
Proceedings
MAPS 39 • TUGboat 30:3 • Biuletyn GUST 25 (2009) • Die TEXnische Komödie 1/2010 • EUROTEX 2009

R E D A C T I E
Taco Hoekwater, hoofdredacteur
Barbara Beeton
Karl Berry

N E D E R L A N D S T A L I G E TEX G E B R U I K E R S G R O E P

N E D E R L A N D S T A L I G E TEX G E B R U I K E R S G R O E P

Voorzitter
Taco Hoekwater

ntg-president@ntg.nl

Secretaris
Willi Egger

ntg-secretary@ntg.nl

Penningmeester
Ferdy Hanssen

ntg-treasurer@ntg.nl

Bestuurslid
Karel Wesseling

karel.wesseling@ntg.nl

Bestuurslid
Prof. dr. ir. F. G. J. Absil

frans.absil@ntg.nl

Postadres
Nederlandstalige TEX Gebruikersgroep

Maasstraat 2
5836 BB Sambeek

Postgiro
1306238

t.n.v. NTG, Deil
BIC-code: PSTBNL21

IBAN-code: NL05PSTB0001306238
E-mail bestuur
ntg@ntg.nl

E-mail MAPS redactie
maps@ntg.nl

WWW
www.ntg.nl

Copyright c© 2009 NTG

De Nederlandstalige TEX Gebruikersgroep (NTG) is een vereniging die tot doel heeft
de kennis en het gebruik van TEX te bevorderen. De NTG fungeert als een forum voor
nieuwe ontwikkelingen met betrekking tot computergebaseerde document-opmaak in het
algemeen en de ontwikkeling van ‘TEX and friends’ in het bijzonder. De doelstellingen
probeert de NTG te realiseren door onder meer het uitwisselen van informatie, het
organiseren van conferenties en symposia met betrekking tot TEX en daarmee verwante
programmatuur.
De NTG biedt haar leden ondermeer:

@ Tweemaal per jaar een NTG-bijeenkomst.
@ Het NTG-tijdschrift MAPS.
@ De ‘TEX Live’-distributie op DVD/CDROM inclusief de complete CTAN software-

archieven.
@ Verschillende discussielijsten (mailing lists) over TEX-gerelateerde onderwerpen,

zowel voor beginners als gevorderden, algemeen en specialistisch.
@ De FTP server ftp.ntg.nl waarop vele honderden megabytes aan algemeen te

gebruiken ‘TEX-producten’ staan.
@ De WWW server www.ntg.nl waarop algemene informatie staat over de NTG,

bijeenkomsten, publicaties en links naar andere TEX sites.
@ Korting op (buitenlandse) TEX-conferenties en -cursussen en op het lidmaatschap

van andere TEX-gebruikersgroepen.

Lid worden kan door overmaking van de verschuldigde contributie naar de NTG-giro
(zie links); vermeld IBAN- zowel als SWIFT/BIC-code en selecteer shared cost. Daarnaast
dient via www.ntg.nl een informatieformulier te worden ingevuld. Zonodig kan ook
een papieren formulier bij het secretariaat worden opgevraagd.
De contributie bedraagt ¤ 40; voor studenten geldt een tarief van ¤ 20. Dit geeft alle
lidmaatschapsvoordelen maar geen stemrecht. Een bewijs van inschrijving is vereist. Een
gecombineerd NTG/TUG-lidmaatschap levert een korting van 10% op beide contributies
op. De prijs in euro’s wordt bepaald door de dollarkoers aan het begin van het jaar. De
ongekorte TUG-contributie is momenteel $65.

MAPS bijdragen kunt u opsturen naar maps@ntg.nl, bij voorkeur in LATEX- of ConTEXt
formaat. Bijdragen op alle niveaus van expertise zijn welkom.

Productie. De Maps wordt gezet met behulp van een LATEX class Vle en een ConTEXt
module. Het pdf bestand voor de drukker wordt aangemaakt met behulp van pdftex 1.40.10
draaiend onder Linux 2.6. De gebruikte fonts zijn Linux Libertine, Inconsolata, schreeWoze
en niet-proportionele fonts uit de Latin Modern collectie, en de Euler wiskunde fonts, alle
vrij beschikbaar.

The TEX Users Group (TUG): This publication is also known as issue 30:3 of TUGboat,
the journal of the TEX Users Group: http://tug.org/TUGboat

Polska Grupa Użytkowników Systemu TEX (GUST): Tę publikację, przygotowaną przez
NTG, Holenderską Grupę Użytkowników TEXa, rozprowadza dla swoich członków Polska
Grupa Użytkowników Systemu TEX – GUST jako Biuletyn GUST (ISSN 1230-5650).

Deutschsprachige Anwendervereinigung TEX e.V. (DANTE): This publication is also
known as issue 1/2010, 22. Jahrgang of Die TEXnische Komödie, the journal of DANTE e.V.

Československé sdružení uživatelů TEXu (CSTUG): This publication was distributed
by the Czechoslovak TEX Users Group to its members.

Table of Contents
EuroTEX 2009, Hans Hagen 1

Announcement: EuroTEX conference 2010 2

Announcement: 4th international ConTEXt meeting 3

Announcement: TUG conference 2010 4

TEX education – a neglected approach, Kees van der Laan 5

LuaTEX lunatic, Luigi Scarso 34

Decorating CD-ROMs and DVDs, Willi Egger 59

The language mix, Hans Hagen 72

E16 & DEtool – typesetting language data using ConTEXt, Jelle Huisman 78

A network TEX Live installation, Siep Kroonenberg 86

Using TEX’s language within a course about functional programming, Jean-Michel HuYen 92

Introducing new French-speaking users to LATEX quickly and convincingly, Anne-Marie Aebischer, Bruno
Aebischer, Jean-Michel HuYen, François Pétiard 99

Oriental TEX by a dummy, Hans Hagen 105

Writing Pitman shorthand with Metafont and LATEX, Stanislav Šarman 107

Optimizing PDF output size of TEX documents, Péter Szabó 112

Generating PDF for e-reader devices, Taco Hoekwater 131

LuaTEX says goodbye to Pascal, Taco Hoekwater 136

The Typesetting of Statistics, Taco Hoekwater 141

MetaPost 2 project goals, Hans Hagen & Taco Hoekwater 143

Using LATEX as a computing language, John Trapp 145

Experiences typesetting mathematical physics, Ulrik Vieth 166

Abstracts 179

Participant list 182

TEX consultants 183

Hans Hagen EUROTEX 2009 E1

EuroTEX 2009
In 2005 we had an NTG user meeting on one of the Dutch
islands, Terschelling, which was hosted by active TEX
users at the Royal Navy. This meeting was organized
so well that we didn’t have to think twice when Frans
Absil oUered the facilities of the Netherlands Defence
Academy close to The Hague and Delft for a EuroTEX
conference. We settled for 2009. As we were also up to
the third ConTEXt conference, we decided to combine
it with EuroTEX as a parallel program. Taco Hoekwater
oUered to organize both.

Having visited many TEX conferences I can say with
conVdence that this was a real nice one. Frequent visitors
at TEX conferences agree on the fact that it is good to stay
all at the same spot and keep hotel accommodation and
conference facilities close together. In this case perfect
catering as well as free (!) accommodation and facilities
only made it even better.

Of course not all was a serious matter. We had a
one-day trip around the middle-west part of the The
Netherlands, which included a walking tour around
the city of Delft and visiting some famous traditional
waterworks, of course including windmills. We had a

nice tour around and dinner at one of the old waterline
defence fortresses.

Taco did a Vne job of organizing everything. He even
went so far as attending the required medical training so
that we could stay on the premises 24/7. I also want to
thank Frans Absil and the Defence Academy for inviting
and supporting the TEX community so generously.

Hans Hagen
A big thank you to our sponsors

Bittext

E2 MAPS 39

EuroTEX 2010
The Italian TEX User Group (GuIT) is very proud to invite you to EuroTEX 2010. The conference
will be held from 25 to 29 August at Sant’Anna School of Advanced Studies in Pisa, Italy.

Further information on the registration, programme, accommodation, and social events will be
soon available on our website:

http://www.guit.sssup.it/eurotex2010/eurotex.en.php

We hope to see you soon in Pisa.

EUROTEX 2009 E3

4th ConTeXt Meeting
September 13–18, 2010
Brejlov (Prague), Czech Republic
Meeting
• meet new TeX friends, present your results and ideas
• get help from the experienced users
• get in touch with the latest developement of ConTeXt and LuaTeX
• Monday evening to Saturday morning

Place
• Mill Brejlov: a place to work & rest, http://www.brejlov.cz
• on the bank of Sázava river, beautiful countryside
• 30 km southeast of Prague (near Týnec nad Sázavou)
• enjoy swimming in the river, canoeing, walking, or cycling
• taste Czech cuisine, beer & wine
• visit Prague on the weekend before or after the meeting

See you in Brejlov!
http://meeting.contextgarden.net/2010

E4 MAPS 39

TUG 2010
TEX’s 25 anniversary!
Presentations covering the TEX world
http://tug.org/tug2010 tug2010@tug.org

June 28–30, 2010
June 29: Introductory LATEX workshop

Sir Francis Drake Hotel (Union Square)
San Francisco, California, USA

With special guest appearances by
Donald E. Knuth
and other original Stanford TEX project members:
David Fuchs, John Hobby, Oren Patashnik,
Michael Plass, Tom Rokicki, Luis Trabb-Pardo

March 1, 2010 — presentation proposal deadline
March 26, 2010 — early bird registration deadline
June 28–30, 2010 — conference and workshop

Sponsored by the TEX Users Group and DANTE e.V.

TUG
Institutional
Members

American Mathematical Society,
Providence, Rhode Island

Aware Software, Inc.,
Midland Park, New Jersey

Banca d’Italia,
Roma, Italy

Center for Computing Sciences,
Bowie, Maryland

Certicom Corp.,
Mississauga, Ontario, Canada

CSTUG, Praha, Czech Republic

Florida State University,
School of Computational Science
and Information Technology,
Tallahassee, Florida

IBM Corporation,
T J Watson Research Center,
Yorktown, New York

Institute for Defense Analyses,
Center for Communications
Research, Princeton, New Jersey

Konica Minolta Systems Lab Inc,
Boulder, Colorado

MacKichan Software, Inc.,
Washington/New Mexico, USA

Marquette University,
Department of Mathematics,
Statistics and Computer Science,
Milwaukee, Wisconsin

Masaryk University,
Faculty of Informatics,
Brno, Czech Republic

MOSEK ApS,
Copenhagen, Denmark

New York University,
Academic Computing Facility,
New York, New York

Princeton University,
Department of Mathematics,
Princeton, New Jersey

Springer-Verlag Heidelberg,
Heidelberg, Germany

Stanford University,
Computer Science Department,
Stanford, California

Stockholm University,
Department of Mathematics,
Stockholm, Sweden

University College, Cork,
Computer Centre,
Cork, Ireland

University of Delaware,
Computing and Network Services,
Newark, Delaware

Université Laval,
Ste-Foy, Québec, Canada

University of Oslo,
Institute of Informatics,
Blindern, Oslo, Norway

Kees van der Laan EUROTEX 2009 E5

TEX Education – a neglected approach

Abstract
In this note a proposal about education is made and some
education is done. Why not offer a macro writing Master
Class, in plain TEX&MetaPost via internet, to endorse Min-
imal Markup and to strive after readable, adaptable, robust
and reusable macros, by using paradigms? The macros are
destined to be included in a library for reuse in AnyTEX.
Educational issues are: language, awareness, insight, and
TEXnique proper. Courseware is indispensable. The person-
ality of the teacher is all important. Self-study is not enough
and considered dangerous. A few turtle graphics macros for
line-drawing in plain TEX, used for sketching a binary tree
and fractals, are given. Knuth’s gkppic macros are used for
flowcharts. Of both their advantages and disadvantages are
mentioned. Graphics with curved lines, via PS and MP, such
as envelope, smiley, yin yang, Schröfers opart, and a cir-
cle covered by circles are included. 2.5D graphics emulated
from Naum Gabo constructive works and Escher’s impossi-
ble cube, both specified by data in 3D and projected on 2D
with the viewing angles as parameters, are supplied. With-
out explanation Spirals on the sphere and a torus are in-
cluded. Reuse of macros, pictures, references, tools, formats
is relevant with my blue.tex released in about 1995, as an
unusual, integrated example, to be re-released under LPPL
after review on the TEX Live Distribution DVD of 2010. At
the end a suggestion is done to extend MetaPost towards
3D.

Keywords
2.5D, automatically numbered items, awareness, BabelTEX,
binary and trinary tree, blue.tex, ConTEXt, data integrity,
education, Escher, Gabo, H-fractal, impossible cube, insight,
Malevich, master class, MetaPost, minimal markup, PDF,
PostScript, plain TeX, regular surface, reuse, smiley, supre-
matism, TEX Collection DVD, turtle graphics, yin yang

Contents
What TEX&Co education is available? 6
@ Education in NTG . 6
Is there a need for TEX&Co courses? 7
Education material on TEX Live DVD 7
Education issues . 7
@ Language . 7

– LUGs . 8
– NTG was founded twenty years ago 8
– Jargon . 8

@ Awareness . 9
– Lack of awareness . 9

– Awareness of other tools . 10
– Libraries for macros and pictures 10

@ Insight . 11
– Dijkstra in the past mentioned that abstraction . . . 11
– pdfTEX violates SoC . 11
– MetaFont is the big example of parameterization . 11
– Knuth forecasted the future 12
– Using paradigms in macro writing 12
– Minimal markup . 12

Knuth’s approach . 13
@ TEX&MetaFont . 14
@ Drawbacks of TEX . 14
@ Drawbacks of MetaFont . 15
@ Literate programming . 15
@ TEX Collection DVD . 15
TEXing Paradigms Master Class . 16
@ TEXing Paradigms beneficial? . 17
Examples of macro writing . 17
@ Tough exercise . 17
@ Wind macros . 18
@ Contest . 19

– And... the winner is... 19
2D Graphics . 19
@ Binary tree . 19
@ Flowchart . 21

– Disadvantages . 21
– My MP code for the flowchart 21

@ Oblique lines . 22
@ PostProcessing by Photoshop . 22
@ PostScript spaces . 23
@ Yin Yang . 23
@ Smiley . 24
@ Schröfers opart . 24
@ EuroTEX94 battleship logo . 24
@ Circle covered by circles . 25
2.5D Graphics . 26
@ Pyramids . 26
@ Escher’s impossible cube . 27
@ Gabo’s constructive art . 27
Reuse . 29
3D metaPost? . 30
Conclusions . 30
@ Wishes . 30
@ Hopes... 30

– I learned a lot . 30
Acknowledgements . 30
Notes . 31
Appendix I: Contest Solutions . 33
Appendix II: Escher’s knot . 33

E6 MAPS 39 Kees van der Laan

What TEX&Co education is available?

Searching the internet with TeX education as key-
words yielded no oU-the-shelf courses. When I added
the keyword tutorial I found the good-looking LATEX
tutorial from the Indian TEX User group. Possibly the
law of diminishing returns applies: our TEX tutorials
are provided on the actual TEX Collection DVD and the
outdated 4AllTEX CDs, and stored in the TEX archives of
old, founded in the pre-WWW time, read before HTML
appeared, if not in books. Times have changed. An
eUective way to make oneself known these days is by
WWW pages, with keywords to be spotted by search
engines.

With respect to MetaPost I found via Google a nice
tutorial by A. Heck: MetaPost by doing, published in
MAPS of 2005. I know of Hans Hagen’s MetaFun, but a
link to his MetaPost work did not show up in Google.
Also the work of Troy Henderson with his MetaPost
introduction, embraced by TUG, and his MP-previewer
accessible via the internet, is worth mentioning. In fact
helped me a lot.

An interesting PostScript tutorial I found under Dev
Central, which is much in the style of my Just a little
bit of PostScript, MAPS96.2. Dev Central also provides
for other interesting tutorials.

History has it, that TEX related courses are oUered
along with the TUG, EuroTEX, or LUG meetings. With
this EuroTEX announcement I missed subscription forms
for classes, but maybe that is not special for a EuroTEX
nowadays. While this paper was underway the partic-
ipants of EuroTEX received an invitation to participate
in a Math Content Workshop. In the program I found
LATEX for beginners, and open sessions around ConTEXt.
At the conference a tutorial on layers in ConTEXt was
organized. S. Kroonenberg reported about her TEX net-
work job at the economy department of the University
of Groningen. The status and plans for ConTEXt and
LuaTEX were discussed in evening sessions. The news
with respect to MetaPost, SVG graphics, transparency,
multiple precision... was given by Taco Hoekwater.

For me the big thing was that I had missed completely,
in the past seven years of my TEX inactivity, the incor-
poration of OpenType fonts in TEX&Co.

Conclusion: no TEX&Co classes are oUered in
general.

If for comparison one searches the internet for course-
ware or tutorials for ADOBEs Creative Suite, a wealth
of entries will appear. The unorganized world out there,
in addition to Adobe itself, contributes tutorials, videos
and similar to use for free.

Education in NTG
In the beginning of NTG we had working groups. The
education Working Group organized a LATEX course with
courseware Publiceren met LATEX, in Dutch. I was
the SGML teacher at the Stanford 10 years of TEX
and MF TUG meeting. At Stanford I attended Dough
Henderson’s MF class. At the conference I met Amy
Hendrickson and invited her to teach plain TEX in
Holland. Later we had courses with David Salomon and
Bogusłav Jackovski as teachers for TEX, respectively MF.1

A teacher is usually talkative as must be, but for
the intermediate and lower level a teacher must also
be a good listener, especially to Vnd out about (mental)
blockades, or misunderstandings and remove these.

Amy, Bogus, and David were paid for their teaching
and enjoyed hospitality at my place at my costs. During
the Boston TUG meeting I visited AMS and invited
Michael Downes and Ralph Youngen to tell us in Holland
about how AMS supports their authors. I studied the
clever AMS formats and styles, and criticized their too
clever macro writing technique in my AMS BLUes.

The 4AllTEX CD eUort had a strong educational Wavor.
The EuroTEX bus project I consider also educational,

where NTG, with the help of GUST’s Julita Bolland, fa-
cilitated 20+ GUST, 20+ CyrTUG, 6 CSTUG members, and
one Hungarian lady, Gy̋ongi, to participate in the Arn-
hem EuroTEX. Hans Hagen’s ConTEXt is widespread and
the accompanying wealth of documentation is highly
educational.

For TEX&Co important material can be found via
the excellent WWW pages of the TEX user groups.
One only has to know that!

M.C. Escher

← Knot

CGL’s

→ Sort of

A weak point is the absence of links to good (free) TEX
tutorials on the WWW.

TEX Education EUROTEX 2009 E7

Is there a need for TEX&Co courses?

Much self-study material is available, to start with the
TEXbook and the MFbook, next to excellent tutorials.
Courses are nevertheless necessary, IMHO, because of
the complexity. Moreover, I consider self-study not suX-
cient, even dangerous.

Apparently the public does not ask for courses.

Education material on TEX Live DVD

Nowadays, we have AnyTEX&Co on our PCs at home,
such as the LATEX-biased Integrated Development Envi-
ronment, TEXnicCenter, distributed on the TEX Collec-
tion DVD. However, as plain TEXie, I missed in the output
dropdown window TEX→pdf and ilks. It should not be so
diXcult to add that, tho plain TEXies form a minority.
Please do. More diXcult, I presume, is to provide for
MetaPost processing from within TEX. Both are neces-
sary for my proposal with respect to a MasterClass. At
the conference I became aware of TEXshop on the Mac
OS X+ and Jonathan Kew’s TEXworks IDE in the spirit of
TEXshop under Linux and Windows XP.

The public domain TEX program, distributed on the TEX
Collection DVD, comes along with a wealth of documen-
tation, software and books, which allow for self-study
of the open and public domain programs AnyTEX&Co,
while for advanced questions one may consult FAQs, or
discussion lists with their archived earlier discussions.
I consider this a tremendous development, beneVcial,
except for the lack of standards in TEXing, and that it is
not enough for a casual visitor of the internet, who likes
to get started, despite the excellent active installation
PDF documents in your language. However, self-study
can be dangerous, but. . . in the absence of courses there
is no choice. A standard in TEXing in the free TEX world
is most likely not realistic, alas.

But...
we might try.

Pluriform macro writing emerged, inhibiting read-
ability, as the most obvious characteristic. No program-
ming paradigms, despite Knuth’s example macro writing
in the TEXbook: macros which constitute plain.tex, and
macros to mark up a letter, concert, or a book, and
his gkppic line-diagram macros in plain TEX, related to
LATEXs picture environment,2 which were used for type-

setting his Concrete Mathematics. No path nor picture
datastructures, no color and no Vlling of arbitrary closed
curves. The manmac macros were created to typeset the
TEXbook and ilks, and likely his The Art of Computer
Programming œuvre. In 4AllTEX, in the TeX directory
GENERIC, macros are collected, such as the midnight suite
by van der Goot next to macros by Eijkhout, . . .No stress
on paradigms. The TEX Collection DVD contains a copy
of the Comprehensive TEX archive, the CTAN. Searching
with keyword BLUe yielded no match.3

Education issues

Education turns around: language, awareness, insight,
TEXnique proper, courseware, and the personality of the
teacher.

Language
A fundamental aspect in general education is language,
it is the basis. Everybody speaks a language, can read
and write, and may publish easily nowadays via the
WWW. Language serves a lifetime! Language Wuency is a
prerequisite for participation in a culture, is fundamental
in communication. Language lies at the heart of publica-
tions.
The TEXbook spends several chapters on just typesetting
text, deals with the variety of

@ type faces
@ accented characters
@ ligatures
@ hyphenation
@ line and page breaking,
@ structuring commands . . .

TEX is well-suited for typesetting all sort of languages,
not just those based on Latin fonts. A fundamental
assumption, next to the basic boxes and glue approach,
is that a paragraph is the unit for hyphenation, not
the keyboarded lines of input are taken as lines for the
output. TEX neglects one eol-symbol in a row, treats
it as a space. In a revision of TEX, was it 1989?, the
\language command was introduced to facilitate for
various, language speciVc hyphenation styles.

TEX arose from Knuth’s dream to typeset math-
ematics beautifully. I presume Knuth was very
much surprised by the complexity of typesetting
ordinary language, automatically and foolproof.

Typesetting novels by TEX is a triWe. However, book
production is culture biased, with variations in layout

E8 MAPS 39 Kees van der Laan

and the used fonts. Is TEX the only tool available for this
task?
DeVnitely not. Novels are produced by word processors,
with excellent spelling checkers, I presume. I have heard
of Adobe’s Indesign, no hands-on experience as yet,
however. MS Word I use quite often for contributions to
our local gardening bulletin. These gardeners have not
even heard of AnyTEX.

It amazes me that we have no BabelTEX as yet, where
the commands and error messages can be instantiated
for your language. For example in Russian you would
then end with \poka instead of \bye, and just keyboard
Cyrillics.

It also surprises me that we don’t have 2 communi-
cating windows open simultaneously: one for the editor
and the another for the typeset result, as next best to
WYSIWYG. Bluesky’s TEX enjoyed on the Wy compilation,
called Wash mode.

But ...
TEXworks has also the edit and the pdf window open
and linked, as I learned at the conference. When an error
occurs one is directly led to the line with the error in the
source Vle in the edit window.

LUGs The most astonishing aspect of TEX being around
is that there have arisen so many Language-biased TEX
user groups. This demonstrates a relationship between
TEX and languages. It is misleading to think that TEX has
only to do with typesetting Math. LUGs have proven that

a subset of TEX can be used extremely well to
typeset ordinary text.

Malevich

Suprematism:

White cross on a

White background

Emulation→

Maybe this fact should be brought to the attention of
a casual user, and should not be burdened by all the
other complex tasks TEX can do, which might frighten
an innocent user.

I have included a picture, and its emulation, of Male-
vich4 because he is the father of suprematism, which
deletes the superWuous, which I associate with Minimal
Markup.

NTG was founded twenty years ago PCs were emerging.
We could access the computer centre from home by
telephone through 1024baud modems. NTG started a
Vleserver and the digest TeX-nl. UNIX was taking oU.

No networks nor WWW were in sight. The main-
frames or midi’s were accessed via terminals. I think that
the meetings twice a year and the Minutes and ApPen-
diceS, MAPS, appearing in time, had a great impact on
NTG.

I contacted budding LUGs in Germany, France, Eng-
land and Scandinavia, and looked for cooperation. We
cooperated in organizing EuroTEXs. In my time as pres-
ident, NTG funded the LATEX2ε project. Much later NTG
took part in funding the Latin and Gyre font projects.

Jargon Mathematics from the language point of view
is a jargon, with its own symbols, structures, meanings
and deVnitions. In typesetting Math TEX is superb, still
unmatched?5

But...
Microsoft, with its Cambria project and the use of
OpenType Math fonts, may have taken the lead.

Other jargons can be typeset equally well, but you
have to write the equivalent of the intelligent math mode
yourself. I have not heard of such an eUort.6

Jargon books are more complicated than novels, es-
pecially with respect to tradition in typesetting the
jargon, such as: contents, back matter (an index, tables of
contents, pictures, tables, . . . , references) and cross-links.
For typesetting Math one must be a mathematician, have
enjoyed a Math education, in short one must know the
jargon.

But...
That is not enough, at least with the mathematical
training I enjoyed. No typesetting conventions of math
was ever taught to me. No Mathematical writing, 1989
by Knuth as main author (who else?) existed. Happily,
TEX embodies it all: the subtle spacing around Math
symbols, the awareness of operators and how to typeset
them in context, the composition of symbols with limits
for example, is all taken care of by TEX, though TEX
is not perfect. In-line Math and displayed Math may
look diUerent. The choices made by TEX, implemented
in the Math mode, are wired in, but... parameterized.
Math constructs can be marked up by using macros. The
Math fonts are not just ordinary fonts, they come along
with a suite of \fontdim parameters for placement of the
glyphs in context by the intelligent Math mode. Using

TEX Education EUROTEX 2009 E9

just another, commercial, Math font with the richness of
the TEX math mode knowledge is not trivial. OpenType
Math fonts come also with a suite of parameters, some
the same as in TEX some diUerent, and some beyond
TEX’s. Work on incorporating OpenType Math fonts for
use in TEX, is underway by Bogusłav Jackovski et al., and
about to be released.

The above observations delineate the AnyTEX&Co
users who make full use of the power of TEX⇔MetaPost:
those who want to typeset Math (and to a lesser extent
other jargons) beautifully, and . . . be in complete con-
trol. Physics jargon has a lot in common with Math, and
I think the Physics typesetting tradition is highly similar.

Awareness
To be aware of what is available in order to choose the
right tool for the task at hand is all important and costs-
eUective.7

To create awareness is a main objective of ed-
ucation, next to acquiring TEXnique proper and
learning how to cope with change and the un-
known.

Awareness of competing and assisting tools is manda-
tory. As a WYSIWYG competing tool we have MS Word,
with the Cambria module for Math, which uses the
OpenType Math fonts. I glanced into the Math possi-
bilities of Word 2007, and I’m impressed by what MS
has achieved, especially with respect to user friendliness.
Below, I have included a snapshot.

No confusing details, no markup tags which one must
remember, just templates to be Vlled in, or modiVed. The
dotted squares in the template formulas can be Vlled in
with the needed symbols in a WYSIWYG way. Easy, isn’t

it? It is hard to convince users that TEX is better, I guess.
The Binonium of Newton, with its ‘n over k’ and ‘limits
with the summation symbol’, looks correctly typeset to
me. Is TEX more Wexible? Rhetorical question.

But...
MS (Math) looks easier. TEX&Co must watch out, the law
of diminishing returns seems to apply.

However, in TEXnicCenter I found similar but less
advanced templates. if you click on an icon the LaTEX
code, will be inserted in your script, which saves you
typing, and which relieves you from remembering the
commands. You still have to look at the inserted tags
for where to Vll in. In MS the Vll-in place is marked
by empty dotted squares. For example, for the ...

−→ icon
TEXnicCenter inserts the LaTEX control sequences

\stackrel{}{\rightarrow}

Do we have IDEs with really advanced editors with
AnyTEX support, which not only prompt markup tags,
but also prompt formula templates to be Vlled in?

With respect to WYSIWYG, we compromise by pro-
viding two communicating windows open: the editor
window with the source Vle and the typeset window
with the pdf result.

At the conference attention was paid to provide sup-
port for OpenType (Math) fonts for use in TEX.

Lack of awareness shows up when how to do typesetting
tasks are published over and over again, without taking
notice of, or mentioning, earlier work nor giving proper
credits. Is the TEXworld anarchistic? In the last issue
of MAPS, spring 2009, I read about how to typeset an
addition table, which is similar to Pittman’s approach of
long ago of typesetting by TEX a multiplication table. The
author did not mention earlier work if not by me, while
the title alluded to the past. It is true that it was typeset
in ConTEXt, and that is new, I guess. SuperWuous in view
of my plea to provide macros for creation of the table
data in plain TEX to be used in AnyTEX, though in this
example case the data are a triWe.

Ignoring the past is not a scientiVc tradition.

E10 MAPS 39 Kees van der Laan

I have included below the essentials of my (plain, what
else?) macros for typesetting a multiplication, addition,
. . . table, of a decade ago, as supplied in my Publishing
with TEX guide, PWT, which accompanies blue.tex.
The invoke reads

\def\dataMT{1\cs 2\cs 3\rs
2\cs 4\cs 6}

$$\framed\ruled %...Attributes
\bluetable\dataMT$$

The creation of the (general) data can be done as follows

% Creates 1 2 3
% 4 5 6
\def\rows{\c1

\cols \advance\r1
\ifnum\r>\mr \swor\fi
\rs\rows}

%
\def\cols{\te\r\multiply\te\c\the\te

\advance\c1
\ifnum\c>\mc \sloc\fi
\cs\cols}

%
\def\sloc#1\cols{\fi}%terminator
\def\swor#1\rows{\fi}%terminator
\def\rs{\par}%row separator
\def\cs{ } %column separator
%
\mr2 \mc3 \rows %invoke 23 table data

TEX macro writing of the past, the present, or the future?

One might argue that it just generates the data, and that
the complexity of markup is absent.

This is done on purpose adhering to the separation
of concerns adage. More general, in my bordered table
macros, I Vrst generate the data and then do with the
data whatever I have to do. A consequence of this
approach is that the border of a table, which contains
usually information about the entries, is handled sepa-
rately. In blue.tex a table is composed of border, data,
and caption or footer, much in the spirit of Knuth’s
\bordermatrix. By attributes one can specify framing
and ilks.

My minimal markup macro for creation of the
data for the multiplication table is like Knuth’s
robust macros timeless, and that is what I ask
you to do: write timeless, robust, mean and lean
macros in plain TEX, the lowest common subset

of all TEXs, to be reused in AnyTEX.8 However, in
this special case the data can just be supplied, but
that is not the issue. OK, you are right we should
start with creating a library of reusable parts.

Awareness of other tools Phil Taylor in his recent
\parshape pre-processor9 starts with telling that he
used HTML, because ‘HTML can Wow text around an em-
bedded (rectangular) image in a totally straightforward
manner, requiring nothing more than...’. He continues
that he would like to use TEX and provided macros,
well... his pre-processor. TEX has a more powerful, gen-
eral mechanism for placing images in a paragraph.

But...
HTML, Word. . . are simpler to use. Be aware.

Sveta uses Photoshop interactively for a.o. coloring.
MetaPost and ilks allow for coloring in a workWow.
I don’t know how to achieve by MetaPost the eUects
Sveta can do in Photoshop.

Libraries for macros and pictures are necessary for
reusing parts. AnyTEX is a preprocessor of TEX! TEX
itself has a built-in preprocessor called macro expander.
MetaPost is a preprocessor of PostScript, and even can
produce SVG, with the MetaFont ingenuities inherited.
So at the basis is plain TEX and PS.

A nicety in the table chapter of PWT, next to
the wealth of examples similar to those given in the
TEXbook, and some more, is a little spreadsheet function-
ality, which can be used in (budget) table markup, to en-
hance data integrity. It automates addition or subtraction
of table entries, which is not that trivial because TEX does
not come with the ordinary calculator functionalities.10

This is similar to my plea of long ago in the IFIPWG2.5:
write portable numerical (library) algorithms in the
lowest higher-level language, FORTRAN, for use in all
other higher level languages. Moreover those FORTRAN
algorithms could be highly optimized, for example the
matrix routines of 0(n3) complexity, with n the order
of the matrix. At the computer center of the Groningen
University we spelled out the interfacing from PASCAL,
ALGOL(68), and Simula to FORTRAN, and supplied users
with this information, on-line, together with the avail-
ability of FORTRAN numerical libraries. We even con-
tracted CDC to adapt their ALGOL68 compiler towards

TEX Education EUROTEX 2009 E11

FORTRAN interfacing. Realistically, I expect that my plea
will be partially obeyed . . . again.

Data integrity is all important. I paid attention to data
integrity in among others my bridge macros, where
once a card is played, it can no longer show up in the
diagrams. Data integrity was also on my mind when
I created macros for typesetting crosswords.
BTW, in the suprematistic Lozenge below Mondiaan was
nearly right in dividing the sides according to the Golden
Ratio. This Lozenge of 1925 was the last in a series ending
with this minimal one. Others have some colored parts
or more lines.

P. Mondriaan

Lozenge

Composition

with two lines

The bundling of the various macros, pictures, references,
tools gave rise to my BLUe collection, nicknamed after
Ben Lee User in the TEXbook.

Like Knuth’s plain etc macros and Berry’s eTEX
macros, my BLUe collection is composed of parts to be
reused in anyTEX. Within BLUe what is needed can be
obtained by selective loading, similar to retrieval from a
database. One only loads what is needed! Even simpler,
when not in the context of BLUe, is just to copy what
you need, as I did for this note, see later.

But...
that is not simple enough, a library with ready to use
modules is what we need.

From the absence of my BLUe in the FAQs of the UKTUG,
the TEX archives, and the TEX collection DVD, I presume
that the TEX community missed the reuse-of-parts aspect
of BLUe. Partly true, as I became aware at the conference:
the bottleneck is the copyright.

In TEX education language Wuency is a pre-
requisite. Teach how to typeset ordinary lan-
guage, technical jargon, e.g. mathematics, next
to awareness of similar tools, the pro and cons
of competitors.

Insight
Characteristics of insight are

@ Abstraction
@ Separations of Concerns, SoC
@ Parameterization
@ To foresee the future
@ To use TEX&Co
@ To adhere Minimal Markup, Suprematism
@ To use Paradigms
@ To reuse parts

Dijkstra in the past mentioned that abstraction is
our only mental tool to master complexity. As computer
users we abstract all the time.

pdfTEX violates SoC adage. I experience a retrograde.
Inserting a color for example does not obey the scope
rules in pdfTEX. So the goodies of the past are anni-
hilated. Why not keep the past achievements upright?
I understand that we don’t have the broad oversight
Knuth had, and sin against all kinds of situations we
don’t foresee. Add whatever you want.

But...
without disturbing the achievements of the past, please.
It is no good that a casual user like me is used as
a guinea-pig. Test your materials thoroughly before
releasing, please. Adhere to the practice of β-releases,
such that a casual user is warned.

MetaFont is the big example of parameterization where
each glyph is characterized by dozens of parameters. To
handle gracefully related parameters Knuth invented the
suffix concept, as far as I understand it is a uniVcation
of the common index and the PASCAL record, in the
minimal style. In creating pictures it is a good habit to
parameterize for the size, because then we can selec-
tively scale. The line thickness is not altered if the size
is changed. By blunt overall scaling the line thickness
also changes, which might not be what you want.

E12 MAPS 39 Kees van der Laan

Knuth forecasted the future by saying that he would use
TEX a hundred years after the birth of TEX with the same
quality as that of the beginning days.

Using paradigms in macro writing will increase read-
ability.

One needs time and courage to invest in the use of
plain TEX and MetaPost, which will serve a lifetime,
and will enrich your insight. Learning just a little bit of
PostScript will not harm. You will be surprised by what
you can achieve by it, with Adobe Photoshop as Vnishing
touch for (interactive) coloring or removing hidden lines.

On the other hand if the majority of the TEX community
spends time and energy on LATEX, ConTEXt, LuaTEX, in
general on successors of TEX, . . . it is hard to stay with
plain TEX, to stay with Knuth, which means without
development.
However, if one thinks a little deeper, it is an ill-posed
rhetorical suggestion.

TEX is a Vxed point, only the environment
changes

Adaptation to PS is for example taken care of by the
driver dvi(2)ps and ilks, and pdf output can be obtained
by Distiller or Acrobat (not tested though by me
for a document), or just one of the various pstopdfs.
TEX commands for handling colors and inclusion of
graphics are dictated by the drivers and have to be
included in \specials. I have no problems at all to
leave MetaFont for MetaPost, because. . . well, again
an ill-posed suggestion. I don’t leave MetaFont, I just
don’t use it for graphics any longer, I’m not a font
designer. Well,. . . again partially true: I’ll continue to use
MetaFont as my poor man’s limited MetaPost previewer.

MetaFont and MetaPost have diUerent purposes: the
Vrst one is aimed at bitmap font design, the second at
creating PS graphics for inclusion in AnyTEX or troff.
The MetaFontbook is still needed because of the unusual
concepts suffix, vardef, primarydef, secondarydef,
and tertiarydef, which MetaPost has taken over from
MetaFont, and which I don’t grasp completely, yet.

A middle road is provided by ConTEXt, which also
comes with a wealth of documentation and is actively
supported by its author Hans Hagen and colleagues, for
example Taco Hoekwater.

A real breakthrough would be an interactive TEX,
which I would use immediately.

One can look upon this as what Apple did. They adopted
UNIX as the underlying OS, and built their nice GUI on
top. Comes TEXshop close?

Minimal markup As said in my PWT guide, I favor to
start with just text in a WYSIWYG way. Once you have
your contents more or less right, have it spell-checked,
and only then insert as few markup tags as possible. The
result is what I call a Minimal Marked up script.

But...
do you have the patience to work along these lines? In
reality this is my logical way of working. In practice
I insert already markup once I have a reasonable version.
Or, do you favor to rush into code and start with
\begindocument...etc, without having written a word of
the contents yet? Marvin Minsky drew attention to this
already in his Turing Award lecture of long ago ‘Form
versus Content.’ This approach, to markup at the end and
use as little as possible of TEX, is next best to WYSIWYG-
TEX, and my main reason to practise Minimal Markup.

Below the essentials of my Minimal Marked up script,
obeying the 20%-80% adage, for this paper is given.

\input adhocmacros

\author ...

\abstract ...

\keywords ...

\head Script

...
\subhead

TEX Education EUROTEX 2009 E13

...

\jpgD ...

...\ftn ...

\bye

In order to mark up in the above spirit, I have borrowed
from BLUe the following macros11

\def\keywords#1\par{...}
\def\abstract#1\par{...}
\def\((sub)sub)head#1\par{...}
\def\ftn#1{...}%#1 footnote tekst
\def\beginverbatim \def\endverbatim
\def\beginquote \def\endquote

while \jpgD was just created for the occasion. Handy
is the \ftn macro, which takes care of the automatic
numbering of the footnotes. While working on this
note, which a.o. emphasizes the use of Minimal Markup,
I adapted the \ftn macro, such that the curly braces
around the footnote text are no longer needed: just end
the footnote by a blank line or a \par, implicit or explicit.

Also convenient is the functionality of a Mini-ToC.
For the latter all you need is to insert

%In \head
\immediate\write\toc{#1}
%In subhead
\immediate\write\toc{\noexpand\quad#1}
%In subsubhead
\immediate\write\toc{\noexpand\qquad#1}

Of course

\newwrite\toc
\immediate\openout\toc=\jobname.toc

must be supplied in the adhoc macros as well. Reuse on
the Wy!

But...
A LATEXie would shrug shoulders, because (s)he has got
it all already. True!

But...
at the loss of minimal markup. A BLUe user has both
the macros and the minimal markup. A matter of choice,
choose what you feel comfortable with.

If you like to concentrate on contents, clean
scripts, abhor the curly braces mania, to err less
and less, then Minimal Markup is for you.

Knuth’s approach

What astonishes me most is that Knuth’s plain.tex is
not embraced by the majority. His basic approach should
be taught, because in TEX, well in automated digital
typesetting, there are so many subtle things, where

you will stumble upon sooner or later, which cannot
be shielded away from you by AnyTEX, completely.
Just pushing the buttons—inserting by an IDE prompted
markup tags—is not enough.

How come that users did not adopt Knuth’s plain.tex?
Is it impatience, because mastering the TEXbook with
plain.tex embodied takes time, and much more when
not guided by a skilful teacher?

History has it, that Vrst gains were preferred by
adopting LATEX, which dares to explain less, keeps you
unaware, which emphasizes the structure of documents,
though not so rigorous as SGML, in a time when struc-
turing whatever was en vogue. I’m not saying that
structuring is wrong, not at all.

But...
one should not overdo it, one should not suggest it is the
one and only. Keep eyes open, be on the alert for other
aspects. On the other hand LATEX comes with a lot of
packages, nowadays.

When the minimal markup attitude is adopted, one does
not need that many markup instructions! The structure is
already there, in what you have to say, no need to overdo
it. For this note I used basically a handful of structural
macros, well... a few more, to be replaced by the ones
used by the editor.

Knuth was right from the very beginning,
though... not completely!

John Plaice commented on my presentation
‘... that it was not possible to praise Dijkstra and

Knuth in the same sentence as the two held completely
opposite points of view with respect to programming
languages. When Dijkstra published his ‘Go to con-
sidered harmful’(CACM 11(3):147-148, 1968), Knuth de-
fended the goto statement with his ‘Structured Pro-
gramming with go to Statements’ (Computing Surveys
6(4):261–301, 1974).

According to Plaice, Knuth consistently supported the
use of low-level languages for programming. In writing
his TAOCP series of books, Knuth used his own assem-
bler, the MIX, which he updated to a RISC machine, the
MMIX, for the latest edition. His TEX: The Program book
regularly makes use of gotos. The register model used in
TEX programming is that of an assembler and the syntax
is COBOLish.

Knuth’s TEX macro language has been criticized pub-
licly by Leslie Lamport, who stated that if he had known
that TEX would have survived for so long, that he would

E14 MAPS 39 Kees van der Laan

have fought much more strongly with Knuth for him to
create a more usable language.’
Fair enough! Especially easier languages.

But...
I don’t see what is against Knuth’s attitude. Just a
diUerent approach.

