· memory optimized: TEX has his own memory management and struc-
tures (e.g., a memory word is a union of a word, two halves or four
quarters),

· run-time optimized.

– Knuth’s coding style is “unusual”, his own kind of structured programming.

– No real use of abstract data types.

– Use of global variables instead of local variables and/or function/procedure
parameters (historic reason: avoid stack overflow, parameters are slower).

– Functions and procedures are large, have too many lines, instead of much
more short supporting functions/procedures (historic reason: limitations of
the compiler/run-time system, a function call is slow).

Extending TEX, why?

The first TEX . . .

\scantokens: . . .

Is TEX (easily) . . .

NTS— . . .

Addendum

Home Page

Title Page

JJ II

J I

Page 19 of 23

Go Back

Full Screen

Close

Quit

5. NTS—simplifying TEX extensions?

The answer is: ...

Please ask this question in 10–20 years again! :-)

Extending TEX, why?

The first TEX . . .

\scantokens: . . .

Is TEX (easily) . . .

NTS— . . .

Addendum

Home Page

Title Page

JJ II

J I

Page 20 of 23

Go Back

Full Screen

Close

Quit

Enjoy your own experiences extending
TEX.

Extending TEX, why?

The first TEX . . .

\scantokens: . . .

Is TEX (easily) . . .

NTS— . . .

Addendum

Home Page

Title Page

JJ II

J I

Page 21 of 23

Go Back

Full Screen

Close

Quit

6. Addendum

Extending TEX, why?

The first TEX . . .

\scantokens: . . .

Is TEX (easily) . . .

NTS— . . .

Addendum

Home Page

Title Page

JJ II

J I

Page 22 of 23

Go Back

Full Screen

Close

Quit

Historical background

6.1. Short summary of TEX’s historical dates

1977, May Knuth decided to create a program called TEX.

1977, May 13 TEX.DRAFT

1977, May 18 “Sketched programs for font generation”

1977, July 12 TEX.ONE

1978, September Book “Tau Epsilon Chi, a system for technical text” (198 pp)

1979, September Book “METAFONT, a system for alphabet design” (105 pp)

1980, July 29 Book “Seminumerical Algorithms”, Volume 2 of TAoCP, second
edition.

1982, October TEX82, Version 0 released.

1983, December 3 TEX82, Version 1.0 released.

1989, August Work on TEX 3 started.

1990, March TEX 3 released.

Extending TEX, why?

The first TEX . . .

\scantokens: . . .

Is TEX (easily) . . .

NTS— . . .

Addendum

Home Page

Title Page

JJ II

J I

Page 23 of 23

Go Back

Full Screen

Close

Quit

6.2. Status Quo in 1977/78 to implement TEX

Structured Programming & (Abstract) Data Types

– Dijkstra, E.W. Notes on Structured Programming. In Structured Pro-
gramming. Academic Press, London, New York. 1972.

– Hoare, C.A.R. Notes on Data Structuring. In Structured Programming.
Academic Press, London, New York. 1972.

Programming Language Pascal (used to implement TEX)

– Wirth, N. The Programming Language Pascal. Acta Informatica, 1,
No. 1. 1971. Pp. 35–63.

– Jensen, K.; Wirth, N. Pascal – User Manual and Report. Springer-
Verlag, Berlin, Heidelberg, New York. 1974.

Compiler Theory

– Aho, A.V.; Ullman, J.D. The Theory in Parsing, Translation, and Com-
piling. Prentice-Hall, Eaglewood Cliffs, N.J. 1972+1973. (In two volu-
mes)

– Aho, A.V.; Ullman, J.D. Principles in Compiler Design. Addison-Wesley,
Reading, Mass. 1977.

	Extending TeX, why?
	TeX extensions
	TeX and its Restrictions

	The first TeX extension
	`scantokens: example of a TeX extension
	The first steps: simple
	The next steps: necessary work
	The finishing steps: more work
	The hard steps: Unthought dependencies

	Is TeX (easily) extendible?
	NTS---simplifying TeX extensions?
	Addendum
	Short summary of TeX's historical dates
	Status Quo in 1977/78 to implement TeX

