
� � � � � � � � �

Observations on
〈Literate Program Structure〉

The . . .

Literate . . .

Compare . . .

GraphXML

Extracting . . .

Structure . . .

Tree Depth

Tree . . .

Word . . .

A Real . . .

Conclusions

Future Work

References

� � � � � � � � �

The Challenge

If it is true, as Professor Knuth says, that a literate program is

a “web” of interconnections, can the pattern of connections

particular to literate programs be modeled, analyzed, and in-

terpreted?

• What is an appropriate representation for the structure of

literate programs?

• What measurements can we extract from our representa-

tion?

• How do we interpret what we measure?

• Can we compare the structure of literate programs to the

call graph structure of traditional programs?

The . . .

Literate . . .

Compare . . .

GraphXML

Extracting . . .

Structure . . .

Tree Depth

Tree . . .

Word . . .

A Real . . .

Conclusions

Future Work

References

� � � � � � � � �

Literate Programming Review

Characteristics of a Literate Program

Appearance of a Literate Program

“A complex piece of software consists of simple parts and

simple relations between those parts; the programmer’s task

is to state those parts and those relationships, in whatever

order is best for human comprehension.” – D.E.K.

The . . .

Literate . . .

Compare . . .

GraphXML

Extracting . . .

Structure . . .

Tree Depth

Tree . . .

Word . . .

A Real . . .

Conclusions

Future Work

References

� � � � � � � � �

Characteristics of a

Literate Program

Literate programs are written with an emphasis on exposi-

tion. They are differentiated from programs written in other

programming styles by three characteristics:

• A single literate source file produces both a compiled pro-

gram and a nicely typeset document.

• The order of presentation is independent of the order of

compilation.

• Cross-references, indices, and navigational hints are auto-

matically generated.

The . . .

Literate . . .

Compare . . .

GraphXML

Extracting . . .

Structure . . .

Tree Depth

Tree . . .

Word . . .

A Real . . .

Conclusions

Future Work

References

� � � � � � � � �

Appearance of a Literate Program

Here is a section of a literate source file and its typeset result.
1

@ Now we scan the remaining arguments and try to open a file, if

possible. The file is processed and its statistics are given.

We use a |do|~\dots~|while| loop because we should read from the

standard input if no file name is given.

@<Process...@>=

argc--;

do@+{

@<If a file is given, try to open |*(++argv)|; |continue| if unsuccessful@>;

@<Initialize pointers and counters@>;

@<Scan file@>;

@<Write statistics for file@>;

@<Close file@>;

@<Update grand totals@>; /* even if there is only one file */

}@+while (--argc>0);

§8 WC-SNIPPET CWEB OUTPUT 1

8. Now we scan the remaining arguments and try to open a file, if possible. The file is processed and its
statistics are given. We use a do . . . while loop because we should read from the standard input if no file
name is given.
〈Process all the files 8 〉 ≡

argc−−;
do { 〈 If a file is given, try to open ∗(++argv); continue if unsuccessful 10 〉;
〈 Initialize pointers and counters 13 〉;
〈Scan file 15 〉;
〈Write statistics for file 17 〉;
〈Close file 11 〉;
〈Update grand totals 18 〉; /∗ even if there is only one file ∗/

} while (−−argc > 0);
This code is used in section 5.

The . . .

Literate . . .

Compare . . .

GraphXML

Extracting . . .

Structure . . .

Tree Depth

Tree . . .

Word . . .

A Real . . .

Conclusions

Future Work

References

� � � � � � � � �

Compare & Contrast

The programs chosen for this study were the thirteen demon-

stration programs and the eighteen library modules that to-

gether comprise The Stanford GraphBase.

Literate programs:

• The unit of oganization

is a section – analogous

to a paragraph in prose.

• The organizing princi-

ple is clarity of exposi-

tion.

• The scope of a liter-

ate program written in

cweb is a single file.

Traditional programs:

• The unit of organization is a

subroutine.

• The organizing principle is

execution, i.e. a hierarchy of

subroutine calls.