Remember...
There Is More Than One Way To Do It.
I appreciate the features of high-level structured pro-
gramming, with no, well... little, but well-deVned side-
eUects, like for example exception handlers.

But...
when I learned Algol68 at the time, I was much sur-
prised, because it seemed to me one big side eUect. For
me Knuth12 knows what he is talking about, and he
like nobody else, produced marvelous errorless tools, so
SuPerBe documented

SuperuPleasanttoreaderBeyondthoroughnesse

TEX&MetaFont
Thirty years ago the twin TEX&MF was born. TEX is
aimed at typesetting beautiful Math by computer. MF
was developed for providing the needed (Computer
Modern bitmap) fonts.

Knuth was apparently so convinced of the correctness
of his programs that he would reward every reported bug
in TEX with a check of 1$, to start with, and he would
double the reward each time an error was reported. We
all know the exponential growth behavior of this. In the
Errors of TEX, Software Prac&Exp 19,7 1989, 607–685,
Knuth mentions all the errors he corrected, to begin with
those found while debugging.
TEX had the following limitations in its design, on
purpose.

@ No WYSIWYG
@ No Color
@ Poor Graphics
@ No Pictures (inclusion)
@ No Communicating Sequential Processes13

How to overcome?
Thanks to \special, PS, PDF, the drivers and pdf(Any)TEX

we have the following ways out, in order to compensate
for what we miss

Script
TEX
−→ .dvi as default

Script
TEX
−→ .dvi

dvi2ps
−→ .ps for color and graphics

Script
TEX
−→ .dvi

dvi2ps
−→ .ps

ps2pdf
−→ .pdf

or directly, the popular one-step

Script
pdf(Any)TEX
−−−−−−−→ .pdf

I favor the multi-step way, the 3rd, which is in the
UNIX tradition of cooperating ‘little’ languages, where
processes are ‘piped’ in a chain, and which adheres
to the Separations of Concerns adage. With respect to
TEX&MetaPost we talk about well-designed and time-
proven programs.

I don’t believe that one person, or even a group, can
write a monolithic successor of TEX, of the same quality
as TEX and the time-proven cooperating little languages
like dvi(2)ps, MetaPost, Acrobat and ilks.

In the direct use of pdfeTEX I stumbled upon..., well...
undocumented features?

Drawbacks of TEX
It is interesting to read chapter 6 of the TEXbook again
about running TEX. History! Is it? Still reality for plain
TEXies?
Next to the limiting choices made in the design of TEX
there are the following drawbacks

@ TEX SLC 120+% Energy14

S
L
C

@ After so many years AnyTEX&Co lack some sort of
stability. Me, for example, I don’t have MetaPost run-
ning in an IDE. The TEXnicCenter is not perfect, does
not provide for menus suited for plain TEX, too smart
editor...

@ - No GUI15

But...
@ TEX&Co 99+%Quality
@ TEX&Co gives you full control

TEX Education EUROTEX 2009 E15

Drawbacks of MetaFont
Nowadays, when we ask in TEX for a TEX-known font of
diUerent size, it is generated on the Wy.

MetaPost, which sounds like a successor to MetaFont,
was intended for creating PS graphics to be included in
TEX documents, and not for creating PS fonts, despite
&mfplain, which is not enough. MetaFont’s bitmap fonts
are outdated, because of the signiVcant memory it re-
quires and because it is not scalable. The gap was Vlled in
2001 by Bogusłav Jackovski et al. by releasing MetaType.
Latin Modern is the PS successor of TEX’s native bitmap
Computer Modern fonts. Work is underway for use of
OpenType (Math) fonts in TEX.

Literate programming
I like to characterize literate programming by

@ Aims at error-free and documented programs
@ Human logic oriented, not imposed by computer
@ Programming and documentation are done simulta-

neously
@ Relational instead of hierarchical

The computer science department of the Groningen
University pays attention to program correctness issues,
mainly for small programs, heavily biased by the loop
invariance techniques of the 70-ies. No real-life approach
suited for large programs like Knuth’s literate program-
ming approach, by which TEX was implemented.

But...
There’s More Than One Way To Do It16

Even at Stanford I could not Vnd oUerings for TEX classes
nor classes for literate programming.
No need? Still ahead of time?

I consider education in literate programming im-
portant, which should be provided by computer
science departments in the Vrst place.

TEX Collection DVD
The DVD will lead you to the use of LATEX or ConTEXt.
The IDE TEXnicCenter allowed me to open projects and

process either

LATEX→ .dvi, or
LATEX→ .pdf, or
LATEX→ .ps→ .pdf

The Center does not provide buttons for processing plain
TEX with a format Vle of your own, at least that is not
clear to me. I had to fool the system: opened a template,
threw all that I did not need away and processed my
minimal plain TEX job as LATEX!
Clumsy! Did I overlook something? The possibility to
adapt TEXnicCenter was on my mind for a couple of
days. At last, I undauntedly deVned an output pro-
file and selected pdfeTeX.exe. Indeed, glory, my Hello
World!\bye job worked, only the viewer Acrobat did
not open automatically with the result Vle. The result-
ing .pdf Vle was stored in the same directory as the
source Vle, so I could view it nonetheless. Not perfect
as yet, because I would like to have the result opened in
Acrobat automatically. Nevertheless, encouraging. I was
surprised that \magnification did not work in pdfeTEX.
I also stumbled upon that \blue deVned as the appro-
priate \pdfliteral invoke, did not obey the scope rules.
The editor in TEXnicCenter is too smart: \’e is changed
into é, unless you insert a space. I reported this, no
answer as yet.

This paper asks among others to include in TEXnicCenter
also buttons for processing by Knuth’s plain.tex. It
would not harm to include as example the minimal TEX
job

Hello world!
\bye

or the TEX classic story.tex, to demonstrate the work-
Wow

TEX→ dvi, pdf (or ps).

View buttons for either .dvi, .ps or .pdf results are nice.

E16 MAPS 39 Kees van der Laan

I must confess that I was put oU by the TEX Collection
after roughly a decade of my TEX inactivity. The no
longer maintained 4AllTEX CD of 1999 allowed me to
TEX this paper under Vista(!) with a handful of layout
(preprint) macros, to be replaced by the macros of the
editor of the proceedings. The outdated 4AllTEX CD
contains a lot of interesting macros. Ingenious is the
refresh option by just clicking the preview window in
windvi, which alas, does not work properly under Vista.
For pdf as output I had to get familiar with TEXnicCenter.
This is in contrast with for example Adobe: when you
order software such as the Creative Suite, it is turnkey
and works.

TEXing Paradigms Master Class

The TEX arcane has become complex, very complex, and
in my opinion too complex, if not for the number of
languages one has know, as reported by Marek Ryćko
at the BachoTEX2009.

But...
in the spirit of UNIX, or LINUX as you wish, many little
languages are unavoidable.

I favor to simplify. Educate the ins-and-outs of plain
as basis, as a vehicle for digital typography, with a wink
to manmac when real-life book production is at stake. A
beginners’ course on how to use TEX is not necessary,
because of the excellent tutorials, and the TEX Collection
installation (active) PDF document in your language to
get LATEX, proTEXt or ConTEXt running. How to run
MetaPost is not yet provided for, did I miss something?

As already proposed a decade ago, I favor a class on
minimal markup, on macro writing paradigms in plain
TEX, which I would propose nowadays as a Master Class,
not on esoterics, but on macros we all need now and
then, which are full of details worthwhile to know. In
my macros you will not Vnd 15 \expandafters in a row.
Triads? Yes!

The prerequisite is that participants are AnyTEX users,
who just want to broaden their understanding, who
want to gain a conVdent way of robust macro writ-
ing, who like documents to be embellished by minimal
markup.

This Master Class I would organize via the internet,
although a TEX course via the internet is not new.
Times have changed. The teacher, or conductor, does
not have to be the most knowledgeable TEXie, just the
coordinator, like a chairman in a meeting. Attendees
and coordinator commit themselves for a year or so,
and have once a month a multiple participants session
on the internet, with as many in between contacts as
one can handle. The coordinator provides for exercises,
where ideas to be worked out can come from participants
too. In order to secure commitment the course is not
for free, and the coordinator, under contract, is paid. A
user group, for example NTG, backs it up and warrants
continuity, for example with respect to the coordinator.
For such a TEXing Paradigms activity I have material of
10 years ago as starting point, but would like to see added
sessions on

@ the use of the various \last〈. . .〉s,
@ virtual fonts,
@ active documents, read hypertexts, and
@ TEX with calls to MetaPost on the Wy.

My old headings paper will be revised with emphasis on
the three generations of headings already

1. Just as in plain TEX
2. Provide for running heads in the headline and pro-

vide for a ToC creation, like in manmac
3. Provide for hypertext cross-referencing links and PDF

bookmarks.

Of course, we might look into the CTAN for examples
from the community.

The gain for participants is to master paradigms, to
acquire a robust and minimal TEX macro writing tech-
nique, just like Knuth. Absolute necessary is that the TEX
community backs up such a Master Class, by providing
turnkey, mutual communicating TEX&MetaPost on the
Wy, distributed for example via the TEX Collection DVD.
Although I am not in a good health, and have already
said good-bye to most of my TEX materials, I am avail-
able to conduct such a class, provided there is a stand-in,
and turnkey TEX⇔MetaPost IDEs for PCs.

Another dream of me is a (hyperbolic) geometry class
supported by MetaPost as tool.

TEX Education EUROTEX 2009 E17

M.C. Escher

Limit Circle III

TEXing Paradigms beneficial?
In the sequel I will argue why a Master Class, or is it
a sort of internet workshop, for TEXing paradigms is
beneVcial.

It would be great if one could write a macro \jpg just
at the moment one needs it. Reality is, I must confess,
that it is not yet, well nearly, the case for me. Knuth,
I was told in the past, can just do that.

In 1994 I published a note on the extension of plains
\item macro in MAPS to provide for automatic number-
ing.

After my period of TEX inertia I looked at it again, and
I was much surprised. I missed the following considera-
tions, also in the revision of 1996:

1. I missed the criterion that its use should be similar,
and then I mean really similar, to Knuth’s \item,
with its minimal markup.

2. I missed the reasoning why it is useful to supply such
a macro. Would not just the straightforward markup

\item1 text1
\item2 text2
etc
make the need for a macro \nitem superWuous?

3. I overlooked that it was all about: a list of labeled
indented paragraphs, each paragraph as usual ended
by a \par—or the synonym \endgraf—inserted by
either \item, \itemitem, \smallbreak, . . . \bigbreak,
. . . , or implicitly by just the minimal markup of a
blank line!

The point is: a good teacher would have drawn my at-
tention to the ingenuity of Knuth’s minimal markup, and
strongly suggested not to write such a macro. Moreover,
he would argue that there is hardly a need for it. MAPS
was not reviewed, so neither a referee was in sight. Self-
study is not enough, one needs guidance by a master.
Little, Vrst knowledge, which is usually acquired by self-
study, is dangerous.

ConTEXt and LATEX provide for automatically num-
bered lists.

But...
within an environment, which is a clear and secure
but diUerent approach. It does not strive after utmost
minimal markup.

If you have to mark up a document with long lists of
numbered paragraphs a minimal \nitem macro, similar
in use as \item, can be handy. I would propose the
following \nitem nowadays, where I took care of my
perceived impossibility at the time by redeVning \par
at an appropriate local place. The sequence of numbered
paragraphs, to be marked up by \nitems is enveloped by
a group behind the scenes, with the advantage that one
can stay ignorant of the hidden counter.

\newcount\itemcnt
\def\nitem{\begingroup

\def\par{\endgroup\endgraf}
\def\nitem{\advance\itemcnt1

\item{\the\itemcnt}}%
\nitem}

%\par has to be replaced by \endgraf
\def\item{\endgraf\hang\textindent}
\def\itemitem{\endgraf\indent

\hangindent2\parindent \textindent}

Another, maybe overlooked17 nicety is to have a \ftn
macro, which maintains and uses a footnote counter.
The user can just supply the contents of the footnote,
does not have to worry about the (hidden) counter. My
recent created Minimal Markup variant does not need
curly braces around the (1-paragraph) footnote text, just
end the text by a blank line. No

\futerelet\next\fo@t

needed.

If not convinced by my arguments a Master Class is
beneVcial by deVnition.

Examples of macro writing

To show you what I have on my mind in macro writing
I have supplied a few macros.

Tough exercise
Glance at my recent solution of the TEXbook tough
exercise 11.5, which is more clear and more direct than
the one given in the TEXbook, IMHO, illustrating the

E18 MAPS 39 Kees van der Laan

First-In-First-Out paradigm, as published in MAPS92.2
revised 1995, titled FIFO and LIFO sing the BLUes-
--Got it? To end recursion a (classical) sentinel is
appended and macro tokens are gobbled, the latter in-
stead of Knuth’s multiple use of \next. The assignment
inhibits processing in the mouth, which in general I do
not consider that relevant. This gobbling up of macro
text in the mouth I use abundantly, e.g. in my TEX
macro for quicksort, as published in MAPS96.2. It also
shows that sometimes we have to test for spaces and
that sometimes the %-character is mandatory, especially
when inadventory spaces turn you down.

My current solution reads

\def\fifo#1{\ifx\ofif#1\ofif
\else \ifx\space#1\space

\else\blankbox{#1}%
\fi

\fi
\fifo}

\def\ofif#1\fifo{\fi}
%
\def\blankbox#1{\setbox0=\hbox{#1}

\hbox{\lower\dp0
\vbox{\hrule
\hbox{\vrule\vrule}

\hrule}}}
%
\def\demobox#1{\leavevmode\fifo#1\ofif}
%with use
\demobox{My case rests.
Have fun and all the best.}

Is the use of \ifx essential, or could \if, respectively
\ifcat, have been used?

Earlier, I had a solution where I read the line word
by word using a space as parameter separator, circum-
venting explicit testing for spaces. So, at least three
variants are available for discussing the pro-and-cons.
I am curious for GUST’s approach, because they have the
bounding boxes of each character in GUST as part of their
logo. Undoubtedly ingenious.

Knuth uses the functionality in as well the TEXbook
ch18, to illustrate his explanation of the transformation
of a math formula speciVcation into a sequence of
(boxed) atoms, as the MetaFontbook ch12 on Boxes.
Reuse, aha!

Wind macros
Despite the powerful MetaPost, I will talk for the Vrst
time about my plain TEX turtle line drawing graphics
macros of ≈13 years ago, which I have used for a variant
solution of the TEXbook exercise 22.14 (see later), but also
for drawing some fractals, e.g. my favorite the Binary

tree and the H-fractal (to be introduced later), a square
spiral, and a Pythagorean tree, as well as a variant of
the Sierpinsky triangle given at the end, as application
of Knuth’s dragon Vgures approach in appendix D of the
TEXbook. The included smileys are new, they replace the
old ones in pic.dat, because like Hans Hagen I guess,
I’ll do all my graphics in MetaPost or PS from now on.
Revision, aha!
The wind macros can still be handy for sketches in TEX
alone, although I programmed already some fractals in
PS directly. If time permits I might Vnish my fractals
note, with the graphics in PS and MP.

\N, \E, \S, and \W, draw a line element from the
point (\x, \y) of size as supplied by the argument in the
direction North, East, South, or West, respectively. The
line element is encapsulated in a box of size 0, meaning
the drawing does not change the reference point.

\def\N#1{\xy{\kern-.5\linethickness
\vbox to0pt{\vss
\hrule height#1\unitlength
width\linethickness}}%

\advance\y#1\unitlength}
%
\def\S#1{\advance\y-#1\unitlength{\N{#1}}}
%
%\E and \W read similar, see my
%Paradigms: the winds and halfwinds. MAPS 96.1
%
\def\xy#1{%Function: place #1 at \x, \y

\vbox to0pt{\kern-\y
\hbox to0pt{\kern\x#1\hss}\vss}}

\xy is similar to Knuth’s \point macro of Appendix D of
the TEXbook.

A straight application of the wind macros is the above
shown (inward) square spiral, which is drawn by the
macro listed below, where the number of windings is
supplied in the counter \k, and the coordinates (\x,
\y) contain the starting point for the drawing. Note
that during the drawing one has not to be aware of
the coordinates, they are implicit. In order to display a
centralized Vgure supply

\x = −\k ∗ \unitlength

\y = \k ∗ \unitlength

and enclose it in a box of height, width and depth
.5\k ∗ \unitlength.

TEX Education EUROTEX 2009 E19

\def\inwardspiral{{\offinterlineskip
\loop\E{\the\k}\advance\k-1

\S{\the\k}\advance\k-1
\W{\the\k}\advance\k-1
\N{\the\k}\advance\k-1

\ifnum\k>4 \repeat}}

Contest
I needed for the graphics inclusion in this paper, and in
the slides, a minimal markup macro \jpg.

During my presentation I launched a minimal markup
problem. I wanted to replace the following markup with
optional width... height...

$$\pdfximage height..width...
{filename.jpg}

\pdfrefximage\pdflastximage$$

by either the minimal markup

\jpgD filename
or
\jpgD width... filename
or
\jpgD height... filename
or
\jpgD height... width... filename

No square brackets, no curly braces, and even no explicit
Vle extension, because it is already in the macro name.

I challenged the audience to write such a macro.
There would be two winners one appointed by me and
one by the audience.18

And... the winner is... Péter Szabó, by me and by the
audience, with the following solution

\def\jpgfilename#1 {%
\egroup %end \setbox0\vbox
$$\pdfximage%
\ifdim\wd0=0pt\else width\wd0\fi
\ifdim\ht0=0pt\else height\ht0\fi
{#1.jpg}%
\pdfrefximage\pdflastximage$$
\endgroup}

\def\jpgD{%
\begingroup
\setbox0\vbox\bgroup
\hsize0pt \parindent0pt
\everypar{\jpgfilename}%
\hrule height0pt }

Elegant, to associate the optional parameter with a
\hrule and measure it by putting it in a box. Elegant
it is.

But...
I must confess, it took me some time to understand it. A

Master Class would have been beneVcial for me, to learn
to understand these kinds of macros more quickly .
The near winner was Bernd Raichle with a thorough,
straight-forward solution, not avoiding the pitfall, and
which is a bit too long to include in this note.

But...
it shows a superb, elaborate parsing technique looking
for width.. height... and then take appropriate action.

Post conference Phil Taylor came up with a near, but
intriguing solution and I myself also boiled up one. Both
are supplied in the Appendix I, because much can be
learned from them. Both neglect the (unintended) pitfall
to concentrate on the parsing of the optional parameters.
Phil and I just pass on the optional parameters, if any, to
\pdfximage.

2D Graphics

Line drawings with incremental diXculties are included
and discussed, such as

@ straight line drawings by the wind macros and by
gkppic in plain TEX, and PS, such as fractals and
Wowcharts

@ graphics with curved lines by PS and MP, such as
graphics composed of oblique lines (and spurious
envelopes), circles, and general curves, to be drawn
by splines.

Binary tree
I consider my binary tree macro as very beautiful,
because it can be programmed so nicely in TEX or PS,
and has such interesting applications. I consider it much
in the spirit of Knuth’s Turing award lecture Computer
Programming as an Art.

\def\bintree{\E{\the\kk}%
\ifnum\kk=2 \eertnib\fi
\divide\kk2 {\N{\the\kk}\bintree}%

\S{\the\kk}\bintree}%
\def\eertnib##1\bintree{\fi}%terminator

This mean and lean macro from the past can be adapted
to your needs.

The above \bintree I used for a Turtle graphics,
non-\alignment, solution of the TEXbook exercise 22.14,
which reWects the binary structure. En-passant, NTG’s
VIPs replace the original names given in the TEXbook.

E20 MAPS 39 Kees van der Laan

The previous drawing is obtained via

%labels in preorder
\def\1{CGL}
\def\2{GvN}\def\5{JLB}
\def\3{EF}\def\4{WD}
\def\6{HH}\def\7{TH}
%
$$\unitlength2ex\kk8 \chartpic$$
%
%with adaptation to insert the leaves
%
\let\Eold\E
\def\E#1{\global\advance\k1
\xytxt{ \csname\the\k\endcsname$_\the\k$}
\Eold8}}

Remarks. The (educational) indices at the nodes are
inserted to identify the nodes, to make the (order of) tra-
versal explicit. The replacement text of \1 will be placed
at node 1, etcetera. Adding the leaves, the initials, is done
by adapting the \E macro and invoking \xytxt, which
places text at the point (\x, \y). \chartpic encapsulates
the Binary Tree picture in a box of appropriate size. See
my earlier more elaborate note in MAPS96.1.

The variant PS code of the binary tree macro reads

%!PS -Bintree, cgl~1995-
%%BoundingBox: 0 0 600 600
/Bintree{/k exch def drawN
/k k 2 div def
k 1 gt {%

gsave drawE k Bintree grestore
drawW k Bintree}if

/k k 2 mul def}def %end BT
/drawN{0 k rlineto currentpoint

stroke translate
0 0 moveto}def

/drawE{k 0 rlineto
currentpoint stroke translate
0 0 moveto}def

/drawW{k neg 0 rlineto
currentpoint stroke translate
0 0 moveto}def

200 400 moveto 1 setlinewidth
.5 .5 scale 128 Bintree
showpage

I hope you will experiment with my binary tree codes,
and please let me know if you have some nice, mean and
lean use for it.
A more complicated use of the wind macros is the H-
fractal macro as given below

\def\hfractalpic{%Size(2,1)*2\kk\unitlength
\def\hf{\ifnum\level>0

{\nxt1\hf}\nxt3\expandafter\hf

\fi}%
\def\nxt##1{\advance\dir##1

\ifnum3<\dir\advance\dir-4 \fi
\ifcase\the\dir \N{\the\kk}%

\or \E{\the\kk}%
\or \S{\the\kk}%
\or \W{\the\kk}%

\fi
\multiply\kk17 \divide\kk24
\advance\level-1 }%

\dir=0 \hf}%end hfractalpic

My PS variant is even more concise and reads

%!PS -H-fractal cgl aug2009-
%%BoundingBox: 0 0 600 600
/Hfractal{/k exch def
gsave draw
/k k 2 mul 3 div def
k 1 gt {90 rotate k Hfractal

-180 rotate k Hfractal}
if

/k k 3 mul 2 div def
grestore}def %end Hfractal

/draw{0 k rlineto
currentpoint stroke translate
0 0 moveto}def
%
300 0 moveto 1 setlinewidth
.3 .3 scale
512 Hfractal
showpage

With respect to graphics I favour PostScript, and why not
write yourself a little bit of mean and lean PostScript?
The above macros in TEX can be useful for sketches and
fractals.

But...
when linethickness becomes noticeable, they suUer from
a severe disadvantage of ugly line joinings like the notch

In MetaPost these notches can be circumvented by using
suitable pens. Using in PostScript appropriate values for

TEX Education EUROTEX 2009 E21

setlinejoin, setlinecap, or the use of closepaths for
contours, will help you out.

Flowchart
An example of the use of gkppic macros is the following
diagram for the loop.

The code I borrowed from BLUe’s pic.dat, adapted for
the occasion with inserting \bluec and \bluel. Not nice,
so another reason for doing it all in MetaPost.

\def\blueflowchartlooppic%
{\bgroup\unitlength=3ex%3.8ex
\xoffset{-.5}\yoffset{-.3}%
\xdim{5}\ydim{7.5}%

\beginpicture
%\ifmarkorigin\put(0,0)\markorigin\fi
\put(0,0){\line(1,0){2}}%
\put(0,0){\line(0,1){6}}%
\put(0,6){\bluec\vector(1,0){2}}%
\put(2,6.5){\bluec\vector(0,-1){1.5}}%
\put(1,4){\framebox(2,1){\bluec pre}}%
\put(2,4){\bluec\vector(0,-1){.5}}%
%\put(2,3){\rhombus(2,1)1{tst}}%
\put(1,3){\bluec\line(2,1){1}} %lu
\put(1,3){\bluec\line(2,-1){1}} %ll
\put(3,3){\bluec\line(-2,1){1}} %ru
\put(3,3){\bluec\line(-2,-1){1}} %rl
\put(2,3){\makebox(0,0){\bluec tst}}%
%
\put(2,2.5){\line(0,-1){0.5}}%
\put(1,1){\framebox(2,1){\bluec post}}%
\put(2,1){\line(0,-1){1}}%
%
\put(3,3){\line(1,0){1}}%
\put(4,3){\vector(0,-1){3}}%
\put(4,2.5){\kern2pt{\bluec else}}%
\endpicture\egroup%
}% end blueflowchartlooppic

Before the invoke I deVned \bluel as well as \bluec
and used \bluec in the deVnition and \bluel before the
invoke. Not so nice, but imposed by PDF.

Disadvantages of the gkppic macros and LATEX
picture environment is that coloring is tricky when
using \pdf(Any)TeX: elements of a font are colored by

supplying k to \pdfliteral and lines or Vlls are colored
by supplying K to \pdfliteral. Moreover, one has to
put the pictures drawn by the wind macros in a box of
appropriate size, sort of Bounding Box, to ensure space.
A nuisance.

\def\bluec{\pdfliteral{1 0 0 0 k}}
%versus
\def\bluel{\pdfliteral{1 0 0 0 K}}

When we use the multi-step processing line via PS we
don’t have that disadvantage. Below a test example.

pretext
\special{ps: 0 0 1 setrgbcolor}%blue
abc
\hrule
def
\special{ps: 0 0 0 setrgbcolor}%black
posttext
\bye

Process the .dvi via dvips and view the .ps, to verify the
result. In TEXnicCenter I have added the Output ProVle
eTEX→PS→PDF. Convenient.
Note the explicit switching back to black, because the
TEX scope rule is not obeyed, of course. Another way to
prevent that the rest will appear in blue, is to insert gsave
in the Vrst and grestore in the second \special.

My MP code for the Wowchart which made use of
Hobby’s boxes.mp.

input boxes.mp;
prologues:=3;
%outputtemplate:="%j-%3c.eps";
beginfig(0)
boxit.boxa (btex \hbox to 60pt%

{\strut\hss pre\hss}etex);
boxit.boxb (btex \hbox to 60pt%

{\strut\hss tst\hss}etex);
boxit.boxc (btex \hbox to 60pt%

{\strut\hss post\hss}etex);
boxa.c=(100,180);
boxb.c=(100,140);
boxc.c=(100,100);
boxa.dx=boxb.dx=boxc.dx=5;
boxa.dy=boxb.dy=boxc.dy=5;
drawoptions(withcolor blue);
drawboxed (boxa, boxc);
%draw contents of b and the diamond shape
draw pic.boxb;
draw boxb.w--boxb.n--boxb.e--boxb.s--cycle;
%The arrows
drawarrow boxa.s--boxb.n;
drawarrow boxb.s--boxc.n;
z1-boxb.e=z2-boxc.e=(20,0);

E22 MAPS 39 Kees van der Laan

drawarrow boxb.e--z1--z2;
z3=boxb.w-(20,0);
z4=boxc.w-(20,0);
drawarrow boxc.w--z4--z3--boxb.w;
endfig
end

Note how the diamond diagram is obtained from the
information created by the boxit invoke. Henderson’s
previewer does not allow the use of boxes.mp. If one can
write the above Wowchart with the use of gkppic macros,
one could have coded it equally well direct in PS. To
code in PS the generality incorporated in the boxes.mp
is substantial more work, and unnecessary in view of
the neat boxes.mp macros, which come with the PD
MetaPost. In Goossens’ et al. Graphics Companion the
metaobj work of Roegel is mentioned as a generalization.
To understand the boxes.mp macro is a good exercise in
becoming familiar with the suffix concept, a uniVcation
of index and record, which Knuth introduced to handle
conveniently the many related parameters in a glyph.
By the way, the resulting PS is not standard PS, but
named puriVed PostScript which is incorrect, because
of the used cmr fonts. The coupling of the TEX cmr
fonts to PostScript fonts, an old problem, is done by
the prologues:=3;. The name of the resulting output
Vle can be composed to one’s wishes by assigning an
appropriate string to outputtemplate.19 The Vlename
with extension .eps facilitates previewing via Acrobat.
For previewing via CSview4.9 it does not matter. The
inclusion of the string (100,100) translate as value
of special hinders previewing: the Bounding Box is
incorrect, the calculation of the BB does not account
for this PostScript inclusion. I have the impression that
the PostScript code is just passed through to the output.
Inserting the desired font via special would not work ei-
ther. I found it convenient to name boxes beginning with
box. . . , to avoid name clashes. See for more details and
possibilities the (latest version of the) MetaPost manual.

If only the TEX Live DVD would have provided
installation directions for MetaPost.

Oblique lines
When my youngest daughter was at school, she pro-
duced the following object created by ‘oblique lines’
with spurious envelopes (left). My emulated result in MP
is at the right, and created just for this note.

The curves, not quarter circles by the way, suggested by
the oblique lines which connect points on the sides, are
spurious. Below I have included the MP code.

beginfig(1); numeric s; s=5cm;
path l, u, cl, cr;
%...
cl=(-s,-s){up}..(-.5s,.5s).. {right}(s,s);
cr=(s,s){down}..(.5s,-.5s)..{left}(-s,-s);
for t= 0 step 0.5 until 20:
draw point t/10 of cl --

point t/10 of cr withcolor blue;
endfor;
pickup pencircle scaled 3pt;
draw l..u--(s,-s)--cycle withcolor blue;
endfigure;

If we rotate and shrink appropriately we get the interest-
ing Vgure

In Goossens’ et al. The LATEX Graphics Companion this
Vgure is shown as an example of a recursive object.20

beginfig(0);
u=1cm;
drawoptions(withcolor blue);
for k=0 upto 15:
draw((u,-u)--(u,u)--(-u,u)--
(-u,-u)--cycle)rotated 10k;

u:=.86u;
endfor
endfig;

These Vgures are a prelude to Gabo’s 3D regular surfaces.

PostProcessing by Photoshop
My wife, Svetlana Morozova, ‘shoot-shoot’ post processed
the PS Wower (left) interactively via Photoshop into the
nice colored Wower (right).

The PS code for the Wower is given on the next page.

TEX Education EUROTEX 2009 E23

%%!PS Flower. CGL june 96
%%BoundingBox: -25 -25 25 25
0 0 1 setrgbcolor
100 100 translate
/r 18 def
10{r 0 r 90 180 arc

0 r r 270 360 arc
36 rotate}repeat

stroke
showpage
%%EOF

Have a try in coloring it. For comparison I have included
the MP code below.

beginfig(1);
r=18;
path p;
drawoptions(withcolor blue);
p= (0,0){up}...{right}(r,r){down}

...{left}cycle;
for i=1 upto 10:
draw p rotated 36i;
endfor
endfig
end

Note. In MP we don’t have to translate the origin.
The connection between the knots is tight, by three
dots. Interesting is that PS can draw circles while MP
approximates.

PostScript spaces
MF and MetaPost are nice graphical languages, with
convenient and powerful high-level instructions. Post-
script employs the notion of a 2D user space and a
2D device space, the latter can rotate. MetaPost has a
path and a picture data structure, which can be rotated,
well... transformed. Another diUerence is that PostScript
is stack oriented and MetaPost enjoys a declarative
language with a thorough syntaxes.

Negative from MetaPost is that the resulting Post-
Script code may not be concise and readable. Values of
the MP variables are given in the resulting PS and not
their symbolic names. Loops are unwinded.

Raw PostScript can be included via MetaPost’s spe-
cial, however. The best of both worlds?21

M.C. Escher

← Bolspiraal

CGL’s

→ Sort of

Yin Yang
A neat timeless MetaPost code I borrowed from Hobby

beginfig(1);
u=1cm;
path p;
p = (-u, 0)..(0,-u)..(u,0);
fill p{up}..(0,0){-1,-2}..{up}cycle;
draw p..(0, u)..cycle;
endfig;

without the ‘eyes’.22

Below my enriched PostScript variant of Hobby’s
MetaPost code, for the real Yin Yang picture.

%!PS-Adobe- Yin Yang. cgl July 2009
%%BoundingBox: -25 -25 25 25
/R 25 def /hR R 2 div def
/mR R neg def /mhR hR neg def
/r R 5 div def /mr r neg def
/rcircle {translate % center on stack

r 0 moveto 0 0 r 0 360 arc
}def
0 mR moveto 0 0 R 270 90 arc

0 hR hR 90 270 arcn
0 mhR hR 90 270 arc

fill
R 0 moveto 0 0 R 0 360 arc
stroke
gsave 0 hR rcircle fill grestore
gsave 0 mhR rcircle

1 setgray fill
grestore

It diUers from the MP code, because there is no di-
rection speciVcation in PostScript. Procrusting direction
has to be done by control points in general, which are
not needed in this special case. If the small discs are
omitted—Hobby’s original code—the PS code is not that
much longer than the MP code. Orientation is immater-
ial.

A picture with a genuine use of control points is the
Malbork window below.

E24 MAPS 39 Kees van der Laan

Syntactic sugar? Yes, but the PS code can directly be used
in documents, to be inserted by the dvi(2)ps driver, alas
not directly by pdf(Any)TEX. Strange.

It is tempting to go for .pdf all the way and I was
advised to convert PS pictures into PDF, which is easy
via Acrobat, or the older Distiller, Illustrator, Pho-
toshop?, or. . .No big deal.

However, I could not control the placement of .pdf
pictures in pdfeTEX.23 For this paper, and my slides,
I have converted all .eps pictures into .jpg.24

The .jpgs could be integrated smoothly in the docu-
ment by pdfeTEX, and was the way of picture inclusion
with pdfeTEX, for EuroTEX09, because it worked and
I think .jpg is more appropriate for pictures, despite its
non-scalability without quality loss

But,..
maybe PDF, SVG or PNG is better, no hands-on with the
latter two formats as yet. However, I believe— biased by
the SoC principle and because I can include .ps pictures
in my document— that the more-steps processing, via
dvi(2)ps is better. I will explore that later.

Smiley
A simple example in MP of the use of pens is the
following MP code for the smiley

beginfig(1);
u=1cm;
color yellow; yellow=(1, 1, 0);
fill fullcircle scaled 20u

withcolor blue;
pickup pencircle scaled 4u;
draw (4u, 4u) withcolor yellow;
draw (-4u, 4u) withcolor yellow;
pickup pencircle scaled 1.5u;
draw (-7u,-u){1,-10}..(0,-7u)
..{1,10}(7u,-u) withcolor yellow;

endfig;

Schröfers opart
Placement of (deformed) circles in a square has been
done by the artist Schröfer in an opart way. My emu-
lation follows.

%!PS -Schroefer’s Opart cglnov1996-
%%BoundingBox: -190 -190 190 190
200 200 translate
/s 5 def %BB for 1 with s=5
/drawgc{gsave

r c translate
r abs 5 div s add
c abs 5 div s add scale
0 0 1 0 360 arc
fill

grestore}def%end drawgc
%
/indices [30 21 14 9 5 2 0

-2 -5 -9 -14 -21 -30] def
/Schroefer{/flipflop true def
indices{/r exch s mul def
gsave indices{/c exch s mul def

flipflop{drawgc}if
/flipflop flipflop not def
}forall

grestore
}forall
-38 s mul dup moveto
0 76 s mul rlineto
76 s mul 0 rlineto
0 -76 s mul rlineto
closepath 5 setlinewidth stroke
}def%end Schroefer
gsave .5 .5 scale Schroefer
grestore
showpage

EuroTEX94 battleship logo
In order to illustrate the calculation of intersection points
in PS I have borrowed the EuroTEX94 battleship logo.

In general we need MF or MP for solving (linear) equa-
tions within a graphics context. However, the calculation
of the intersection point of 2 straight lines we learned
already at highschool, albeit without pivotting strategy,
for numerical best results. So, the knowledge for solving

TEX Education EUROTEX 2009 E25

2 equations in 2 unknowns in PS is there. I spent a little
time on writing the PS code for it, ≈15 years ago, just
after the 1994 EuroTEX, to write the logo in PS when MP
was not yet in the public domain. I did not realize at the
time that it was important, because people believe, have
the prejudgement, that we can’t solve equations in PS, or
at least they apparently think that we don’t have a def
for it. Indeed, we should create a library of .ps defs, or
maybe it exists already somewhere?

What we miss so far is that we can’t specify in PS
the equations implicitly as we can in MF and MP. No big
deal.

From the speciVed points on the stack in PS we can
form the coeXcients for the equations, leave these on
the stack and solve the equations. No more than high
school knowledge is required, and... a little endurance to
solve the equations, as I did maybe some 30 years ago for
the HP handheld calculator, which also uses a stack and
Polish Reverse Notation.

The data in PS code reads

%Data
/p0{0 0}def
/p1{3 s mul 0}def
/p2{4.5 s mul 2 s mul}def
/p3{3 s mul s}def
/p4{-.75 s mul 2 s mul}def
/p5{p0 top p3 p4 intersect}def
/p6{p0 p1 mean top p3 p4 intersect}def
/p7{top p1 p3 p4 intersect}def
/p8{p2 p5 top p1 intersect}def
/p9{p8 dup 0 exch top p0 intersect}def
/top{2.5 s mul 3 s mul}def

To specify all the points I needed a PS def intersect for
calculating the intersection point of 2 lines determined
by 4 points.
Points p1 p2 p3 p4→ x y

/p1{0 0}def /p2{10 0}def ...
%
/p {p1 p2 p3 p4 intersect}def
%
/intersect {%p1 p2 p3 p4 -> x y
makecoef 7 3 roll
makecoef
solveit}def %end intersect

%
/makecoef{%z1 z2 -> e a b
4 copy %x1 y1 x2 y2 x1 y1 x2 y2
4 -1 roll mul
3 1 roll mul sub
5 1 roll 3 -1 roll sub

%(y2x1-y1x2) x1 x2 y2-y1
3 1 roll sub%(y2x1-y1x2) y2-y1 x1-x2
}def %end makecoef

As last piece the deVnition of solveit

/solveit{%e a b f c d -> x y
%Equations: ax + by = e p=pivot
% cx + dy = f
%pivot handling %e a b f c d
1 index abs %e a b f c d |c|
5 index abs %e a b f c d |c| |a|
gt {6 3 roll} if %exchange ‘equations’
%stack: e a b f c d or f c d e a b,
%first is in comments below
exch 4 index %e a b f d c a
div %e a b f d p
6 -1 roll dup 6 1 roll 3 1 roll

%a e b f e d p
4 index exch %a e b f e d b p
dup 4 1 roll %a e b f e p d b p
mul sub %a e b f e p (d-b.p)
4 1 roll mul sub exch div
%a e b (f-e.p)/(d-b.p) = a e b y
dup 5 1 roll mul sub exch div exch
}def %stack: x y

Finally, the drawing of the battleship

%Battleship
-2 s mul 0 translate
0 0 1 setrgbcolor
p0 moveto p1 lineto p2 lineto p3 lineto

p0 lineto closepath
p1 moveto p3 lineto p4 lineto p0 lineto
p5 moveto top lineto p6 lineto
p6 moveto top lineto p7 lineto
p2 moveto p8 lineto p4 moveto p9 lineto
stroke

Circle covered by circles
This example is included because it demonstrates that
even in PS we can solve nonlinear equations.

E26 MAPS 39 Kees van der Laan

Essential in this code is the deVnition of Bisect for zero
Vnding of a nonlinear function.

/Bisect{%In 0<=l<u f(l)<0 f(u)>0
%Out l<=d<=u u-l<eps f(l).f(u)<=0

/fd f def
fd 0 lt {/l d def}

{/u d def}ifelse
u l sub eps gt
fd 0 ne and %l-u>0&f/=0

{Bisect}if
d}def %end Bisect
%
/l ...def /u ...def
/d{.5 l u add mul}def
/f{% f: d-->f(d)

... } def

For the complete code and the formulas for the mid-
points of the circles see my Tiling note of the mid 90-ies.

2.5D Graphics

For drawing 3D objects in PS I discern the following
spaces

@ 2D PostScript Device Space
@ 2D PostScript User Space

I added

@ 3D User Space, the data
and
Project 3D US
onto 2D PostScript US

By 2.5D graphics I mean an image of a 3D object,
displayed as 2D graphics, obtained from 3D data spec-
iVcations and projection onto 2D.

The projection formula reads

(
x′

y′

)
=

(
− cosφ sinφ

− sinφ sinθ − cosφ sinθ cos θ

)

x

y

z




X

Y

Z P

θ′

φ

The (full) transformation matrix can be understood as
to be composed of 2 rotations: Vrst around the z-axis
and second around the transformed x-axis, such that
the z-axis coincides with the view direction

⇀
OP ⊥ the

new xy-plane. We can omit the 3rd, the transformed
z-coordinate, because it is no longer visible in the (or-
thogonal) projection. The factorization of the projection
matrix is


1 0 0

0 − sin θ cos θ

0 cos θ − sin θ






− cosφ sinφ 0

sinφ cosφ 0

0 0 1




Coded in PS as a Point to Pair def, ptp, the projection
formula reads

/ptp{/z exch def/y exch def/x exch def
x neg a cos mul y a sin mul add
x neg a sin mul b sin mul y neg a cos mul

b sin mul add z b cos mul add}def

Later, in the MP code for Gabo’s linearii, the MP vardef
for Point to Pair is given.

Pyramids
Hobby in his ‘A user’s manual for MetaPost’ draws a
pyramid. Below I have drawn pyramids starting from 3D
data as function of the viewing angles.

The PS code reads

%!PS-Pyramid in projection, cglaug2009-
%%BoundingBox: 0 0 300 100
/ptp{/z exch def/y exch def/x exch def
x neg a cos mul y a sin mul add
x neg a sin mul b sin mul y neg a cos mul

b sin mul add z b cos mul add}def
%
/r 20 def /hr r 2 div def
/z1{r neg r 0 ptp}def
/z2{r neg dup 0 ptp}def
/z3{r r neg 0 ptp}def
/z4{r r 0 ptp}def
/top{0 0 r 4 mul ptp}def
%
/pyramid{z1 moveto z2 lineto z3 lineto

[2]1 setdash stroke

TEX Education EUROTEX 2009 E27

z3 moveto z4 lineto z1 lineto
top moveto z1 lineto
top moveto z3 lineto
top moveto z4 lineto stroke
top moveto z2 lineto

[2]1 setdash stroke}def%end pyramid
%
30 300 translate
0 0 1 setrgbcolor%blue
1 setlinecap 1 setlinewidth
%
15 25 65{/a exch def
30 -20 10{/b exch def

pyramid
57 0 translate}for}for

showpage

Escher’s impossible cube
As student I was asked by my professor to (re)make
Escher’s25 Impossible Cube.

I decomposed it into two parts, in timber, and put
them together such that in projection the impossible
cube was obtained. I photographed it and handed the
photo to my professor.26

I’m happy that after so many years, I had the guts to
emulate the cubes.

