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Observations on
〈Literate Program Structure〉
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The Challenge

If it is true, as Professor Knuth says, that a literate program is

a “web” of interconnections, can the pattern of connections

particular to literate programs be modeled, analyzed, and in-

terpreted?

• What is an appropriate representation for the structure of

literate programs?

• What measurements can we extract from our representa-

tion?

• How do we interpret what we measure?

• Can we compare the structure of literate programs to the

call graph structure of traditional programs?
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Literate Programming Review

Characteristics of a Literate Program

Appearance of a Literate Program

“A complex piece of software consists of simple parts and

simple relations between those parts; the programmer’s task

is to state those parts and those relationships, in whatever

order is best for human comprehension.” – D.E.K.
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Characteristics of a

Literate Program

Literate programs are written with an emphasis on exposi-

tion. They are differentiated from programs written in other

programming styles by three characteristics:

• A single literate source file produces both a compiled pro-

gram and a nicely typeset document.

• The order of presentation is independent of the order of

compilation.

• Cross-references, indices, and navigational hints are auto-

matically generated.
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Appearance of a Literate Program

Here is a section of a literate source file and its typeset result.
1

@ Now we scan the remaining arguments and try to open a file, if

possible. The file is processed and its statistics are given.

We use a |do|~\dots~|while| loop because we should read from the

standard input if no file name is given.

@<Process...@>=

argc--;

do@+{

@<If a file is given, try to open |*(++argv)|; |continue| if unsuccessful@>;

@<Initialize pointers and counters@>;

@<Scan file@>;

@<Write statistics for file@>;

@<Close file@>;

@<Update grand totals@>; /* even if there is only one file */

}@+while (--argc>0);

§8 WC-SNIPPET CWEB OUTPUT 1

8. Now we scan the remaining arguments and try to open a file, if possible. The file is processed and its
statistics are given. We use a do . . . while loop because we should read from the standard input if no file
name is given.
〈Process all the files 8 〉 ≡

argc−−;
do { 〈 If a file is given, try to open ∗(++argv ); continue if unsuccessful 10 〉;
〈 Initialize pointers and counters 13 〉;
〈Scan file 15 〉;
〈Write statistics for file 17 〉;
〈Close file 11 〉;
〈Update grand totals 18 〉; /∗ even if there is only one file ∗/

} while (−−argc > 0);
This code is used in section 5.
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Compare & Contrast

The programs chosen for this study were the thirteen demon-

stration programs and the eighteen library modules that to-

gether comprise The Stanford GraphBase.

Literate programs:

• The unit of oganization

is a section – analogous

to a paragraph in prose.

• The organizing princi-

ple is clarity of exposi-

tion.

• The scope of a liter-

ate program written in

cweb is a single file.

Traditional programs:

• The unit of organization is a

subroutine.

• The organizing principle is

execution, i.e. a hierarchy of

subroutine calls.

• The scope of a traditional

program is an executable.
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GraphXML

The structure of literate programs and the call graphs of tra-

ditional programs are represented as directed acyclic graphs

(DAGs).

GraphXML is a graph description language in XML, whose goal

is to provide a general interchange format for graph drawing

and visualization systems.

<?xml version="1.0"?>

<!DOCTYPE GraphXML SYSTEM "file:GraphXML.dtd">

<GraphXML>

<graph>

<node name="first"/>

<node name="second"/>

<edge source="first" target="second"/>

</graph>

</GraphXML>
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Extracting the Graphs

• The literate program graphs were extracted from auxiliary

files created by cweave.

• The call graphs were extracted from profiling information

created by gprof.

cweb

cweave

literate

graphXML

ctangle

TEX

compiler

document

exe-

cutable
profile

profiler

graphXML
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Structure Metrics

A metric is a measure of some aspect of the graph that is associat-

ed its nodes or edges. A metric can consider the graph’s structure,

include domain-specific information, or a combination of both. A

metric is structure-based if it only uses information about the struc-

ture of the graph.

• Tree Depth

• Tree Impurity

• Spreading Activation

• Recursive Citation
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Tree Depth

Tree Depth counts how many nodes lie along the longest path

from the root to a leaf. We expected that call graphs would be

deeper than their literate counterparts. The average literate

depth is 3.23, whereas the average call graph depth is 4.85.
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Tree Impurity

Tree Impurity in Theory

Tree Impurity in Practice

Tree Impurity measures the degree to which a graph’s struc-

ture deviates from being a pure tree, i.e. no cycles. Its value is

considered inversely proportional to the quality of the struc-

ture’s design.
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Tree Impurity in Theory

A graph’s Tree Impurity value ranges between zero and one

where: m(G) = number of edges more than the spanning tree
maximal number of edges more than the spanning tree =

2(e−n+1)
(n−1)(n−2)
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Tree Impurity in Practice

It appears that the literate organizations are very clean com-

pared to the call graphs of their corresponding implementa-

tions. The average literate impurity is 0.00246, whereas the

average call graph impurity is 0.06292.
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Word Ladders

Recursive Citation

Spreading Activation

The next two metrics, Recursive Citation and Spreading Acti-

vation, are from the Stanford GraphBase example program

named ladders, which first produces a graph of five-letter

words, and then uses Dijkstra’s algorithm to find the shortest

path between a pair of word solicited from the user.
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Recursive Citation

Recursive Citation is a measure of how many times a node is

referenced from above. This measure reveals the most heavily

referenced nodes.
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Spreading Activation

Spreading Activation is a measure of global connectivity. The

value for a node is obtained by summing the contributions

over the set of all its neighbors n1, . . . , nq(q ≥ 1). This mea-

sure reveals a graph’s spine or center of mass.

The . . .

Literate . . .

Compare . . .

GraphXML

Extracting . . .

Structure . . .

Tree Depth

Tree . . .

Word . . .

A Real . . .

Conclusions

Future Work

References



� � � � � � � � �

A Real Live Example

This is a visualization of the Taxiway Colision Monitor (TCM)

employing the Spreading Activation metric. The literate graph

has 124 nodes and 134 edges. The call graph has 851 nodes

and 1493 edges.
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Conclusions

• The fundamental difference between literate programs and

their traditional counterparts is that the former are hierar-

chies of ideas (exposition), while the latter are hierarchies

of subroutine calls (execution).

• The literate hierarchies appear routinely to be cleaner and

less deep then the corresponding call graph hierarchies.

• The metrics for traditional programs would be enhanced

by the addition of domain specific information such as:

execution time, execution counts, etc.

• Lots of empirical evidence is needed to make sense of these

metrics in practice.
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Future Work

• Metrics like tree impurity should be calculated for each

subtree in the graphs.

• the gprof profiler generates more data than we current-

ly use. Information about execution time and execution

counts could become edge attributes used to reveal the

most often used or most expensive portions of a program.

• Empirical evidence needs to be gathered to know how to

interpret structure metrics together with other software

metrics.

• The noweb literate programming system can process mul-

tiple literate source files. It would be interesting to investi-

gate larger literate systems comprised of many individual

literate modules, e.g. libraries.
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References

Here are a few links to the software used in the preperation

of this presentation.

• The CWEB System: http://www-cs-staff.Stanford.EDU/ knuth/cweb.html

• The Stanford GraphBase: http://www-cs-staff.Stanford.EDU/ knuth/sgb.html

• Literate Programming Website: http://www.literateprogramming.com/

• The Royere Graph Visulation Software: http://www.cwi.nl/InfoVisu/
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