• The scope of a traditional

program is an executable.

The . . .

Literate . . .

Compare . . .

GraphXML

Extracting . . .

Structure . . .

Tree Depth

Tree . . .

Word . . .

A Real . . .

Conclusions

Future Work

References

� � � � � � � � �

GraphXML

The structure of literate programs and the call graphs of tra-

ditional programs are represented as directed acyclic graphs

(DAGs).

GraphXML is a graph description language in XML, whose goal

is to provide a general interchange format for graph drawing

and visualization systems.

<?xml version="1.0"?>

<!DOCTYPE GraphXML SYSTEM "file:GraphXML.dtd">

<GraphXML>

<graph>

<node name="first"/>

<node name="second"/>

<edge source="first" target="second"/>

</graph>

</GraphXML>

The . . .

Literate . . .

Compare . . .

GraphXML

Extracting . . .

Structure . . .

Tree Depth

Tree . . .

Word . . .

A Real . . .

Conclusions

Future Work

References

� � � � � � � � �

Extracting the Graphs

• The literate program graphs were extracted from auxiliary

files created by cweave.

• The call graphs were extracted from profiling information

created by gprof.

cweb

cweave

literate

graphXML

ctangle

TEX

compiler

document

exe-

cutable
profile

profiler

graphXML

The . . .

Literate . . .

Compare . . .

GraphXML

Extracting . . .

Structure . . .

Tree Depth

Tree . . .

Word . . .

A Real . . .

Conclusions

Future Work

References

� � � � � � � � �

Structure Metrics

A metric is a measure of some aspect of the graph that is associat-

ed its nodes or edges. A metric can consider the graph’s structure,

include domain-specific information, or a combination of both. A

metric is structure-based if it only uses information about the struc-

ture of the graph.

• Tree Depth

• Tree Impurity

• Spreading Activation

• Recursive Citation

The . . .

Literate . . .

Compare . . .

GraphXML

Extracting . . .

Structure . . .

Tree Depth

Tree . . .

Word . . .

A Real . . .

Conclusions

Future Work

References

� � � � � � � � �

Tree Depth

Tree Depth counts how many nodes lie along the longest path

from the root to a leaf. We expected that call graphs would be

deeper than their literate counterparts. The average literate

depth is 3.23, whereas the average call graph depth is 4.85.

tree depth
0 1 2 3 4 5 6 7

pr
og

ra
m

s

0

1

2

3

4

5
literate

call graph

The . . .

Literate . . .

Compare . . .

GraphXML

Extracting . . .

Structure . . .

Tree Depth

Tree . . .

Word . . .

A Real . . .

Conclusions

Future Work

References

� � � � � � � � �

Tree Impurity

Tree Impurity in Theory

Tree Impurity in Practice

Tree Impurity measures the degree to which a graph’s struc-

ture deviates from being a pure tree, i.e. no cycles. Its value is

considered inversely proportional to the quality of the struc-

ture’s design.

The . . .

Literate . . .

Compare . . .

GraphXML

Extracting . . .

Structure . . .

Tree Depth

Tree . . .

Word . . .

A Real . . .

Conclusions

Future Work

References

� � � � � � � � �

Tree Impurity in Theory

A graph’s Tree Impurity value ranges between zero and one

where: m(G) = number of edges more than the spanning tree
maximal number of edges more than the spanning tree =

2(e−n+1)
(n−1)(n−2)

0 1/6 1/3 1/2

2/3 5/6 1

The . . .

Literate . . .

Compare . . .

GraphXML

Extracting . . .

Structure . . .

Tree Depth

Tree . . .

Word . . .

A Real . . .

Conclusions

Future Work

References

� � � � � � � � �

Tree Impurity in Practice

It appears that the literate organizations are very clean com-

pared to the call graphs of their corresponding implementa-

tions. The average literate impurity is 0.00246, whereas the

average call graph impurity is 0.06292.

tree impurity
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

pr
og

ra
m

s

0

2

4

6

8

10
literate

call graph

The . . .

Literate . . .

Compare . . .