I consider each corner of the (impossible, non-
mathematical) cube as a cube itself, with its 8 corners
as data points, which yields in total 64 data points.
After projection I could connect the appropriate points
and make the (impossible) cube. First, I did the erasing
and adjusting in Photoshop, but a little later I drew the
impossible cube in PS alone, which is not completely
general as function of the viewing angles. A bit tedious.
The code is too long and too tedious to be included
here.

Gabo’s constructive art
Long ago, I was still a student, I visited the Tate Gallery
in London, and was captivated by the constructive art of
Gabo,27 especially his linearii of the early 1940-ies.

Naum Gabo

← Lineari

→ Linearii

I also passed by his (temporarily nonworking) fountain
in front of the St Thomas hospital opposite the Big Ben,
on the other bank of the river Thames.

In the fountain, the regular surface is formed by jets of
water, and changes dynamically, because it rotates, due
to the ‘action is reaction’ principle.

After many years, I all of a sudden had an idea of how
to imitate this fountain in my garden, for my quarter
circle pond. A very remote sort of imitation, but... funny.
Too alternative to be included here, maybe on the slides
for BachoTEX2010, for fun.

With my youngest daughter I imitated Gabo’s lin-
earii in plastic.

In ≈1995 I emulated lineari, linearii in MF, and
adapted the code towards MetaPost. For this conference
I looked at the pictures again. Sveta and I adjusted them
with thinner lines and colored them blue.

They came out more beautiful than before, even nicer
than the photo’s of the objects, IMHO. A matter of taste?

Naum Gabo
Lineari

E28 MAPS 39 Kees van der Laan

Naum Gabo
Linearii

Of linearii I have included the MP code below

beginfig(1);
proofing:=1;
size=75;
path p[];
def pointtopair(expr x,y,z)=
(-x*cosd a + y*sind a,
-x*sind a * sind b -y*cosd a * sind b
+ z*cosd b)

enddef;
%
%Path construction
%
%basic path (the shape of the boundary)
%can be molded, can be constrained etc
p1:= (0,3size){right}..
{down}(1.1size,1.75size){down}..
(.35size,.75size)..(.175size,.375size)..
{left}origin;

%path with regular---nearly so---
%distributed points
n:=0;%number of points along the curve
p10:= point 0 of p1 hide(n:=n+1)..

for t:=1 upto 19: hide(n:=n+1)
point .05t of p1..endfor

point 1 of p1 hide(n:=n+1)..
for t:=1 upto 13: hide(n:=n+1)
point 1+t/14 of p1..endfor

point 2 of p1 hide(n:=n+1)..
for t:=1 upto 3: hide(n:=n+1)
point 2+t/4 of p1..endfor

point 3 of p1 hide(n:=n+1)..
for t:=1 upto 3: hide(n:=n+1)
point 3+t/4 of p1..endfor
origin;

%viewing angle parameters
b:=-10; a:=60;
%Project the nodes and create

%‘paths in space’ the boundaries
p100:= for k=0 upto n-1:

pointtopair(0,xpart(point k of p10),
ypart(point k of p10))..

endfor pointtopair(0,0,0);
p200:= for k=0 upto n-1:

pointtopair(xpart(point k of p10), 0,
ypart(point k of p10))..

endfor pointtopair(0,0,0);
p300:= for k=0 upto n-1:

pointtopair(0,-xpart(point n-k of p10),
3size-ypart(point n-k of p10))..

endfor pointtopair(0,0,0);
p400:= for k=0 upto n-1:

pointtopair(-xpart(point n-k of p10),
0, 3size-ypart(point n-k of p10))..

endfor pointtopair(0,0,0);
%
%Drawing
%
%MetaPost approach: black background
% and whitedraw
%Black background
fill (-1.5size,-size)--(-1.5size,5size)--

(1.5size,5size)--(1.5size,-size)--cycle;
%
%Below white drawing
drawoptions(withcolor white);
%
pickup pencircle scaled .5pt;
%Top ring and hang up (rope)
draw point 0 of p100..

point 0 of p100 + (0,.1size)..cycle;
draw point 0 of p100 + (0,.1size)..

point 0 of p100 + (0,3size);
%Draw boundary curves
draw p100; draw p200; draw p300; draw p400;
%
%Draw (partially hidden) regular surfaces
pickup pencircle scaled .1pt;
for k=0 step 1 until n:
draw point k of p200..point n-k of p300;

endfor
for k=0 upto n:
draw point k of p400..point n-k of p100;

endfor
%erase the ‘hidden’ parts of the lines
%erase fill p100..reverse p200..cycle;
%MetaPost might blackdraw this
%fill p100..reverse p200..cycle
% withcolor black;
%Front
pickup pencircle scaled .1pt;
draw p100; draw p200;
draw point 0 of p100--origin;

TEX Education EUROTEX 2009 E29

%
%Draw regular surface which is in sight
for k=0 step 1 until n:
draw point k of p100..point n-k of p200;

endfor
%Clip to boundary, mod July 2009
clip currentpicture to (-1.5size,-size)--

(-1.5size,5size)--
(1.5size,5size)--(1.5size,-size)--
cycle;

endfig;
end

Mathematically, I love the above included regular sur-
faces due to Gabo, because they are constructed from 1-
dimensional data, the bounding curves in 3D. The neces-
sary parameterized projection technique also facilitates
animation by changing the viewing angles.

For the Vrst time I emulated the real Gabo by not
erasing the ‘hidden’ lines. In reality they are not hidden,
because the object is made of transparent perspex. I lied
a bit in the past, because when I did not erase the hidden
lines the reverse video picture looked too much blurred
by detail. For this conference I Vne-tuned the picture
with thinner lines and in blue, which looks OK to me.

Reuse

Sooner or later one arrives at the situation to organize
the wealth of macros, pictures, references, tools and
ilks for reuse. This gave rise to my BLUe collection.
The idea in BLUe is that all the macros you use most
of the time are bundled into a blue.tex kernel. The
rest is split up into: tools, formats, pictures, references,
addresses,. . . of which BLUe will reuse parts on the Wy,
unaware of the Vling system of the computer. Reuse is a
general important aspect, and ipso facto in the lifecycle
of document parts.

Produce → Distribute → Consume
↑ ↑ ↓

reuse ← retrieve ← store

With a monolithic collection you have it all, all the time.
I decided to adhere to the kernel&modules adage, and
to use only from a module what is needed, realized by
a selective loading technique, similar to the one of M.
Diaz, as mentioned in appendix D of the TEXbook.

One might argue that this economy has become more
and more irrelevant, because of the enormous increase
of computer speed and memory, since the birth of TEX.
Partly true: sometimes parts conWict, e.g. one either
formats a report or an article, and in general it is safe
to avoid possible conWicts.

To illuminate this note, I have reused pictures be it
from pic.dat or from separate PostScript Vles.

Sometimes reuse implies some extra work.
I also reused the commands included in \loadtoc-

macros together with \pasteuptoc for a mini-ToC to
keep track of the structure while creating this note. En-
passant the Contents at the beginning was obtained.

This proceedings submission diUers from the pre-
proceedings one, because working on the slides gave
feedback. The 2.5D GABO’s as well as the Escher Cube
have earned a place for their own.

An invoke of the one-part \bluepictures followed by
one or more \picturenames will load the indicated (TEX)
pictures and make them available under their names.
At the time I did not construct a library of PostScript
pictures, because I did not know how to supply these to
\epsfbox. There is no pspic.dat, alas. If time permits
I will think it over.

Another aspect is the search path of drivers, if only
they looked into TeX input or texmflocal; where to put
pspic.dat?

It is not so handy to put the pictures directory in the
same place as the main document. I do not know how to
add search paths.

If only \pdfTEX could handle PostScript...

As alternative to \bluepictures one can use the under-
lying two-part macros, sort of environment

\beginpictures
\picturename1
...

\endpictures

but, alas TEX has no garbage collector, it would not save
on memory, it only reduces the possibility of conWicts.

Similar structures hold for tools, formats, references,
. . .

In 2002 I worked on macros for the automatic genera-
tion of PDF bookmarks for the ((sub)sub)heading titles. It
worked, even presented them at the EuroTEX, if I’m not
mistaken.

But...
I did not Vnish the macros, maybe I should. I noticed
that in 2005 A. Heck did not provide for bookmarks in
his MetaPost note published in MAPS, also available on
his WWW site. Is there a need? Rhetorical question.

E30 MAPS 39 Kees van der Laan

The above Sierpinski picture was done in TEX with its
pseudo Vlling via rules, also called black boxes by Knuth.
TEX lacks the Vlling of an arbitrary closed curve, if not
for coloring it.28 Hyperlinks were also invented long
after the birth of TEX. pdfTEX makes that all possible.29

I missed what extras eTEX, or NTS as successors of TEX
have brought us. I hope to learn at this conference what
LuaTEX is all about.

For me plain TEX mutual communicating with
MetaPost, with PDF as result is suXcient, and
even better when PS pictures can be included.

Maybe I can work around it by including PS in MetaPost
with SVG or PDF out, or by the multi-step route via
dvi(2)ps. It is so strange that the world outside has
adopted PS and we don’t in pdf(Any)TEX.30

3D metaPost?

It should not be too diXcult to extend MetaPost with
triples, (x, y, z), in analogy with color, for 3D data.
Transformations can then be deVned by the 12-tuple Tx,
Ty, Tz, Txx, Tyy, Tzz, Txy, Txz, Tyz, Tyx, Tzx, Tzy. In matrix
notation



x′

y′

z′


 =



Tx
Ty
Tz


+



Txx Tyx Tzx
Txy Tyy Tzy
Txz Tyz Tzz





x

y

z




Conclusions

Whatever your tool in computer-assisted typesetting,
a Master Class on macro writing in plain TEX and
MetaPost is worthwhile, along with discussing tools for
similar and complementary tasks to increase awareness,
insight and productivity.
A course in literate programming would be great too.

Wishes
May my turtle graphics macros Vnd a niche, and may
my BLUe collection and Paradigms notes be saved from
oblivion and kept alive via distribution on the TEX
Collection DVD.31

May the TEX Collection maintainers, the TEXnic-
Center authors, and Jonathan Kew in his TEXworks,

support the plain TEX and MetaPost users as well as the
LATEX and ConTEXt users.

Hopes...
TEX&Co world will

@ Adopt Knuth’s Plain & Adobe’s PS
@ Adhere to Paradigms: SoC...

I learned a lot at and after the conference.

TEXies, who have been out of it for a while, are
well re-educated at an EuroTEX meeting.

LuaTEX and X ETEX are TEX engines, which a.o. provide
support for Unicode and OpenType fonts. New Open-
Type fonts for use in LuaTEX and X ETEX are Latin Mod-
ern and TEX Gyre, the latter based on a free counterpart
of Adobe’s basic set of 35 fonts and the former on
Computer Modern. Both aim at greatly increasing the
number of diacritical characters in the freely available
collections of fonts.32

Interesting for me with respect to Cyrillics.

Acknowledgements

Thank you NTG for inviting me for this conference.
Because of this invitation I contributed this paper, re-
freshed my TEX knowledge, polished my pictures un-
dusted blue.tex, and tried to get a modern communi-
cating TEX⇔MetaPost IDE running on my PC.33

I hope you enjoyed reading this paper and if only one
idea sparked up in your mind, I am happy. If the walk
along history lane, enriched by my perspectives, did not
interest you, hopefully the included pictures pleased you.

Thank you Jos Winnink for running the above lin-
earii.mp after 10+ years again, as well as the orphan
lineari.mp, which I also created in MetaFont in 1996,
and just before this conference transcribed into MetaPost
from memory, since I no longer had the original.34

Thank you Taco Hoekwater for procrusting this note
into the proceedings, and for your advice in getting me
TEXing again.

The linearii picture, I consider the most beautiful
2.5D graphics I ever made with TEX, MetaFont, Meta-
Post, or PostScript, although lineari comes close.
The doughnut picture was tricky.

TEX Education EUROTEX 2009 E31

I needed the equation solver of MetaFont, and thanks to
my familiarity with splines I could reuse the MetaFont
splines in PostScript. Recently, I made in MP a variant,
see Appendix II.

The cat picture below is my oldest and my Vrst
exercise in MetaFont. I drew it already while at high
school. Some years ago, I recast it into a wall sculpture
composed of broken mirror pieces.

Cat

← drawing

sculpture→

I also made a puzzle of the cat drawing. Coloring the
contours of the cat diUerently in each piece yielded a
diXcult, misleading puzzle: one has to concentrate on
the drawing and not on the colors, nor the shape of the
pieces.

Is this all? No, there is some more, but this is enough for
the moment.
My case rests, have fun and all the best.

Notes

1. Both had courseware: NTG’s Advanced TEX course: In-

sight & Hindsights, respectively MetaFont: practical and

impractical applications.
2. The LATEX picture environment and the gkpmac suite
I consider outdated, because of the inconsistency when using
colors and because it is much better and more convenient to do

all your graphics in PS directly or via MetaPost.
3. At the conference I was reminded that BLUe is under
copyright. I heard from the LPPL licensing and that seems
enough for distributing it on the TEX Live DVD. I agreed with
Manfred Lotz to modify the copyright into LPPL, and to look
over BLUe for release on TEX Live DVD of 2010. As much as
possible, for example the Publishing with TEX guide, can
already be released on the 2009 DVD as well as all my notes
published in MAPS.
4. Kazimir Malevich, 1878–1935. Russian painter, born in Kiev.
5. At the conference Ulrik Vieth talked about the need for
Vnetuning of math afterwards, especially with respect to a.o.
adjusting spacing, aligning subscripts, and adapting for the size
of delimiters. In an earlier paper OpenType Math Illuminated,

BachoTEX 2009, he details with OpenType Math compared to
TEX and MS Cambria release in Word 2007.
6. Hans Hagen reported about the Oriental TEX project,
which to me looks like an Oriental mode. Hans conVrmed that
one can look at it that way.
7. This is an old issue. In the past we had the expression Amer-
ican Screwdriver, meaning using your tool for everything. TEX
is not an American Screwdriver.
8. I did not say that one should work in plain or PS all the
way. Of course one can start and write macros in whatever
high level language is available. I do wish, when you are
Vnished with the macros, that you translate them into plain,
respectively PS, and include them in a library for reuse.
9. BachoTEX2009.
10. Courtesy Phil Taylor, who published the macros for doing
the calculation by using dimension variables.
11. \author is absent, because in BLUe the author is known, is
default, you don’t have to Vll it in each time, similar holds for
aXliation. BLUe is a personalized collection of macros.
12. When as a student I became member 1024 of the Ne-
derlandse Rekenmachine Genootschap, I received The Art
of Computer Programming I. My heroes next to Knuth are
G. Ploya, G.E. Forsythe, Knuth’s predecessor, C. Lanczos,
F.L. Bauer, H. Rutishauser, P. Henrici, R.W. Hamming, L. Wall,
and H.A. Lauwerier my Dutch applied Math professor. He
would have loved my PS Impossible Cube, for sure.
13. Tony Hoare in the 70-ies coined the term in his famous
paper.
14. SLC mean Slow, Steep, Strenuous Learning Curve.
15. Since TEX was invented we have witnessed a tremendous
development in computers, and how to use computers. The
command line interface belongs to the past, we all use comput-
ers via GUIs. Why not have a Word-like document preparation
system with TEX as open, well-documented kernel, which can
be accessed for advanced tasks?
16. Courtesy L. Wall.
17. Because LATEX, ConTEXt, BLUe and ilks have that, of course.
18. I did not say that one could start with the Vlename, because
I consider that against what people are used to, and makes the
problem a triWe. The speciVcation was not watertight, because
I preferred a more or less open problem, to stimulate creativity.

E32 MAPS 39 Kees van der Laan

19. My MetaPost1.005 did not yet provide it.
20. This rotating shrinking squares and a few other pictures,
which I borrowed from H.A. Lauwerier’s ‘Meetkunde met de
microcomputer’, such as the Koch fractal, the Hilbert curve,
the Jura fractal, Escher’s knot,. . . and published in MAPS in the
mid-90-ies, in my ‘Just a little bit of PostScript’, ‘Graphics &
TEX—a reappraisal of Metafont’, or ‘Tiling in PostScript and
Metafont—Escher’s wink’, I found back, without reference and
translated in MetaPost.
21. As yet not! Be aware that the PostScript code is just handed
through, not taken notice of.
22. The numeric equation, u=1cm, looks a bit strange, looks
more like a dimension à la TEX. It becomes clear when you
realize that cm is just a scaling factor.
23. The problem is that generally I got a picture per page, and
I did not know how to trim the picture to its bounding box.
After the conference I found out how to trim these pictures
in Acrobat 7 professional: select the picture, copy it to the
clipboard, and then click create PDF and select From Clipboard
Image.
24. The conversion was generally done by opening the .pdf

pictures in Photoshop, trim them and save them as .jpg. Later
I became aware of the prologues:=3; statement, which yields
a.o a picture trimmed to the Bounding Box.
25. M.C. Escher, 1898–1972, Dutch artist.
26. I must have the negative somewhere, but can’t Vnd it, alas.
I’ll give it another try.
27. Naum Gabo, 1890–1977. Born Naum Borisovich Pevsner.
Bryansk. Russian Constructivist.
28. I colored the picture by post processing in Photoshop. A
work Wow approach is simpler via the use of the earlier deVned
\bluel and switching back via \black.
29. The term hypertext was coined by TeD Nelson during the
1960s, the concept can be traced to Vanneger Bush in 1945. See
the Hypertext issue of the CACM july, 1988.
30. I read in the PDF manual the excuse that PDF is a successor
of PS, but does not have a programming language built in???
31. This wish will be fulVlled, as reported earlier.
32. Courtesy Bogusłav Jackovski et al. and Ulrik Vieth.
33. Still a wish. But... Wybo installed Ubuntu Linux for me on
my laptop, with TEXworks, so I can explore that. Will give me
enough work to do.
34. After the conference the NTG discussion list told me how
to run the MetaPost utility supplied on TEX Live. Open a new
directory, copy cmd.exe into it as well as your filenamme.mp.
Double click the cmd.exe icon and type after the prompt mpost
filename.mp. Another suggestion was to use MetaPost from
within the SciTE editor. It would have been handy if the
readme, which comes with the TEX Live, would have contained
information on how to use the various utilities. Don’t assume
a casual user knows it.

Kees van der Laan
Hunzeweg 57, 9893PB Garnwerd, Groningen
kisa1@xs4all.nl

TEX Education EUROTEX 2009 E33

Appendix I: Contest Solutions

Phil Taylor submitted the following mean and lean post
conference solution to the Contest, based on what is said
on TEXbook p204. He told me that the working of # at
the end of the parameter list is little understood, but very
useful.

Indeed, I had to look up that functionality and do the
replacement to see what it does. A paradigm, though
I don’t know at the moment where Knuth used it. Phil’s
solution is a near solution, because curly braces are still
needed around the filename.

But...
mean and lean it is, and I reused it already, adapted, for
getting a list of all PS pictures used in this paper.

I realized, and use it as an aid in remembering, that
the # at the end of the parameter list is a workaround
for having a curly opening brace as separator.

\def \jpg #1#%
{\def \next

{\immediate \pdfximage #1
{\the \toks 0 .jpg}

\pdfrefximage \pdflastximage
}

\afterassignment \next
\toks 0 =
}

%Use
\jpg width 300pt height 30pt {P-Taylor}

I came up with the solution below, which I will add to my
FIFO paradigms list in my TEXing Paradigms collection.
Of course, I used this one for my purpose.

\def\jpgD#1\par{\def\scaling{}
\fifow#1 \wofif %Sentinels
\pdfximage\scaling\expandafter{\fn}
$$\pdfrefximage\pdflastximage$$}
%
\def\fifow#1 #2{\process{#1}#2
\ifx#2\wofif\expandafter\wofif\fi
\fifow#2}
%
\def\wofif#1\wofif{}
%
\def\process#1#2{%
\ifx#2\wofif\def\fn{#1.jpg}%
\else\edef\scaling{\scaling\space#1}%
\fi}

Both solutions circumvent the pitfall of parsing the
arguments. The height... and width... if present, are
just passed through.

Appendix II: Escher’s knot

The Escher’s knot figure, I consider highly instructive.
The latest version, in MP, makes use of the symmetry,
while the hidden lines are not removed: the figure
is (re)drawn with only the visible curve pieces. For
constructing the pieces it is handy first to draw the
complete picture wit dotlabel commands included, for
the points P, Q, R, and the intersection points a, b, c, d.
Construct with the aid of this picture the visible pieces
anew from the calculated curves by the use of cutbefore.

u=5cm;
%Ext points P, Q, R, counter clockwise
pair P, dP; P:=(0,u); dP:=(1, 0);
pair Q, dQ; Q:= P rotated 120;
pair R, dR; R:= P rotated 240;
dQ:=(-1, 1.73205);dR:=(-1, -1.73205);
path PQ, QR, RP, pq, qr, rp,

PQa, PQb, pqa, pqb;%pieces
drawoptions(withcolor blue);
PQ = P{dP}.. .5R{dR}..{dQ}Q;
QR = PQ rotated 120;
RP = PQ rotated 240;
pq = PQ scaled .8;
qr = QR scaled .8;
rp = RP scaled .8;
%draw PQ..QR..RP;%No hidden lines removed
%draw pq..qr..rp;%No hidden lines removed
%Just the pieces instead of
%hidden lines removal
pqa = pq cutafter QR;
pqb = pq cutbefore qr;
draw pqa; draw pqb;
draw pqa rotated 120; draw pqb rotated 120;
draw pqa rotated 240; draw pqb rotated 240;
%a similar approach as above did not work, bug?
PQ:= PQ cutbefore QR;
PQa:= cuttings;
PQb:= PQ cutbefore qr;
draw PQa; draw PQb;
draw PQa rotated 120; draw PQb rotated 120;
draw PQa rotated 240; draw PQb rotated 240;

Note the names used: a path PQ is the ‘line’ between
points P and Q. Very handy, this naming convention
taken over from good old classical geometry. It facilitates
reading of the code. With cutbefore and cutafter it
seems more natural to draw just the visible pieces instead
of erasing hidden parts.

E34 MAPS 39 Luigi Scarso

LuaTEX lunatic
And Now for Something Completely Different

– Monty Python, 1972
Abstract
luatex lunatic is an extension of the Lua language of luatex
to permit embedding of a Python interpreter.
A Python interpreter hosted in luatex allows macro pro-
grammers to use all modules from the Python standard li-
brary, allows importing of third modules, and permits the
use of existing bindings of shared libraries or the creation of
new bindings to shared libraries with the Python standard
module ctypes.
Some examples of such bindings, particularly in the area of
scientific graphics, are presented and discussed.
Intentionally the embedding of interpreter is limited to the
python-2.6 release and to a luatex release for the Linux op-
erating system (32 bit).

Keywords
Lua, Python, dynamic loading, ffi.

History
I met luatex sometime around November 2006, and
I started to play with it to explore the possibility of
typesetting xml documents in an alternative way than
the traditional approach based on xsl stylesheet plus xslt
processor.

My Vrst intention was to typeset a wikipedia xml
dump [4] which is compressed with bzip2; given that
I mainly use Python for my programming language, I
quickly found python-bz2 and then Gustavo Niemeyer’s
“personal laboratory” [15] where I have discovered Lu-
natic Python [14].

To avoid confusion, here Python means CPython, the
C implementation of the Python language [49]. There
are other implementations of the Python language: for
example Jython [41] and IronPython [37]. According to
[6] “the origin of the name (is) based on the television
series Monty Python’s Flying Circus.”

In March 2007 I started to investigate the possibility of
integrating Lunatic Python with luatex [57] and in Au-
gust 2007 I made the Vrst release of luatex-lunatic [20],
just around the birth of my second daughter Martina
(09/08/07, [33]).

During the 2nd ConTEXt meeting [21] I found that
luatex was stable enough to Vnalize the project, so I
remade all steps and some new examples too (ConTEXt
meetings are good places for these kinds of things).

Examples are now hosted at contextgarden [35] while
[20] remains for historical purposes.

Motivations & goals
TEX is synonymous with portability (it’s easy to im-
plement/adapt TEX the program) and stability (TEX the
language changes only to Vx errors).

We can summarize by saying that “typesetting in TEX
tends to be everywhere everytime.”

These characteristics are a bit unusual in today’s
scenario of software development: no one is surprised
if programs exist only for one single OS (and even for
a discontinued OS, given the virtualization technology)
and especially no one is surprised at a new release of
a program, which actually means bugs Vxed and new
features implemented (note that the converse is in some
sense negative: no release means program discontinued).

Of course, if we consider the LATEX-system, i.e. LATEX
and its most used packages, this is not frozen at all: just
see the near-daily announcements from CTAN. pdfTEX
also changes to follow pdf releases.

With luatex-lunatic I adopt this point of view:
LuaTEX or more speciVcally LuaTEX&ConTEXt-mkiv as a
tool for publishing content, with some extent to content
management. As a tool, it is no surprise if there are
“often” (for a TEX user) new releases, given that we can
have a LuaTEX update, or a ConTEXt-mkiv update, or a
Lua update, or a Python update, or a library update for
which the Python binding exists; and, of course, if made
with no “cum grano salis”, no surprise if this can become
quickly unmanageable.

The price to pay is the potential loss of stability:
the same document (with the same fonts and images)
processed with a new release can produce a diUerent
output.

With regard to portability, the LuaTEX team uses
libtool: GNU Libtool simpliVes the developer’s job by
encapsulating both the platform-speciVc dependencies,
and the user interface, in a single script. GNU Libtool is
designed so that the complete functionality of each host
type is available via a generic interface, but nasty quirks
are hidden from the programmer [39]), while in Lua and
Python support for dynamic loading is a feature of the
languages, i.e. there is a (Lua/Python) layer that hides
the details of binding.

LuaTEX lunatic EUROTEX 2009 E35

Thus stated, due to the lack of resources, I have
no plan in the immediate future to investigate any OS
other than Linux, so this article will cover this OS only;
or, stated in another way, there is a potential loss of
portability.

We can summarize saying that “typesetting in luatex-
lunatic is here and now”, where here stands for “a
speciVc OS” and now for “with this release”. Actually
here stands for “Linux 32 bit”, and now stands for luatex
-snapshot-0.42.0.tar.bz2 with ConTEXt-mkiv current
2008.07.17; probably both will already be old by the time
this is printed.

Another motivation has emerged during the develop-
ment of luatex-lunatic: the possibility to use ConTEXt-
mkiv as a sort of literate programming tool for a speciVc
context.

It is well known that CWEB is a way to tangle together
a program written in a speciVc programming language
(C) with its documentation written with a macro markup
language, TEX; luatex-lunatic and ConTEXt-mkiv can be
used to tangle together a program written in an (almost)
arbitrary programming language with its documenta-
tion written with a high level macro markup language,
ConTEXt-mkiv.

Put in another way: currently an application calls
TEX or LATEX (i.e. it creates a process) to obtain a
result from a tex snippet (for example to show a math
formula); instead luatex-lunatic with ConTEXt-mkiv calls
the application by dynamic loading (i.e. it does not create
a process) to obtain the result to insert into tex source.

For example one can use luatex-lunatic ConTEXt-
mkiv to typeset a math formula, and the binding for
the evaluation of the same formula (there are several
symbolic-math Python modules already available).

We will see more about this later, when we will talk
of Sage.

We want to Vnd the smallest set of patches of the luatex
codebase, or, better, we want to avoid:

1. constraints of any sort to the development team;
2. massive modiVcations of the code base;
3. radical modiVcation of the building process.

Lunatic Python
There is no better site than [14] to explain what is
Lunatic Python:

Lunatic Python is a two-way bridge between Python
and Lua, allowing these languages to intercommunicate.
Being two-way means that it allows Lua inside Python,
Python inside Lua, Lua inside Python inside Lua, Python
inside Lua inside Python, and so on.

. . .

The bridging mechanism consists of creating the
missing interpreter state inside the host interpreter. That
is, when you run the bridging system inside Python, a Lua
interpreter is created; when you run the system inside
Lua, a Python interpreter is created.

Once both interpreter states are available, these
interpreters are provided with the necessary tools to
interact freely with each other. The given tools offer not
only the ability of executing statements inside the alien
interpreter, but also to acquire individual objects and
interact with them inside the native state. This magic is
done by two special object types, which act by bridging
native object access to the alien interpreter state.

Almost every object which is passed between Python
and Lua is encapsulated in the language specific bridging
object type. The only types which are not encapsulated
are strings and numbers, which are converted to the
native equivalent objects.

Besides that, the Lua side also has special treatment
for encapsulated Python functions and methods. The
most obvious way to implement calling of Python objects
inside the Lua interpreter is to implement a __call
function in the bridging object metatable. Unfortunately
this mechanism is not supported in certain situations,
since some places test if the object type is a function,
which is not the case of the bridging object. To over-
whelm these problems, Python functions and methods are
automatically converted to native Lua function closures,
becoming accessible in every Lua context. Callable
object instances which are not functions nor methods, on
the other hand, will still use the metatable mechanism.
Luckily, they may also be converted in a native function
closure using the asfunc() function, if necessary.

According to [68], page 47, a closure is “a function plus all
it needs to access non-local variables correctly”; a non-local

variable “is neither a global variable nor a local variable”. For example
consider newCounter:

function newCounter()

local i = 0

return function()

i = i+1

return i

end

end

c1 = newCounter()

print(c1()) --> 1

print(c1()) --> 2

c2 = newCounter()

print(c2()) --> 1

print(c1()) --> 3

print(c2()) --> 2

i is a non-local variable; we see that there is no interference between
c1 and c2—they are two diUerent closures over the same function.

E36 MAPS 39 Luigi Scarso

It’s better to track a layout of installation of luatex-
lunatic on a Linux box.
Let’s set up a home directory:

HOMEDIR=/opt/luatex/luatex-lunatic
Next:

1. download and install python-2.6.1 (at least) from
[49]. Assuming $HOMEDIR/Python-2.6.1 as build
directory, let’s conVgure python-2.6.1 with

./configure
--prefix=/opt/luatex/luatex-lunatic
--enable-unicode=ucs4
--enable-shared

and install it. After installation we should end in
a “Filesystem Hierarchy Standard”-like Filesystem
(cf. [46], except for Python-2.6.1), i.e. something like
this:

$> cd $HOMEDIR && ls -1X
bin
include
lib
man
share
Python-2.6.1

It’s also convenient to extend the system path:

$> export PATH=
/opt/luatex/lunatic-python/bin:$PATH

so we will use the python interpreter in $HOMEDIR.
2. download luatex source code from [43]; we will

use luatex-snapshot-0.42.0, so let’s unpack it in
$HOMEDIR/luatex-snapshot-0.42.0 . For uniformity,
make a symbolic link

$> cd $HOMEDIR
$> ln -s luatex-snapshot-0.42.0 luatex

It’s convenient to have a stable ConTEXt minimals
distribution installed (cf. [23]) under $HOMEDIR, i.e.
$HOMEDIR/minimals, so that we will replace its lua-
tex with our luatex-lunatic. Remember to set up
the environment with

$> . $HOMEDIR/minimals/tex/setuptex

We don’t build it now, because build.sh needs to be
patched.

3. download luatex-lunatic from [3], revision 7, and put
it in lunatic-python, i.e.

$> cd $HOMEDIR
$> bzr branch lp:lunatic-python

We must modify setup.py to match luatex installa-
tion (here "<" stands for the original setup.py, ">"
stands for the modiVed one; it’s a diU Vle):

1c1
< #!/usr/bin/python

> #!/opt/luatex/luatex-lunatic/bin/python
14,16c14,16
< LUALIBS = ["lua5.1"]
< LUALIBDIR = []
< LUAINCDIR = glob.glob("/usr/include/lua*")

> LUALIBS = ["lua51"]
> LUALIBDIR = [’/opt/luatex/

luatex-lunatic/
luatex/build/texk/web2c’]

> LUAINCDIR = glob.glob("../
luatex/source/texk/web2c/luatexdir/lua51*")

48a49
>

When we build lunatic-python, we will end with a
python.so shared object that will be installed in the
$HOMEDIR/lib/python2.6/site-packages directory, so
it’s convenient to prepare a python.luawrapper like this
one:

loaded = false
func = package.loadlib(
"/opt/luatex/luatex-lunatic/lib/python2.6/
site-packages/python.so","luaopen_python")
if func then

func()
return

end
if not loaded then

error("unable to find python module")
end

Before building, we must resolve the dynamic loading
problem; again from [14]

. . .Unlike Python, Lua has no default path to its modules.
Thus, the default path of the real Lua module of Lunatic
Python is together with the Python module, and a
python.lua stub is provided. This stub must be placed
in a path accessible by the Lua require() mechanism, and
once imported it will locate the real module and load it.

Unfortunately, there’s a minor inconvenience for our
purposes regarding the Lua system which imports ex-
ternal shared objects. The hardcoded behavior of the

LuaTEX lunatic EUROTEX 2009 E37

loadlib() function is to load shared objects without
exporting their symbols. This is usually not a problem
in the Lua world, but we’re going a little beyond their
usual requirements here. We’re loading the Python
interpreter as a shared object, and the Python interpreter
may load its own external modules which are compiled
as shared objects as well, and these will want to link
back to the symbols in the Python interpreter. Luckily,
fixing this problem is easier than explaining the problem.
It’s just a matter of replacing the flag RTLD_NOW in the
loadlib.c file of the Lua distribution by the or’ed ver-
sion RTLD_NOW|RTLD_GLOBAL. This will avoid “undefined
symbol” errors which could eventually happen.

Modifying luatex/source/texk/web2c/
luatexdir/lua51/loadlib.c

is not diXcult:

69c69
< void *lib = dlopen(path, RTLD_NOW);

> void *lib = dlopen(path, RTLD_NOW|RTLD_GLOBAL);

(again "<" means original and ">" means modiVed).

According to dlopen(3) - Linux man page (see for example
[18]),

The function dlopen() loads the dynamic library file named by the
null-terminated string filename and returns an opaque “handle” for
the dynamic library. If filename is NULL, then the returned handle
is for the main program. If filename contains a slash (“/”), then it
is interpreted as a (relative or absolute) pathname. Otherwise, the
dynamic linker searches for the library as follows (see ld.so(8) for further
details):

@ (ELF only) If the executable file for the calling program contains a
DT_RPATH tag, and does not contain a DT_RUNPATH tag, then
the directories listed in the DT_RPATH tag are searched.

@ If the environment variable LD_LIBRARY_PATH is defined
to contain a colon-separated list of directories, then these are
searched. (As a security measure this variable is ignored for set-
user-ID and set-group-ID programs.)

@ (ELF only) If the executable file for the calling program contains
a DT_RUNPATH tag, then the directories listed in that tag are
searched.

@ The cache file /etc/ld.so.cache (maintained by ldconfig(8)) is
checked to see whether it contains an entry for filename.

@ The directories /lib and /usr/lib are searched (in that order).

If the library has dependencies on other shared libraries, then these
are also automatically loaded by the dynamic linker using the same
rules. (This process may occur recursively, if those libraries in turn
have dependencies, and so on.)

One of the following two values must be included in flag:

@ RTLD_LAZY
Perform lazy binding. Only resolve symbols as the code that refer-

ences them is executed. If the symbol is never referenced, then it is
never resolved. (Lazy binding is only performed for function refer-
ences; references to variables are always immediately bound when
the library is loaded.)

@ RTLD_NOW
If this value is specified, or the environment variable
LD_BIND_NOW is set to a non-empty string, all undefined sym-
bols in the library are resolved before dlopen() returns. If this can-
not be done, an error is returned.

Zero or more of the following values may also be ORed in flag:

@ RTLD_GLOBAL
The symbols defined by this library will be made available for sym-
bol resolution of subsequently loaded libraries.

@ RTLD_LOCAL
This is the converse of RTLD_GLOBAL, and the default if nei-
ther flag is specified. Symbols defined in this library are not made
available to resolve references in subsequently loaded libraries.

@ RTLD_NODELETE (since glibc 2.2)
Do not unload the library during dlclose(). Consequently, the
library’s static variables are not reinitialised if the library is re-
loaded with dlopen() at a later time. This flag is not specified in
POSIX.1-2001.

@ RTLD_NOLOAD (since glibc 2.2)
Don’t load the library. This can be used to test if the library is
already resident (dlopen() returns NULL if it is not, or the library’s
handle if it is resident). This flag can also be used to promote the
flags on a library that is already loaded. For example, a library that
was previously loaded with RTLD_LOCAL can be re-opened with
RTLD_NOLOAD | RTLD_GLOBAL. This flag is not specified in
POSIX.1-2001.

@ RTLD_DEEPBIND (since glibc 2.3.4)
Place the lookup scope of the symbols in this library ahead of the
global scope. This means that a self-contained library will use its
own symbols in preference to global symbols with the same name
contained in libraries that have already been loaded. This flag is
not specified in POSIX.1-2001.

If filename is a NULL pointer, then the returned handle is for the main
program. When given to dlsym(), this handle causes a search for a
symbol in the main program, followed by all shared libraries loaded at
program startup, and then all shared libraries loaded by dlopen() with
the flag RTLD_GLOBAL.

External references in the library are resolved using the libraries in
that library’s dependency list and any other libraries previously opened
with the RTLD_GLOBAL flag. If the executable was linked with
the flag “-rdynamic” (or, synonymously, “–export-dynamic”), then the
global symbols in the executable will also be used to resolve references
in a dynamically loaded library.

If the same library is loaded again with dlopen(), the same file
handle is returned. The dl library maintains reference counts for library
handles, so a dynamic library is not deallocated until dlclose() has been
called on it as many times as dlopen() has succeeded on it. The _init
routine, if present, is only called once. But a subsequent call with
RTLD_NOW may force symbol resolution for a library earlier loaded
with RTLD_LAZY.

If dlopen() fails for any reason, it returns NULL.
Nevertheless this is not enough: reference manual [66]
says (page 23):

Dynamic loading of .so and .dll Vles is disabled on
all platforms.

E38 MAPS 39 Luigi Scarso

So we must “enable” it and we must ensure that the
luatex executable is linked against libdl.so because
this contains the dlopen() symbol; also we must ensure
that all the Lua functions involved in a dlopen() call
must be resolved in the luatex-lunatic executable.

Assuming that we are always in $HOMEDIR, we must
modify
source/texk/web2c/luatexdir/am/liblua51.am
and source/texk/web2c/Makefile.in .
For
source/texk/web2c/luatexdir/am/liblua51.am:

12c12
< liblua51_a_CPPFLAGS += -DLUA_USE_POSIX

> liblua51_a_CPPFLAGS += -DLUA_USE_LINUX

while for source/texk/web2c/Makefile.in:

98c98
< @MINGW32_FALSE@am__append_14 = -DLUA_USE_POSIX

> @MINGW32_FALSE@am__append_14 = -DLUA_USE_LINUX
1674c1674
< $(CXXLINK) $(luatex_OBJECTS) $(luatex_LDADD)
$(LIBS)

> $(CXXLINK) $(luatex_OBJECTS) $(luatex_LDADD)
$(LIBS) -Wl,-E -uluaL_openlibs -fvisibility=hidd
en -fvisibility-inlines-hidden -ldl

The last patch is the most important, so let’s examine it
more closely. Essentially, we are modifying the linking
phase of building process of luatex (switch -Wl,-E) by
adding libdl (switch -ldl) because libdl contains the
symbol dlopen as stated before.

The switch -uluaL_openlibs tells the linker to con-
sider the symbol luaL_openlibs even if it’s not neces-
sary for building luatex-lunatic. In fact luaL_openlibs
is coded in lunatic-python/src/luainpython.c and it
needs to be resolved at runtime only when luatex-lunatic
wants to load the Python interpreter.

So, even if luaL_openlibs is a function coded in
$HOMEDIR/luatex/source/texk/web2c/luatexdir/lua51
/linit.c, it’s not used by luatex, so the linker discards
this symbol because it’s useless.

According to ld(1):

@ -u symbol
Force symbol to be entered in the output file as an undefined sym-
bol. Doing this may, for example, trigger linking of additional mod-
ules from standard libraries. -u may be repeated with different op-
tion arguments to enter additional undefined symbols. This option
is equivalent to the “EXTERN” linker script command.

It’s possible to examine how symbols are resolved runtime by
setting LD_DEBUG=all; for example

$> export LD_DEBUG=all;

$> luatex python.lua &>python.LD_DEBUG;

$> export LD_DEBUG=

Here we are assuming a correct Vnal luatex lunatic luatex and the
python.lua wrapper seen before.
The Vle python.LD_DEBUG will show something like this:

3736: symbol=luaL_openlibs;

lookup in file=./luatex-lunatic [0]

3736: binding file /opt/luatex/luatex-lunatic/

lib/python2.6/site-packages/python.so [0]

to ./luatex-lunatic [0]:

normal symbol ‘luaL_openlibs’

Without the -uluaL_openlibs linker Wag, we will see something like
this:

4033: symbol=luaL_openlibs;

lookup in file=./luatex-lunatic-0.42.0.-test [0]

4033: symbol=luaL_openlibs;

lookup in file=/lib/tls/i686/cmov/libm.so.6 [0]

4033: symbol=luaL_openlibs;

lookup in file=/lib/tls/i686/cmov/libdl.so.2 [0]

4033: symbol=luaL_openlibs;

lookup in file=/lib/libreadline.so.5 [0]

4033: symbol=luaL_openlibs;

lookup in file=/lib/libhistory.so.5 [0]

4033: symbol=luaL_openlibs;

lookup in file=/lib/libncurses.so.5 [0]

4033: symbol=luaL_openlibs;

lookup in file=/lib/tls/i686/cmov/libc.so.6 [0]

4033: symbol=luaL_openlibs;

lookup in file=/lib/ld-linux.so.2 [0]

4033: symbol=luaL_openlibs;

lookup in file=/opt/luatex/luatex-lunatic/lib/

python2.6/site-packages/python.so [0]

4033: symbol=luaL_openlibs;

lookup in file=/lib/tls/i686/cmov/libpthread.so.0 [0]

4033: symbol=luaL_openlibs;

lookup in file=/lib/tls/i686/cmov/libutil.so.1 [0]

4033: symbol=luaL_openlibs;

lookup in file=/lib/tls/i686/cmov/libc.so.6 [0]

4033: symbol=luaL_openlibs;

lookup in file=/lib/ld-linux.so.2 [0]

4033: /opt/luatex/luatex-lunatic/lib/python2.6/

site-packages/python.so:

error: symbol lookup error:

undefined symbol: luaL_openlibs (fatal)

4033:

4033: file=/opt/luatex/luatex-lunatic/lib/python2.6/

site-packages/python.so [0]; destroying link map

And near the bottom we can see this error: symbol lookup error:

undefined symbol: luaL_openlibs (fatal).

