
Math typesetting in TEX:

The good, the bad, the ugly

Ulrik Vieth

EuroTEX 2001 · Kerkrade



Overview

• Introduction: What’s the state of math typesetting with TEX?

– Some good news
– Some bad news

• Overview: How things work: Some technical background

– What goes on in text mode . . .
– What goes on in math mode . . .

• Analysis: What’s wrong with TEX’s math typesetting engine?

– What are some specific problems?
– What are the limitations and shortcomings?
– What are missing features?

• Discussion:

– What’s good, what’s bad, what’s ugly?
– What could be done to improve things?
– What has already been done?

EuroTEX 2001 · Kerkrade · 24. September 2001 2



Math typesetting with TEX: Some good news

• TEX is still very good at typesetting math — even after 20 years of age

• TEX is also very good at typesetting text, but other systems are catching up

• TEX is still at its best in the domain of math typesetting

• Math typesetting has always played a central role in TEX

• Math typesetting has often been neglected by word processors

• Math typesetting has been a key feature to TEX’s success

• TEX cannot handle everything by itself when typesetting math, but . . .

– experienced users can produce publication quality with manual tweaking
– average users can produce “good enough” quality with default settings

EuroTEX 2001 · Kerkrade · 24. September 2001 3



Math typesetting with TEX: Some bad news

• While the output is good, the internals are far from perfect

• Math typesetting is an inherently difficult topic

• TEX’s math typesetting engine is extremely complicated (see Appendix G)

• TEX’s math typesetting engine has some very peculiar features

• TEX’s math typesetting engine has some limitations and shortcomings

• TEX’s math typesetting engine makes assumptions about math fonts

• Implementing math fonts for TEX alone is extremely difficult

• Implementing math fonts for TEX and other systems is almost impossible

EuroTEX 2001 · Kerkrade · 24. September 2001 4



Technical background

• What goes on in text mode . . .

– characters, codes and fonts
– input to output translation
– font handling

• What goes on in math mode . . .

– math symbols, math codes and families
– input to output translation
– interaction between typesetting engine and fonts

EuroTEX 2001 · Kerkrade · 24. September 2001 5



What goes on in text mode . . .

• Essentially, when typesetting text, TEX does the following:

– convert input codes to output codes using the current font
– assemble sequences of boxes (glyphs) and glue (whitespace)
– break paragraphs into lines and lines into pages

• Input codes:

– keyboard characters (7-bit ASCII and ^^ notation), \char tokens
– expansion of macros (\chardef), active characters, input ligatures

• Output codes:

– code positions in the currently selected font, using font-specific encoding

• Font handling:

– Whatever the macro package, fonts are eventually loaded by primitives
– Loading a font: \font\foo=<TFM name>, selecting a font: \foo
– Fonts represent specific font shapes of a specific family, size, encoding

EuroTEX 2001 · Kerkrade · 24. September 2001 6



What goes on in math mode (I)

• When it comes to typesetting math, many things are different:

– TEX doesn’t use fonts directly, it uses math families instead
– there can be hundreds of fonts, but only 16 math families
– each math family represents a set of fonts at 3 different styles
– math symbols are represented by math codes (4-digit hex-numbers)
– math codes encode type of symbol, family and character code

• Input codes:

– keyboard characters translated through \mathcode assignments
– expansion of macros (\mathchardef), active characters

• Internal representation:

– math symbols, represented by math codes (4-digit hex-numbers)

• Output codes:

– code positions in a font of a given math family and style
– codes may be translated further through charlists and extensible recipes

EuroTEX 2001 · Kerkrade · 24. September 2001 7



What goes on in math mode (II)

• When typesetting math, TEX does the following:

– convert keyboard characters or math symbols to math codes
– select the proper style based on the context and type of symbol
– apply the proper amount of spacing based on the type of symbol
– select the proper version of symbols for big operators, delimiters, radicals
– resolve math codes to output codes from specific math fonts
– assemble math list from math atoms, convert math list to horizontal list

• Interaction between math typesetting engine and math fonts:

– information and intelligence is distributed between engine and fonts
– typesetting rules are hard-wired in the math typesetting engine
– certain parameters are set up in the format file
– certain parameters are specified by \fontdimen parameters
– \fontdimens of families 2 and 3 apply to the whole set of math fonts

EuroTEX 2001 · Kerkrade · 24. September 2001 8



Specific problems of TEX’s math fonts

• Glyph metrics of ordinary symbols

• Accent placement, \skewchar mechanism

• Glyph metrics of big symbols in math extension fonts

• Access to big symbols in math extension fonts

• Other problems (in brief)

EuroTEX 2001 · Kerkrade · 24. September 2001 9



Glyph metrics of ordinary math symbols

• for text fonts: 4 fields of per-glyph info in TFM files

– width, height, depth, italic correction

• for math fonts: same fields, different interpretation

– TFM width: offset from left for subscript position
– TFM italic correction: offset for superscript position
– glyph width = TFM width + TFM italic correction

• Problems:

– when setting up math fonts, glyph metrics have to be adjusted
– italic letters from text fonts cannot be used as given
– lots of fine-tuning needed to arrive at optimal values

• Solution:

– revise TFM file format, introduce additional fields

EuroTEX 2001 · Kerkrade · 24. September 2001 10



Placement of math accents, \skewchar mechanism

• for text fonts: standard mechanism for accent placement

– accent glyphs are assumed to fit on top of lowercase glyphs
– accents are centered and shifted up or down as needed
– accents are shifted to the right, depending on font slant

• for math fonts:

– glyph width differs from TFM width: standard mechanism doesn’t work
– \skewchar mechanism: one glyph per font designated as \skewchar
– pseudo kern-pairs are used to store shift amounts for accents

• Problems:

– when setting up math fonts, accent placement has to be adjusted
– lots of fine-tuning needed to arrive at optimal values

• Solution:

– revise TFM file format, introduce additional fields

EuroTEX 2001 · Kerkrade · 24. September 2001 11



Glyph metrics of big symbols in math extension fonts

• glyph metrics of big symbols have unusual properties:

– big operators, delimiters and radicals all hang below the baseline
– big symbols are not centered on the math axis

• What are the reasons for this?