GraphXML

Extracting . . .

Structure . . .

Tree Depth

Tree . . .

Word . . .

A Real . . .

Conclusions

Future Work

References

� � � � � � � � �

Word Ladders

Recursive Citation

Spreading Activation

The next two metrics, Recursive Citation and Spreading Acti-

vation, are from the Stanford GraphBase example program

named ladders, which first produces a graph of five-letter

words, and then uses Dijkstra’s algorithm to find the shortest

path between a pair of word solicited from the user.

The . . .

Literate . . .

Compare . . .

GraphXML

Extracting . . .

Structure . . .

Tree Depth

Tree . . .

Word . . .

A Real . . .

Conclusions

Future Work

References

� � � � � � � � �

Recursive Citation

Recursive Citation is a measure of how many times a node is

referenced from above. This measure reveals the most heavily

referenced nodes.

The . . .

Literate . . .

Compare . . .

GraphXML

Extracting . . .

Structure . . .

Tree Depth

Tree . . .

Word . . .

A Real . . .

Conclusions

Future Work

References

� � � � � � � � �

Spreading Activation

Spreading Activation is a measure of global connectivity. The

value for a node is obtained by summing the contributions

over the set of all its neighbors n1, . . . , nq(q ≥ 1). This mea-

sure reveals a graph’s spine or center of mass.

The . . .

Literate . . .

Compare . . .

GraphXML

Extracting . . .

Structure . . .

Tree Depth

Tree . . .

Word . . .

A Real . . .

Conclusions

Future Work

References

� � � � � � � � �

A Real Live Example

This is a visualization of the Taxiway Colision Monitor (TCM)

employing the Spreading Activation metric. The literate graph

has 124 nodes and 134 edges. The call graph has 851 nodes

and 1493 edges.

The . . .

Literate . . .

Compare . . .

GraphXML

Extracting . . .

Structure . . .

Tree Depth

Tree . . .

Word . . .

A Real . . .

Conclusions

Future Work

References

� � � � � � � � �

Conclusions

• The fundamental difference between literate programs and

their traditional counterparts is that the former are hierar-

chies of ideas (exposition), while the latter are hierarchies

of subroutine calls (execution).

• The literate hierarchies appear routinely to be cleaner and

less deep then the corresponding call graph hierarchies.

• The metrics for traditional programs would be enhanced

by the addition of domain specific information such as:

execution time, execution counts, etc.

• Lots of empirical evidence is needed to make sense of these

metrics in practice.

The . . .

Literate . . .

Compare . . .

GraphXML

Extracting . . .

Structure . . .

Tree Depth

Tree . . .

Word . . .

A Real . . .

Conclusions

Future Work

References

� � � � � � � � �

Future Work

• Metrics like tree impurity should be calculated for each

subtree in the graphs.

• the gprof profiler generates more data than we current-

ly use. Information about execution time and execution

counts could become edge attributes used to reveal the

most often used or most expensive portions of a program.

• Empirical evidence needs to be gathered to know how to

interpret structure metrics together with other software

metrics.

• The noweb literate programming system can process mul-

tiple literate source files. It would be interesting to investi-

gate larger literate systems comprised of many individual

literate modules, e.g. libraries.

The . . .

Literate . . .

Compare . . .

GraphXML

Extracting . . .

Structure . . .

Tree Depth

Tree . . .

Word . . .

A Real . . .

Conclusions

Future Work

References

� � � � � � � � �

References

Here are a few links to the software used in the preperation

of this presentation.

• The CWEB System: http://www-cs-staff.Stanford.EDU/ knuth/cweb.html

• The Stanford GraphBase: http://www-cs-staff.Stanford.EDU/ knuth/sgb.html

• Literate Programming Website: http://www.literateprogramming.com/

• The Royere Graph Visulation Software: http://www.cwi.nl/InfoVisu/

The . . .

Literate . . .

Compare . . .

GraphXML

Extracting . . .

Structure . . .

Tree Depth

Tree . . .

Word . . .

A Real . . .

Conclusions

Future Work

References