The last two switches, namely -fvisibility=hidden
and -fvisibility-inlines-hidden, are gcc switches
(not linker switches) and again they are related with

LuaTEX lunatic EUROTEX 2009 E39

symbols, more precisely with symbols collisions. Con-
sider this: in $HOMEDIR/luatex/source/libs/libpng
there is a libpng library (currently vers. 1.2.38). This
library, once compiled, will be merged by the linker
into the luatex executable, and hence into the luatex-
lunatic executable too. Now, we can build a Python
binding to another libpng library or, better, we can
import a Python module (e.g. PythonMagickWand, an
interface to ImageMagick R©, see [40]) that has a binding
to its own libpng library. In this situation, at runtime
the dynamic loader will resolve for the Python module
the symbols of libpng from luatex libpng, instead of
those from its own libpng. Now, we cannot guarantee
that these two libraries are the same, because we cannot
replace the libpng of luatex (see near the end of the
preceding section “Motivation & goals”) and, of course,
we cannot replace the libpng library from the Python
module with the one from luatex, because the last one
can be patched for luatex only. So, we have symbols
collisions (see [9]): almost for sure, a symbol collision
will cause a segmentation fault, and the program abort.

More information about this can be found starting from the
already cited [9], especially [69]. A good text is also [63].

A solution can be this: “hide” to the “outside” all symbols
that aren’t necessary for dynamic loading of shared
objects. For standard luatex, this means “hide all”: for
luatex-lunatic, this means “hide all but not symbols
from lua”, otherwise we will not be able to use loadlib.
It’s not so diXcult to “hide all”: just patch the build.sh
script of luatex sources by adding

28a29,36
> CFLAGS="-g -O2 -Wno-write-strings

-fvisibility=hidden"
> CXXFLAGS="$CFLAGS

-fvisibility-inlines-hidden"
> export CFLAGS
> export CXXFLAGS

The hardest part is to “unhide” the Lua part. We can
proceed in this manner: collect the result of the patched
build.sh in an out Vle:

$> cd $HOMEDIR/luatex; ./build.sh &> out

Then locate in out all the lines about Lua and remove
the -fvisibility=hidden Wag: for example

gcc -DHAVE_CONFIG_H -I.
-I../../../source/texk/web2c -I./..
-I/opt/luatex/luatex-lunatic/

luatex-snapshot-0.42.0/build/texk
-I/opt/luatex/luatex-lunatic/

luatex-snapshot-0.42.0/source/texk
-I../../../source/texk/web2c/luatexdir/lua51
-DLUA_USE_LINUX -g -O2
-Wno-write-strings
-fvisibility=hidden
-Wdeclaration-after-statement
-MT liblua51_a-lapi.o
-MD -MP -MF .deps/liblua51_a-lapi.Tpo
-c -o liblua51_a-lapi.o
‘test -f
’luatexdir/lua51/lapi.c’
|| echo
’../../../source/texk/web2c/’‘
luatexdir/lua51/lapi.c

mv -f .deps/liblua51_a-lapi.Tpo
.deps/liblua51_a-lapi.Po

will become

gcc -DHAVE_CONFIG_H -I.
-I../../../source/texk/web2c -I./..
-I/opt/luatex/luatex-lunatic/

luatex-snapshot-0.42.0/build/texk
-I/opt/luatex/luatex-lunatic/

luatex-snapshot-0.42.0/source/texk
-I../../../source/texk/web2c/luatexdir/lua51
-DLUA_USE_LINUX
-g -O2 -Wno-write-strings
-Wdeclaration-after-statement
-MT liblua51_a-lapi.o
-MD -MP -MF .deps/liblua51_a-lapi.Tpo
-c -o liblua51_a-lapi.o
‘test -f
’luatexdir/lua51/lapi.c’
|| echo
’../../../source/texk/web2c/
’‘luatexdir/lua51/lapi.c
mv -f .deps/liblua51_a-lapi.Tpo
.deps/liblua51_a-lapi.Po

After that, recompile luatex

/bin/bash ./libtool
--tag=CXX
--mode=link
./CXXLD.sh -g -O2
-Wno-write-strings
-fvisibility=hidden
-fvisibility-inlines-hidden
-o luatex
luatex-luatex.o
libluatex.a libff.a
libluamisc.a libzzip.a
libluasocket.a liblua51.a
/opt/luatex/luatex-lunatic/

E40 MAPS 39 Luigi Scarso

luatex-snapshot-0.42.0/build/libs/
libpng/libpng.a

/opt/luatex/luatex-lunatic/
luatex-snapshot-0.42.0/build/libs/
zlib/libz.a

/opt/luatex/luatex-lunatic/
luatex-snapshot-0.42.0/build/libs/
xpdf/libxpdf.a

/opt/luatex/luatex-lunatic/
luatex-snapshot-0.42.0/build/libs/
obsdcompat/libopenbsd-compat.a

libmd5.a libmplib.a
lib/lib.a
/opt/luatex/luatex-lunatic/

luatex-snapshot-0.42.0/build/texk/
kpathsea/libkpathsea.la

-lm -Wl,-E
-uluaL_openlibs
-fvisibility=hidden
-fvisibility-inlines-hidden
-ldl

Of course it’s better to edit a trick.sh from out (see
[34]) that will do all the work, paying the price of ~20
minutes of cut and paste for every new luatex release for
preparing this trick Vle.

After executing $HOMEDIR/luatex/trick.sh we will
have an unstripped luatex binary in $HOMEDIR/luatex
/build/texk/web2c so we are ready for the Vnal step.
It’s better not to strip it, because we can track problems
more easily.

4. we copy luatex into the bin directory of ConTEXt
minimals and remade formats:

$> cp $HOMEDIR/luatex/build/texk/web2c/luatex
$HOMEDIR/minimals/tex/texmf-linux/bin
$> context --make

And in the end we must build the lunatic-python
shared object:

$> cp $HOMEDIR/lunatic-python
$> python setup.py build && python setup.py
install

We can now make a simple test; let’s save this in test.tex:

\directlua{require "python";

sys = python.import("sys");

tex.print(tostring(sys.version_info))}

\bye

Next let’s run callgrind, a tool of valgrind (see [30]), to generate a call
graph [5]:

$> valgrind --tool=callgrind

--callgrind-out-file=test-%p.callgrind

--dump-instr=yes

luatex --fmt=plain --output-format=pdf test.tex

To see and analyze this call graph we can use kcachegrind [13]: see
appendix at page 53 for the graph centered at main function, with Min.
node cost=1% , Min. call cost=1% .

Examples
Image processing
ImageMagick. ImageMagick is “a software suite to create,
edit, and compose bitmap images. It can read, convert
and write images in a variety of formats (over 100)
including DPX, EXR, GIF, JPEG, JPEG-2000, PDF, PhotoCD,
PNG, PostScript, SVG, and TIFF. Use ImageMagick to
translate, Wip, mirror, rotate, scale, shear and transform
images, adjust image colors, apply various special eUects,
or draw text, lines, polygons, ellipses and Bézier curves.”
(See [40].) There are two bindings in Python, and
we choose the PythonMagickWand [48], a ctypes-based
wrapper for ImageMagick.

According to [50] ctypes is a foreign function library for
Python. It provides C compatible data types, and allows calling

functions in DLLs or shared libraries. It can be used to wrap these
libraries in pure Python. ctypes is included in Python.

This simple script create a 200×200 pixel image at 300dpi
with a shadow:

import PythonMagickWand as pmw
pmw.MagickWandGenesis()
wand = pmw.NewMagickWand()
background = pmw.NewPixelWand(0)
pmw.MagickNewImage(wand,200,200,background)
pmw.MagickSetImageResolution(wand,118.110,118.110)
pmw.MagickSetImageUnits(wand,

pmw.PixelsPerCentimeterResolution)
pmw.MagickShadowImage(wand,90,3,2,2)
pmw.MagickWriteImage(wand,"out.png")

i.e., something like this:

LuaTEX lunatic EUROTEX 2009 E41

Suppose we want to use it to generate a background for
text, i.e.

\startShadowtext%
\input tufte
\stopShadowtext%

Let’s now look at luatex lunatic and ConTEXt-mkiv in
action for the Vrst time:

\usetypescriptfile[type-gentium]
\usetypescript[gentium]
\setupbodyfont[gentium,10pt]
\setuppapersize[A6][A6]
\setuplayout[height=middle,topspace=1cm,
header={2\lineheight},footer=0pt,backspace=1cm,
margin=1cm,width=middle]

%%
%% lua layer
%%
\startluacode
function testimagemagick(box,t)
local w
local h
local d
local f
local res = 118.11023622047244094488 -- 300 dpi
local opacity = 25
local sigma = 15
local x = 10
local y = 10
w = math.floor((tex.wd[box]/65536)

/72.27*2.54*res)
h = math.floor(((tex.ht[box]/65536)+

(tex.dp[box]/65536))
/72.27*2.54*res)

f = string.format("%s.png",t)
--
-- Call the python interpreter
--
require("python")
pmw = python.import("PythonMagickWand")
wand = pmw.NewMagickWand()
background = pmw.NewPixelWand(0)
pmw.MagickNewImage(wand,w,h,background)
pmw.MagickSetImageResolution(wand,res,res)
pmw.MagickSetImageUnits(wand,

pmw.PixelsPerCentimeterResolution)
pmw.MagickShadowImage(wand,opacity,sigma,x,y)
pmw.MagickWriteImage(wand ,f)

end
\stopluacode
%%
%% TeX layer
%%

\def\testimagemagick[#1]{%
\getparameters[Imgk][#1]%
\ctxlua{%
testimagemagick(\csname Imgkbox\endcsname,

"\csname Imgkfilename\endcsname")}%
}
%%
%% ConTeXt layer
%%
\newcount\shdw
\long\def\startShadowtext#1\stopShadowtext{%
\bgroup%
\setbox0=\vbox{#1}%
\testimagemagick[box=0,

filename={shd-\the\shdw}]%
\defineoverlay[backg]%

[{\externalfigure[shd-\the\shdw.png]}]%
\framed[background=backg,

frame=off,offset=4pt]{\box0}%
\global\advance\shdw by 1%
\egroup%
}
\starttext
\startTEXpage%
\startShadowtext%
\input tufte
\stopShadowtext%
\stopTEXpage
\stoptext

As we can see, there is an almost one-to-one mapping
between Python code and Lua code, a good thing for a
small script.
And here is the result:

What about symbols collisions?

$> eu-readelf --all luatex &> luatex.dump

$> export LD_DEBUG=all;context test-imagemagick.tex &> test-

imagemagick.tex.LD_DEBUG; export LD_DEBUG=

If we search png_memcpy_check which is coded in $HOMEDIR/source

/libs/libpng/libpng-1.2.38/pngmem.c of luatex, we will Vnd that

E42 MAPS 39 Luigi Scarso

it’s bound to system libpng:

25749: symbol=png_memcpy_check;

lookup in file=luatex [0]

25749: symbol=png_memcpy_check;

lookup in file=/lib/tls/i686/cmov/libm.so.6 [0]

25749: symbol=png_memcpy_check;

lookup in file=/lib/tls/i686/cmov/libdl.so.2 [0]

:

: (62 lines after)

:

25749: symbol=png_memcpy_check;

lookup in file=/usr/lib/libpng12.so.0 [0]

25749: binding file /usr/lib/libpng12.so.0 [0]

to /usr/lib/libpng12.so.0 [0]:

normal symbol ‘png_memcpy_check’ [PNG12_0]

In fact if we search for png_memcpy_check in luatex.dump we see that
it’s hidden now:

Symbol table [40] ’.symtab’ contains 10087 entries:

9592 local symbols String table: [41] ’.strtab’

:

Num: Value Size Type

4837: 082022b0 27 FUNC

Bind Vis Ndx Name

LOCAL HIDDEN 13 png_memcpy_check

:

As a counterexample, suppose that we don’t use hidden Wags, so now
png_memcpy_check is visible:

Num: Value Size Type

2273: 08243050 27 FUNC

Bind Vis Ndx Name

GLOBAL DEFAULT 13 png_memcpy_check

Now we have a fatal error:

$> export LD_DEBUG=all;context test-imagemagick.tex &> test-

imagemagick.tex.LD_DEBUG; export LD_DEBUG=

:

MTXrun | fatal error, no return code, message: luatex: execu-

tion interrupted

:

and we see that png_memcpy_check is resolved in luatex:

24213: symbol=png_memcpy_check;

lookup in file=luatex [0]

24213: binding file /usr/lib/libpng12.so.0 [0]

to luatex [0]:

normal symbol ‘png_memcpy_check’ [PNG12_0]

so we have symbols collisions. In this case it can be hard to track the
guilty symbol; even in this case the fatal error can be given by another
symbols collision, not necessarily png_memcpy_check. Also note that
this code

\starttext

\externalfigure[out.png]

\stoptext

compiles right—of course, because there is no PythonImagickWand
involved and so no symbols collisions. So this kind of error can become
a nightmare.

Let’s continue with our gallery.

PIL – PythonImageLibrary. PIL (see [51]) is similar to
ImageMagick, but at least for png doesn’t require libpng,
so we are safe from symbol collisions.

\startluacode
function testPIL(imageorig,imagesepia)
require("python")
PIL_Image = python.import("PIL.Image")
PIL_ImageOps = python.import("PIL.ImageOps")
python.execute([[

def make_linear_ramp(white):
ramp = []
r, g, b = white
for i in range(255):

ramp.extend((r*i/255, g*i/255, b*i/255))
return ramp

]])
-- make sepia ramp
-- (tweak color as necessary)
sepia = python.eval

("make_linear_ramp((255, 240, 192))")
im = PIL_Image.open(imageorig)

-- convert to grayscale
if not(im.mode == "L")
then

im = im.convert("L")
end
-- optional: apply contrast
-- enhancement here, e.g.
im = PIL_ImageOps.autocontrast(im)
-- apply sepia palette
im.putpalette(sepia)
-- convert back to RGB
-- so we can save it as JPEG
-- (alternatively, save it in PNG or similar)
im = im.convert("RGB")
im.save(imagesepia)

end
\stopluacode

\def\SepiaImage#1#2{%
\ctxlua{testPIL("#1","#2")}%
\startcombination[1*2]
{\externalfigure[#1][width=512pt]}{\ss Orig.}
{\externalfigure[#2][width=512pt]}{\ss Sepia}
\stopcombination
}

LuaTEX lunatic EUROTEX 2009 E43

\starttext
\startTEXpage
%\SepiaImage{lena.jpg}{lena-sepia.jpg}
\SepiaImage{lena.png}{lena-sepia.png}
\stopTEXpage
\stoptext

Here is the result (sorry, Lena is too nice to show her
only in black and white):

Orig.

Sepia

The code shows how to deVne a Python function
inside a Lua function and how to call it. Note that we
must respect the Python indentation rules, so we can use
the multiline string of Lua [[..]].

Language adapter
Suppose we have a C library for a format of a Vle (i.e.
TIFF, PostScript) that we want to manage in the same
way as png, pdf, jpeg and jbig. One solution is to build a
quick binding with ctypes of Python, and then import it

in luatex-lunatic as a traditional Lua module. As an ex-
ample, let’s consider ghostscript [10], here in vers. 8.64.
It can be compiled as a shared library, and building a
testgs.py (see [35]#Ghostscript) binding is not diXcult
(see Vle base/gslib.c in source distribution). The key
here is to build a binding that Vts our needs, not a general
one.

\startluacode
function testgs(epsin,pdfout)
require("python")
gsmodule = python.import("testgs")
ghost = gsmodule.gs()
ghost.appendargs(’-q’)
ghost.appendargs(’-dNOPAUSE’)
ghost.appendargs(’-dEPSCrop’)
ghost.appendargs(’-sDEVICE=pdfwrite’)
ghost.InFile = epsin
ghost.OutFile = pdfout
ghost.run()

end
\stopluacode

\def\epstopdf#1#2{\ctxlua{testgs("#1","#2")}}
\def\EPSfigure[#1]{%lazy way to load eps
\epstopdf{#1.eps}{#1.pdf}%
\externalfigure[#1.pdf]}

\starttext
\startTEXpage
{\EPSfigure[golfer]}
{\ss golfer.eps}
\stopTEXpage
\stoptext

Here is the result:

golfer.eps

We can also use PostScript libraries: for example
barcode.ps [56], a PostScript barcode library:

\startluacode
function epstopdf(epsin,pdfout)
require("python")
gsmodule = python.import("testgs")
ghost = gsmodule.gs()
ghost.appendargs(’-q’)

E44 MAPS 39 Luigi Scarso

ghost.appendargs(’-dNOPAUSE’)
ghost.appendargs(’-dEPSCrop’)
ghost.appendargs(’-sDEVICE=pdfwrite’)
ghost.InFile = epsin
ghost.OutFile = pdfout
ghost.run()

end

function barcode(text,type,options,savefile)
require("python")
gsmodule = python.import("testgs")
barcode_string =
string.format("%%!\n100 100 moveto (%s) (%s)

%s barcode showpage",
text,options,type)

psfile = string.format("%s.ps",savefile)
epsfile = string.format("%s.eps",savefile)
pdffile = string.format("%s.pdf",savefile)
temp = io.open(psfile,’w’)
print(psfile)
temp:write(tostring(barcode_string),"\n")
temp:flush()
io.close(temp)
ghost = gsmodule.gs()
ghost.rawappendargs(’-q’)
ghost.rawappendargs(’-dNOPAUSE’)
ghost.rawappendargs(’-sDEVICE=epswrite’)
ghost.rawappendargs(

string.format(’-sOutputFile=%s’,epsfile))
ghost.rawappendargs(’barcode.ps’)
ghost.InFile= psfile
ghost.run()

end
\stopluacode

\def\epstopdf#1#2{\ctxlua{epstopdf("#1","#2")}}
\def\EPSfigure[#1]{%lazy way to load eps
\epstopdf{#1.eps}{#1.pdf}%
\externalfigure[#1.pdf]%
}

\def\PutBarcode[#1]{%
\getparameters[bc][#1]%
\ctxlua{barcode("\csname bctext\endcsname",

"\csname bctype\endcsname",
"\csname bcoptions\endcsname",
"\csname bcsavefile\endcsname")}%

\expanded{\EPSfigure
[\csname bcsavefile\endcsname]}%

}

\starttext
\startTEXpage
{\PutBarcode[text={CODE 39},type={code39},

options={includecheck includetext},
savefile={TEMP1}]}\\

{\ss code39}
\blank
{\PutBarcode[text={CONTEXT},type={code93},

options={includecheck includetext},
savefile={TEMP2}]}\\

{\ss code93}
\blank
{\PutBarcode[text={977147396801},type={ean13},

options={includetext},
savefile={TEMP3}]}\\

{\ss ean13}
\stopTEXpage
\stoptext

Of course one can implement a direct conversion into
ps->pdf, instead of ps->eps->pdf.
Here is the result:

For a beautiful book on PostScript see [58] (and its site
[42]) and also [2].

Scientific & math extensions
Sage. “Sage is a free open-source mathematics software
system licensed under the GPL. It combines the power
of many existing open-source packages into a common
Python-based interface. Mission: Creating a viable free
open source alternative to Magma, Maple, Mathematica
and Matlab.” [53]

Given that Sage comes with its own Python in-
terpreter, we must rebuild lunatic-python and adapt
python.lua accordingly; also sage is a command line
program, so we need a stub sagestub.py:

from sage.all_cmdline import *

Here is the ConTEXt-mkiv code:

\startluacode
function test_ode(graphout)
require("python")
pg = python.globals()
SAGESTUB = python.import("sagestub")
sage = SAGESTUB.sage
python.execute([[

def f_1(t,y,params):
return[y[1],

-y[0]-params[0]*y[1]*(y[0]**2-1)]
]])
python.execute([[
def j_1(t,y,params):

return [[0,1.0],
[-2.0*params[0]*y[0]*y[1]-1.0,
-params[0]*(y[0]*y[0]-1.0)], [0,0]]

]])

LuaTEX lunatic EUROTEX 2009 E45

T=sage.gsl.ode.ode_solver()
T.algorithm="rk8pd"
f_1 = pg.f_1
j_1 = pg.j_1
pg.T=T
python.execute("T.function=f_1")
T.jacobian=j_1
python.execute("T.ode_solve(y_0=[1,0],

t_span=[0,100],
params=[10],num_points=1000)")

python.execute(string.format(
"T.plot_solution(filename=’%s’)",
graphout))

end
\stopluacode

\def\TestODE#1{%
\ctxlua{test_ode("#1")}%
\startcombination[1*2]
{%
\vbox{\hsize=8cm
Consider solving the Van der Pol oscillator
$x’’(t) +ux’(t)(x(t)^2-1)+x(t)=0 $
between $t=0$ and $t= 100$.
As a first order system it is
$x’=y$
$y’=-x+uy(1-x^2)$
Let us take $u=10$ and use
initial conditions $(x,y)=(1,0)$ and use the
\emphsl{\hbox{Runge-Kutta} \hbox{Prince-Dormand}}
algorithm.
}%
}{\ss \ }
{\externalfigure[#1][width=9cm]}{\ss Result
for 1000 points}}

\starttext
\startTEXpage
\TestODE{ode1.pdf}
\stopTEXpage
\stoptext

As we can see, here we use the python.globals() Lua
function to communicate between the Python interpreter
and Lua, and this can generate a bit of useless redun-
dancy.

R. R “is a free software environment for statistical
computing and graphics” [52]. It has its own language,
but there is also a Python binding, rpy2 [27], that we
install in our $HOMEDIR.

It can be necessary to add these env. variabless

$>export R_HOME=/opt/luatex/luatex-lunatic/lib/R

$>export LD_PRELOAD=/opt/luatex/

luatex-lunatic/lib/R/lib/libR.so

Figure 1. Result of the Sage code, with sage-3.2.3-pentiumM-

ubuntu32bit-i686-Linux

For R we split the Python side in Lua in a pure Python
script test-R.py:

import rpy2.robjects as robjects
import rpy2.rinterface as rinterface
class density(object):

def __init__(self,samples,outpdf,w,h,kernel):
self.samples = samples
self.outpdf= outpdf
self.kernel = kernel
self.width=w
self.height=h

def run(self):
r = robjects.r
data = [int(k.strip())

for k in
file(self.samples,’r’).readlines()
]

x = robjects.IntVector(data)
r.pdf(file=self.outpdf,

width=self.width,
height=self.height)

z = r.density(x,kernel=self.kernel)
r.plot(z[0],z[1],xlab=’’,ylab=’’)
r[’dev.off’]()

if __name__ == ’__main__’ :
dens =
density(’u-random-int’,’test-001.pdf’,10,7,’o’)

dens.run()

E46 MAPS 39 Luigi Scarso

and import this into Lua:

\startluacode
function testR(samples,outpdf,w,h,kernel)
require("python")
pyR = python.import("test-R")
dens =
pyR.density(samples,outpdf,w,h,kernel)
dens.run()

end
\stopluacode

\def\plotdenstiy[#1]{%
\getparameters[R][#1]%
\expanded{\ctxlua{testR("\Rsamples",

"\Routpdf",
\Rwidth,
\Rheight,"\Rkernel")}}}

\setupbodyfont[sans,14pt]
\starttext
\startTEXpage
\plotdenstiy[samples={u-random-int},

outpdf={test-001.pdf},
width={10},height={7},
kernel={o}]

\setupcombinations[location=top]
\startcombination[1*2]
{\vbox{\hsize=400bp
This is a density plot of around {\tt 100 000}
random numbers between
0 and $2^{16}-1$ generated
from {\tt \hbox{/dev/urandom}}}}{}
{\externalfigure[test-001.pdf][width={400bp}]}{}
\stopcombination
\stopTEXpage
\stoptext

Note the conditional statement
if __name__ == ’__main__’ :
that permits to test the script with an ordinary Python
interpreter.

It’s worth noting that rpy2 is included in Sage too.

For more information about scientiVc computation with
Python see [61] and [62] (also with site [31]) and [54].

The example of Sage shows that in this case we can
think of luatex lunatic as an extension of Sage but
also that luatex lunatic is extended with Sage. This
is somehow similar to CWEB: code and description are
tangled together, but now there’s not a speciVc language
like C in CWEB (in fact we can do the same with
R). Eventually “untangled” is a matter of separation of

Figure 2. Result of the R code

Python code in a diUerent Vle from the source tex Vle.

By the way, it’s important to underline that CWEB is more
advanced than other (C) code documentation systems because

it embeds source code inside descriptive text rather than the reverse (as
is common practice in most programming languages). Documentation
can be not “linear”, a bit unusual for ordinary programmers, but it’s
a more eXcient and eUective description of complex systems. Here
we are talking about “linear” documentation, much like this article: a
linear sequence of text-and-code printed as they appear.

Of course some computations may require much more
time to be completed than the time of generation of the
respective document (and ConTEXt is also a multipass
system), so this approach is pretty ineXcient—we need a
set of macros that take care of intermediate results, i.e.
caching macros or multipass macros. For example, in
ConTEXt-mkiv we can say

\doifmode{*first}{%
% this code will be executed only at first pass
\Mymacro

}

so \Mymacro will be executed only at the Vrst pass; there
is also a Two Pass Data module core-two.mkiv that can
be used for this, but don’t forget that we also have Lua
and Python for our needs.

Graphs
In LuaTEX–ConTEXt-mkiv we already have a very pow-
erful tool for technical drawing: MetaPost. Simple
searching reveals for example METAGRAPH [32] or the
more generic LuaGRAPH [19], a Lua binding to graphviz
[38] with output also in MetaPost; both are capable of
drawing (un)directed graphs and/or networks. The next
two modules are more oriented to graph calculations.

LuaTEX lunatic EUROTEX 2009 E47

MetaPost is an example of “embedding” an interpreter in
LuaTEX at compilation time (see luaopen_mplib(L) in void lu-

ainterpreter(void) in $HOMEDIR/source/texk/web2c/luatexdir/lua

/luastuff.c). So hosting Python is not a new idea: the diUerence is
that the “embedding” is done at run time.

igraph. igraph “is a free software package for creating
and manipulating undirected and directed graphs. It in-
cludes implementations for classic graph theory problems
like minimum spanning trees and network Wow, and also
implements algorithms for some recent network analysis
methods, like community structure search. The eXcient
implementation of igraph allows it to handle graphs with
millions of vertices and edges. The rule of thumb is that
if your graph Vts into the physical memory then igraph
can handle it. [11]

To install igraph we must Vrst install pycairo, a Python
binding to cairo [1], a well known 2D graphics library: so we

gain another tool for generic drawing.

Figure 3. The result of the igraph code.

This time we coded the Python layer as a class:

import igraph
class spanningtree(object) :
def __init__(self,ofn):
self.ofn = ofn

def distance(self,p1, p2):
return ((p1[0]-p2[0]) ** 2

+ (p1[1]-p2[1]) ** 2) ** 0.5
def plotimage(self):
res = igraph.Graph.GRG(100,

0.2, return_coordinates=True)
g = res[0]
xs = res[1]
ys = res[2]
layout = igraph.Layout(zip(xs, ys))

weights = [self.distance(layout[edge.source],
layout[edge.target]) for edge in g.es]

max_weight = max(weights)
g.es["width"] = \
[6 - 5*weight/max_weight for weight in weights]
mst = g.spanning_tree(weights)

fig = igraph.Plot(target=self.ofn)
fig.add(g, layout=layout,

opacity=0.25,
vertex_label=None)

fig.add(mst,
layout=layout,
edge_color="blue",
vertex_label=None)

fig.save()
if __name__ == ’__main__’:

sp = spanningtree(’test-igraph.png’)
sp.plotimage()

In this case we calculate a minimum spanning tree of a
graph, and save the result in test-igraph.png. The Lua
layer is so simple that it is encapsulated in a TEX macro:

\def\PlotSpanTree#1{%
\startluacode
require("python")
local spantree_module
local sp
spantree_module =
python.import("test-igraph")

sp = spantree_module.spanningtree("#1")
sp.plotimage()
\stopluacode
\externalfigure[#1]}
\starttext
\startTEXpage
\PlotSpanTree{test-igraph.png}
\stopTEXpage
\stoptext

NetworkX. NetworkX is a Python package for the
creation, manipulation, and study of the structure, dy-
namics, and functions of complex networks. [22]

The code is simpler: we have only two layers: the
Python layer, and the TEX layer. The Python layer
is a trivial modiVcation of knuth_miles.py (see [24],
[36], [60]), and is left to the reader (hint: rename
..__init__.. in def run()).

\starttext
\startTEXpage
\ctxlua{require("python");
knuth=python.import("test-networkx");
knuth.run();}

E48 MAPS 39 Luigi Scarso

\externalfigure[knuth_miles]
\stopTEXpage
\stoptext

Here is the result (with a bit of imagination, one can see
the USA):

ROOT. ROOT is an object-oriented program and library
developed by CERN. It was originally designed for par-
ticle physics data analysis and contains several features
speciVc to this Veld. [7], [26]

In this example we will draw 110 lines from Vle data
(each line being 24 Woat values separated by spaces);
each line will be a curve to Vt with a polynomial of
degree 6. We isolate all relevant parts in a Python script
test-ROOT1.py:

from ROOT import TCanvas,
TGraph,TGraphErrors,TMultiGraph

from ROOT import gROOT
from math import sin
from array import array
def run(filename):
c1 = TCanvas("c1","multigraph",200,10,700,500)
c1.SetGrid()
mg = TMultiGraph()
n = 24; x = array(’d’,range(24))
data = file(’data’).readlines()
for line in data:
line = line.strip()
y = array(’d’,
[float(d) for d in line.split()])

gr = TGraph(n,x,y)
gr.Fit("pol6","q")
mg.Add(gr)

mg.Draw("ap")
c1.Update(); c1.Print(filename)

This is the ConTEXt side:

\startluacode
function test_ROOT(filename)
require("python")
test = python.import(’test-ROOT1’)
test.run(filename)

end
\stopluacode
\starttext \startTEXpage
\ctxlua{test_ROOT("data.pdf")}
\rotate[rotation=90]{\externalfigure[data.pdf]}
\stopTEXpage \stoptext

Here is the result:

Database
Oracle Berkeley DB XML. Oracle Berkeley DB XML “is
an open source, embeddable xml database with XQuery-
based access to documents stored in containers and
indexed based on their content. Oracle Berkeley DB XML
is built on top of Oracle Berkeley DB and inherits its rich
features and attributes” [45];

We take as our data source a Wikiversity XML
dump [8], more speciVcally
enwikiversity-20090627-pages-articles.xml,
a ~95MByte uncompressed xml Vle (in some sense, we
end were we started).

Building a database is not trivial, so one can see
[35] under Build_the_container for details. The most
important things are indexes; here we use

container.addIndex("","title",
"edge-element-substring-string",uc)

container.addIndex("","username",
"edge-element-substring-string",uc)

container.addIndex("","text",
"edge-element-substring-string",uc)

These indexes will be used for substring queries, but
not for regular expressions, for which it will be used
the much slower standard way. Again it’s bet-
ter to isolate the Python code in a speciVc module,
wikidbxml_queryTxn.py (see [35] under Make pdf for
details). This module does the most important work:
translate from a ‘MediaWiki-format’ to ConTEXt-mkiv.
A ‘MediaWiki-format’ is basically made by <page> like
this:

<page>
<title>Wikiversity:What is Wikiversity?</title>

LuaTEX lunatic EUROTEX 2009 E49

<id>6</id>
<revision>
<id>445629</id>
<timestamp>2009-06-08T06:30:15Z</timestamp>
<contributor>
<username>Jr.duboc</username>
<id>138341</id>
</contributor>
<comment>/* Wikiversity for teaching */</comment>
<text xml:space="preserve">{{policy|[[WV:IS]]}}
{{about wikiversity}}
[[Image:Plato i sin akademi,
av Carl Johan Wahlbom
(ur Svenska Familj-Journalen).png
|thumb|left|300px|Collaboration between students
and teachers.]]
__TOC__
==Wikiversity is a learning community==
[[Wikiversity]] is a community effort to learn
and facilitate others’
learning. You can use Wikiversity to find
information or ask questions about a subject you
need to find out more about. You can also use it
to share your knowledge about a subject,
and to build learning
materials around that knowledge.
:
<!-- That’s all, folks! -->
</text>
</revision>
</page>

So, a <page> is an xml document with non-xml markup
in <text> node (which is an unfortunate tag name for an
xml document); even if <page> is simple, parsing <text>
content, or, more exactly, the text node of <text> node,
is not trivial, and we can:

@ implement a custom parser using the lpeg mod-
ule of ConTEXt-mkiv (e.g. $HOMEDIR/minimals/tex
/texmf-context/tex/context/base/lxml-tab.lua);
this can be a good choice, because we can translate
‘MediaWiki-format’ directly into ConTEXt markup,
but of course we must start from scratch;

@ use an external tool, like the Python module mwlib:
MediaWiki parser and utility library [25].

We choose mwlib (here in vers. 0.11.2) and implement the
translation in two steps:

1. from ‘MediaWiki-format’ to XML-DocBook (more
exactly DocBook RELAX NG grammar 4.4; see [44])

2. from XML-DocBook to ConTEXt-mkiv (this is done
by the getConTeXt(title,res) function)

Actually, the wikidbxml_queryTxn.writeres() function writes
the result of the query by calling wikidbxml_queryTxn.

getArticleByTitle() which in turn calls wikidbxml_queryTxn.

getConTeXt() function.

The ConTEXt-mkiv side is (for the moment forget
about the functions listtitles(title) and simplere-
ports(title)):

\usetypescriptfile[type-gentium]
\usetypescript[gentium]
\setupbodyfont[gentium,10pt]
\setuppapersize[A5][A5]
\setuplayout[height=middle,
topspace=1cm,header={2\lineheight},
footer=0pt,backspace=1cm,margin=1cm,
width=middle]
%%
%% DB XML
%%
\startluacode
function testdbxml(title,preamble,

postamble,filename)
require("python")
pg = python.globals()
wikiversity =
python.import("wikidbxml_queryTxn")

wikiversity.writeres(title,preamble,
postamble,filename)

end
\stopluacode
%%
%% sqlite
%%
\startluacode
function listtitles(title)
require("python")
pg = python.globals()
wikiversity =
python.import("wikidbxml_queryTxn")

r = wikiversity.querycategory(title)
local j = 0
local res = r[j] or {}
while res do
local d =
string.format("\%s\\par",

string.gsub(tostring(res),’_’,’ ’))
tex.sprint(tex.ctxcatcodes,d)
j = j+1
res = r[j]
end

end
\stopluacode
%%
%% sqlite

E50 MAPS 39 Luigi Scarso

%%
\startluacode
function simplereports(title)
require("python")
pg = python.globals()
wikiversity =

python.import("wikidbxml_queryTxn")
r = wikiversity.simplereports(title)
local j = tonumber(r)
for v = 0,j-1 do
local d =

string.format("\\input reps\%04d ",v)
tex.sprint(tex.ctxcatcodes,d)
end
print(j)

end
\stopluacode
%% ConTeXt
\def\testdbxml[#1]{%
\getparameters[dbxml][#1]%
\ctxlua{%
testdbxml("\csname dbxmltitle\endcsname",

"\csname dbxmlpreamble\endcsname",
"\csname dbxmlpostamble\endcsname",
"\csname dbxmlfilename\endcsname")}%

\input \csname dbxmlfilename\endcsname %
}
\starttext
\testdbxml[title={Primary mathematics/Numbers},

preamble={},
postamble={},
filename={testres.tex}]

\stoptext

Here we query for the exact title Primary mathemat-
ics/Numbers: for the result, see page 55.

sqlite. Python oUers adapters for practically all well
known databases like PostgreSQL, MySQL, ZODB, etc.
(“ZODB is a persistence system for Python objects” writ-
ten in Python, see [16]. ZODB is the heart of Plone [47],
a popular content management system also written in
Python), but here we conclude with sqlite, a “soft-
ware library that implements a self-contained, serverless,
zero-conVguration, transactional SQL database engine.
SQLite is the most widely deployed SQL database engine
in the world. The source code for SQLite is in the public
domain” (see [29]).

sqlite is a module of the standard Python library,
and we can use it to query a category.db for titles.
(category.db is a db made from
enwikiversity-20090627-category.sql, which is a
MySQL dump. Conversion is not diXcult and is not
shown here.)

The code uses the two functions seen before, listtitles
and simplereports:

\starttext
{\bfb Query for ’geometr’:}
\ctxlua{listtitles("geometr")}%
\ctxlua{simplereports("geometr")}%
\stoptext

See p. 57 for a short result (actually the Vrst page of sec-
ond hit, Geometry. The complete document is 12 pages).

MetaTEX
What is MetaTEX?
Quoting from $HOMEDIR/tex/texmf-context/tex/context
/base/metatex.tex:

This format is just a minimal layer on top of the
LuaTEX engine and will not provide high level function-
ality. It can be used as basis for dedicated (specialized)
macro packages.

A format is generated with the command:
luatools --make --compile metatex

It should be clear from previous examples that a system
with all these “bindings” becomes quickly unmanage-
able: one can spend almost all available time upgrading
to latest releases. Just as an example: already at time
of preprinting ghostscript was at rel. 8.70 (vs. rel. 8.64
of this article) Sage was at rel. 4.1 (vs. rel. 3.2.2), Python
itself was at rel. 2.6.2 (vs. rel. 2.6.1) and there even exists
rel. 3.1

Also not all Python packages are “robust”: for exam-
ple, in the Vle docbookwriter.py of mwlib we can see

Generate DocBook from the DOM tree generated
by the parser.
Currently this is just a proof of concept
which is very incomplete

(and of course, mwlib was at rel. 0.12.2 (vs. rel. 0.11.2) so
this message may have disappeared as well).

So, in the end, it’s better to have more distinct “tools”
than one big tool that does anything and badly. We can
see now why MetaTEX Vts well in this line: it permits
to create the exact “tool” needed and luatex lunatic can
be used to complete this tool. For example, consider the
problem of typesetting labels like the one on top if the
next page.

Basically, it’s a table with barcode and two or three
fonts (preferably monospaced fonts), most of the time
black and white. ConTEXt-mkiv already comes with
natural tables, or even a layer mechanism (see [70]);
luatex-lunatic with barcode.ps provides the barcode.
We don’t need colors, interaction, indexes, sectioning.

LuaTEX lunatic EUROTEX 2009 E51

Financial reports are similar: here we can beneVt from
the decimal Python module that is included in the stan-
dard library (decimal is an implementation of Decimal
Vxed point and Woating point arithmetic; see [28]).

MetaTEX can be used to produce very speciVc for-
mats for educational purposes: think for example of a
MetaTEXSage, or a MetaTEXR from the CWEB point of
view, i.e. embedded source code inside descriptive text
rather than the reverse.

Also, Python can be used as a query language for
Plone (mentioned previously), a powerful CMS written
in Python, so it can be possible to print speciVc content
type without translating it into an intermediate form like
xml (and maybe in the future the reverse too, i.e. push a
content type made by a MetaTEXPlone).

Conclusion
LuaTEX with ConTEXt-mkiv is a powerful tool for pub-
lishing content, and with an embedded Python inter-
preter we unquestionably gain more power, especially
when MetaTEX becomes stabilized. If one wants, one
can also experiment with JPype “an eUort to allow
Python programs full access to Java class libraries. This
is achieved not through re-implementing Python, as
Jython/JPython has done, but rather through interfacing
at the native level in both virtual machines” [12] (cur-
rently unstable under Linux).

So it’s better here to emphasize “the dark side of the
moon”.

First, it should be clear that currently we cannot assure
stability and portability in the TEX sense.

Moreover, under Linux there is immediately a price to
pay: symbol collisions. Even if the solution presented
here should ensure that there are no symbol collisions
between luatex and an external library, it doesn’t resolve
problems of collision between symbols of two external
libraries; installing all packages under a folder /opt
/luatex/luatex-lunatic can help to track this problem,
but it’s not a deVnitive solution. Of course, we avoid this
problem if we use pure Python libraries, but these tend
to be slower than C libraries.

ctypes looks fascinating, but a binding in ctypes is
usually not easy to build; we must not forget that
Lua oUers its loadlib that can always be used as an
alternative to ctypes or to any other Python alternative
like SWIG [55] which can, anyway, build wrapper code
for Lua too, at least from development release 1.3. In
the end, an existing Python binding is a good choice if
it is stable, rich, complete and mature with respect to an
existing Lua binding, or if there is not a Lua binding.

For a small script, coding in Lua is not much diUerent
from coding in Python; but if we have complex objects,
things can be more complicated: for example this Python
code

z = x*np.exp(-x**2-y**2)

is translated in this not-so-beatiful Lua code

z=x.__mul__(np.exp((x.__pow__(2).
__add__(y.__pow__(2))).__neg__()))

(see [35]#Scipy). It is better to separate the Python
layer into an external Vle, so we can eventually end in
a *py,*lua,*tex for the same job, adding complexity to
manage.

In the end, note that a Python interpreter does not
“complete” in any sense luatex, because Lua is a perfect
choice: it’s small, stable, and OS-aware. Conversely,
Python is bigger, and today we are seeing Python ver-
sions 2.4, 2.5, 2.6.2, 2.7 alpha, 3.1 . . . not exactly a stable
language from a TEX user point of view.

Acknowledgements
The author would like to thank Taco Hoekwater and
Hans Hagen for their suggestions, help and encourage-
ment during the development and the writing process of
this article.

The author is also immensely grateful to Massimil-
iano “Max” Dominici for his strong support, help and
encouragement.

References
All links were veriVed between 2009.08.17 and 2009.08.21.