– radicals are constructed using rules instead of glyphs for the rule part
– height of radical glyph determines rule thickness of horizontal rule
– TFM file format is limited to only 16 different heights and depths
– delimiters have to be placed in the same position as radicals

• Problems:

– math extension fonts are specific to TEX, not usable for other systems
– fonts for use with TEX and other systems need two sets of glyphs

• Solution:

– revise algorithm for radicals, maybe using glyphs instead of rules
– revise TFM file format, remove limitations (16 different heights and depths)

EuroTEX 2001 · Kerkrade · 24. September 2001 12



Access to big symbols in math extension fonts

• ordinary math symbols:

– a single math code encodes type, family, code position
– each symbol is represented by a single math code

• What’s different for big symbols?

– big delimiters and radicals have a small and a big version
– big version may be followed by a sequence of bigger versions (charlist)
– biggest version may be followed by an extensible recipe (extensible)
– extensible recipe specifies building blocks (top, bottom, middle, etc.)

• Problems:

– only the entry point to a charlist is represented by a math code
– entry points to extensible may be unrelated to building blocks

• Confusing, isn’t it?

EuroTEX 2001 · Kerkrade · 24. September 2001 13



Other problems of TEX’s math fonts (in brief)

• Boxing and unboxing subformulas:

– Subformulas are always set to their natural width
– Overall formula is subject to glue setting (stretch / shrink)
– Glue is distributed unevenly between subformulas and top-level elements

• Semantics of \abovedisplayshortskip:

– \abovedisplayshortskip depends on short line before display
– \belowdisplayshortskip is coupled to \abovedisplayshortskip

– \belowdisplayshortskip cannot look ahead into next paragraph
– decision may be wrong if you have a short / long or long / short

EuroTEX 2001 · Kerkrade · 24. September 2001 14



Limitations of TEX’s math typesetting engine

• More flexible size-scaling and extra sizes

• Extensible wide accents or over- and underbraces

• Under accents, left subscripts and superscripts

• Other features (in brief)

EuroTEX 2001 · Kerkrade · 24. September 2001 15



Size scaling and additional sizes

• TEX’s math typesetting engine is based on concepts of size:

– two sizes of big operators (textstyle, displaystyle)
– three size of ordinary symbols (textstyle, scriptstyle, scriptscriptstyle)
– built-in rules for choosing the size in fractions or indices

• Requirements for Russian typography go beyond the default:

– three sizes of big operators, including a new extra-large version
– four size of ordinary symbols (displaystyle bigger than textstyle)
– different built-in rules for choosing the size in fractions or indices

• Solutions:

– Sorry! This kind of change would go too far.

EuroTEX 2001 · Kerkrade · 24. September 2001 16



Extensible wide accents

• present situation:

– delimiters and radicals have big and extensible versions
– math accents have wide, but no extensible versions
– both use the same TFM mechanisms (charlist, extensible)
– it only depends on the type of symbol, whether TEX uses the TFM info

• Solutions:

– implmentation should be straight-forward
– no changes to TFM file format needed
– could be useful to redefine over- and underbraces in a better way

EuroTEX 2001 · Kerkrade · 24. September 2001 17



Under accents, left subscripts and superscripts

• present situation:

– TEX only provides over accents and right subscripts and superscripts
– under accents are rare, but do exists (presently implemented by macros)
– left sub- and superscripts can be attached to the right of an empty group

• Solutions:

– under accents can be implemented by macros, but very messy
– under accents might require reverse \skewchar kern-pairs
– under accents would be new type of math nodes
– implementation should be be straight-forward
– subscripts and superscripts fields are attached to each math node
– implementation would certainly be more involved
– semantics need to be clarified first (special catcodes?)

EuroTEX 2001 · Kerkrade · 24. September 2001 18



Other suggested features (in brief)

• Access to hard-wired information:

– spacing table between types of symbols
– kerning table (Ord-Ord, Ord-Open, Open-Ord, Ord-Close)

• Kerning:

– kerning is not possible across different fonts
– upright and italic Greek and Latin alphabets are in different fonts
– need for bigger fonts to allow kerning between all letters
– need for new encodings (all alphabetic symbols in one font)

• Ligatures:

– ligatures are not possible across different fonts
– input ligatures, e.g. >>, >= can be implemented by macros

• More information:

– \mathstyle to report style (SS, SS’,S, S’, D, D’, T, T’)
– \ifcramped to report whether or not cramped style

EuroTEX 2001 · Kerkrade · 24. September 2001 19



Discussion: What’s good, what’s bad, what’s ugly?

• Conference motto:

– Keep up the good bits and extend them if possible!
– Analyze the ugly bits and find ways to get around them!
– Find the bad bits and eradicate them!

• Extending the good bits:

– extensible wide accents, primitive support for under accents
– better implementation of over- and underbraces
– left subscripts and superscripts (???), more flexible size scaling (???)

• Improving the ugly bits:

– get rid of limitations (16 families, 256 symbols, 16 TFM heights/depths)
– extend TFM file format (avoid overloading of TFM fields and \fontdimens)
– solve problems about interpretation of glyph metrics and accent placement

• Eradicate the bad bits:

– re-implement \radical using new algorithm
– solve problems about unusual glyph metrics of radicals and delimiters

EuroTEX 2001 · Kerkrade · 24. September 2001 20