[1] http://cairographics.org
[2] http://cg.scs.carleton.ca/~luc/PSgeneral.html
[3] https://code.launchpad.net/~niemeyer/lunatic-python/trunk
[4] http://download.wikimedia.org
[5] http://en.wikipedia.org/wiki/Call_graphs
[6] http://en.wikipedia.org/wiki/Python_(programming_language)
[7] http://en.wikipedia.org/wiki/ROOT

E52 MAPS 39 Luigi Scarso

[8] http://en.wikiversity.org/wiki/Getting_stats_out_of
_Wikiversity_XML_dumps

[9] http://gcc.gnu.org/wiki/Visibility
[10] http://ghostscript.com/
[11] http://igraph.sourceforge.net
[12] http://jpype.sourceforge.net/
[13] http://kcachegrind.sourceforge.net/cgi-bin/show.cgi
[14] http://labix.org/lunatic-python
[15] http://labix.org/python-bz2
[16] https://launchpad.net/zodb
[17] http://linux.die.net/man/1/ld
[18] http://linux.die.net/man/3/dlopen
[19] http://luagraph.luaforge.net/graph.html
[20] http://luatex.bluwiki.com/go/User:Luigi.scarso
[21] http://meeting.contextgarden.net/2008
[22] http://networkx.lanl.gov
[23] http://minimals.contextgarden.net/
[24] http://networkx.lanl.gov/examples/drawing/knuth_miles.html
[25] http://pypi.python.org/pypi/mwlib
[26] http://root.cern.ch
[27] http://rpy.sourceforge.net/
[28] http://speleotrove.com/decimal
[29] http://sqlite.org/
[30] http://valgrind.org/
[31] http://vefur.simula.no/intro-programming/
[32] http://vigna.dsi.unimi.it/metagraph
[33] http://wiki.contextgarden.net/Future_ConTeXt_Users
[34] http://wiki.contextgarden.net/Image:Trick.zip
[35] http://wiki.contextgarden.net/User:Luigi.scarso/luatex_lunatic
[36] http://www-cs-faculty.stanford.edu/~knuth/sgb.html
[37] http://www.codeplex.com/IronPython
[38] http://www.graphviz.org
[39] http://www.gnu.org/software/libtool
[40] http://www.imagemagick.org/script/index.php
[41] http://www.jython.org
[42] http://www.math.ubc.ca/~cass/graphics/text/www/index.html
[43] http://www.luatex.org
[44] http://www.oasis-open.org/docbook
[45] http://www.oracle.com/database/berkeley-db/xml/index.html
[46] http://www.pathname.com/fhs/
[47] http://www.plone.org
[48] http://www.procoders.net/?p=39
[49] http://www.python.org
[50] http://www.python.org/doc/2.6.1/library/ctypes.html
[51] http://www.pythonware.com/products/pil/
[52] http://www.r-project.org/
[53] http://www.sagemath.org/
[54] http://www.scipy.org/
[55] http://www.swig.org
[56] http://www.terryburton.co.uk/barcodewriter/
[57] private email with Taco Hoekwater
[58] Bill Casselman, Mathematical Illustrations: A Manual of

Geometry and PostScript. ISBN-10: 0521547881, ISBN-13:
9780521547888 Available at site http://www.math.ubc.ca/~cass
/graphics/text/www/index.html

[59] Danny Brian, The DeVnitive Guide to Berkeley DB XML. Apress,
2006. ISBN-13: 978-1-59059-666-1

[60] Donald E. Knuth, The Stanford GraphBase: A Platform for
Combinatorial Computing. ACM Press, New York, 1993. ISBN
978-0-470-75805-2

[61] Hans Petter Langtangen, A Primer on ScientiVc Programming
with Python. Springer, 2009. ISBN: 978-3-642-02474-0

[62] Hans Petter Langtangen, Python Scripting for Computational
Science. Springer, 2009. ISBN: 978-3-540-73915-9

[63] John Levine, Linkers & Loaders. Morgan Kaufmann Publisher,
2000. ISBN-13: 978-1-55860-496-4

[64] Mark Lutz, Learning Python, Fourth Edition. O’Reilly, Septem-
ber 2009 (est.) ISBN-10: 0-596-15806-8,
ISBN 13: 978-0-596-15806-4

[65] Mark Lutz, Programming Python, Third Edition. O’Reilly, Au-
gust 2006. ISBN-10: 0-596-00925-9, ISBN 13: 978-596-00925-0

[66] luatexref-t.pdf. Available in manual folder of luatex-snapshot-
0.42.0.tar.bz2

[67] Priscilla Walmsley, XQuery. O’Reilly, April 2007. ISBN-13:
978-0-596-00634-1

[68] Roberto Ierusalimschy, Programming in Lua (second edition).
Lua.org, March 2006. ISBN 85-903798-2-5

[69] Ulrich Drepper, How to Write Shared Libraries.
http://people.redhat.com/drepper/dsohowto.pdf

[70] Willi Egger, ConTeXt: Positioning design elements at speciVc
places on a page (tutorial). EuroTEX 2009 & 3rd ConTEXt Meet-
ing

[71] Yosef Cohen and Jeremiah Cohen, Statistic and Data with R.
Wiley 2008. ISBN 978-0-470-75805-2

I currently use Ubuntu Linux, on a standalone
laptop—it has no Internet connection. I occasion-

ally carry flash memory drives between this machine
and the Macs that I use for network surfing and

graphics; but I trust my family jewels only to Linux.
— Donald Knuth

Interview with Donald Knuth
By Donald E. Knuth and Andrew Binstock

Apr. 25, 2008
http://www.informit.com/articles/article.aspx?p=1193856

The lunatic is on the grass
The lunatic is on the grass

Remembering games and daisy chains and laughs
Got to keep the loonies on the path

— Brain Damage,
The Dark Side of the Moon,

Pink Floyd 1970

Mr. LuaTEX hosts a Python,
and become a bit lunatic

— Anonymous

Luigi Scarso

LuaTEX lunatic EUROTEX 2009 E53

Appendix
Call graph of a simple run

E54 MAPS 39 Luigi Scarso

Call graph of a simple run, cont. TEX, forever

4 hlist

id:0

subtype:0

attr:<node 1 < 1953 > 1955 : attribute_list 0>

width:523764

depth:0

height:535560

dir:TLT

shift:169476

glue_order:0

glue_sign:0

glue_set:0

list:<node nil < 1970 > nil : glyph 256>

prev:<node 1965 < 150 > 1549 : kern 1>

next:<node 1549 < 2002 > 1989 : kern 1>

5 glyph

id:37

subtype:256

attr:<node 1 < 1953 > 1955 : attribute_list 0>

char:69

font:1

lang:2

left:2

right:3

uchyph:1

components:nil

xoffset:0

yoffset:0

prev:nil

next:nil

6 kern

id:11

subtype:1

attr:<node nil < 1987 > 1994 : attribute_list 0>

kern:-88178

prev:<node 150 < 1549 > 2002 : hlist 0>

next:<node 2002 < 1989 > nil : glyph 256>

7 glyph

id:37

subtype:256

attr:<node nil < 1979 > 1981 : attribute_list 0>

char:88

font:1

lang:2

left:2

right:3

uchyph:1

components:nil

xoffset:0

yoffset:0

prev:<node 1549 < 2002 > 1989 : kern 1>

next:nil

1 hlist

id:0

subtype:0

attr:<node nil < 1435 > 1420 : attribute_list 0>

width:1451238

depth:169476

height:537133

dir:TLT

shift:0

glue_order:0

glue_sign:0

glue_set:0

list:<node 2000 < 1965 > 150 : glyph 256>

prev:nil

next:nil

2 glyph

id:37

subtype:256

attr:<node nil < 1435 > 1420 : attribute_list 0>

char:84

font:1

lang:2

left:2

right:3

uchyph:1

components:nil

xoffset:0

yoffset:0

prev:<node nil < 2000 > 2006 : attribute 1>

next:<node 1965 < 150 > 1549 : kern 1>

3 kern

id:11

subtype:1

attr:<node nil < 1373 > 1433 : attribute_list 0>

kern:-117596

prev:<node 2000 < 1965 > 150 : glyph 256>

next:<node 150 < 1549 > 2002 : hlist 0>

TEX nodelist made with lunatic binding for graphviz

LuaTEX lunatic EUROTEX 2009 E55

DB XML example

1

1 Primary mathematics/Numbers

1.1 Primary mathematics/Numbers

1.1.1 Teaching Number

This page is for teachers or home-schoolers. It is about teaching the basic concepts and conventions of simple number.

1.1.1.1 Developing a sound concept of number

Children typically learn about numbers at a very young age by learning the sequence ofwords, "one, two, three, four, five" etc. Usually,

in chanting this in conjunction with pointing at a set of toys, or mounting a flight of steps for example. Typically, 'mistakes' are made.

Toys or steps are missed or counted twice, or a mistake is made in the chanted sequence. Very often, from these sorts of activities,

and from informal matching activities, a child's concept of number and counting emerges as their mistakes are corrected. However,

here, at the very foundation of numerical concepts, children are often left to 'put it all together' themselves, and some start off on a

shaky foundation. Number concepts can be deliberately developed by suitable activities. The first one of these is object matching.

1.1.2 Matching Activities

As opposed to the typical counting activity childen are first exposed to,matching sets of objects gives a firm foundation for the concept

of number and numerical relationships. It is very important that matching should be a physical activity that children can relate to

and build on.

Typical activities would be a toy's tea-party. With a set of (say) four toy characters, each toy has a place to sit. Each toy has a cup,

maybe a saucer, a plate etc. Without even mentioning 'four', we can talk with the child about 'the right number' of cups, of plates

etc. We can talk about 'too many' or 'not enough'. Here, we are talking about number and important number relations without even

mentioning which number we are talking about! Only after a lot of activities of this type should we talk about specific numbers and

the idea of number in the abstract.

1.1.3 Number and Numerals

Teachers should print these numbers or show the children these numbers. Ideally, the numbers should be handled by the student.

There are a number of ways to acheive this: cut out numerals from heavy cardstock, shape themwith clay together, purchase wooden

numerals or give them sandpaper numerals to trace. Simultaneously, show the definitions of these numbers as containers or discrete

quantities (using boxes and small balls, eg. 1 ball, 2 balls, etc. Note that 0 means "no balls"). This should take some time to learn

thoroughly (depending on the student).

0 1 2 3 4 5 6 7 8 9

1.1.4 Place Value

The Next step is to learn the place value of numbers.

It is probably true that if you are reading this page you know that after 9 comes 10 (and you usually call it ten) but this would not be

true if you would belong to another culture.

Take for example the Maya Culture where there are not the ten symbols above but twenty symbols.

cfr http://www.michielb.nl/maya/math.html

Imagine that instead of using 10 symbols one uses only 2 symbols. For example 0 and 1

Here is how the system will be created:

Binary 0 1 10 11 100 101 110 111 1000 ...

Decimal 0 1 2 3 4 5 6 7 8 ...

Or if one uses the symbols A and B one gets:

Binary A B BA BB BAA BAB BBA BBB BAAA ...

Decimal 0 1 2 3 4 5 6 7 8 ...

This may give you enough information to figure the place value idea of any number system.

For example what if you used 3 symbols instead of 2 (say 0,1,2).

E56 MAPS 39 Luigi Scarso

2

Trinary 0 1 2 10 11 12 20 21 22 100 ...

Decimal 0 1 2 3 4 5 6 7 8 9 ...

If you're into computers, the HEXADECIMAL (Base 16) or Hex for short, number system will be of interest to you. This system uses 4

binary digits at a time to represent numbers from 0 to 15 (decimal). This allows for a more convenient way to express numbers the

way computers think - that we can understand. So now we need 16 symbols instead of 2, 3, or 10. So we use 0123456789ABCDEF.

Binary 0 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111 10000 ...

Decimal 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ...

Hex 0 1 2 3 4 5 6 7 8 9 A B C D E F 10 ...

1.1.5 Resources for Early Math

15 Fun Ways and Easy Games for Young Learners Math: Reproducible, Easy-to-Play Learning Games That Help Kids Build Essential

Math Skills, by Susan Julio, Scholastic Professional, 2001.

Eenie Meenie Miney Math!: Math Play for You and Your Preschooler, by Linda Allison, Little Brown & Co., 1993.

Marshmallow Math: Early Math for Toddlers, Preschoolers and Primary School Children, by Trevor Schindeler, Trafford, 2002.

Number Wonder: Teaching Basic Math Concepts to Preschoolers, by Deborah Saathoff and Jane Jarrell, Holman Bible, 1999.

cfr Category:School of Mathematics

cfr Category:Pages moved fromWikibooks

cfr Category:Primary education

Next in Primary School Mathematics:

cfr http://en.wikiversity.org/wiki/Primary_mathematics:Adding_numbers

LuaTEX lunatic EUROTEX 2009 E57

sqlite example

1

Query for 'geometr': Geometric algebra

Geometry

Introductory Algebra and Geometry

Orbital geometry

Coordinate Geometry

E58 MAPS 39 Luigi Scarso

3

2 Geometry

2.1 Geometry

This subdivision is dedicated to bridging the gap between the mathematical layperson and the student who is ready to learn calculus

and higher mathematics or to take on any other endeavour that requires an understanding of basic algebra and (at least Euclidean)

geometry.

2.1.1 Subdivision news

2.1.2 Departments

2.1.3 Active participants

The histories of Wikiversity pages indicate who the active participants are. If you are an active participant in this subdivision, you

can list your name here (this can help small subdivisions grow and the participants communicate better; for large subdivisions a list

of active participants is not needed). Please remember: if you have an

cfr http://en.wikiversity.org/w/index.php?title=Special:Userlogin\&type=signup

cfr Category:Geometry

cfr Category:Introductions

cfr \#

cfr \#

In Cartesian or Analytic Geometry we will learn how to represent points, lines, and planes using the Cartesian Coordinate System,

also called Rectangular Coordinate System. This can be applied to solve a broad range of problems from geometry to algebra and it

will be very useful later on Calculus.

2.1.4 Cartesian Coordinate System

The foundations of Analytic Geometry lie in the search for describing geometric shapes by using algebraic equations. One of the most

importantmathematicians that helped to accomplish this task was René Descartes for whom the name is given to this exciting subject

of mathematics.

2.1.4.1 The Coordinate System

For a coordinate system to be useful we want to give to each point an atribute that help to distinguish and relate different points.

In the Cartesian system we do that by describing a point using the intersection of two(2D Coordinates) or more(Higher Dimensional

Coordinates) lines. Therefore a point is represented as P(x1,x2,x3,...,xn) in "n" dimensions.

2.1.5 Licensing:

"Geometry is the only science that it hath pleased God hitherto to bestow on mankind."–Thomas Hobbes

This department of the Olympiad Mathematics course focuses on problem-solving based on circles and vectors, thus generalizing

to Coordinate Geometry. Our major focus is on Rectangular (Cartesian) Coordinates, although the course does touch upon Polar

coordinates.

The first section is based on the geometric study of circles. Although not based on pure analytical geometry, it uses Appolonius-style

reference lines in addition to Theorems on Tangents, Areas, etc.

The second section is devoted to Vector Analysis, covering problem-solving from Lattices and Affine Geometry to Linear Algebra of

Vectors

Third section, focusing on locus problems, is all about conic sections and other curves in the Cartesian plane.

2.1.6 Textbooks

2.1.7 Practice Questions

Willi Egger EUROTEX 2009 E59

Decorating CD-ROMs and DVDs
(Tutorial)

Abstract
After having burned a disk you sometimes need to add a label and, if the disk is stored in
a jewel case, a booklet and an inlay for the jewel case. The following article describes how
to create a label for the disk on a commercial label-sheet and a booklet and an inlay for the
jewel case. The following solutions are based on ConTEXt’s built-in layer capabilities.

Keywords
ConTeXt, CD-ROM, DVD, label, booklet, inlay, layer.

Label
The label’s several elements can be switched on/oU with the following three modes:

@ enabling draft mode will draw an outline of the label. Beware, simultaneously en-
abling the withBackground mode will obscure the outline.

@ enabling withLogo mode will show an image at the top of the label.
@ enabling withBackground mode will place the background image on the label.

\enablemode[draft]
\enablemode[withLogo]
\enablemode[withBackground]

We begin by specifying the main language.

\mainlanguage[en]

Next, we choose the label font. Since we are using ConTEXt MkIV, we will choose the
Iwona-medium font in its otf variant.

\usetypescript[iwona-medium]
\setupbodyfont[iwona-medium, 10pt]

All texts in the diUerent boxes on the various layers are of type \framed. As a visual
aid, draft mode switches on all their frames.

\doifmodeelse{draft}
{\def\Onoff{on}}
{\def\Onoff{off}}

We will place two images in the background. As a convenience, we deVne two macros
whose names are the names of their respective images. The Labelbackground image
covers the complete label, while the Logo image will appear at the top of the label
when the withLogo mode is enabled.

\def\Labelbackground{fish}
\def\Logo{eurotexlogo}

Texts can be placed at the top and bottom of the label, and to the left and right of the
disk’s center. The bottom area is divided into three sections, each wide enough to Vt,
depending on the position of the text, within the available space.

E60 MAPS 39 Willi Egger

To keep things uncluttered, we place the texts in buUers here and use only the
buUers’ names in the later typesetting instructions. All the texts will be placed in the
\framed environment.

\startbuffer[BottomtextA]
\green Contains all files for decorating a CD or DVD:\crlf
\em \tfx CD-label, CD-inlay-booklet, CD-inlay for the jewel case

\stopbuffer

\startbuffer[BottomtextB]
\green \em Published in the Euro\TEX -proceedings

\stopbuffer

\startbuffer[BottomtextC]
\green 2009

\stopbuffer

There is one text area at the top of the label.

\startbuffer[Toptext]
{\tfc \red CD/DVD decoration}\blank \green{\tfb Tutorial}\vfill Over-

lays and layers
\stopbuffer

The text areas to the left and right of the disk’s center are, like the area at the top of
the label, based on a single block of text.

\startbuffer[Righttext]
\green CD-ROM
\blank
\gray \currentdate

\stopbuffer

\startbuffer[Lefttext]
\green \TEX -tutorial
\blank
Euro\TEX 2009

\stopbuffer

By separating the content elements above from the typesetting commands below, we
can change the content without worrying about the code below this point. We will add
a comment to emphasize this.

% -- Basically you do not need to edit the lines below

First, we tell ConTEXt how the label will look when typeset.

\setuppapersize[A4][A4]
\setuppagenumbering[state=stop]
\setupcolors[state=start]

\setuplayout
[topspace=0pt,
backspace=0pt,
header=0pt,
footer=0pt,
margin=0pt,
width=210mm,
height=297mm,
marking=on,
location=middle]

Decorating CD-ROMs and DVDs EUROTEX 2009 E61

As mentioned above, enabling draft mode will draw the label outline. The drawing
itself consists of two concentric circles drawn with MetaPost.

\startreusableMPgraphic{CDShape}
draw fullcircle scaled 117mm;
draw fullcircle scaled 41mm;

\stopreusableMPgraphic

ConTEXt provides the \doifmode[]{} command, which we will use to set the label
background to our predeVned background image when the withBackground mode is
enabled.

\doifmode{withBackground}
{\defineoverlay

[Lbackground]
[{\externalfigure

[\Labelbackground]
[width=\overlaywidth,height=\overlayheight]}]}

We use the same mechanism to place the optional logo image.

\doifmode{withLogo}
{\defineoverlay

[Logo]
[{\externalfigure[\Logo]
[width=\overlaywidth,height=\overlayheight]}]}

Here we deVne a layer that will cover the entire page. To indicate that we do not want
relative positioning of this layer, we set its position to no and its reference point to
bottom. Lastly, we place the layer into the page area as a background.

\definelayer[PageLayer][position=no]

\setuplayer
[PageLayer]
[corner=bottom,location=c,height=\paperheight]

\setupbackgrounds[page][background=PageLayer]

We deVne a second layer to hold the label Velds we have already deVned. We set this
layer’s reference point to top and left and the location of the layer data to bot-
tom right. We also deVne its width and height. Set option=test to see what ConTEXt
does with these settings.

\definelayer
[Label]
[position=no,corner={top,left},location={bottom,right},
width=117mm,height=117mm,option=test]

In the following lines we Vll the Label layer with our predeVned label Velds, and then
typeset it. To tell ConTEXt to Wush the layer at the end of the page we enclose the Vlling
commands and the typesetting command: \placelayer[] within a \standardmakeup
... \stopstandardmakeup block.

\starttext
\startstandardmakeup[page=no,doublesided=no]
\setlayerframed

[Label]
[x=\dimexpr(\textwidth-117mm)/2,y=21.43mm]
[width=117mm,height=117mm,frame=\Onoff,background=Lbackground]
{}

E62 MAPS 39 Willi Egger

\setlayerframed
[Label]
[x=\dimexpr(\textwidth-13mm)/2,y=22.43mm]
[width=13mm,height=13mm,frame=\Onoff,align={top,middle},
background=Logo]

{}
\setlayerframed

[Label]
[x=\dimexpr(\textwidth-78mm)/2,y=35.43mm]
[width=78mm,height=24mm,frame=\Onoff,align={top,middle}]
{\getbuffer[Toptext]}

\setlayerframed
[Label]
[x=126mm,y=60mm]
[width=34mm,height=40mm,frame=\Onoff,align={middle,lohi}]
{\getbuffer[Righttext]}

\setlayerframed
[Label]
[x=50mm,y=60mm]
[width=34mm,height=40mm,frame=\Onoff,align={flushleft,lohi}]
{\getbuffer[Lefttext]}

\setlayerframed
[Label]
[x=\dimexpr(\textwidth-98mm)/2,y=100.43mm]
[width=98mm,height=\dimexpr(38mm/3),frame=\Onoff,align=middle]
{\getbuffer[BottomtextA]}

\setlayerframed
[Label]
[x=\dimexpr(\textwidth-72mm)/2,y=\dimexpr(100.43mm+38mm/3)]
[width=72mm,height=\dimexpr(38mm/3),frame=\Onoff,align=middle]
{\getbuffer[BottomtextB]}

\setlayerframed
[Label]
[x=\dimexpr(\textwidth-18mm)/2,y=\dimexpr(100.43mm+38mm/3*2)]
[width=18mm,height=\dimexpr(38mm/3),frame=\Onoff,align=middle]
{\getbuffer[BottomtextC]}

\doifmode{draft}
{\setlayer[PageLayer][x=.5\paperwidth,y=216.93mm]

{\useMPgraphic{CDShape}}
\setlayer[PageLayer][x=.5\paperwidth,y=79.93mm]

{\useMPgraphic{CDShape}}}
\placelayer[Label]
\stopstandardmakeup

\stoptext

As you can see in the code above, we move a piece of information to its correct position
by adjusting its vertical and horizontal oUsets.

Near the end of the code there is another conditional action that controls the place-
ment of the label shape.

The preceding code yields the following result:

Decorating CD-ROMs and DVDs EUROTEX 2009 E63

1 1

1 1

EuroTEX

2009
ConTEXt

CD/DVD decoration
Tutorial

Overlays and layers

CD-ROM

4. September 2009

TEX-tutorial

EuroTEX2009

Contains all files for decorating a CD or DVD:
CD-label, CD-inlay-booklet, CD-inlay for the jewel case

Published in the EuroTEX-proceedings

2009

Figure 1. Example CD-label

E64 MAPS 39 Willi Egger

Booklet
The CD-booklet is composed of a single section which we arrange with \setuparrang-
ing[2UP]. As before, we start with setting the main language and choosing the font
for the booklet.

\mainlanguage[en]

\usetypescript[palatino]
\setupbodyfont[palatino,8pt]

If you want to place a background image on the front page, you can deVne a macro
with a symbolic name which will be used later when you setup the page layer.

\def\Pageimage{fish}

We can add a title typeset along the spine of the cover page. The title is placed in a
buUer:

\startbuffer[Sidetitle]
{\tfc \yellow CD/DVD decoration}

\stopbuffer

In the next buUer we place the contents of the cover page.

\startbuffer[Covertext]
\strut
\blank[line]
\startalignment[middle]

\startlines
{\tfc \red CD/DVD decoration}
\blank \green{\tfb Tutorial}
\blank Overlays and layers

\stoplines
\stopalignment
\blank

\stopbuffer

The booklet contents is put into its own buUer.

\startbuffer[Bookletcontent]
\input knuth\par

\stopbuffer

Now that all the content elements for the booklet have been deVned, the positioning
code that follows, once written, need not be changed.

% -- Basically you do not need to edit the lines below

The CD-booklet is typeset on a custom size of paper. We deVne this paper size and put
it on landscape A4 sheets. We choose our layout parameters and, because we are using
the standard-makeup-environment, we turn vertical centering oU.

\definepapersize[CDbooklet][width=120mm,height=118mm]
\setuppapersize[CDbooklet][A4,landscape]
\setuppagenumbering[location={bottom,right},alternative=doublesided]
\setupcolors[state=start]
\setupnarrower[left=.5em]
\setuplayout

[topspace=2mm,
backspace=9mm,
header=0pt,

Decorating CD-ROMs and DVDs EUROTEX 2009 E65

footer=5mm,
margin=8.5mm,
margindistance=.5mm,
width=100mm,
height=115mm,
marking=on,
location=middle]

\setupmakeup[standard][top=,bottom=]

The background image on the cover should be a bleeding image, i.e. it should be larger
than the crop marks indicate. However, as soon as we use imposition, the image is
cropped to the paper size and the bleed is gone. We deVne the bleed as follows:

\definemeasure[bleed][\dimexpr1mm\relax]

Now we deVne a layer which is Vlled with the background image.

\definelayer
[Background]
[position=no]

\setlayer
[Background]
{\externalfigure

[\Pageimage]
[height=\dimexpr118mm+2\measure{bleed},
width=\dimexpr120mm+2\measure{bleed}]}

The Vlled layer is placed into the page background. Because we bled the image, we
have to add a background oUset equal to the bleed.

\setupbackgrounds[page][background=Background,
backgroundoffset=\measure{bleed}]

As mentioned earlier, the booklet is typeset with imposition.

\setuparranging[2UP]

Now that everything is in place, we can produce the booklet.

\starttext

\startstandardmakeup[doublesided=no,page=yes]
\inleft{\rotate[rotation=90]{%

\framed[frame=off,align={lohi,middle},width=\textheight]
{\bfd \getbuffer[Sidetitle]}}}

\getbuffer[Covertext]
\stopstandardmakeup

\setupbackgrounds[page][background=]
\getbuffer[Bookletcontent]
\stoptext

These parameters will produce the following (only the cover page is shown):

E66 MAPS 39 Willi Egger

1
1

1
1

CD/DVDdecoration

C
D

/D
V

D
de

co
ra

tio
n

Tu
to

ria
l

O
ve

rla
ys

an
d

la
ye

rs

Figure 2. The cover of the booklet

Decorating CD-ROMs and DVDs EUROTEX 2009 E67

Jewel case inlay
To complete the CD project, we want to prepare an inlay for the jewel case.

As in the previous sections, we start with setting the main language:

\mainlanguage[en]

We tell ConTEXt the font we want to use for the inlay

\usetypescript[palatino]
\setupbodyfont[palatino,10pt]

The inlay will be deVned such that you can have as many as three images on the inlay.
There is a page image, a text image and an image for the small strips to the left and
right of the inlay. Again, we deVne macros in order to replace the actual Vlename in
the code with a symbolic name.

\def\Pageimage{fish}
\def\Textimage{eurotexlogo}
\def\SideTitleimage{}

We have three text areas. At the left and right sides of the inlay there are small strips
along the spine for the title information. Both strips are automatically Vlled with the
same information. In between these is the main text area.

\startbuffer[Sidetitle]
\tfa \yellow CD/DVD decoration\hfill2009

\stopbuffer

\startbuffer[Maintext]
\startalignment[middle]

\startlines
{\tfc \red CD/DVD decoration}
\blank \yellow{\tfb Tutorial}
\blank Overlays and layers

\stoplines
\stopalignment

\stopbuffer

The following comment reminds us that the code below this point is usually left un-
touched.

% -- Basically you do not need to edit the lines below.

We must deVne the inlay paper size ourselves. Its dimensions are 150 × 118 mm and
typeset on an A4.

\definepapersize[CDinlaycase][width=150mm,height=118mm]
\setuppapersize[CDinlaycase][A4]

We deVne a bleed measure to insure that the page image will cover the entire page.

\definemeasure[bleed][\dimexpr1mm\relax]

We specify the various layout settings. The width of the main text area is 14 mm
smaller than the paper width. We use a backspace of 7 mm, which is Vlled with the
margin + margin distance.

\setuplayout
[topspace=0mm,
backspace=7mm,
margin=6.5mm,
header=0pt,

E68 MAPS 39 Willi Egger

footer=0pt,
margindistance=.5mm,
width=136mm,
height=118mm,
location=middle,
marking=on]

\setupcolors[state=start]

\setupmakeup[standard][bottom=,top=]

To Vt the inlay into the jewel case we have to make two folds. It is important to make
these folds accurately. To help, we add a layer with fold marks that extend out into the
cut space.

\definelayer
[Foldmarks]
[position=no,
height=\dimexpr(\paperheight+10mm),
width=\dimexpr(\paperwidth+10mm),
x=0mm,
y=-8mm]

Next we deVne two layers, one each for the page and text images. We do not want the
layers to be positioned relative to the text so we set each position to no.

\definelayer
[Pagebackground]
[position=no]

\definelayer
[Textbackground]
[position=no]

As mentioned earlier, we can use an overlay to add an image or a background along
the spine. The image could be a previously deVned external image, and the background
could be a transparent color generated with MetaPost.

\defineoverlay
[SideTitlebackground]
[{\externalfigure[\SideTitleimage][width=\overlaywidth,

height=\overlayheight]}]

or

\defineoverlay
[SideTitlebackground]
[\useMPgraphic{TransparentBackground}]

We deVne two additional layers intended for the side titles. Again, there is no need for
relative positioning.

\definelayer
[SideTitleL]
[position=no]

\definelayer
[SideTitleR]
[position=no]

We use MetaPost for the fold marks.

Decorating CD-ROMs and DVDs EUROTEX 2009 E69

\startuniqueMPgraphic{Marks}
path p;
pair pt[];
p := unitsquare xscaled 136mm yscaled 135mm;
pt[1] := llcorner p;
pt[2] := point 3.95 of p;
pt[3] := point 3.05 of p;
pt[4] := ulcorner p;
pt[5] := lrcorner p;
pt[6] := point 1.05 of p;
pt[7] := point 1.95 of p;
pt[8] := urcorner p;

for i= 1 step 2 until 7 :
draw pt[i]--pt[i+1];

endfor;
\stopuniqueMPgraphic

It is easy to prepare a transparent colored background for an overlay with MetaPost.

\startreusableMPgraphic{TransparentBackground}
path p;
p:= unitsquare xscaled \overlaywidth yscaled \overlayheight;
fill p withcolor transparent(1,0.3,yellow);

\stopreusableMPgraphic

Now we are ready to Vll the layers with their respective content, and assign the layers
as page or text backgrounds.

\setlayer
[Foldmarks]{\useMPgraphic{Marks}}

\setlayer
[Pagebackground]
{\externalfigure

[\Pageimage]
[height=\dimexpr118mm+2\measure{bleed},
width=\dimexpr150mm+2\measure{bleed}]}

\setlayer
[Textbackground]
{\externalfigure[\Textimage][height=\textheight,width=\textwidth]}

\setlayer
[SideTitleL]
[x=.5mm,y=.5mm]
{\rotate[rotation=90]{%

\framed
[frame=off,align={right,lohi},
width=\dimexpr\textheight-1mm,
background=SideTitlebackground]
{\bf \getbuffer[Sidetitle]}}}

\setlayer
[SideTitleR]
[x=-.5mm,y=.5mm]
{\rotate[rotation=90]{%

\framed
[frame=off,align={right,lohi},
width=\dimexpr\textheight-1mm,

E70 MAPS 39 Willi Egger

background=SideTitlebackground]
{\bf \getbuffer[Sidetitle]}}}

\setupbackgrounds
[page]
[background=Pagebackground,backgroundoffset=\measure{bleed}]

\setupbackgrounds[text][background={Foldmarks,Textbackground}]
\setupbackgrounds[text][leftmargin][background=SideTitleL]
\setupbackgrounds[text][rightmargin][background=SideTitleR]

What remains to be done is to start a document and add the information for the main
text area.

\starttext

\strut
\framedtext

[frame=off,
rulethickness=3pt,
offset=10pt,
width=\textwidth,
height=\textheight,
align=middle]
{\getbuffer[Maintext]}

\stoptext

The result is as follows:

1 1

1 1

C
D

/D
V

D
de

co
ra

tio
n

20
09

C
D

/D
V

D
de

co
ra

tio
n

20
09EuroTEX

2009
ConTEXt

CD/DVD decoration
Tutorial

Overlays and layers

During the EuroTEX 2009 a tutorial over the use of overlays and layers was held.
The project dealt with was using ConTEXt to create decorations for a

CD/DVD. First a CD-label was created. Further a possible solution for
the inlay-booklet as well as the inlay for the jewel-case-base was shown.

The content of this tutorial is published in the proceedings of the EuroTEX.

Figure 3. The inlay for the jewel case

Decorating CD-ROMs and DVDs EUROTEX 2009 E71

Further reading
@ ConTEXt the manual. Hans Hagen. November 2001, available from

http://www.pragma-ade.com/
@ Metafun. Hans Hagen. January 2002, available from http://www.pragma-ade.com/
@ It’s in the details. Hans Hagen. Spring 2002, available from http://www.pragma-

ade.com/
@ http://wiki.contextgarden.net/Layers.

Conclusion
This small project demonstrates ConTEXt’s capability to place information and graph-
ics at speciVc locations using layers. Once you become familiar with how they work,
you will Vnd many more situations where layers can be used in modern design. It is
worthwhile having a look at the literature references given above since there is more
to be said about layers than can be presented in this project.

Acknowledgements
I would like to thank Michael Guravage for proofreading this article and for all the
improvements he has made to it.

Willi Egger
w.egger (at) boede.nl

E72 MAPS 39 Hans Hagen

The language mix
Abstract
During the third ConTEXt conference that ran in parallel
to EuroTEX 2009 in The Hague we had several sessions
where mkiv was discussed and a few upcoming features
were demonstrated. The next sections summarize some of
that. It’s hard to predict the future, especially because new
possibilities show up once LuaTEX is opened up more, so
remarks about the future are not definitive.

TEX
From now on, if I refer to TEX in the perspective of
LuaTEX I mean “Good Old TEX”, the language as well
as the functionality. Although LuaTEX provides a couple
of extensions it remains pretty close to compatible to its
ancestor, certainly from the perspective of the end user.

As most ConTEXt users code their documents in the
TEX language, this will remain the focus of mkiv. After
all, there is no real reason to abandon it. However,
although ConTEXt already stimulates users to use struc-
ture where possible and not to use low level TEX com-
mands in the document source, we will add a few more
structural variants. For instance, we already introduced
\startchapter and \startitem in addition to \chapter
and \item.

We even go further, by using key/value pairs for
deVning section titles, bookmarks, running headers, ref-
erences, bookmarks and list entries at the start of a
chapter. And, as we carry around much more informa-
tion in the (for TEX so typical) auxiliary data Vles, we
provide extensive control over rendering the numbers of
these elements when they are recalled (like in tables of
contents). So, if you really want to use diUerent texts for
all references to a chapter header, it can be done:

\startchapter
[label=emcsquare,
title={About $e=mc^2$},
bookmark={einstein},
list={About $e=mc^2$ (Einstein)},
reference={$e=mc^2$}]

... content ...

\stopchapter

Under the hood, the mkiv code base is becoming quite
a mix and once we have a more clear picture of where
we’re heading, it might become even more of a hybrid.

Already for some time most of the font handling is
done by Lua, and a bit more logic and management
might move to Lua as well. However, as we want to
be downward compatible we cannot go as far as we
want (yet). This might change as soon as more of the
primitives have associated Lua functions. Even then it
will be a trade oU: calling Lua takes some time and it
might not pay oU at all.

Some of the more tricky components, like vertical
spacing, grid snapping, balancing columns, etc. are al-
ready in the process of being LuaVed and their hybrid
form might turn into complete Lua driven solutions
eventually. Again, the compatibility issue forces us to
follow a stepwise approach, but at the cost of (quite
some) extra development time. But whatever happens,
the TEX input language as well as machinery will be
there.

MetaPost
I never regret integrating MetaPost support in ConTEXt
and a dream came true when mplib became part of
LuaTEX. Apart from a few minor changes in the way
text integrates into MetaPost graphics the user interface
in mkiv is the same as in mkii. Insofar as Lua is involved,
this is hidden from the user. We use Lua for managing
runs and conversion of the result to pdf. Currently
generating MetaPost code by Lua is limited to assisting
in the typesetting of chemical structure formulas which
is now part of the core.

When deVning graphics we use the MetaPost lan-
guage and not some TEX-like variant of it. Information
can be passed to MetaPost using special macros (like
\MPcolor), but most relevant status information is passed
automatically anyway.

You should not be surprised if at some point we can
request information from TEX directly, because after all
this information is accessible. Think of something w :=
texdimen(0) ; being expanded at the MetaPost end in-
stead of w := \the\dimen0 ; being passed to MetaPost
from the TEX end.

Lua
What will the user see of Lua? First of all he or she can
use this scripting language to generate content. But when
making a format or by looking at the statistics printed at
the end of a run, it will be clear that Lua is used all over
the place.

The language mix EUROTEX 2009 E73

So how about Lua as a replacement for the TEX
input language? Actually, it is already possible to make
such “ConTEXt Lua Documents” using mkiv’s built in
functions. Each ConTEXt command is also available as
a Lua function.

\startluacode
context.bTABLE {

framecolor = "blue",
align= "middle",
style = "type",
offset=".5ex",

}
for i=1,10 do
context.bTR()
for i=1,20 do
local r= math.random(99)
if r < 50 then
context.bTD {
background = "color",
backgroundcolor = "blue"

}
context(context.white("%#2i",r))

else
context.bTD()
context("%#2i",r)

end
context.eTD()

end
context.eTR()

end
context.eTABLE()

\stopluacode

Of course it helps if you know ConTEXt a bit. For
instance we can as well say:

if r < 50 then
context.bTD {
background = "color",
backgroundcolor = "blue",
foregroundcolor = "white",

}
else
context.bTD()

end
context("%#2i",r)
context.eTD()

And, knowing Lua helps as well, since the following is
more eXcient:

\startluacode
local colored = {
background = "color",

backgroundcolor = "bluegreen",
foregroundcolor = "white",

}
local basespec = {
framecolor = "bluered",
align= "middle",
style = "type",
offset=".5ex",

}
local bTR, eTR = context.bTR, context.eTR
local bTD, eTD = context.bTD, context.eTD
context.bTABLE(basespec)
for i=1,10 do
bTR()
for i=1,20 do
local r= math.random(99)
bTD((r < 50 and colored) or nil)
context("%#2i",r)
eTD()

end
eTR()

end
context.eTABLE()

\stopluacode

Since in practice the speedup is negligible and the
memory footprint is about the same, such optimizations
seldom make sense.

At some point this interface will be extended, for
instance when we can use TEX’s main (scanning, parsing
and processing) loop as a so-called coroutine and when
we have opened up more of TEX’s internals. Of course,
instead of putting this in your TEX source, you can as
well keep the code at the Lua end.

84 40 78 80 91 20 34 77 28 55 48 63 37 51 95 91 63 72 15 61

2 25 14 80 16 40 13 11 99 22 51 84 61 30 64 52 49 97 29 77

53 77 40 89 29 35 80 91 7 94 53 9 20 66 89 35 7 2 46 7

24 97 90 85 27 54 38 76 51 67 53 4 44 93 93 72 29 74 64 36

69 17 44 88 83 33 23 89 35 68 95 59 66 86 44 92 40 81 68 91

48 22 95 92 15 88 64 43 62 28 78 31 45 23 19 28 56 42 17 90

11 13 50 76 98 93 68 38 75 37 30 23 58 25 16 73 13 79 17 74

8 95 6 52 18 24 79 73 65 96 64 76 10 14 52 8 7 21 46 82

57 75 6 16 99 21 89 13 99 6 87 8 1 92 59 18 17 39 91 82

36 55 58 45 69 10 53 75 31 99 58 87 75 63 4 75 83 92 87 83

Figure 1. The result of the displayed Lua code.

The script that manages a ConTEXt run (also called
context) will process Vles with that consist of such
commands directly if they have a cld suXx or when you
provide the Wag --forcecld.1

context yourfile.cld

E74 MAPS 39 Hans Hagen

But will this replace TEX as an input language? This is
quite unlikely because coding documents in TEX is so
convenient and there is not much to gain here. Of course
in a pure Lua based workWow (for instance publishing
information from databases) it would be nice to code in
Lua, but even then it’s mostly syntactic sugar, as TEX has
to do the job anyway. However, eventually we will have
a quite mature Lua counterpart.

XML
This is not so much a programming language but more
a method of tagging your document content (or data).
As structure is rather dominant in xml, it is quite handy
for situations where we need diUerent output formats
and multiple tools need to process the same data. It’s
also a standard, although this does not mean that all
documents you see are properly structured. This in
turn means that we need some manipulative power in
ConTEXt, and that happens to be easier to do in mkiv
than in mkii.

In ConTEXt we have been supporting xml for a long
time, and in mkiv we made the switch from stream based
to tree based processing. The current implementation is
mostly driven by what has been possible so far but as
LuaTEX becomes more mature, bits and pieces will be
reimplemented (or at least cleaned up and brought up to
date with developments in LuaTEX).

One could argue that it makes more sense to use xslt
for converting xml into something TEX, but in most
of the cases that I have to deal with much eUort goes
into mapping structure onto a given layout speciVcation.
Adding a bit of xml to TEX mapping to that directly is
quite convenient. The total amount of code is probably
smaller and it saves a processing step.

We’re mostly dealing with education-related docu-
ments and these tend to have a more complex structure
than the Vnal typeset result shows. Also, readability of
code is not served with such a split as most mappings
look messy anyway (or evolve that way) due to the way
the content is organized or elements get abused.

There is a dedicated manual for dealing with xml
in mkiv, so we only show a simple example here. The
documents to be processed are loaded in memory and
serialized using setups that are associated to elements.
We keep track of documents and nodes in a way that
permits multipass data handling (rather usual in TEX).
Say that we have a document that contains questions.
The following deVnitions will Wush the (root element)
questions:

\startxmlsetups xml:mysetups
\xmlsetsetup{#1}{questions}{xml:questions}

\stopxmlsetups

\xmlregistersetup{xml:mysetups}

\startxmlsetups xml:questions
\xmlflush{#1}

\stopxmlsetups

\xmlprocessfile{main}{somefile.xml}{}

Here the #1 represents the current xml element. Of
course we need more associations in order to get some-
thing meaningful. If we just serialize then we have
mappings like:

\xmlsetsetup{#1}{question|answer}{xml:*}

So, questions and answers are mapped onto their own
setup which Wushes them, probably with some number-
ing done at the spot.

In this mechanism Lua is sort of invisible but quite
busy as it is responsible for loading, Vltering, accessing
and serializing the tree. In this case TEX and Lua hand
over control in rapid succession.

You can hook in your own functions, like:

\xmlfilter{#1}
{(wording|feedback|choice)/function(cleanup)}

In this case the function cleanup is applied to elements
with names that match one of the three given.2

Of course, once you start mixing in Lua in this way,
you need to know how we deal with xml at the Lua end.
The following function show how we calculate scores:

\startluacode
function xml.functions.totalscore(root)
local n = 0
for e in xml.collected(root,"/outcome") do
if xml.filter(e,"action[text()=’add’]") then
local m = xml.filter

(e,"xml:///score/text()")
n = n + (tonumber(m or 0) or 0)

end
end
tex.write(n)

end
\stopluacode

You can either use such a function in a Vlter or just use
it as a TEX macro:

\startxmlsetups xml:question
\blank
\xmlfirst{#1}{wording}
\startitemize
\xmlfilter{#1}
{/answer/choice/command(xml:answer:choice)}

\stopitemize

The language mix EUROTEX 2009 E75

Figure 2. An example of using the font tester.

\endgraf
score: \xmlfunction{#1}{totalscore}
\blank

\stopxmlsetups

\startxmlsetups xml:answer:choice
\startitem

\xmlflush{#1}
\stopitem

\stopxmlsetups

The Vlter variant is like this:

\xmlfilter{#1}{./function(’totalscore’)}

So you can take your choice and make your source look
more xml-ish, Lua-like or TEX-wise. A careful reader
might have noticed the peculiar xml:// in the function
code. When used inside mkiv, the serializer defaults to
TEX so results are piped back into TEX. This preVx forced
the regular serializer which keeps the result at the Lua
end.

Currently some of the xml related modules, like
mathml and handling of tables, are really a mix of
TEX code and Lua calls, but it makes sense to move
them completely to Lua. One reason is that their input
(formulas and table content) is restricted to non-TEX

anyway. On the other hand, in order to be able to share
the implementation with TEX input, it also makes sense
to stick to some hybrid approach. In any case, more of
the calculations and logic will move to Lua, while TEX
will deal with the content.

A somewhat strange animal here is xsl-fo. We do
support it, but the mkii implementation was always
somewhat limited and the code was quite complex. So,
this needs a proper rewrite in mkiv, which will happen
indeed. It’s mostly a nice exercise of hybrid technology
but until now I never really needed it. Other bits and
pieces of the current xml goodies might also get an
upgrade.

There is already a bunch of functions and macros to
Vlter and manipulate xml content and currently the code
involved is being cleaned up. What direction we go also
depends on users’ demands. So, with respect to xml you
can expect more support, a better integration and an
upgrade of some supported xml related standards.

Tools
Some of the tools that ship with ConTEXt are also
examples of hybrid usage.

Take this:

mtxrun --script server --auto

E76 MAPS 39 Hans Hagen

Figure 3. An example of a help screen for a command.

On my machine this reports:

MTXrun | running at port: 31415
MTXrun | document root: c:/data/develop/context/

lua
MTXrun | main index file: unknown
MTXrun | scripts subpath: c:/data/develop/context

/lua
MTXrun | context services: http://localhost:31415

/mtx-server-ctx-startup.lua

The mtxrun script is a Lua script that acts as a controller
for other scripts, in this case mtx-server.lua that is part
of the regular distribution. As we use LuaTEX as a Lua
interpreter and since LuaTEX has a socket library built
in, it can act as a web server, limited but quite right for
our purpose.3

The web page that pops up when you enter the given
address lets you currently choose between the ConTEXt
help system and a font testing tool. In Vgure 2 you seen
an example of what the font testing tool does.

Here we have LuaTEX running a simple web server
but it’s not aware of having TEX on board. When you
click on one of the buttons at the bottom of the screen,
the server will load and execute a script related to the
request and in this case that script will create a TEX Vle
and call LuaTEX with ConTEXt to process that Vle. The

result is piped back to the browser.
You can use this tool to investigate fonts (their bad

and good habits) as well as to test the currently available
OpenType functionality in mkiv (bugs as well as good-
ies).

So again we have a hybrid usage although in this
case the user is not confronted with Lua and/or TEX
at all. The same is true for the other goodie, shown in
Vgure 3. Actually, such a goodie has always been part
of the ConTEXt distribution but it has been rewritten in
Lua.

The ConTEXt user interface is deVned in an xml Vle,
and this Vle is used for several purposes: initializing the
user interfaces at format generation time, typesetting the
formal command references (for all relevant interface
languages), for the wiki, and for the mentioned help
goodie.

Using the mix of languages permits us to provide con-
venient processing of documents that otherwise would
demand more from the user than it does now. For
instance, imagine that we want to process a series of doc-
uments in the so-called epub format. Such a document
is a zipped Vle that has a description and resources. As
the content of this archive is prescribed it’s quite easy to
process it:

context --ctx=x-epub.ctx yourfile.epub

The language mix EUROTEX 2009 E77

This is equivalent to:

texlua mtxrun.lua --script context --ctx=x-epub.
ctx yourfile.epub

So, here we have LuaTEX running a script that itself
(locates and) runs a script context. That script loads a
ConTEXt job description Vle (with suXx ctx). This Vle
tells what styles to load and might have additional direc-
tives but none of that has to bother the end user. In the
automatically loaded style we take care of reading the
xml Vles from the zipped Vle and eventually map the em-
bedded html like Vles onto style elements and produce
a pdf Vle. So, we have Lua managing a run and mkiv
managing with help of Lua reading from zip Vles and
converting xml into something that TEX is happy with.
As there is no standard with respect to the content itself,
i.e. the rendering is driven by whatever kind of structure
is used and whatever the css Vle is able to map it onto, in
practice we need an additional style for this class of doc-
uments. But anyway it’s a good example of integration.

The future
Apart from these language related issues, what more is
on the agenda? To mention a few integration related
thoughts:

@ At some point I want to explore the possibility to
limit processing to just one run, for instance by doing
trial runs without outputting anything but still col-

lecting multipass information. This might save some
runtime in demanding workWows especially when
we keep extensive font loading and image handling
in mind.

@ Related to this is the ability to run mkiv as a ser-
vice but that demands that we can reset the state of
LuaTEX and actually it might not be worth the trou-
ble at all given faster processors and disks. Also, it
might not save much runtime on larger jobs.

@ More interesting can be to continue experimenting
with isolating parts of ConTEXt in such a way that
one can construct a specialized subset of functional-
ity. Of course the main body of code will always be
loaded as one needs basic typesetting anyway.

Of course we keep improving existing mechanisms and
improve solutions using a mix of TEX and Lua, using
each language (and system) for what it can do best.

Notes
1. Similar methods exist for processing xml Vles.
2. This example is inspired by one of our projects where the
cleanup involves sanitizing (highly invalid) html data that is
embedded as a CDATA stream, a trick to prevent the xml Vle to
be invalid.
3. This application is not intentional but just a side eUect.

Hans Hagen
Pragma ADE, Hasselt
pragma (at) wxs dot nl

E78 MAPS 39 Jelle Huisman

E16 & DEtool
typesetting language data using ConTEXt

Abstract
This article describes two recent projects in which ConTEXt was used to typeset language
data. The goal of project E16 was to typeset the 16th edition of the Ethnologue, an en-
cyclopaedia of the languages of the world. The complexity of the data and the size of the
project made this an interesting test case for the use of TEX and ConTEXt. The Dictionary
Express tool (DEtool) is developed to typeset linguistic data in a dictionary layout. DEtool
(which is part of a suite of linguistic software) uses ConTEXt for the actual typesetting.

Introduction
Some background: SIL is an NGO dedicated to serve the world’s minority language
communities in a variety of language-related ways. Collecting all sorts of language
data is the basis of much of the work. This could be things like the number of speakers
of a particular language, relations between diUerent languages, literacy rates and bi-
and multilingualism. Much of this data ends up in a huge database, which in turn is
used as the source for publications like the Ethnologue.1 which is an encyclopaedia of
languages. It consists of four parts, starting with an introductory chapter explaining
the scope of the publication and 25 pages of ‘Statistical summaries’. Part 1 has 600
pages with language descriptions, describing all the 6909 languages of the world. Part
2 consists of 200 pages with language maps and Part 3 has of 400 pages of indexes, for
Language names, Language Codes and Country names.

Typesetting the Ethnologue
Data Wow and directory structure: All the data is stored in an Oracle database running
on a secure web server. The XML output is manipulated using XSLT to serve diUerent
‘views’. One output path leads to html (for the website http://www.ethnologue.com)
and another output path gives TEX-output of with the codes are deVned in ConTEXt.
Once the data is downloaded from the server, it is stored locally in the ‘data’ directory
of the typesetting system. There is also a ‘content’ directory containing small Vles that
\input the data Vles (and do some tricky things with catcodes.) All the content-Vles are
loaded using a ‘project’ Vle in the root directory. This (slightly complicated) process
allows for easy updating of the data and convenient testing of all the diUerent parts,
both separately and together. The macro deVnitions are all stored in a module.

Module
In good ConTEXt style all the code for this project is placed in a module. A ConTEXt
module starts with a header like this:

%D \module
%D [file=p-ethnologue,
%D version=2009.01.14
%D title=\CONTEXT\ User Module,
%D subtitle=Typesetting Ethnologue 16,
%D author=Jelle Huisman, SIL International,
%D date=\currentdate,
%D copyright=SIL International]
%C Copyright SIL International

E16 & DEtool: typesetting language data using ConTEXt EUROTEX 2009 E79

\writestatus{loading}{Context User Module Typesetting Ethnologue 16}
\unprotect
\startmodule[ethnologue]

All the macro definitions go here... and the module is closed with:

\stopmodule
\protect \endinput

With the command texexec --modu p-ethnologue.tex it is easy to make a pdf with
the module code, comments and even an index.

E16 code examples
A couple of code examples are presented here to give an impression of the project. This
is part of the standard page setup for the paper size and the setup of two basic layouts.

\definepapersize [ethnologue][width=179mm, height=255mm]

\startmode[book] % basic page layout for the book
\setuppapersize [ethnologue][letter]% paper size for book mode
\setuplayout[backspace=18mm, width=148mm, topspace=7mm, top=0mm,

header=6mm, footer=7mm, height=232mm]
\stopmode

\startmode[proofreading] % special layout for proofreading mode
\setuppapersize [letter][letter]% paper size for proofreading mode
\setuplayout[backspace=18mm, width=160mm, topspace=7mm, top=0mm,

header=16mm, footer=6mm, height=250mm]
\stopmode

Use of modes: proofreading vs. final output
To facilitate the proofreading a special proofreading ‘mode’ was deVned with wider
margins, as shown in the code example in the previous section and with a single col-
umn layout (not in this code example). The ‘modes’ mechanism is used to switch
between diUerent setups. This code:

%\enablemode[book]
\enablemode[proofreading]

is used in a ‘project setup’ Vle to switch between the proofreading mode (single col-
umn, bigger type) and the book mode showing the layout of the Vnal publication. One
other application of modes is the possible publication of separate extracts with e.g. the
language descriptions of only one country. This could be published using a Printing on
Demand process.

Language description
The biggest part of the publication is the section with the language descriptions. Each
language description consists of: a page reference (not printed), the language name,
the language code, a short language description and a couple of special ‘items’ like:
language class, dialects, use and writing system. This is an example of the raw data for
Belarusian:

\startLaDes{ % start of Language Description
\pagereference[bel-BY] % used for index
\startLN{Belarusan }\stopLN % LN: Language name
[bel] % ISO 639-3 code for this language
(Belarusian, Belorussian, Bielorussian, Byelorussian, White Russian,
White Ruthenian). 6,720,000 in Belarus (Johnstone and Mandryk 2001).
Population total all countries: 8,620,000. Ethnic population:
9,051,080. Also in Azerbaijan, Canada, Estonia, Kazakhstan,
Kyrgyzstan, Latvia, Lithuania, Moldova, Poland, Russian Federation

E80 MAPS 39 Jelle Huisman

194 Ethnologue 16 - date: February 13, 2009 - page: 194 194

194 E16 typesetting : XƎTEX + ConTEXt E16 module version = February 13, 2009 194

Ethnologue194 Africa: Senegal

Sine, Dyegueme (Gyegem), Niominka. The Niominka and
Serere-Sine dialects mutually inherently intelligible. Lg
Use: Official language. National language. Lg Dev: Literacy
rate in L1: Below 1%. Bible: 2008. Writing: Arabic script.
Latin script. Other: ‘Sereer’ is their name for themselves.
Traditional religion, Muslim, Christian. Map: 725:28.

Soninke [snk] (Marka, Maraka, Sarahole, Sarakole,
Sarangkolle, Sarawule, Serahule, Serahuli, Silabe,
Toubakai, Walpre). 250,000 in Senegal (2007 LeClerc).
North and south of Bakel along Senegal River. Bakel,
Ouaoundé, Moudéri, and Yaféra are principal towns.
Dialects: Azer (Adjer, Aser), Gadyaga. Lg Use: Official
language. National language. Also use French, Bambara
[bam], or Fula [fub]. Lg Dev: Literacy rate in L1: Below
1%. Other: The Soninke trace their origins back to the
Eastern dialect area of Mali (Kinbakka), whereas the
northeastern group in Senegal is part of the Western
group of Mali (Xenqenna). Thus, significant differences
exist between the dialects of the 2 geographical groups
of Soninke in Senegal. Muslim. See main entry under
Mali. Map: 725:29.

Wamey [cou] (Conhague, Coniagui, Koniagui, Konyagi,
Wamei). 18,400 in Senegal (2007), decreasing. Population
total all countries: 23,670. Southeast and central along
Guinea border, pockets, usually beside Pulaar [fuc]. Also
in Guinea. Class: Niger-Congo, Atlantic-Congo, Atlantic,
Northern, Eastern Senegal-Guinea, Tenda. Lg Use: Neutral
attitude. Also use Pulaar [fuc]. Lg Dev: Literacy rate in
L1: Below 1%. Writing: Latin script. Other: Konyagi is the
ethnic name. Agriculturalists; making wine, beer; weaving
bamboo mats. Traditional religion, Christian. Map: 725:30.

Wolof [wol] (Ouolof, Volof, Walaf, Waro-Waro, Yallof).
3,930,000 in Senegal (2006). Population total all countries:
3,976,500. West and central, Senegal River left bank
to Cape Vert. Also in France, Gambia, Guinea-Bissau,
Mali, Mauritania. Class: Niger-Congo, Atlantic-Congo,
Atlantic, Northern, Senegambian, Fula-Wolof, Wolof.
Dialects: Baol, Cayor, Dyolof (Djolof, Jolof), Lebou (Lebu),
Jander. Different from Wolof of Gambia [wof]. Lg
Use: Official language. National language. Language of
wider communication. Main African language of Senegal.
Predominantly urban. Also use French or Arabic. Lg Dev:
Literacy rate in L1: 10%. Literacy rate in L2: 30%. Radio
programs. Dictionary. Grammar. NT: 1988. Writing: Arabic
script, Ajami style. Latin script. Other: ‘Wolof’ is their
name for themselves. Muslim. Map: 725:32.

Xasonga [kao] (Kasonke, Kasso, Kasson, Kassonke,
Khasonke, Xaasonga, Xaasongaxango, Xasonke). 9,010 in
Senegal (2006). Lg Dev: Literacy rate in L1: Below 1%. Other:
Muslim. See main entry under Mali (Xaasongaxango).

Seychelles
Republic of Seychelles. 86,000. National or official languages:
English, French, Seselwa Creole French. Includes Aldabra,
Farquhar, Des Roches; 92 islands. Literacy rate: 62%–80%.
Information mainly from D. Bickerton 1988; J. Holm 1989.
Blind population: 150 (1982 WCE). The number of individual
languages listed for Seychelles is 3. Of those, all are living
languages.

English [eng]. 1,600 in Seychelles (1971 census). Lg Use:
Official language. Other: Principal language of the schools.
See main entry under United Kingdom.

French [fra]. 980 in Seychelles (1971 census). Lg Use:
Official language. Other: Spoken by French settler families,
‘grands blancs’. See main entry under France.

Seselwa Creole French [crs] (Creole, Ilois, Kreol,
Seychelles Creole French, Seychellois Creole). 72,700

(1998). Ethnic population: 72,700. Class: Creole, French
based. Dialects: Seychelles dialect reportedly used on
Chagos Islands. Structural differences with Morisyen
[mfe] are relatively minor. Low intelligibility with
Réunion Creole [rcf]. Lg Use: Official language since 1977.
All domains. Positive attitude. Lg Dev: Taught in primary
schools. Radio programs. Dictionary. Grammar. NT: 2000.
Writing: Latin script. Other: Fishermen. Christian.

Sierra Leone
Republic of Sierra Leone. 5,586,000. National or official
language: English. Literacy rate: 15%. Immigrant languages:
Greek (700), Yoruba (3,800). Also includes languages of
Lebanon, India, Pakistan, Liberia. Information mainly from
D. Dalby 1962; TISSL 1995. Blind population: 28,000 (1982
WCE). Deaf institutions: 5. The number of individual
languages listed for Sierra Leone is 25. Of those, 24 are
living languages and 1 is a second language without
mother-tongue speakers. See map on page 726.

Bassa [bsq]. 5,730 in Sierra Leone (2006). Freetown. Other:
Traditional religion. See main entry under Liberia.

Bom [bmf] (Bome, Bomo, Bum). 5,580 (2006), decreasing.
Along Bome River. Class: Niger-Congo, Atlantic-Congo,
Atlantic, Southern, Mel, Bullom-Kissi, Bullom, Northern.
Dialects: Lexical similarity: 66%–69% with Sherbro [bun]
dialects, 34% with Krim [krm]. Lg Use: Shifting to Mende
[men]. Other: Traditional religion.

Bullom So [buy] (Bolom, Bulem, Bullin, Bullun, Mandenyi,
Mandingi, Mmani, Northern Bullom). 8,350 in Sierra
Leone (2006). Coast from Guinea border to Sierra Leone
River. Also in Guinea. Class: Niger-Congo, Atlantic-Congo,
Atlantic, Southern, Mel, Bullom-Kissi, Bullom, Northern.
Dialects: Mmani, Kafu. Bom is closely related. Little
intelligibility with Sherbro, none with Krim. Lg Use:
Shifting to Themne [tem]. Lg Dev: Bible portions: 1816.
Writing: Latin script. Other: The people are intermarried
with the Temne and the Susu. Traditional religion. Map:
726:1.

English [eng]. Lg Use: Official language. Used in
administration, law, education, commerce. See main
entry under United Kingdom.

Gola [gol] (Gula). 8,000 in Sierra Leone (1989 TISLL). Along
the border and inland. Dialects: De (Deng), Managobla
(Gobla), Kongbaa, Kpo, Senje (Sene), Tee (Tege), Toldil
(Toodii). Lg Use: Shifting to Mende [men]. Other: Different
from Gola [mzm] of Nigeria (dialect of Mumuye) or Gola
[pbp] (Badyara) of Guinea-Bissau and Guinea. Muslim,
Christian. See main entry under Liberia. Map: 726:4.

Kisi, Southern [kss] (Gissi, Kisi, Kissien). 85,000 in Sierra
Leone (1995). Lg Dev: Literacy rate in L2: 3%. Other:
Different from Northern Kissi [kqs]. Traditional religion,
Muslim, Christian. See main entry under Liberia. Map:
726:13.

Kissi, Northern [kqs] (Gizi, Kisi, Kisie, Kissien). 40,000
in Sierra Leone (1991 LBT). Dialects: Liaro, Kama, Teng,
Tung. Lg Use: Also use Krio [kri] or Mende [men]. Other:
Traditional religion. See main entry under Guinea. Map:
726:11.

Klao [klu] (Klaoh, Klau, Kroo, Kru). 9,620 in Sierra
Leone (2006). Freetown. Originally from Liberia. Other:
Traditional religion. See main entry under Liberia.

Kono [kno] (Konnoh). 205,000 (2006). Northeast. Class:
Niger-Congo, Mande, Western, Central-Southwestern,
Central, Manding-Jogo, Manding-Vai, Vai-Kono. Dialects:
Northern Kono (Sando), Central Kono (Fiama, Gbane,
Gbane Kando, Gbense, Gorama Kono, Kamara, Lei,
Mafindo, Nimi Koro, Nimi Yama, Penguia, Soa, Tankoro,

Figure 1. Example of page with language descriptions

E16 & DEtool: typesetting language data using ConTEXt EUROTEX 2009 E81

(Europe), Tajikistan, Turkmenistan, Ukraine, United States, Uzbekistan.
\startLDitem{Class: }\stopLDitem % LDitem: Language description item
Indo-European, Slavic, East.
\startLDitem{Dialects: }\stopLDitem Northeast Belarusan (Polots,
Viteb-Mogilev), Southwest Belarusan (Grodnen-Baranovich,
Slutsko-Mozyr, Slutska-Mazyrski), Central Belarusan. Linguistically
between Russian and Ukrainian [ukr], with transitional dialects to both.
\startLDitem{Lg Use: }\stopLDitem National language.
\startLDitem{Lg Dev: }\stopLDitem Fully developed. Bible: 1973.
\startLDitem{Writing: }\stopLDitem Cyrillic script.
\startLDitem{Other: }\stopLDitem Christian, Muslim (Tatar). }
\stopLaDes % end of Language Description

The styles for the diUerent elements are deVned using start-stop setups. One example
is the style for the LDitem (Language DeVnition item) which was initially coded in
this way:

\definestartstop % Language Description Item Part 1 % deprecated code!
[LDitem]
[before={\switchtobodyfont[GentiumBookIt,\LDitemfontsize]},
after={\switchtobodyfont[Gentium,\bodyfontpartone]}]

Eventually bodyfont switches were replaced by proper ConTEXt-style typescripts, but
the idea remains the same: \definestartstop[something][code here] makes it pos-
sible to use the pair \startsomething and \stopsomething.

Dynamic running header
As the example of the page with language descriptions (Vgure 1) shows the Country
name is inserted in the header of the page, using the Vrst country on a left page and
the last country on the right page. The code used to do this is based on an example in
page-set.tex in the ConTEXt distribution.

\definemarking[headercountryname]
\setupheadertexts[\setups{show-headercountryname-marks}]
\startsetups show-headercountryname-first
\getmarking[headercountryname][1][first] % get first marking
\stopsetups
\startsetups show-headercountryname-last
\getmarking[headercountryname][2][last] % get last marking
\stopsetups
\setupheadertexts[]
\setupheadertexts

[\setups{text a}][]
[][\setups{text b}] % setup header text (left and right pages)

\startsetups[text a] % setup contents page a
\rlap{Ethnologue}
\hfill
{\pagenumber}
\hfill
\llap{\setups{show-headercountryname-last}}
\stopsetups
\startsetups[text b] % setup contents page b

\rlap{\setups{show-headercountryname-first}}
\hfill
\pagenumber
\hfill
\llap{Ethnologue}

\stopsetups

E82 MAPS 39 Jelle Huisman

885 Ethnologue 16 - date: February 13, 2009 - page: 885 885

885 E16 typesetting : XƎTEX + ConTEXt E16 module version = February 13, 2009 885

885

Language Name Index
This index lists every name that appears in Part I as
a primary or alternate name of a language or dialect.
The following abbreviations are used in the index
entries: alt. ‘alternate name for’, alt. dial. ‘alternate
dialect name for’, dial. ‘primary dialect name for’,
pej. alt. ‘pejorative alternate name for’, and pej.
alt. dial. ‘pejorative alternate dialect name for’. The
index entry gives the primary name for the language

with which the given name is associated, followed
by the unique three-letter language code in square
brackets. The numbers identify the pages on which
the language entries using the indexed name may
be found. If the list of page references includes the
entry in the primary country, it is listed first. The
entry for a primary name also lists page numbers for
the maps on which the language occurs.

A Fala de Xálima, alt. Fala [fax], 575
A Fala do Xãlima, alt. Fala [fax], 575
A Nden, alt. Abun [kgr], 427
’A Vo’, alt. dial. Awa [vwa], 335
’A vo’ loi, alt. dial. Awa [vwa], 335
A’a Sama, alt. dial. Sama, Southern

[ssb], 473
Aachterhoeks, alt. Achterhoeks [act],

563
Aage, alt. Esimbi [ags], 70, 171
Aaimasa, alt. dial. Kunama [kun], 121
Aal Murrah, alt. dial. Arabic, Najdi

Spoken [ars], 523
Aalan, alt. Allar [all], 366
Aalawa, dial. Ramoaaina [rai], 633
Aalawaa, alt. dial. Ramoaaina [rai],

633
Aaleira, alt. Laro [lro], 204
Aantantara, dial. Tairora, North [tbg],

637
A’ara, alt. Cheke Holo [mrn], 646
Aarai, alt. Aari [aiw], 121
Aari [aiw], 121, 699
Aariya [aay], 365
Aasá, alt. Aasáx [aas], 207
Aasáx [aas], 207, 731
Aatasaara, dial. Tairora, South

[omw], 637
AAVE, alt. dial. English [eng], 310
|Aaye, alt. dial. Shua [shg], 58
Aba, alt. Amba [utp], 645
alt. Shor [cjs], 522
dial. Tibetan [bod], 404

Abá, alt. Avá-Canoeiro [avv], 237
Abaangi, alt. dial. Gwamhi-Wuri

[bga], 173
Ababda, dial. Bedawiyet [bej], 121
Abaca, alt. dial. Ilongot [ilk], 511
Abacama, alt. Bacama [bcy], 165
Abacha, alt. Basa [bzw], 166
Abadani, dial. Farsi, Western [pes],

454
Abadhi, alt. Awadhi [awa], 484
Abadi [kbt], 600, 877
alt. Awadhi [awa], 367, 484
alt. Tsuvadi [tvd], 187

Abadzakh, alt. dial. Adyghe [ady], 567
Abadzeg, alt. dial. Adyghe [ady], 567

Abadzex, dial. Adyghe [ady], 567
Abaga [abg], 600, 871
Abai, dial. Putoh [put], 411
Abai Sungai [abf], 471, 811
Abak, dial. Anaang [anw], 165
Abaka, dial. Ilongot [ilk], 511
Abakan, alt. Kpan [kpk], 178
Abakan Tatar, alt. Khakas [kjh], 520,

345
Abakay Spanish, alt. dial. Chavacano

[cbk], 509
Abaknon, alt. Inabaknon [abx], 511
Abaknon Sama, alt. Inabaknon [abx],

511
Abakoum, alt. Kwakum [kwu], 74
Abakpa, alt. dial. Ejagham [etu], 170,

70
Abakum, alt. Kwakum [kwu], 74
Abakwariga, alt. Hausa [hau], 173
Abaletti, dial. Yele [yle], 644
Abam, dial. Wipi [gdr], 642
Abancay, dial. Quechua, Eastern

Apurímac [qve], 300
Abane, alt. Baniva [bvv], 320
Abangba, alt. Bangba [bbe], 106
Abanliku, alt. Obanliku [bzy], 183
Abanyai, alt. dial. Kalanga [kck], 227
Abanyom [abm], 164, 724
Abanyum, alt. Abanyom [abm], 164
Abar [mij], 65, 685
Abarambo, alt. Barambu [brm], 106
Abasakur, alt. Pal [abw], 632
Abathwa, alt. ||Xegwi [xeg], 198
Abatonga, alt. dial. Ndau [ndc], 228
Abatsa, alt. Basa [bzw], 166
Abau [aau], 601, 866
Abaw, alt. Bankon [abb], 67
Abawa, dial. Gupa-Abawa [gpa], 173
Abayongo, dial. Agwagwune [yay],

164
Abaza [abq], 567, 533, 849
Abazin, alt. Abaza [abq], 567, 533
Abazintsy, alt. Abaza [abq], 567, 533
Abbé, alt. Abé [aba], 100
Abbey, alt. Abé [aba], 100
Abbey-Ve, dial. Abé [aba], 100
Abbruzzesi, dial. Romani, Sinte

[rmo], 572

’Abd Al-Kuri, dial. Soqotri [sqt], 543
Abdal, alt. Ainu [aib], 335
Abdedal, alt. Gagadu [gbu], 584
Abe, dial. Anyin [any], 100
Abé [aba], 100, 692
Abedju-Azaki, dial. Lugbara [lgg],

112
Àbéélé, alt. Beele [bxq], 166
Abefang, alt. dial. Befang [bby], 68
Abelam, alt. Ambulas [abt], 602
Abellen Ayta, see Ayta, Abellen [abp],

507
Abenaki, alt. Abnaki, Eastern [aaq],

306
alt. Abnaki, Western [abe], 247

Abenaqui, alt. Abnaki, Western [abe],
247

Abendago, alt. Yali, Pass Valley
[yac], 441

Abeng, dial. Garo [grt], 329
A’beng, dial. Garo [grt], 375
A’bengya, alt. dial. Garo [grt], 375
Abenlen, alt. Ayta, Abellen [abp], 507
Aberu, dial. Mangbetu [mdj], 113
Abewa, alt. Asu [aum], 165
Abgue, dial. Birgit [btf], 88
Abhor, alt. Adi [adi], 365
Abi, alt. Abé [aba], 100
Abia, alt. Aneme Wake [aby], 602
Abiddul, alt. Gagadu [gbu], 584
Abidji [abi], 100, 692
Abie, alt. Aneme Wake [aby], 602
Abiem, dial. Dinka, Southwestern

[dik], 201
Abigar, alt. dial. Nuer [nus], 126
dial. Nuer [nus], 205

Abigira, alt. Abishira [ash], 295
Abiji, alt. Abidji [abi], 100
Abiliang, dial. Dinka, Northeastern

[dip], 201
Abini, dial. Agwagwune [yay], 164
Abinomn [bsa], 427, 797
Abinsi, alt. Wannu [jub], 188
Abipon [axb], 231
Abiquira, alt. Abishira [ash], 295
Abira, alt. E’ñapa Woromaipu [pbh],

320
Abiri, alt. Mararit [mgb], 92

Figure 2. Start of the language name index

E16 & DEtool: typesetting language data using ConTEXt EUROTEX 2009 E83

Index
Since all the data for this publication comes from a database it was easy to compile
a list of index items from that data. Page numbers were resolved using ConTEXt’s
internal referencing system. The data contains references using three letter ISO code
for language and a two letter country code like this:

\pagereference[bel-BY] % ISO code - country code

In the Vle with the index data this reference is linked to an index item:

Belarusan [bel], \at[bel-BY]

The code [bel-BY] is automatically replaced by the right page number(s) producing
the correct entry in the index:

Belarusan [bel], 32, 224

Since the language name index (the biggest index) contains more than 100.000 ref-
erences it can be imagined that typesetting this publication in one run was pushing the
limits of TEX. This is the Vrst time that ConTEXt is used to typesetting this publication.
The previous version was produced using Ventura but when that programwas replaced
by InDesign there were some questions about the way in which InDesign works with
the automatically generated data. TEX seemed to be the right tool to use for this project
and it sparked renewed interest in the use of TEX for other data-intensive publications
like dictionaries.

Exploring language
Counting languages is not the only way to collect language data: many linguists move
into a language group and take a closer look at the diUerent parts of the actual lan-
guages. Some linguists focus on the sounds of a language, others analyse the sentence
structure or the way in which language is used in speciVc communication processes.
The collected data is stored in a special database program called FieldWorks. Field-
Works runs on Windows only (though a Linux port is work in progress) and it is a free
download from the SIL website2. FieldWorks is actually a suite of programs consisting
of Data Notebook, Language Explorer and WorldPad. FieldWorks Data Notebook is
used for anthropological observations. FieldWorks WorldPad is a ‘world ready’ text
editor with some special script support (including Graphite3). FieldWorks Language
Explorer (FLEx) is used to store all sorts of language related data. It is basically a
complex database program with a couple of linguistics related tools. FLEx contains a
lexicon for storing data related to words, meaning(s), grammatical information about
words and translations in other languages. Another part of FLEx is the interlinear tool
which makes it possible to take a text in one language and to give a ‘word for word
translation’ in another language, for example as a way to discover grammatical struc-
tures. FLEx comes with a grammar tool to facilitate the analysis and description of the
grammar of a language. Since all language data is stored in the same database there
are some interesting possibilities to integrate the language data and analysis tools.

Dictionaries
Once a Veld linguist has collected a certain amount of data he can start to think about
the production of a word list or a real dictionary. To facilitate this a team of program-
mers has made tool called ‘Dictionary Express’. This tool allows for the easy produc-
tion of dictionaries based on data available in the FLEx database. The user of FLEx gets
a menu option ‘Print dictionary’ and is presented with small window to enter some
layout options. Behind the scenes one of two output paths is used: one is based on the
use of an OpenOXce document template and another one uses X ETEX and ConTEXt to
typeset the dictionary. X ETEX was chosen because of the requirement to facilitate the

E84 MAPS 39 Jelle Huisman

Figure 3. FieldWorks Language Explorer main window

use of the Graphite smart font technology used for the correct rendering of complex
non-roman script fonts in use in some parts of the world (see footnote 2). The use of
X ETEX does of course mean that we use ConTEXt MkII.

All data is available in an XML format and converted (using a purpose built con-
verter) to a simple TEX-tagged format. A typical dictionary entry looks like this:

\Bentry
\Bhw{abel}\Ehw
\marking[guidewords]{abel}
\Bpr{a.bɛl̪}\Epr
\Bps{noun(al)}\Eps
\Blt{Eng}\Elt
\Bde{line, row}\Ede
\Blt{Pdg}\Elt
\Bde{lain}\Ede
\Bps{noun(al)}\Eps
\Blt{Eng}\Elt
\Bde{pole, the lowest of the three horizontal poles to which a fence is
tied and which form the main horizontal framework for the fence. This
is the biggest of the three}\Ede
\Eentry

The tags used in this data Vle include:

@ headword (hw): this is the word that this particular entry is about,
@ pronunciation (pr): the proper pronunciation of the word written using the Inter-

national Phonetic Alphabet (IPA),
@ part of speech (ps): the grammatical function of the word,
@ language tag (lt): the language of the deVnition or example,
@ deVnition (de): meaning of the headword,
@ example (ex): example of the word used in a sentence.
@ \marking[guidewords]{}: is used to put the correct guideword at the top of each

page. (The code used here is inspired by the code used to put country name in the
headers in the Ethnologue project.)

Currently most of the required features are implemented. This includes: font selection
(including the use of Graphite fonts), basic dictionary layout and picture support. Some
of these features are strait-forward and easy to implement. Other features such as
picture support required more work e.g. page wide pictures keep Woating to the next

E16 & DEtool: typesetting language data using ConTEXt EUROTEX 2009 E85

! "#$%&%'

("
!")"* $%+ ,%& -./0+$1% 2"34/3 "##/# +1 51%016

%"%+ 7%"8 913#0 :#& #$0;/8" $ 2"4$2 "04$2
<." #$%"&'"(,%& =">/ ?1. 512/@ <.")"*
+,-$./0"1"&'"(,%& A$# ?1. 2"?B/ 0//
(B3"C"2@

"')"* D ,%& E$30+ ;/301% ;8.3"8 2"34/3 ;3/6
7F/# +1 >/3B0 0+3/00/# 1% +C/ 730+ 0?88"B8/ 1G
+C/ 311+ $% 730+ ;/301% #."8H +3$"8 "%# ;8.3"8
G1320I J+ $0 1G+/% %1+ 2"34/# 1% +C/ ;8.3"8
/F58.0$>/ .%8/00 012/+C$%& /80/ $%+/3>/%/0
B/+9//% +C/ ;31%1.% C/ "%# +C/ >/3B <." 2,
34 "%51 64 /$ "7"1 648 98 1"& 0$: ,%& K/
"3/ %1+ "B8/ +1 C$#/ $+ G312 ?1. <." 29- "8"
3,;" "<"+ 6"1" : ,%& L/+M0 &1 "%# G18819 2?
21+C/3M0 +3"540 <." .-4 "-4* 74/ -5* "%,7
3$8$,%& K/ +91 9/%+ +1 05C118 $% 1.3 19%
8"%&."&/

"/")N"IOB"* %1.%P"8Q ,%& 51BH 513/H +C/ 5/%+3"8
0/5+$1% 1G " 51B 1G 513% 13 1G ;"%#"%.0 G3.$+
"G+/3 +C/ 1.+/3 0//#0 13 4/3%/80 "3/ 3/21>/#
:#& B.% B$81%& 41% 1 2"3$+" <." ./" 8,==$;
-5* 3">5& "%5 ;,==5 ,%& RC/3/ $0 "% $%%/3
513/ $%0$#/ " 51B 1G 513% <." ?,351 <"+,,
=,7,<$ "/" %" ,%& RC/? 3/21>/# +C/ G3.$+
1G +C/ ;"%#"%.0 "%# +C3/9 +C/ $%%/3 513/
"9"?I

"/,-)"INOBS8 T* %1.%P"8Q ,%& 8$%/H 319 :#& 8"$%
%1.%P"8Q ,%& ;18/H +C/ 819/0+ 1G +C/ +C3//
C13$U1%+"8 ;18/0 +1 9C$5C " G/%5/ $0 +$/# "%#
9C$5C G132 +C/ 2"$% C13$U1%+"8 G3"2/9134
G13 +C/ G/%5/I RC$0 $0 +C/ B$&&/0+ 1G +C/ +C3//
:#& 0+$4681%&;/8" #$9"$ 1 2"2B. 18 $?.0$2
B$81%& ;"0$2 B"%$0 $ &1 ;"0 81%& /%

"/,-@"/,-)"INOBS8 T "INOBS8 T* V5 ,%& 8$%/0H 3190
:#& 8"$%

"/,3)"INOBS+WX* %1.%P"8Q ,%& C">$%& " Y"+ +"$86
"0 1G //80H +"#;18/0H 5"+70C :#& 0+3/+;/8" +/86
180/2 +/8 B$81%& 2"8/1H ;$0H 0"2+$%& <." A,='
=B/ 0"* /$- 0"/4 0"* "/,3 ,%& ,/80 "3/ "B8/
+1 58$2B 9"+/3G"880 B? .0$%& +C/$3 +"$80 <."

),+56 "/,3 ;,;BB %" =,6"1" -53 8,&"
0"* ,%& R"#;18/0M +"$80 G"88 1Z "%# +C/? &319
8/&0 "%# C"%#0

"/9/")"INOB$IOB"* %1.%P"8Q ,%& ?"2 0;/5$/0
:#& ?"2

"/4)"INOB.* %1.%P"8Q ,%& 8"3&/ B319% Y?$%&
B//+8/ :#& 4"$% B$%"+"%& /2 $ 0">/ ;8"$ 81%&
%"$+

"/41,>)"INOB.[I\4* %1.%P"8Q ,%& /#$B8/
9$8# 0.&"35"%/6]"55C"3.2 /#.8/^ +C$0 $0 +C/
&/%/3$5 +/32H62"%? #$Z/3/%+ >"3$/+$/0 "3/
&319% :#& 18 ;$+;$+ B$81%& 4"$4"$

"/448=)"INOB._`* %1.%P"8Q ,%& (Y"+ 0C//+
.0/# "0 " 3.BB$0C 5"33$/3I RC/? "3/ .0."88?
.0/# $% ;"$30 "%# "3/ 2"#/ G312 "%? 0.$+"B8/
2"+/3$"8 0.5C "0 +C/ 0"&1 ;"82 +3.%4H +C/
0C/"+C 1G " B"%"%" ;"82H 13 $% 213/ 3/5/%+
+$2/0 G312 " 51.;8/ 1G ;$/5/0 1G Y"+ $31% 13
;8?911#I :#& ;"%&"8 B$81%& 0"40"4 18 2/3$
0">/ 4$0$2 B$81%& B.%&$2 ;$;$" 81%& /%I

"7996)"INa#$_b* ;31; ,%& (%&"%06;/1;8/ 1G
+C/ (%&"% G"2$8? 1G 8"%&."&/0H G132/38? 3/6
G/33/# +1 "0 +C/ c.4.4.4. ;/1;8/ :#& 2"%6
2/3$ K"+.+ $%"; $ &1 81%& (0$4$

"798=)"INa#$`* !Q "#d ,%& 81%&H +"88 :#& !"#$%&!'(
!"#$)& <.")"-41 3,%4 "8BB 0"* "==93 "7'
98=: ,%& RC/ 2"% +$/# +C/ #1& .; 9$+C " 81%&
31;/I <." C"/$ 3" 8"8$0 743D &$ "798=D
5= %9* %51 64E ,%& KC/+C/3 J 0;/"4 B3$/Y?
13 "+ 8/%&+CH $+ #1/0%M+ 2"++/3I <." A$- <443
=,3,%" "798= 05<: ,%& RC/ 9"+/3 C"# #3$/#
.; "%# J 9/%+ " >/3? 81%& 9"?I eQ (#>
,%& G"3H #$0+"%+ :#& !"#$)& <." 2, 8"%" 8%$+
"798= 05<: ,%& K/ "3/ &1$%& +1 " >/3? #$06
+"%+ ;8"5/I <." ABB* %4 <9 6"0, 7,8,044>
0"* *,74 3$8$ &,7,8"0, "798= <,>": ,%&

(C/3# 1G ;$&0 9/3/ 311+$%& 1% +C$0 21.%+"$%
"%# +C/? 9/3/ 0+"%#$%& "+ " 8$++8/ #$0+"%5/I
fQ "#d ,%& +"88

"798=8$)"INa#$`\%/* (#> ,%& G"3 "9"?H "+ "
#$0+"%5/ :#& 81%&9/ +3. <." FG,<"1 158+
8" "798=8$,%& g1>/ 9/88 B"54hG"3 "9"? <."

"#$%&0/i' e

5";+$1%

A$- <443 =,%" "798=8$ 05<: ,%& RC/ 0+3/"2
9"0 #3$/# .; "%# P01Q C/ 9/%+ >/3? G"3I

"798=3,*$)"INa#$`I+WX\I-/* "#d ,%& >/3? 81%&
13 +"88 :#& 81%&;/8" +3. (#> ,%& >/3? G"3H G"3
"9"?H #$0+"%+

"$8)N"/%* %1.%P"8Q ,%& $31% :#& "$% <." ?,8,0'
9;,> >"; =,7$= "$8 -53 8+"" ;98: ,%&

RC/? 9"0C/# +C/ 5.; "%# +C/ $31% 0".5/;"%
"%# />/3?+C$%& /80/I <." ?,6"841 "$8 "1$
;,<,3 ==$098 8,G"H 8,/$ *,-,8"69: ,%&

RC/? 913/ " Y"+ 0C//+ 1G $31% 51>/3$%& +C/$3
5C/0+0 8$4/ " 0C$/8#I %1.%P"8Q ,%& 5319B"3

"=")N"Ijk"* (#> ,%& +C/3/ P%/"3 C/"3/3Q :#&

81%& C"; <." .="E C,%"& 64 158+ ,%& RC/3/
$+ $0l J+M0 512$%& +1 ?1. <." C,%B> "="
5& +,8"& 98 ,%& J+M0 &1$%& +19"3#0 ?1.H 01
512/ "%# &/+ $+I

"=,39;)N"Ij&SI+WX$;* %1.%P"8Q ,%& C"%#4/35C$/G
:#& "%4"0$;

"=,<)N"Ij&S+* %1.%P"8Q ,%& "&"+/ :#& 9"%;/8"

4"$% 0+1%
"=9)N"Ijk$* (#> ,%& C/3/ P%/"3 0;/"4/3Q :#&

/2 C$" <." ABB* 8,==$; -5* "=9 -5& 6,%"
&,%" ,%& RC/ ;$& 9"0 8?$%& C/3/ "%# $+ 3"%
"9"? <." I" 8"75 -5* "=9 ,%& J 8$>/ C/3/ "#d
,%& +C$0 :#& /2 C$"

"=4)N"Ijk.* (#> ,%& 1>/3 +C/3/H #$0+"%+ G312
B1+C 0;/"4/3 "%# C/"3/3 :#& 81%& C"; <."

.=4E J58+ /$3 ,%& m>/3 +C/3/l J+M0 &1$%&
+1 G"88l <." #,8" "=4 ,%& n1 1>/3 +C/3/l

"+,)N"IjoS* %1.%P"8Q ,%& +3// 9$+C 02"88 ?/8819
B/33$/0H +C/ 0//#0 1G 9C$5C "3/ 5114/# "%#
/"+/% :#& #$9"$ B$81%& 4"$4"$

"+,,)"INjoS_* %1.%P"8Q ,%& >"3$/+? 1G +C/ +C$54
0+31%& B"2B11 :#& 2"2B.

"+,-,8=)"INjoS8 TI\`* ,%& >"3$/+? 1G ;8"%+ .0/#
G13 4$88$%& 515431"5C/0 :#& 9"%;/8" 4"$% &3"0
B$81%& 4$8$2 414310

"+5)N"Ijo1* %1.%P"8Q ,%& +C/ 5/%+3"8 C13$U1%6
+"8 G134/# 0+3.+ 1G " 0%"3/H +C/ ;"3+ "&"$%0+

Figure 4. Sample double column dictionary layout

page. Since it is usually a good idea to separate form and content most of the layout
related settings are not stored in the data Vle itself but in a separate settings Vle which
is loaded at the start of the typesetting process. Examples of settings in this Vle include
the fonts and the use of a double column layout. Default settings are used unless the
user has speciVed diUerent settings using the small layout options window at the start
of the process.

Currently the test version of this ConTEXt-based system works with a stand alone
ConTEXt-installation, using the ‘minimals’ distribution. One of the remaining chal-
lenges is to make a light weight, easy to install version of ConTEXt which can be
included with the FieldWorks software. Since the main script used by ConTEXt Mark
II is a Ruby script this requires dealing with (removing) the Ruby dependency. It is
hoped that stripping the TEX-tree of all unused fonts and code will help too to reduce
the space used by this tool. This is currently work in progress.

Footnotes
1. Lewis, M. Paul (ed.), Ethnologue: Languages of the World, Sixteenth edition. Dallas, Tex.: SIL
International (2009)
2. http://www.sil.org/computing/fieldworks/
3. http://scripts.sil.org/RenderingGraphite

Jelle Huisman
SIL International
Horsleys Green
High Wycombe
United Kingdom
HP14 3XL
jelle_huisman (at) sil (dot) org

E86 MAPS 39 Siep Kroonenberg

A network TEX Live installation
at the University of Groningen
Abstract
This article describes a network TEX Live installation for
Windows users and the context in which it operates.

Keywords
TEX Live, MiKTEX, installers, editors, roaming profiles,
Windows Vista

Our university has a lan-based TEX installation for Win-
dows users. The current edition is based on TEX Live.
After some historical notes, I discuss the computing envi-
ronment at the university, the new TEX Live-based instal-
lation and issues with Windows Vista.

This article can be considered an update of a previ-
ous article1 about the MiKTEX-based installation that I
maintained for the university’s economics department.

Prehistory: 4TEX
Our department has had a network TEX installation for
dos/Windows users since the early nineties. It started out
as a simple 4dos menu for running TEX and associated
programs. Later, it evolved into 4TEX, and was also made
available to members of the Dutch-speaking TEX users
group (the ntg) and others; see Vgure 1.

The Vnal version was a Windows program, based on
the same core as TEX Live. It included a vast array of
utilities, some of them third-party or shareware.

A MiKTEX-based installation
When I took over in 2003, 4TEX was no longer being
developed. We chose to make a fresh start, based on what
was then available, and to limit ourselves to free software.

Modern LATEX editors such as TEXnicCenter can take
care of running BibTEX and MakeIndex, include spell
checkers, and oUer help in entering LATEX macros and in
debugging. For many users, the editor is all they see from
the TEX installation.

The good integration of MiKTEX as the TEX implemen-
tation and TEXnicCenter as editor and frontend was hard
to argue with, so that was what we used.

For graphics support, there was a script to install
wmf2eps and its PostScript printer driver which did the

Figure 1. 4TEX main menu

real work in the background. For anything else, users had
to look elsewhere.

Evolution
Installer. The original installer was a combined batch-
Vle/Perl script, which also used some registry patches.
This was replaced with a gui installer based on nsis, an
open source installation system. Where possible, Vles and
registry settings were generated during installation rather
than copied from a prototype installation.

Updated versions. The editor and MiKTEX have been
updated several times. This included a major change

Figure 2. TeXnicCenter as frontend to MiKTEX

A network TEX Live installation EUROTEX 2009 E87

Figure 3. The nal application menu

in conVguration strategy in MiKTEX from version 2.4
to version 2.5. I understand that there are again major
changes with MiKTEX 2.8.

CD edition. A companion cd was created. At Vrst this
contained a set of downloaded installers with directions
for use. As a result, I was asked time and again to install
TEX on people’s laptops. Therefore, a later version got a
modiVed version of the network installer. Nowadays, the
cd is oUered as an iso image in the root of the installation.

Expanded user base. The user base for our MiKTEX was
expanded Vrst with students, then with other depart-
ments.

Standardization. Around the time of the second MiKTEX
edition, we also moved to standardized desktops and
roaming proVles; see the next section.

Graphics support. wmf2eps was dropped, in part because
it was shareware and I didn’t want to deal with licensing
issues for the expanded user base, in part for technical
reasons. In its place, I created epspdf to take care of
converting and cropping arbitrary PostScript (print)Vles.

The university network
For some time, we have had a centrally managed
university-wide Novell network. Software and licenses
are also centrally managed. There is a standardized Win-
dows xp workstation. Standard software and additional
software is installed from the network and where possi-
ble also run from the network. nal (Novell Application
Launcher) is the network component which takes care of
this.

Figure 3 displays the nal menu as seen from my com-
puter at the university (the TEX Live entry merely points
to the installation script).

StaU members can and do install software of their own
on their local system if they want to. Students do not

have this luxury. Some staU members download and
install their own TEX.

The standard workstation is conVgured with roaming
proVles, i.e. user conVguration is mostly copied to the
network on logout and copied back to the local system
on login. Users see the same desktop on any client com-
puter on the net, of course excepting software which staU
members may have installed locally.

Roaming proVle conVguration should involve nothing
local, unless it is copied to and from the network as part of
the user proVle. It should not require admin rights either.
This is especially important for classroom computers and
for students.

TEX Live
In 2008 I got involved in the TEX Live project. I mostly
worked onWindows support, keeping an eye on the needs
of our university installation.

I have done only a little work on the 2009 edition.
However, other team members now also have Windows
virtual machines for testing, and we have been joined by
a real Windows user, Tomasz Trzeciak. He proved to us
that dos batchVles aren’t quite as lame as we thought
they were.

Compared to MiKTEX 2.5, TEX Live is a lot simpler to
turn into a network installation:2 in good Unix tradition,
TEX Live uses environment variables and plain text Vles
for conVguration.

Relocatable. An important function of conVguration is
telling programs where they can Vnd the Vles they need.
Normally, TEX Live puts only relative paths in the conVg-
uration Vles. Programs can combine these relative paths
with their own location to determine absolute paths. With
this strategy, conVguration Vles can stay the same if the
installation as a whole is transferred to another place.

Batteries included. TEX Live contains copies of Perl and
Ghostscript for Windows. This puts Windows on a more
equal footing with Unix/Linux with regard to all the
scripted utilities that are part of a typical TEX installation.

Both the included Ghostscript and the included Perl
are hidden, i.e. TEX Live knows that they are there, but
the rest of the system doesn’t. They are not on the search
path, and there are no environment variables or registry
settings created for them. Therefore, they shouldn’t inter-
fere with pre-installed copies. The only disadvantage is
the disk space they take up. But this is hardly signiVcant
with today’s hard disk sizes.

Creating the installation
I emulate the university networking setup by setting up a
Samba server on my Linux machine. Its clients are virtual

E88 MAPS 39 Siep Kroonenberg

machines.
Samba has been set up for roaming proVles. There is

a share for the proVles, an X:-share for home directories
and a Z:-share with applications, in exactly the same
layout as the university.

I install TEX Live into the right position on the Z:-share
by running the installer on my own Linux system. I select
binaries for both Linux and Windows.

I switch between this and my regular installation sim-
ply by changing environment variables, for which I have
a small shell function. This lets me do much testing and
all maintenance from Linux. I explained already that
conVguration Vles don’t depend on the location of the
installation. So it doesn’t matter that, seen from Linux,
the installation is in a totally diUerent place than it is as
seen from Windows.

I populate the texmf-local directory tree with the uni-
versity house style and some legacy packages. It was
almost a straight copy of the corresponding local tree
from the previous MiKTEX-based installation. For stu-
dents, there is no need for a local tree.

The 2009 installer
The network installer doesn’t have to do much: there
are hardly any options, it doesn’t have to download and
install packages, it just has to add TEX Live to the search
path, create some shortcuts, register an uninstaller and
optionally create some Vle associations.

For most of this, it can use the library functions of the
installer and the TEX Live Manager, both of which are
written in Perl.

The following code adds TEX Live to the search path
and creates some menu shortcuts:

#!/usr/bin/env perl
BEGIN {

require "tlmgr.pl";
}

Only make user-level changes even if admin
$opts{’w32mode’} = ’user’;

Note. The action_... functions read
their arguments from @ARGV.

Add TeX Live to path
unshift @ARGV, ’add’;
action_path();

create some shortcuts
unshift @ARGV, ’install’, ’shortcut’,
’dviout.win32’, ’texworks’, ’texlive-en’,
’tlpsv.win32’;

action_postaction();

File associations can be done similarly. A corresponding
uninstaller script:

BEGIN {
require "tlmgr.pl";

}
$opts{’w32mode’} = ’user’;

remove shortcuts
unshift @ARGV, ’remove’, ’shortcut’,
’dviout.win32’, ’texworks’, ’texlive-en’,
’tlpsv.win32’;

action_postaction();

Remove TeX Live from path
unshift @ARGV, ’remove’;
action_path();

Registering and unregistering the uninstaller. However,
it is a bit more complicated to register one’s custom unin-
staller. The TEX Live modules in tlpkg/TeXLive, and the
modules they load, contain everything needed, but the
interface is comparatively low-level. Here is the code, for
what it is worth:

don’t need to re-require modules but
do need to re-import names
Win32::TieRegistry->import(qw($Registry));
$Registry->Delimiter(’/’);
$Registry->ArrayValues(0);
$Registry->FixSzNulls(1);

register uninstaller. Failure not fatal.
my $Master_bsl = $Master;
$Master_bsl =~ s,/,\\,g;

my $rootkey = $Registry -> Open("CUser",
{Access =>

Win32::TieRegistry::KEY_ALL_ACCESS()});
my $k;
if ($rootkey) {
$k = $rootkey->CreateKey(
"software/microsoft/windows/" .
"currentversion/uninstall/OurTeXLive/");

if ($k) {
$k->{"/DisplayName"} = "OurTeXLive 2009";
$k->{"/UninstallString"} =
"\"$Master_bsl\\w32unclient.bat\"";

$k->{’/DisplayVersion’} = "2009";
$k->{’/URLInfoAbout’} =
"http://ourwebsite.edu/ourtexlive";

}
}

A network TEX Live installation EUROTEX 2009 E89

warn "Failed to register uninstaller\n"
unless $k;

and for unregistering the uninstaller:

my $rootkey = $Registry -> Open("CUser",
{Access =>

Win32::TieRegistry::KEY_ALL_ACCESS()});
if ($rootkey) { # otherwise fail silently
my $k = $rootkey->Open(
"software/microsoft/windows/" .
"currentversion/uninstall/");

TeXLive::TLWinGoo::reg_delete_recurse($k,
’OurTexLive/’) if $k;

}

Prototype installer scripts are available at http://tug.
org/texlive/w32client.html.

ZENWorks. Novell has a tool zenworks for repackaging
applications for nal. It tracks changes in the registry
and the Vlesystem during installation. The zen-generated
installer of the repackaged application duplicates those
changes. However, for me it was more practical to use a
Perl script, and I am grateful to the ict people that they
let me.

Directory layout
We assume the standard TEX Live directory layout, with
texmf-local one level higher than the other trees:

parent 2009

bin win32

texmf

texmf-dist

texmf-config

texmf-var

tlpkg

texmf-local

It is possible to choose another layout, e.g. without the
year level, but then the components of TEX Live need a
bit more help to Vnd their support Vles.

Batch wrappers
We also need a wrapper batchVle to make sure that the
Perl from TEX Live is used rather than a locally installed
Perl, and to take care that tlmgr.pl, the TEX Live Man-
ager Perl script, is found. This Vle is used as a library
by our custom installer. Below is a bare-bones wrapper
batchVle; in the standard TEX Live we use much more
involved wrappers, with various safeguards.3

set this=%~dp0
rem Use TL Perl

Figure 4. TeXworks for Windows is included in TEX Live

path %this%tlpkg\tlperl\bin;%this%bin\win32;
%path%

rem (one line)
set PERL5LIB=%this%tlpkg\tlperl\lib;

%this%tlpkg;%this%texmf\scripts\texlive
rem (one line)

rem Start Perl script of the same name
perl "%~dpn0" %*
rem Give user opportunity to scan output msgs
pause

Note the Vrst line, where the batchVle Vnds its own di-
rectory: set this=%~dp0. This syntax has been available
since Windows nt.

The w32client and w32unclient scripts assume that
they are in the root of the installation, i.e. in <par-
ent>/2009. However, this is easy to change.

Getting TEX Live on the network
The Vrst step was asking the ict department for a direc-
tory to install into, preferably with write access for me,
so that I can do maintenance without having to involve
ict every time.

The next step was copying everything to that direc-
tory. For transport, I nowadays make a giant zip of the
installation and put it on a usb stick.

Finally, the installer is integrated into the Novell nal
menu; see Vgure 3 on page 87. This is done by ict staU.

The installer places the TEX Live menu itself under
Start / Programs, just as the native installer does.

For maintenance, I used to do small changes manually
and do larger changes by wholesale replacement. For the
future, rsync looks like a better way.

E90 MAPS 39 Siep Kroonenberg

Additional software
TEX Live by itself is pretty complete. For Windows, it
includes the TEXworks cross-platform editor (Vgure 4),
and the ps_View PostScript viewer, which can also read
pdf. As mentioned earlier, it also contains private copies
of Unix mainstays such as Perl and Ghostscript that many
TEX Live components depend upon.

Nevertheless, some additions would be desirable: an-
other editor besides TEXworks, more graphics support,
maybe a bibliography editor.

But there are requirements for such add-ons:

@ Free (as in beer)
@ Per-user conVguration
@ Usable for non-geeks

Several programs looked interesting, but didn’t meet these
requirements or had other problems. They include alter-
native LATEX editors TEXmaker and WinShell, bibliogra-
phy editors JabRef (Java-based) and BibEdt, and a couple
of draw programs, ipe and TpX. So I followed the example
of previous TEX Live dvds and put installers for them in
a support subdirectory. Frankly, I don’t know whether
anybody has made use of these installers.

Editor. For 2008, I decided to stick with TEXnicCenter as
editor. I wrote some fairly elaborate code to conVgure
it for TEX Live, since the automatic conVguration didn’t
work as nicely for TEX Live as it did for MiKTEX. I also
looked at TEXmaker. It would have been much easier to
conVgure, but at that time it still lacked some important
features.

For the 2009 release I’ll keep TEXnicCenter, if only
because many users dislike change, but I’ll also include
TEXworks, which is already part of standard TEX Live.

Documentation. The TEX Live menu contains various
shortcuts to manuals, such as the uk faq and the ‘not
so short introduction’. There are also links to the ctan
catalogue and to my own web page for this installation,
http://tex.aanhet.net/miktex/ (!).

Vista and Windows 7
Strictly speaking, this topic doesn’t belong here: the net-
work installation only targets xp machines. However, for
the standard TEX Live we had to make sure it would work
properly with Vista and Windows 7. Testing this, we ran
into some interesting problems.

UAC. Vista introduced User Account Control, or uac in
short. This means, among other things, that only admin-
istrators are allowed to install software under Program
Files, and only administrators are allowed to change the
more important system settings in the registry.

A new slightly annoying twist is that even administra-
tors don’t have these privileges automatically. To start
a program with admin privileges, you can right-click
the shortcut, which usually gives you an option ‘Run as
administrator’. An administrator has to conVrm his inten-
tions, a non-administrator has to provide administrator
credentials at this point.

Virtualization. But there is another, more insidious twist:
Vista/Win7 may guess that a program needs administra-
tive privileges, e.g. because it has ‘install’ or ‘setup’ in
its name. If such a program wasn’t started with admin-
istrative privileges, Vista may fake them. In particular,
attempts to write to Program Files might result in writ-
ings to user\appdata\local\virtualstore. For registry
access, similar virtualization might be applied.4

Installing TEX Live with real admin privileges and
adding packages with faked admin privileges is not
healthy for a TEX Live installation.

This compatibility mode can be avoided by the addi-
tion of a manifest which is a bit of xml that explicitly
tells Windows under which privileges the program needs
to be run. The options are (explanations literally taken
from msdn.microsoft.com):

asInvoker The application runs with the same access
token as the parent process.

highestAvailable The application runs with the
highest privileges the current user can obtain.

requireAdministrator The application runs only
for administrators and requires that the applica-
tion be launched with the full access token of an
administrator.

This xml can be embedded into the binary or added as
a separate Vle with the same name as the program, but
with .manifest appended.

This is our manifest Vle for the Windows Perl exe-
cutable:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<assembly xmlns="urn:schemas-microsoft-com:asm.v1"

manifestVersion="1.0">
<assemblyIdentity
version="1.0.0.0"
processorArchitecture="*"
name="perl.exe"
type="win32"/>

<trustInfo xmlns="urn:schemas-microsoft-com:asm.v3">
<security>

<requestedPrivileges>
<requestedExecutionLevel level="asInvoker"/>

</requestedPrivileges>
</security>

</trustInfo>
</assembly>

We believe that, with the addition of a couple of manifest

A network TEX Live installation EUROTEX 2009 E91

Vles and some tests on admin privileges, TEX Live 2009
has become Vista-safe.

Conclusion
So you see that maintaining a TEX installation has little
to do with TEX, slightly more with programming, but is
mostly a matter of tying disparate pieces together.

Notes
1. MAPS 33 pp. 59–64 and TUGboat 27:1 pp. 22–27.
2. MiKTEX 2.8 may be easier to deal with, but I didn’t check
this out.
3. TEX Live even uses a second, binary wrapper around the
batch wrapper because some programs handle batchVles badly.
4. This only happens on 32-bit Vista/Win7.

Siep Kroonenberg
n.s.kroonenberg@rug.nl

E92 MAPS 39 Jean-Michel Hufflen

Using TEX’s language within a course
about functional programming
Abstract
We are in charge of a teaching unit, entitled Advanced
Functional Programming, for 4th-year university
students in Computer Science. This unit is optional
within the curriculum, so students attending it are
especially interested in programming. The main
language studied in this unit is Scheme, but an
important part is devoted to general features, e.g.,
lexical vs. dynamic scoping, limited vs. unlimited extent,
call by value vs. call by name or need, etc. As an
alternative to other programming languages, TEX allows
us to show a language where dynamic and lexical
scoping—\def vs. \edef—coexist. In addition, we can
show how dynamic scoping allows users to customise
TEX’s behaviour. Other commands related to strategies
are shown, too, e.g., \expandafter, \noexpand. More
generally, TEX commands are related to macros in more
classical programming languages, and we can both
emphasise difficulty related to macros and show
non-artificial examples. So TEX is not our unit’s main
focus, but provides significant help to illustrate some
difficult notions.

Keywords
Functional programming, TEX programming, lexical vs.
dynamic scope, macros, evaluation strategies.

Introduction
If we consider programming in TEX [17], we have to
admit that this language is old-fashioned, and programs
are often viewed as rebuses, as shown in the Pearls of TEX
programming demonstrated at BachoTEX conferences.1
Some interesting applications exemplifying this language
can be found in [19, 30], but as noticed in [5], ‘some of
these programming tricks are ingenious and even elegant.
However [. . .] it is time for a change’.

So, at Vrst glance, it may be strange to use some ex-
amples of TEX programming within a present-day course
devoted to Functional programming. Let us recall that
this programming paradigm treats computation as the
evaluation of mathematical functions, avoiding state and
mutable data as much as possible. Functional program-
ming emphasises functions’ application, whereas imper-

ative programming—the paradigm implemented within
more ‘traditional’ languages, such as C [16]—emphasises
changes in state. Many universities include courses about
functional programming, examples being reported in [35].
Besides, such languages are sometimes taught as Vrst
programming languages, according to an approach com-
parable to [1, 8, 32] in the case of Scheme.

Let us remark that some tools developed as part of
TEX’s galaxy have already met functional programming:
cl-bibtex [18], an extension of BibTEX—the bibliography
processor [26] usually associated with the LATEX word
processor [20]—is written using ansi2 Common Lisp [7];
x◦ındy, a multilingual index processor for documents writ-
ten using LATEX [24, § 11.3] is based on Common Lisp, too;
BibTEX2html [4], a converter from .bib format—used by
the bibliography database Vles of BibTEX—to html,3 is
written in caml4 [21]; MlBibTEX,5, a re-implementation
of BibTEX focusing on multilingual features [11] is writ-
ten in Scheme [15]; as another example, Haskell6 [28]
has been used in [38]; last but not at least, there were
proposals for developingNTS7—a re-implementation of
TEX—using clos,8 an object-oriented system based on
Common Lisp [39].

The unit we mentioned above is entitled Advanced
Functional Programming.9 It is an optional unit for 4th-
year university students in Computer Science, part of the
curriculum proposed at the University of Franche-Comté,
at the Faculty of Science and Technics, located at Besan-
çon, in the east of France. Most of these students already
know a functional programming language: Scheme, be-
cause they attended a unit introducing this language in
the 2nd academic year in Computer Science.10 Other
students, who attended the Vrst two university years at
Belfort, know caml. So this unit is not an introductory
course; we delve thoroughly into functional program-
ming.

In the next section, we expose the ‘philosophy’ of our
unit. Then we summarise the features of TEX that are
useful within this unit and discuss our choice of TEX.
Reading this article only requires basic knowledge of
programming; readers who would like to go thoroughly

Using TEX’s language within a course about functional programming EUROTEX 2009 E93

(define (factorial x)
;; Returns x! if x is a natural number, the ‘false’
;; value otherwise.
(and (integer? x) (not (negative? x))

(let tr-fact ((counter x)
(acc 1))

;; Returns acc * counter!.
(if (zero? counter)

acc
(tr-fact (- counter 1)

(* acc counter))))))

Figure 1. The factorial function, written using Scheme.

into Scheme constructs we have used throughout our
examples can refer to [32], very didactic. Of course, the
indisputable reference about TEX commands is [17].

Our unit’s purpose
Functional programming languages have a common root
in the λ-calculus, a formal system developed in the 1930s
by Alonzo Church to investigate function deVnition, func-
tion application, and recursion [3]. However, these pro-
gramming languages are very diverse, some—e.g., the Lisp
dialects11—are dynamically typed,12 some—e.g., Stan-
dard ML13 [27], caml, Haskell—are strongly typed14 and
include a type inference mechanism: end-users do not
have to make precise the types of the variables they use,
they are inferred by the type-checker; in practice, end-
users have to conceive a program using a strongly typed
approach because if the type-checker does not succeed in
associating a type with an expression, this expression is
proclaimed incorrect. As examples, Fig. 1 (resp. 2) show
how to program the factorial function in Scheme (resp.
Common Lisp). In both cases, the factorial function we
give can be applied to any value, but returns the factorial
of this value only if it is a non-negative integer, otherwise,
the result is the ‘false’ value. Fig. 3 gives the same func-
tion in Standard ML: it can only be applied to an integer,
as reported by the type-checker (see the line beginning
with ‘>’).

A course explaining the general principles of func-
tional programming with an overview of some existing
functional programming languages would be indigestible
for most students, since they could only with diXculty be-
come familiar with several languages, due to the amount
of time that can be allocated to each unit. In addition, the-
oretical notions without practice would not be very useful.
So, our unit’s Vrst part is devoted to the λ-calculus’ bases
[10]. Then, all the practical exercises are performed with
only one language, Scheme, which most students already

(defun factorial (x)
"Behaves like the namesake function in Scheme
(cf. Fig. 1)."

(and
(integerp x) (not (minusp x))
(labels ((tr-fact (counter acc)

;; The labels special form of
;; Common Lisp introduces local
;; recursive functions [33, § 7.5].
(if (zerop counter)

acc
(tr-fact (- counter 1)

(* acc counter)))))
(tr-fact x 1))))

Figure 2. The factorial function in Common Lisp.

know. Besides, this unit ends with some advanced fea-
tures of this language: delayed evaluation, continuations,
hygienic macros [9]. In addition, this choice allows us
to perform a demonstration of dsssl15 [13], initially de-
signed as the stylesheet language for sgml16 texts. These
students attended a unit about xml and xslt17 [36] the
year before, and dsssl—which may be viewed as xslt’s
ancestor—is based on a subset of Scheme, enriched by
specialised libraries.

When we begin to program, the language we are learn-
ing is always shown as Vnite product. It has precise rules,
precise semantics, and is consistent. According to the
language used, some applications may be easy or diXcult
to implement. When you put down a statement, running
it often results in something predictable. That hides an
important point: a language results from some important
choices: does it use lexical or dynamic scoping, or both?
To illustrate this notion with some examples in TEX, that
is the diUerence between the commands \firstquestion
and \secondquestion in Fig. 4. The former can be related
to lexical scoping, because it uses the value associated
with the \state command at deVnition-time and pro-
duces:

You’re happy, ain’t U?

whereas the latter can be related to dynamic scoping,
because it uses the value of the \state command at run-
time and yields:

You’re afraid, ain’t U?

Students Vnd this notion diXcult: some know that
they can redeVne a variable by means of a let form
in Emacs Lisp [22], but they do not realise that this
would be impossible within lexically-scoped languages
such as C or Scheme. In other words, they do not have
transversal culture concerning programming languages,

E94 MAPS 39 Jean-Michel Hufflen

fun factorial x =
(* If x is a negative integer, the predeVned

exception Domain is raised [27, §§ 4.5–4.7]. The
internal function tr_fact is deVned by means of
pattern matching [27, § 4.4].

*)
if x < 0 then raise Domain
else let fun tr_fact 0 acc = acc |

tr_fact counter acc =
tr_fact (counter - 1)

acc * counter
in tr_fact x 1

end ;
> val factorial = fn : int -> int

Figure 3. The factorial function in Standard ML.

they see each of them as an independent cell, a kind of
black box.

The central part of our unit aims to emphasise these
choices: what are the consequences of a lexical (resp. dy-
namic) scope? If the language is lexical (resp. dynamic),
what kinds of applications are easier to be implemented?
Likewise, what are the advantages and drawbacks of the
call-by-value18 strategy vs. call-by-name? In the lan-
guage you are using, what is variables’ extent?19 Of
course, all the answers depend on the programming lan-
guages considered. But our point of view is that a course
based on Scheme and using other examples in TEX may
be of interest.

TEX’s features shown
As mentioned above, \def and \edef allow us to illustrate
the diUerence between lexical and dynamic scope. Most
present-day programming languages are lexical, but we
can observe that the dynamic scoping allows most TEX
commands to be redeVned by end-users. The dynamic
scope is known to cause variable captures,20 but TEX is
protected against undesirable redeVnitions by its internal
commands, whose names contains the ‘@’ character. Of
course, forcing these internal commands’ redeVnition is
allowed by the \makeatletter command, and restoring
TEX’s original behaviour is done by the \makeatother
command.

If we are interested in implementation considerations,
the commands within an \edef’s body are expanded, so
this body is evaluated as far as possible.21 To show this
point, we can get dynamic scope with an \edef com-
mand by preventing command expansion by means of
\noexpand:

\edef\thirdquestion{%

\def\state{happy}
\edef\firstquestion{You’re \state, ain’t U?\par}
\def\secondquestion{You’re \state, ain’t U?\par}
\def\state{afraid}

Figure 4. Lexical and dynamic scope within TEX.

{\def\firsttwodigits{20}
\def\lasttwodigits{09}
\global\edef\thisyear{%
\firsttwodigits\lasttwodigits}}

Figure 5. Using TeX’s \global command.

You’re \noexpand\state, ain’t U?\par}

and this command \thirdquestion behaves exactly like
\secondquestion (cf. Fig. 4).

A second construct, useful for a point of view related
to conception, is \global, shown in Fig. 5, because it
allows ‘global’ commands to be deVned within local en-
vironments. There is an equivalent method in Scheme,
but not naturally: see Appendix. Let us go on with this
Vgure; any TEXnician knows that \thisyear no longer
works if ‘\edef’ is replaced by ‘\def’. This illustrates that
TEX commands have limited extent.

Nuances related to notion of equality exist in TEX: let
\a be a command already deVned:

\let\b\a
\def\c{\a}

the former expresses that \a and \b are ‘physically’ equal,
it allows us to retain \a’s deVnition, even it is changed
afterwards; the latter expresses an equality at run-time,
ensuring that the commands \c and \a are identical, even
if \a changes.22

Scheme’s standard does not allow end-users to know
whether or not a variable x is bound.23 A TEXnician
would use:

\expandafter\ifx\csname x\endcsname\relax...%
\else...%

\fi

For beginners in programming with TEX, this is quite a
complicated statement requiring the commands \relax
and \ifx to be introduced. However, that leads us to
introduce not only the construct \csname...\endcsname,
but also \expandafter, which may be viewed as kind of
call by value. A simpler example of using this strategy is
given by:

\uppercase\expandafter{\romannumeral 2009}

—which yields ‘MMIX’—since this predeVned command
\uppercase is given its only argument as it is; so

Using TEX’s language within a course about functional programming EUROTEX 2009 E95

putting the \expandafter command causes this argu-
ment to be expanded, whereas removing it would pro-
duce ‘mmix’, because \uppercase would leave the group
{\romannumeral 2009} untouched, then \romannumeral
would just be applied to 2009. That is, TEX commands are
macros24 in the sense of ‘more classical’ programming
languages.

The last feature we are concerned with is mixVxed
terms, related to parsing problems and priorities. TEX can
put mixVxed terms into action by means of delimiters in
a command’s argument, as in:

\def\put(#1,#2)#3{...}

Discussion
As shown in the previous section, we use TEX as
a ‘cultural complement’ for alternative constructs
and implementations. Sometimes, we explain dif-
ferences by historical considerations: for example,
the diUerence between \def and \long\def—that is,
the diUerence in LATEX between \textbf{. . . } and
\begin{bfseries}...\end{bfseries}—comes from per-
formance considerations, since at the time TEX came out,
computers were not as eXcient as today. Nevertheless,
are there other languages that could be successfully used
as support of our unit? Yes and no.

An interesting example could be Common Lisp. Nev-
ertheless, this language is less used now than some years
ago, and it is complexiVed by the use of several name-
spaces.25 Besides, this language’s initial library is as big
as possible; it uses old constructs.26 That is why we give
some examples in Common Lisp, but prefer for our course
to be based on Scheme, which is ‘the’ modern Lisp dialect,
from our point of view.

Concerning the coexistence of lexical and dynamic
variables, the Perl 27 language [37] provides it. In addi-
tion, it has been successfully used to develop large soft-
ware packages, so examples could be credible. However, it
seems to us that dynamic variables in Perl are rarely used
in practice. In fact, the two dynamic languages mainly
used are Emacs Lisp and TEX, in the sense that end-users
may perceive this point. From our point of view, using
examples in Emacs Lisp requires good knowledge about
the emacs28 editor, whereas we can isolate, among TEX’s
features, the parts that suit us, omitting additional details
about TEX’s tasks. Likewise, such an approach would be
more diXcult with Perl.

Conclusion
Our unit is viewed as theoretical, whereas other optional
units are more practical, so only a few students attend
ours. But in general, students who choose it do not regret
it, and in fact enjoy it. They say that they have clear ideas
about programming after attending it. Some students
view our examples in TEX as a historical curiosity since
this language is quite old and originates from the 1980s,
but they are surprised by its expressive power. Some, that
are interested in using TEX more intensively, can connect
programming in TEX to concepts present in more modern
languages.

Acknowledgements
When I decided to use TEX to demonstrate ‘alternative’
implementations of some features related to program-
ming, I was quite doubtful about the result, even if I
knew that some were interested. But feedback was pos-
itive, some students were encouraged to go thoroughly
into implementing new TEX commands for their reports
and asked me for some questions about that. Thanks to
them, they encouraged me to go on with this way in turn.

Appendix: \global in Scheme
In this appendix, we show that a construct like \global in
TEX may be needed. Then we will explain why it cannot
be implemented in Scheme in a ‘natural’ way.

Let us consider that we are handling dimensions, that
is, a number and a measurement unit—given as a symbol—
like in TEX or dsssl. A robust solution consists of using a
list preVxed by a marker—e.g., ((*dimension*) 1609344
mm)—such that all the lists representing dimensions—of
type dimension—share the same head element, deVned
once. To put this marker only when the components—a
number and a unit29—are well-formed, it is better for
the access to this marker to be restricted to the functions
interfacing this structure. So here is a proposal for an
implementation of functions dealing with dimensions:

(let ((*marker* ’(*dimension*)))
(define (mk-dimension r unit)
;; Performs some checks and creates an
;; object of type dimension , whose
;; components are r and unit.
. . .)

(define (dimension? x)
;; Returns #t if x is of type dimension , #f
;; otherwise.
. . .)

(define (dimension->mm dimension-0)

E96 MAPS 39 Jean-Michel Hufflen

(define mk-dimension)
(define dimension?)
(define dimension->mm)

(let ((*marker* ’(*dimension*)) ; Only the cell’s address is relevant.
(allowed-unit-alist
‘((cm . ,(lambda (r) (* 10 r))) ; Each recognised unit is associated with a function giving the

(mm . ,values)))) ; corresponding length in millimeters.
(set! mk-dimension

(let ((allowed-units (map car allowed-unit-alist)))
(lambda (r unit)

(and (real? r) (>= r 0) (memq unit allowed-units) (list *marker* r unit)))))
(set! dimension? (lambda (x) (and (pair? x) (eq? (car x) *marker*))))
(set! dimension->mm

(lambda (dimension-0) ; dimension-0 is supposed to be of type dimension.
((cdr (assq (caddr dimension-0) allowed-unit-alist)) (cadr dimension-0)))))

Figure 6. Global definitions sharing a common lexical environment in Scheme.

;; Returns the value of dimension-0,
;; expressed in millimiters.
. . .))

Unfortunately, this does not work, because define special
forms inside the scope of a let special form are viewed
as local deVnitions, like \def inside a group in TEX. So,
mk-dimension, dimension?, and dimension->mm become
inaccessible as soon as this let form is processed. The
solution is to deVne these three variables globally, and
modify them inside a local environment, as shown in
Fig. 6.

This modus operandi is quite artiVcial, because it uses
side eUects, whereas functional programming aims to
avoid such as far as possible. But in reality, from a
point of view related to conception, there is no ‘actual’
side eUect, in the sense that variables like mk-dimension,
dimension?, and dimension->mm would have been Vrst
given values, and then modiVed. The Vrst bindings may
be viewed as preliminary declarations;30 however, using
‘global’ declarations for variables introduced within a
local environment would be clearer, as in TEX. To sum up,
such an example illustrates that some use of assignment
forms are not related to actual side eUects, and TEX’s
\global command allows us to explain how this example
could appear using a ‘more functional’ form, without any
side eUect.31

References
[1] Harold Abelson and Gerald Jay Sussman, with

Julie Sussman: Structure and Interpretation of
Computer Programs. The MIT Press, McGraw-
Hill Book Company. 1985.

[2] Neil Bradley: The Concise sgml Companion.
Addison-Wesley. 1997.

[3] Alonzo Church: The Calculi of Lambda-
Conversion. Princeton University Press. 1941.

[4] Jean-Christophe Filliâtre and Claude Marché:
The BibTEX2html Home Page. June 2006. http:
//www.lri.fr/~filliatr/bibtex2html/.

[5] Jonathan Fine: “TEX as a Callable Function”. In:
EuroTEX 2002, pp. 26–30. Bachotek, Poland. April
2002.

[6] Michael J. Gordon, Arthur J. Milner and
Christopher P. Wadsworth: Edinburgh lcf.
No. 78 in lncs. Springer-Verlag. 1979.

[7] Paul Graham: ansi Common Lisp. Series in
ArtiVcial Intelligence. Prentice Hall, Englewood
CliUs, New Jersey. 1996.

[8] Jean-Michel Hufflen : Programmation fonction-
nelle en Scheme. De la conception à la mise en
œuvre. Masson. Mars 1996.

[9] Jean-Michel Hufflen : Programmation fonc-
tionnelle avancée. Notes de cours et exercices.
Polycopié. Besançon. Juillet 1997.

[10] Jean-Michel Hufflen : Introduction au λ-calcul
(version révisée et étendue). Polycopié. Besançon.
Février 1998.

[11] Jean-Michel Hufflen: “A Tour around MlBibTEX
and Its Implementation(s)”. Biuletyn gust,
Vol. 20, pp. 21–28. In BachoTEX 2004 conference.
April 2004.

[12] Jean-Michel Hufflen: “Managing Languages
within MlBibTEX”. tugboat, Vol. 30, no. 1,
pp. 49–57. July 2009.

[13] International Standard iso/iec 10179:1996(e):
dsssl. 1996.

Using TEX’s language within a course about functional programming EUROTEX 2009 E97

[14] Java Technology. March 2008. http://java.sun.
com.

[15] Richard Kelsey, William D. Clinger, Jonathan A.
Rees, Harold Abelson, Norman I. Adams iv,
David H. Bartley, Gary Brooks, R. Kent Dybvig,
Daniel P. Friedman, Robert Halstead, Chris
Hanson, Christopher T. Haynes, Eugene Edmund
Kohlbecker, Jr, Donald Oxley, Kent M. Pitman,
Guillermo J. Rozas, Guy Lewis Steele, Jr, Ger-
ald Jay Sussman and Mitchell Wand: “Revised5
Report on the Algorithmic Language Scheme”.
hosc, Vol. 11, no. 1, pp. 7–105. August 1998.

[16] Brian W. Kernighan and Dennis M. Ritchie: The
C Programming Language. 2nd edition. Prentice
Hall. 1988.

[17] Donald Ervin Knuth: Computers & Typesetting.
Vol. A: The TEXbook. Addison-Wesley Publishing
Company, Reading, Massachusetts. 1984.

[18] Matthias Köppe: A BibTEX System in Common
Lisp. January 2003. http://www.nongnu.org/
cl-bibtex.

[19] Thomas Lachand-Robert : La maîtrise de TEX et
LATEX. Masson. 1995.

[20] Leslie Lamport: LATEX: A Document Preparation
System. User’s Guide and Reference Manual.
Addison-Wesley Publishing Company, Reading,
Massachusetts. 1994.

[21] Xavier Leroy, Damien Doligez, Jacques Gar-
rigue, Didier Rémy and Jéróme Vouillon: The
Objective Caml System. Release 0.9. Documen-
tation and User’s Manual. 2004. http://caml.
inria.fr/pub/docs/manual-ocaml/index.html.

[22] Bill Lewis, Dan LaLiberte, Richard M. Stallman
and the GNU Manual Group: gnu Emacs
Lisp Reference Manual for Emacs Version 21.
Revision 2.8. January 2002. http://www.gnu.
org/software/emacs/elisp-manual/.

[23] John McCarthy: “Recursive Functions of
Symbolic Expressions and Their Computation by
Machine, Part I”. Communications of the ACM,
Vol. 3, no. 4, pp. 184–195. April 1960.

[24] Frank Mittelbach and Michel Goossens, with
Johannes Braams, David Carlisle, Chris A. Row-
ley, Christine Detig and Joachim Schrod: The
LATEX Companion. 2nd edition. Addison-Wesley
Publishing Company, Reading, Massachusetts.
August 2004.

[25] Chuck Musciano and Bill Kennedy: html
& xhtml: The DeVnitive Guide. 5th edition.
O’Reilly & Associates, Inc. August 2002.

[26] Oren Patashnik: BibTEXing. February 1988. Part
of the BibTEX distribution.

[27] Lawrence C. Paulson: ml for the Working
Programmer. 2nd edition. Cambridge University
Press. 1996.

[28] Simon Peyton Jones, ed.: Haskell 98 Language
and Libraries. The Revised Report. Cambridge
University Press. April 2003.

[29] Erik T. Ray: Learning xml. O’Reilly & Associates,
Inc. January 2001.

[30] Denis B. Roegel : « Anatomie d’une macro » .
Cahiers GUTenberg, Vol. 31, p. 19–27. Décembre
1998.

[31] Michael Sperber, William Clinger, R. Kent
Dybvig, Matthew Flatt, Anton van Straaten,
Richard Kelsey, Jonathan Rees, Robert Bruce
Findler and Jacob Matthews: Revised6 Report
on the Algorithmic Language Scheme. September
2007. hhtp://www.r6rs.org.

[32] George Springer and Daniel P. Friedman:
Scheme and the Art of Programming. The mit
Press, McGraw-Hill Book Company. 1989.

[33] Guy Lewis Steele, Jr., with Scott E. Fahlman,
Richard P. Gabriel, David A. Moon, Daniel L.
Weinreb, Daniel Gureasko Bobrow, Linda G.
DeMichiel, Sonya E. Keene, Gregor Kiczales,
Crispin Perdue, Kent M. Pitman, Richard
Waters and Jon L White: Common Lisp. The
Language. Second Edition. Digital Press. 1990.

[34] “TEX Beauties and Oddities. A Permanent Call
for TEX Pearls”. In TEX: at a turning point, or at
the crossroads? BachoTEX 2009, pp. 59–65. April
2009.

[35] Simon Thompson and Steve Hill: “Functional
Programming through the Curriculum”. In:
FPLE ’95, pp. 85–102. Nijmegen, The Netherlands.
December 1995.

[36] W3C: xsl Transformations (xslt). Version 2.0.
w3c Recommendation. Edited by Michael H. Kay.
January 2007. http://www.w3.org/TR/2007/
WD-xslt20-20070123.

[37] LarryWall, Tom Christiansen and Jon Orwant:
Programming Perl . 3rd edition. O’Reilly
& Associates, Inc. July 2000.

[38] Halina Wątróbska i Ryszard Kubiak: „Od xml-a
do TEX-a, używając Emacsa i Haskella“. Biuletyn
gust, tom 23, strony 35–39. In BachoTEX 2006
conference. kweicień 2006.

[39] Jiři Zlatuška: “NTS : Programming Languages
and Paradigms”. In: EuroTEX 1999, pp. 241–245.
Heidelberg (Germany). September 1999.

E98 MAPS 39 Jean-Michel Hufflen

Notes
1. The most recent pearls can be found in [34].
2. American National Standards Institute.
3. HyperText Markup Language, the language of Web pages.
[25] is a good introduction to it.
4. Categorical AbstractMachine Language.
5. MultiLingual BibTEX.
6. This language was named after logician Haskell Brooks Curry
(1900–1982).
7. New Typesetting System. It was Vnally developed using Java
[14].
8. Common Lisp Object System.
9. ‘Programmation fonctionnelle avancée’ in French. In 2009, it
has been renamed to ‘Outils pour le développement’ (Tools for
Development), but changes in the contents are slight.
10. The program of this 2nd academic year unit can be found
in French in [8].
11. ‘Lisp’ stands for ‘LISt Processing, because Lisp dialects’
major structure is linked lists. Their syntax is common and
based on fully-parenthesised preVxed expressions. Lisp’s Vrst
version, designed by John McCarthy, came out in 1958 [23].
This language has many descendants, the most used nowadays
being Common Lisp and Scheme.
12. ‘Dynamically typed’ means that we can know the type of
an object at run-time. Examples are given in Figs. 1 & 2.
13. ‘ml’ stands for ‘MetaLanguage’ and has been initially devel-
oped within the formal proof system lcf (Logic for Computable
Functions) [6]. Later on, it appears as an actual programming
language, usable outside this system, and its standardisation
resulted in the Standard ML language.
14. There are several deVnitions of strong typing. The most used
within functional programming is that the variables are typed
at compile-time. Some courses at the same level are based on
a strongly typed functional programming language, examples
being caml or Haskell. Is that choice better than Scheme? This
is a lively debate. . . but it is certain that these courses do not
emphasise the same notions as a course based on a Lisp dialect.
15. Document Style Semantics SpeciVcation Language.
16. Standard GeneralisedMarkup Language. Ancestor of xml
(eXtensibleMarkup Language); it is only of historical interest
now. Readers interested in sgml (resp. xml) can refer to [2]
(resp. [29]).
17. eXtensible Stylesheet Language Transformations.
18. Nowadays, the call by value is the most commonly used
strategy—in particular, in C and in Scheme—the argument ex-
pression(s) of a function are evaluated before applying the func-
tion. For example, the evaluation of the expression (factorial
(+ 1 9))—see Fig. 1—begins with evaluating (+ 9 1) into 10,
and then factorial is applied to 10. In other strategies, such as
call by name or call by need, argument expressions are evaluated
whilst the function is applied.
19. The extent of a variable may be viewed as its lifetime: if it is
limited, the variable disappears as soon as the execution of the
block establishing it terminates; if it is unlimited, the variable
exists as long as the possibility of reference remains. In Scheme,
variables have unlimited extent.
20. A variable capture occurs when a binding other than the
expected one is used.
21. On the contrary, Scheme interpreters do not evaluate a

lambda expression’s body. They use a technique—so-called
lexical closure—allowing the function to retrieve its deVnition
environment.
22. There is another distinction in Scheme, between ‘physi-
cal’ (function eq?) and ‘visual’ equality (function equal?) [31,
§ 11.5].
23. Common Lisp allows that about variables and functions, by
means of the functions boundp and fboundp [33, 7.1.1].
24. Macros exist in Scheme: the best way to implement them
is the use of hygienic macros, working by pattern-matching [31,
§§ 11.2.2 & 11.19].
25. As an example of handling several namespaces in Common
Lisp, let is used for local variables, whereas local recursive
functions are introduced by labels, as shown in Fig. 2.
26. For example, there is no hygienic macro in Common Lisp.
27. Practical Extraction Report Language.
28. Editing MACros.
29. . . . although we consider only centimeters and millimeters
in the example given in Fig. 6, for sake of simplicity.
30. In Scheme’s last version, a variable can be deVned without
an associated value [31, § 11.2.1]. That was not the case in the
version before [15, § 5.2], so such a variable declaration was
given a dummy value, which enforced the use of side eUects.
31. Many data structures, comparable with our type
dimension , are used within MlBibTEX’s implementation, as
brieWy sketched in [12]. Another technique, based on message-
passing, allows us to avoid side eUects. Only one function
would be deVned to manage dimensions, and the three func-
tionalities implemented by mk-dimension, dimension?, and
dimension->mm would be implemented by messages sent to the
general function, the result being itself a function.

Jean-Michel Hufflen
LIFC (EA CNRS 4157),
University of Franche-Comté, 16, route de Gray,
25030 Besançon Cedex, France

A.-M. Aebischer, B. Aebischer, J.-M. Hufflen, F. Pétiard EUROTEX 2009 E99

Introducing new French-speaking users
to LATEX quickly and convincingly
Abstract
For four university years, we had to introduce 2nd-year
university students in Mathematics to LATEX. An
important goal was to make them able to use LATEX
when they are given some long homework in
Mathematics the year after (3rd-year university). This
teaching unit only included lab classes and was 15 hours
long. We present our approach in detail and explain
how it was perceived by students.

Keywords
Teaching LATEX, successive steps of a course,
lab-class-based curriculum, students’ perception

Introduction
When LATEX [23] came out, it was sometimes viewed as a
program hard to use, except for computer scientists famil-
iar with hermetic programming languages. However this
word processor has become more and more well-known
as a powerful tool that produces high-quality print out-
put. Besides, beginners can learn it now with many books
introducing it, in many languages, some—non-limitative—
examples are [13] in English, [4, 22, 30] in French, [27] in
German, [5, 34] in Hungarian, [3] in Italian, [7] in Polish,
[31] in modern Greek, . . . In addition, some universities
propose introductions to LATEX within their curricula. An
example is a unit—entitled ScientiVc Tools—we taught for
four academic years (2004–2008), at the Faculty of Science
and Technics, part of the University of Franche-Comté
and located at Besançon, in the east of France.

Students who attended this unit were in the 2nd aca-
demic year of Mathematics.1 One goal of this teaching
unit was to ease the writing of an important homework
the year after, that is, within the 3rd academic year in
Mathematics, so a substantial part of this unit was de-
voted to LATEX’s math mode. Let us be precise that this
teaching unit was not optional; that is, all the students
had to attend it, even if they were not convinced of LATEX
a priori. Of course, some had heard about it, some had
not. This unit only included lab classes and was 15 hours
long. So students actually practised exercises in LATEX,

but we did not have enough time to show very advanced
features.

We think that the approach we follow is interesting.
In a Vrst section, we make explicit our requirements and
the pitfalls we wanted to avoid. Then we show the broad
outlines of the steps of our unit and summarise the experi-
ence we got. Of course, reading this article only requires
basic knowledge about LATEX.

What to do? What to avoid?
Many introductions to LATEX begin with typing a small
text and enriching it; some examples are [5, 22]. Our
starting point is that this modus operandi has too many
drawbacks, especially for non-English-speaking future
users, in particular for French-speaking ones. First, only
a few students are familiar with typing texts quickly
and intensively, even if some have already used comput-
ers. They may make some typing mistakes in command
names. Of course, any LATEX teacher is able to Vx them,
but the price to pay is loss of time and dynamic. Besides,
students need to be convinced of LATEX from their Vrst
experiments. They should see that this word processor
is suitable for large-sized texts, at the beginning, they
should be able to observe that it is easy with LATEX to ap-
ply some changes related to layout: changing characters’
basic size, switching one-column and two-column lay-
outs, . . . All these goals can be reached only if students
are given a text already typed and ready to be processed.
That is, compiling this text should be successful the Vrst
time, so there is no anxiety about this point.

Besides, let us not forget that the most natural choice
for a text to be typed by French students is a text in
French. But some typographical rules are diUerent from
English ones: for example, a thin space—produced by
the LATEX command ‘\,’—is to be put just before a ‘high’
punctuation sign,2 such as an exclamation or question
mark:3

Joie, bonheur et délectation !

whereas the same signs are glued to the preceding text in
English:

E100 MAPS 39 A.-M. Aebischer, B. Aebischer, J.-M. Hufflen, F. Pétiard

there was a lot of fun!

That is, such punctuation signs should be active4 within
French fragments. Of course, the simplest solution to
this problem is to use the babel package’s french option
[25, Ch. 9]. So, end-users can type ‘Vous comprenez?’
or ‘Vous comprenez ?’ and the results will be typeset
correctly in both cases:

Vous comprenez ?

This point may seem to be a digression, but our purpose
is to show how diXcult the beginning of an introduction
to LATEX for non-English-speaking people is. Teachers
are placed in a dilemma: either students have to type-
set texts peppered with commands such as ‘ \’ ’ or ‘\,’,
or they should be given a big preamble, consisting of
many \usepackage directives, with the advice ‘You will
understand later.’5 In the case of the French language,
this point is enforced because of accented letters: the
most frequently used are directly provided by French
keyboards—for example, ‘é’ or ‘è’, very frequent within
French words—but the keys are unusable if the inputenc
package has not been loaded with the latin1 option [25,
§ 7.11.3]. If French students begin to learn LATEX by typing
their own texts, there is no doubt that these texts will
contain accented letters.

Anyway, the best solution seems to be a complete text—
in French or in English—and students can perform Vrst
exercises by changing some sentences or adding some
short fragments. Students can put down some simple
sentences in English, so writing in this language avoids
some problems related to French typography. When they
have become familiar with the commands of LATEX and its
‘philosophy’, the tools making it practical to write in the
French language—the babel and inputenc packages—will
be introduced. From our point of view, a ‘good’ text,
usable as a starting point, should provide the following
features:

@ a title, author, and date identiVed, so students can
learn about commands such as \title, \author,
\date, and \maketitle; an annotation may be a
pretext for introducing the \thanks command;

@ an average-sized text;
@ a command used without argument, in order to show

that a space character following a command’s name
without explicit delimiter is gobbled up;

@ a word hyphenated incorrectly, so students can realise
that some words may be hyphenated, and learn how
to Vx such a mistake, even if that is rare;

@ a pretext for introducing a new command in LATEX,
@ a pretext for introducing cross-references.

The steps of our unit
The source text given to students is [10]. More precisely,
the Vrst version, giavitto.tex, does not use the babel
package, even though this text is in French, with a short
introduction we wrote in English. The inputenc package
is not used, either, so we used TEX accent commands, and
‘high’ punctuation signs are explicitly preceded by a thin
space, e.g.:

Joie, bonheur et d\’{e}lectation\,!

This text, a criticism about a book, came out in a
forum. It has seemed to us to be very suitable for such an
introduction to LATEX, because:

@ it is 3 pages long, that is, a small-sized text, but not
too short;

@ the introduction’s second paragraph reads:

... using the \LaTeX\ word processor...

@ without the babel package’s french option, there
is a word hyphenated between a consonant and
the following vowel, which is incorrect in French:6
‘ex-emple’ (for ‘example’, hyphenated as ‘ex-ample’
in English) should be hyphenated as ‘exem-ple’;7

@ in this text, some words need an emphasis stronger
than what is usually expressed by italicised characters:
in the original text, typeset using only the standard
typewriter font,8 these words were written using
capital letters:

Comment pouvait-IL savoir cela ?

The source text reads:

Comment pouvait-\superemph{il}...

and we can illustrate the use of variants of this new
command \superemph:

\newcommand{\superemph}[1]{\uppercase{#1}}
\newcommand{\superemph}[1]{%
\uppercase{#1}}

\newcommand{\superemph}[1]{**\textsc{#1}**}
...

That allows a kind of ‘semantic markup’ [17], in the
sense that this markup is related to a semantic notion,
rather than some layout.

The Vrst exercise is to compile the source text of this
Vrst version giavitto.tex, the second is to play with some
options of the \documentclass command: twocolumn,

Introducing new French-speaking users to LATEX quickly and convincingly EUROTEX 2009 E101

12pt, . . . so students can see that adapting a document to
diUerent layouts is easy. Guidelines are given in [15]. To
sum up the order we follow:

@ basic notions: commands, environments, preamble;
@ sectioning commands: \part, \chapter, . . .
@ parsing problem regarding commands without a right

delimiter (cf. supra);
@ formatting environments: center, flushleft,

flushright;
@ changing characters’ look: commands and environ-

ments such as \textbf and bfseries, \textsf and
sffamily, . . .

@ introducing and redeVning new commands:
\newcommand and \renewcommand, use of ‘semantic’
markup, by means of commands such as \superemph
(cf. supra), ‘local’ deVnitions—surrounded by addi-
tional braces—vs. global ones;

@ changing size: commands and environments small,
footnotesize, . . .

@ list environments: itemize, description, enumerate;
counters controlling enumerate environments,
diUerence between redeVning values and look—
e.g., as done respectively by the commands \enumi
and \labelenumi—insertion of footnotes;

@ introducing packages: examples are indentfirst9 [25,
p. 32] and eurosym [25, pp. 408–409];

@ notion of dimensions, how the page layout parameters
are deVned [25, Fig. 4.1] and how to customise them;

@ how sequence of words (resp. successive lines) are
split into lines (resp. pages), useful commands such as
\-, \linebreak, \pagebreak, \smallskip, \medskip,
\bigskip, putting unbreakable space characters by
means of the ‘~’ input character;

@ management of cross-references and introduction
of auxiliary (.aux) Vles, commands \label, \ref,
\pageref; use of an additional .toc Vle for a table of
contents and \tableofcontents command;

@ introducing some basic diUerences between French
and English typography; then we show how the
babel package allows LATEX to typeset texts written in
many languages, possibly within the same document;
introducing some useful commands of the babel
package’s french option; the ‘standard’ preamble of a
LATEX document written in French is given:

\documentclass{...}

\usepackage[...,french]{babel}
\usepackage[T1]{fontenc}
\usepackage[latin1]{inputenc}
...

(see [25, §§ 7.11.3 & 7.11.4] about the packages fontenc

and inputenc); as an example taking advantage of
LATEX’s multilingual features as much as possible, a
second version of [10], giavitto-plus.tex, is given to
students;

@ the document’s end is devoted to some complements
not demonstrated in lab classes: some converters to
html10 (LATEX2HTML [11, Ch. 3], TEX4ht [11, Ch. 4],
HyperLATEX [19]), BibTEX [28].

Of course, students are not required to master all these
items: we make precise the points students must know,
and other information is given as a memorandum, e.g.,
the list of commands changing characters’ look. A second
document [16] is devoted to math mode and is organised
as follows:

@ math mode vs. text mode;
@ spacing in math mode;
@ commands changing characters’ look in math mode,

e.g., \mathrm, \mathit, . . . , additional packages such
as amssymb or euscript;11

@ commands producing Greek letters for mathematical
purpose (\alpha, . . .) and symbols (\leftarrow, . . .)
in math mode;

@ subscripts, superscripts, fractions, radicals;
@ adjustments: commands \displaystyle,

\textstyle, . . . , operators taking limits or not,
horizontal and vertical struts, the amsmath package’s
\text command;

@ deVnition of operator names, by means of
the commands \mathop, \DeclareMathOperator,
\DeclareMathOperator*, \mathbin, \mathrel;

@ delimiter management, by means of the commands
\left, \middle, and \right;

@ environments cases and equation; more features
belonging to the amsmath package, such as the
environments multline, split, gather, and the
commands \tag, \intertext;

@ environments belonging to LATEX: eqnarray,
eqnarray*;

@ environments useful for general matrices
([b|p|v|V]matrix) and arrays ([sub]array), pack-
ages multirow, [del]array;

@ back to LATEX’s text mode and introduction of the
tabular environment.

Two other documents gently bring this unit to its
end:

@ [29] introduces pdfLATEX and the hyperref package
[11, Ch. 2], taking as much advantage as possible of
the features of the pdf12 format related to hyperlinks;

E102 MAPS 39 A.-M. Aebischer, B. Aebischer, J.-M. Hufflen, F. Pétiard

@ [1] is devoted to image insertion, by means of the
packages graphic(s|x) [25, § 10.2].

Of course, all these documents include references—
possibly on-line—that allow readers to learn more.

Lessons learned
Teaching this unit gave good results: it actually seemed
to us that students really enjoy discovering LATEX and
using it. Generally they got nice outputs. In addition,
practising LATEX’s math mode caused them to realise how
diverse ‘graphical’ expressions of Mathematics are. For
example, ‘modulo’ is both an inVxed and preVxed opera-
tor, as reWected by the two commands \bmod and \pmod.
Likewise, the notion of operators taking limits separates
the layout—the location of each piece of information—
and the common notion—an interval’s endpoints. That is,
the commands of LATEX’s math mode may be viewed as
presentation markup, comparable to the namesake notion
inMathML13 [33, § 2.1.2].

Anyway, let us recall that we taught students in Math-
ematics. Such students learned the basics of a program-
ming language,14 but do not plan to become computer
scientists. So, they did not get used to presenting pro-
grams nicely, by indenting them, as students in Computer
Science learn to do, in order to be able to work on them
again. A good exercise to emphasise this point is Vrst to
give students a complicated formula to be typeset, then
to ask them to change it.

Teachers have to give some advice about organising
LATEX source texts. For example, there should be no other
word on a line containing \begin or \end commands de-
limiting environments, and nesting environments should
be made clear by indenting them:

. . . text before.
\begin{itemize}
 \item . . .
 \begin{itemize}
 \item . . .

. . .
\end{itemize}

\end{itemize}
Text after. . .

Some notations should be avoided when a more sys-
tematic markup is available. For example, we think that
it is better for students to get used to writing:

\begin{small}
...
\end{small}

than ‘{\small ...}’. Of course, the latter may appear

as simpler for short fragments, but any TEXnician knows
that it is possible to use a command like \small without
additional braces, in which case, this size change runs
until the next size change command. If the markup as-
sociated with a command is not clearly expressed, some
students may be baYed. Besides, let us consider three
versions of an end-user deVned command typesetting a
note using small-sized characters:

\newcommand{\note}[1]{%
\begin{small}#1\end{small}}

\newcommand{\noteone}[1]{\small#1} % Wrong!
\newcommand{\notetwo}[1]{{\small#1}}

Of course, any LATEX teacher can explain why the
\noteone command does not work as expected, and how
to Vx this wrong deVnition as done for the \notetwo
command. However, a user who is used to small as an
environment—rather than ‘{\small ...}’—would proba-
bly put down this \note command as we did, and that is
indisputably the simplest solution.

The commands and environments introduced by the
LATEX format have homogeneous taxonomy about de-
limiting arguments and eUects. That is, the markup is
very clear, in particular for beginners. That may not
be the case for commands originating from TEX’s ba-
sis: for example, if you would like to put a vertical
strut whose length is given, we can use the construct
\vbox to 1.1\baselineskip{} [16, § 2.7], that is, using
a kind of mixVxed markup. Of course, dealing with such
a command is rare. But other commands belonging to
plain TEX’s math mode, such as \over or \atop, are error-
prone since they have no argument and are only related
to positional relationships. Let us compare plain TEX’s
\over command with LATEX’s \frac, that has 2 arguments:
the source texts for the numerator and denominator.15

Last but not least, we notice some points related to
the implementation we used: TEXnicCenter [32], built on
top of the MiKTEX typesetting engine [24], and running
under the Windows operating system. This graphic inter-
face is very good, especially the correspondence between
the editor’s cursor and a marker in the resulting .dvi16
Vle. The main drawback is that MiKTEX runs in non-stop
mode. As a consequence, students may get almost com-
plete texts in case of recoverable errors. So they do not
have to be aware of their errors and they perceive only
‘serious’ ones. It is needed to introduce them to .log Vles,
and ask them to tolerate only warning messages.

Conclusion
LATEX being extensible because of its numerous packages,
it is impossible for an introductory course to give all the

Introducing new French-speaking users to LATEX quickly and convincingly EUROTEX 2009 E103

functionalities that already exist. In fact, teachers also
have to show how to use LATEX’s documentation—good
documents exist in French—to learn more on their own.
But it is essential for students to understand LATEX’s phi-
losophy and get good methods. We think our method
fulVlls these goals. From 2003 to 2005, J.-M. HuYen taught
4th-year university students enrolled in ‘Digital Publish-
ing’ program17 at the Letter Faculty of Besançon, and
got initial experiences for writing [15]. A more concise
document [2] has been used by A.-M. Aebischer for anal-
ogous introductory courses given at the irem18 institute
for future teachers in Mathematics.

Acknowledgements
Sincere thanks to Karl Berry and Barbara Beeton, who
proofread the Vrst version of this article.

References
[1] Anne-Marie Aebischer : Insertion d’images.

Document de support de travaux pratiques. Avril
2008.

[2] Anne-Marie Aebischer : Créer des documents
scientiVques avec LATEX. Stage 2008 à l’irem de
Franche-Comté. 2008.

[3] Claudio Beccari: Introduzione all’arte della
composizione tipographica con LATEX. September
2009. guit.

[4] Denis Bitouzé et Jean-Côme Charpentier : LATEX.
Pearson Education. 2006.

[5] Bujdosó Gyöngyi – Fazekas Attila: TEX ker-
dőlépések. Tertia Kiadó, Budapest. április
1997.

[6] The Chicago Manual of Style. The University of
Chicago Press. The 14th edition of a manual of
style revised and expanded. 1993.

[7] Antoni Diller: LATEX wiersz po wierszu. Wy-
dawnictwo Helio, Gliwice. Polish translation of
LATEX Line by Line with an additional annex by
Jan Jelowicki. 2001.

[8] Bernard Gaulle : Notice d’utilisation de l’exten-
sion frenchpro pour LATEX. Version V5,995. Avril
2005. http://www.frenchpro6.com/frenchpro/
french/ALIRE.pdf.

[9] Bernard Gaulle : L’extension frenchle pour LATEX.
Notice d’utilisation. Version V5,9993. Février 2007.
http://www.tug.org/texlive/Contents/live/
texmf-dist/doc/latex/frenchle/frenchle.
pdf.

[10] Jean-Louis Giavitto : Ouverture des veines et
autres distractions. Documents de support de

travaux pratiques. http://lifc.univ-fcomte.
fr/home/~jmhufflen/l2s/giavitto.pdf et http:
//lifc.univ-fcomte.fr/home/~jmhufflen/l2s/
giavitto-plus.pdf. Octobre 1986.

[11] Michel Goossens and Sebastian Rahtz, with
Eitan M. Gurari, Ross Moore and Robert S.
Sutor: The LATEX Web Companion. Addison-
Wesley Longman, Inc., Reading, Massachusetts.
May 1999.

[12] Maurice Grévisse : Le bon usage. Duculot.
Grammaire française. 12e édition refondue par
André Goosse. 1988.

[13] David Griffiths and Desmond Higham: Learn-
ing LATEX. SIAM. 1997.

[14] Jean-Michel Hufflen : « Typographie : les
conventions, la tradition, les goûts, . . . et LATEX ».
Cahiers GUTenberg, Vol. 35–36, p. 169–214. In
Actes du congrès GUTenberg 2000, Toulouse.
Mai 2000.

[15] Jean-Michel Hufflen : Premier contact avec LATEX.
Document de support de travaux pratiques. http:
//lifc.univ-fcomte.fr/home/~jmhufflen/l2s/
to-do.pdf. Janvier 2006.

[16] Jean-Michel Hufflen : Mode mathématique.
Document de support de travaux pratiques. http:
//lifc.univ-fcomte.fr/home/~jmhufflen/l2s/
to-do-math.pdf. Février 2006.

[17] Jean-Michel Hufflen: “Writing Structured and
Semantics-Oriented Documents: TEX vs. xml”.
Biuletyn gust, Vol. 23, pp. 104–108. In BachoTEX
2006 conference. April 2006.

[18] Jean-Michel Hufflen : C++. . . et d’autres
outils. . . pour l’étudiant mathématicien. Polycopié.
Besançon. Janvier 2008.

[19] HyperLATEX. February 2004. http://hyperlatex.
sourceforge.net.

[20] Java Technology. March 2008. http://java.sun.
com.

[21] Donald Ervin Knuth: Computers & Typesetting.
Vol. A: The TEXbook. Addison-Wesley Publishing
Company, Reading, Massachusetts. 1984.

[22] Thomas Lachand-Robert : La maîtrise de TEX et
LATEX. Masson. 1995.

[23] Leslie Lamport: LATEX: A Document Preparation
System. User’s Guide and Reference Manual.
Addison-Wesley Publishing Company, Reading,
Massachusetts. 1994.

[24] MiKTEX. . . Typesetting Beautiful Documents.
2009. http://miktex.org/.

[25] Frank Mittelbach and Michel Goossens, with
Johannes Braams, David Carlisle, Chris A. Row-
ley, Christine Detig and Joachim Schrod: The

E104 MAPS 39 A.-M. Aebischer, B. Aebischer, J.-M. Hufflen, F. Pétiard

LATEX Companion. 2nd edition. Addison-Wesley
Publishing Company, Reading, Massachusetts.
August 2004.

[26] Chuck Musciano and Bill Kennedy: html:
The DeVnitive Guide. 6th edition. O’Reilly
& Associates, Inc. October 2006.

[27] Elke Niedermair und Michael Niedermair:
LATEX—Das Praxisbuch. 3. AuWage. Franzis. 2006.

[28] Oren Patashnik: BibTEXing. February 1988. Part
of the BibTEX distribution.

[29] François Pétiard : Le package hyperref. Docu-
ment de travaux pratiques. Mai 2005.

[30] Christian Rolland : LATEX par la pratique.
O’Reilly France, Paris. 1999.

[31] Apostolos Syropoulos: LATEX. Εναc Πlηρηc για
την Εκµαθηση του Συστηµατοc Στοιχειοθε-

σιαc LATEX. Παρατηρητηc. 1998.
[32] TEXnicCenter. 2008. http://www.texniccenter.

org/.
[33] W3C:Mathematical Markup Language (MathML)

Version 2.0, 2nd edition. w3c Recommendation.
Edited by David Carlisle, Patrick Ion, Robert
Miner, and Nico Poppelier. October 2003. http:
//www.w3.org/TR/2003/REC-MathML2-20031021.

[34] Wettl Ferenc – Mayer Gyula – Szabó Péter:
LATEX kézikönyv. Panem. 2004.

Notes
1. ‘License 2, parcours Mathématiques et Mathématiques appli-
quées’, w.r.t. French terminology.
2. This notion of ‘high’ sign of punctuation belongs to French
typography’s terminology. A short survey of these rules is given
in [6, §§ 9.21–9.33], a more complete reference is [14], in French.
3. The following quotations come from [10].
4. This notion is explained in [21, Ch. 7].
5. So do [4, 7, 27, 31] The Vrst example of [34] does not use any
package, the \usepackage command being introduced immedi-
ately after. In addition, examples given at Vrst are small-sized,
so introducing some variants—e.g., twocolumn vs. onecolumn—
would not be very convincing. On another subject, French texts
can be typeset using the packages french(pro|le) [8, 9], as al-
ternatives to the babel package, but the problem of introducing
such a package at the course’s beginning remains the same.
6. Except for etymological hyphenation, now hardly used in
practice.
7. In fact, this point is debatable, because some French typogra-
phy manuals consider that a word should not be hyphenated
before a silent syllable—‘exemple’ sounds as [��z{�pl]. (That
is why this word is not hyphenated in the version processed
with the babel package’s french option.) But these typography
manuals mention that this convention is diXcult to follow, in
particular when text columns are narrow, as in daily newspa-
pers, for example. More details about this point can be found in
[12].

8. Let us recall that this text came out in October 1986; the
interfaces used within these forums were not comparable to the
Web.
9. Indenting the Vrst paragraph after a display heading is more
customary in French text than in English, so introducing this
indentfirst package is relevant in our unit.
10. HyperTextMarkup Language, the language of Web pages.
[26] is a good introduction to it.
11. Most of the math mode’s advanced features are described in
detail in [25, Ch. 8].
12. Portable Document Format, Adobe’s format.
13. MATHematical Markup Language [33] is an xml
(eXtensible Markup Language) application for describing math-
ematical notation regarding either its structure or its content.
Let us mention that MathML’s broad outlines are taught to
5th-year students in Statistical Modelling (‘Master 2 de Ma-
thématiques, mention Modélisation statistique’, in French) [18,
ch. 9], as part of a unit entitled ‘Software Engineering’.
14. Java [20], in the curricula of the Faculty of Science and
Technics located at Besançon.
15. As mentioned in Note 13, there is an introduction to
MathML for some 5th-year university students in Mathemat-
ics. MathML’s content model [33, § 2.1.3], more related to the
semantics of mathematical expressions, is easier to understand
for these students than the presentation model.
16. DeVice-Independent.
17. ‘Master 1 d’Édition numérique’, in French.
18. ‘Institut de Recherche sur l’Enseignement des Mathéma-
tiques’, that is, ‘Research Institute about teaching Mathematics’.

Anne-Marie Aebischer1
Bruno Aebischer1
Jean-Michel Hufflen2
François Pétiard1
1 Department of Mathematics (UMR CNRS 6623),
University of Franche-Comté, 16, route de Gray,
25030 Besançon Cedex, France.
2 LIFC (EA CNRS 4157),
University of Franche-Comté, 16, route de Gray,
25030 Besançon Cedex, France.

Hans Hagen EUROTEX 2009 E105

Oriental TEX by a dummy
Abstract
This article is converted from the slides presented at the conference.

What is Oriental TEX
@ It is a project by Idris Samawi Hamid, Taco Hoekwater and Hans Hagen.
@ The project started shortly after we started the LuaTEX project.
@ It boosted development of LuaTEX thanks to a grant that paid for coding LuaTEX.
@ It also boosted the development of ConTEXt MkIV and was a real good torture test

for OpenType font support.
@ This project also costs us a whole lot of time.
@ The main objective is to let TEX typeset high quality (traditional) Arabic.
@ Closely related to this is to extend ConTEXt capabilities to deal with advanced crit-

ical editions.
@ In the meantime a high quality Arabic OpenType font has become part of the

package.

How we proceed
@ Of course we were a bit too optimistic when setting the time schedule for this

project.
@ This is because we need to have quite some bits and pieces in place beforehand.
@ For instance, making the font and perfecting OpenType support involves a lot of

trial and error and testing.
@ This is mostly due to lack of speciVcations, benchmarks and limitations in tools.
@ We have identiVed the needs for critital editions but have postponed some of that

till we have opened up more of LuaTEX.
@ We are also getting a better picture of what is needed for advanced right-to-left

typesetting, especially in mixed directionality.

Simple OpenType fonts
@ In Latin scripts we have mostly one-to-one and many-to-one substitutions.
@ This can happen in sequence (multiple passes).
@ Sometimes surrounding characters (or shapes) play a role.
@ In some cases glyphs have to be (re)positioned relative to each other.
@ Often the substitution logic is Wawed and it is assumed that features are applied

selectively (DTP: select and apply).
@ Of course this is unacceptable for what we have in mind.

The Oriental TEX approach
@ We put as much logic in the font as possible, but also provide a dedicated para-

graph builder (written in Lua).
@ The so-called First-Order Analysis puts a given character into isolated, initial, mid-

dle, or Vnal state.
@ The Second-order Analysis looks at the characters and relates this state to what

characters precede or succeed it.

E106 MAPS 39 Hans Hagen

@ Based on that state we do character substitutions. There can be multiple analysis
and replacements in sequence.

@ We can do some simple aesthetic stretching and additional related replacements.
@ We need to attach identity marks and vowels in proper but nice looking places.
@ In most cases we’re then done. Contrary to other fonts we don’t use many liga-

tures but compose characters.

But we go further
@ The previous steps already give reasonable results and implementing it also nicely

went along with the development of LuaTEX and ConTEXt MkIV.
@ Currently we’re working on extending and perfecting the font to support what we

call Third-Order Contextual Analysis.
@ This boils down to an interplay between the paragraph builder and additional font

features.
@ In order to get pleasing spacing we apply further substitutions, this time with

wider or narrower shapes.
@ When this is done we need to reattach identity marks and vowels.
@ Optionally we can apply HZ-like stretching as a Vnishing touch.

Look at luatex (kheetawul)

@ no order (kh ı̄ t ā w [u] l)
خ﮲ي﮵ت﮴اولُ

@ Vrst order
خ﮲ي﮵ت﮴اولُ

@ second order
خ﮲ي﮵ت﮴اولُ

@ second order (Jeem-stacking)
خي﮵ت﮴اولُ ﮲

@ minimal stretching
خي﮵ت﮴اولُ ﮲

@ maximal stretching (level 3)
خي﮵ت﮴اولُ ﮲

@ chopped letter khaa (for e.g. underlining)
خي﮵ت﮴اولُ ﮲

Hans Hagen
Pragma ADE, Hasselt

Stanislav Jan Šarman EUROTEX 2009 E107

Writing Pitman shorthand with
Metafont and LATEX
Abstract
With pen shorthand, the traditional speech-recording
method, unwritten speech is at first manually captured
and then transliterated into a digital text. We have
built programs which reverse the second step of this
process, i.e. transform text into shorthand.
Here we present as a special case an online system,
which converts English text into Pitman 2000 shorthand
using Metafont and LATEX. The impact of our system
on pattern recognition of handwritten shorthand and on
stenography teaching is discussed.

In order to approximate the speed of speech, alphabet
based shorthand systems make use of phonetic writing,
abbreviations and simpliVed writing, thus reducing the
redundancy of the orthographic code and the graphic
redundancy of longhand characters.

In the following sections we exemplify these principles
with the Pitman shorthand language (abbreviated as psl)
and describe how the Pitman 2000 shorthand system can
be implemented in Metafont [4].

Elements of PSL
A glyph of one or more words as denoted with psl, the
so-called stenem is composed of

an outline consisting of joined consonant signs,
written without lifting the pen from the paper, and

diacritics corresponding to vowel phonemes.

The stenem components are written in this order.
An example: The stenem of the word ‘rote’ {, pro-
nounced as r * ou t is built of the outline�, formed
by joining the strokes (r)=� and (t)= �, the signs1 of
the consonant phonemes r and t and the heavy dash sign
[ou], the diacritical mark of the vowel ou, following�.

The signs of consonant phonemes. These signs, also called
strokes, are either line segments or quarter circles:

� � � � � � � �
(p) (b) (t) (d) (ch) (jh) (k) (g)
(f) (v) (th) (dh) (s) (z) (sh) (zh)

 ! � 	 � $ � %
Though invented in 1837, the psl design is guided by

modern phonological classiVcations and principles [7, 8].
Thus the signs of voiced consonants are more Vrmly

written variants of their unvoiced counterparts. Friction
vs. occlusion of a consonant is denoted by rounding the
corresponding sign (cf. the rows). A change of the place
of articulation causes a change of slant in consonant signs
(cf. the columns).

Remaining strokes2 are:

nasals liquids

� �� � ��
(m) (n) (ng) (l) (r) (_r)

The signs����� are horizontals,�� are
upstrokes;3 all other consonant signs are downstrokes.

Vowel, diphthong and triphone signs. These diacritical
signs are placed alongside a consonant sign, before or
after it, depending on whether the vowel is read before
or after the consonant, i.e. going from the beginning of a
stroke on the left-hand or the right-hand side of upstrokes
and horizontals if the vowel is read before or after the
consonant. Places are changed for downstrokes.

1
2
3before

1
2
3

after
@ V � �
‘ell’ ‘lay’ ‘us’ ‘so’

Twelve vowel diacritics are realized in psl. They are
diUerentiated by their glyph (light or heavy, dot or dash)
and its position. Any consonant sign has three places for
a vowel sign to be located according to the direction in
which the consonant stroke is written: at the beginning
(1st), in the middle (2nd) or at the end (3rd place).

E108 MAPS 39 Stanislav Jan Šarman

place

[a] [ah] [o] [oo]

1st , f a |
‘at’ ‘pa’ ‘odd’ ‘saw’

[e] [ei] [uh] [ou]
2nd > ' � ^

‘ed’ ‘aid’ ‘up’ ‘no’

[i] [ii] [u] [uu]
3rd K ? � 7

‘ill’ ‘eel’ ‘took’ ‘coup’

It can be seen from this table that the light vowel signs
are reserved for the short vowels and are put in the same
places as the heavy vowel signs for the long vowels.

The table proceeds row-wise (over the position) from
signs for opened vowels to signs for closed vowels and
column-wise from dots for front vowels to dashes4) for
back vowels. Compare a such as in ‘at’, which is an
opened front vowel with the closed back vowel uu, such
as the one in ‘coup’ at the opposite vertices of the table.5

There are four diphthong signs at 1st and 3rd places:

place
1st [ai] ‘my’ [oi] ‘joy’

\ R
3rd [ow] ‘out’ [yuu] ‘few’e A

The triphone signs, indicated by a small tick attached
to a diphthong sign, represent any vowel following the
diphthong, as in:

: ‘diary’,X ‘loyal’� ‘towel’ andB ‘fewer’.

There is also a special diphone sign for other vowel
combinations put in the place of the Vrst vowel. Consider

the second mark for the diphone ia in ‘idea’ J put at the
3rd place – the place of [i].

Observe also, that the Vrst vowel in a word decides
where the Vrst upstroke or downstroke of the outline will
be written – above, on or through the line.

f i j
‘pa’ ‘pay’ ‘pea’

Stenems
We propose here a complete psl grammar and describe
it by means of syntax diagrams.6 A terminal result-

ing from grammar productions is called metaform, e.g.
(r)[ou]&(t) is the metaform7 corresponding to{, the
stenem of the word ‘rote’.

Stenems are composed of segments with (mostly)
joined (&-Notation) outline.

^un/com/n|h Segment ~ing/s +Upp

&
/

=

Stenems can start with a morphological preVx such as
^com, ^con, . . . and they can end with a verbal suXx,
such as ~ing. Both are realized by a mark, such as a
light dot, before the Vrst and/or after the last segment
outline, respectively. Last suXx +Upp indicates proper
names, whose glyphs are underlined in psl.

4 H �
^com[o](n) (g)[ou]~ing [a](n)+Upp

Segments. The core of a segment

[V] (C ,l|r|w) [V]

is built of an obligatory consonant sign (C) framed by
optional vowel signs [V]. The strokes of Section 1 can
be modiVed to express the frequent case of a consonant
followed by an r or an l –written by an initial right or
left hook,8 respectively:

t F o D
(p,r)[ei] (f,r)[ii] (p,l)[ei] (f,l)[ii]

The segments are the counterparts of the syllables,
hence there is a provision for vowel signs occurring be-
tween two strokes – 1st and 2nd place vowel signs are writ-
ten after the Vrst stroke whereas the otherwise ambiguous
3rd place vowel signs are written before the second stroke:

1
2

3

1
2
3

�
(t)[e]&(r)&[i](t)[ou]&(r)[i]
t * e . r i . t our . r iy

The following syntax diagram completes the deVnition
of a psl segment

,s/t Segment Core
;n|v|f

;se/shn
:t|d
:t|dhr

,s/Vs/s
,st/r/s

Writing Pitman shorthand with Metafont and LATEX EUROTEX 2009 E109

At Vrst psl strokes come at three sizes – half-sized (suXx
:t/d), normal or double-sized (suXx :tr/dr/dhr), e.g.:

S V T
(l)[ei]:t (l)[ei] (l)[ei]:trZ Y [
(m)[ii]:t (m)[ii] (m)[ii]:tr

Additionally strokes can be preVxed and/or suXxed
by left or right, small or larger hooks, circles, loops and
cracknels,9 for example:

� � �
,s[u](p) ,st[e](p) ,s(p,r)[ei]� m n

,s[uh](p,l) (p)[ii],s (p)[ii],sisq s r
(p)[ou],st (p)[ou],sts (p)[ou],strk l u
(p)[e];n (p)[e];n,s (p)[uh];f

v g h
(p)[uh];f,s (p)[a];shn (p)[a];shn,s

Observe also how the (not previously mentioned) signs
of the consonants w, hw, y and y are deVned:

"
 # �
(w)=(r,l) (hw)=(r,w) (y)=(r,r) (h)=,s(r,r)

Joining and disjoining the segments. Stenem outlines
are written mostly without lifting the pen; typically the
segments are joined at obtuse outer angles, e.g.:G ‘get’ or� ‘tick’.

Special care must be taken for ,s-circles. As an ,s-
circle is normally written within the curves or as a left
circle otherwise, and as writing the circle outside an angle
is the simplest way of joining two segments – the circle
direction must be sometimes reversed:

left ,s right ,s

3 � � 0
‘cassette’ ‘unsafe’ ‘task’ ‘bestow’

However there are singular cases, where a continuous
connection is not possible, consider

.=�+I (‘be+half’)�=~+W (‘sense+less’)
Also when writing numbers or when writing the end-

ings t or d in past tense of regular verbs, the segments
are disjoined:10

� + �
(_two_) (_four_) [aa](s)&(k)/(t) (sh)[ou]/(d)

Metafont implementation. Elementary strokes (circle arcs
or straight lines) and the circles, hooks, . . . used for pre-
Vxes/suXxes are realized as splines with curvature=0 at
both ends. Thus trivially consonantal parts of segments,
when joined tangent continuously are curvature continu-
ous, too [5].

Technically speaking the diacritics are an array of dis-
continuous marker paths, while the outline is an array of
(mostly) continuous only11 Metafont-paths.12

Besides the circled connections also the m/n joinings
were made curvature continuous; joinings with cusps
exist, too:

] ` w C
‘name’ ‘number’ ‘reply’ ‘Vgure’

Abbreviations
In psl, short forms, phrases and intersections are used for
frequently occurring words.

Short forms are either arbitrary strokes or shortened
outlines largely without diacritics:

� &) M * b � � � �
‘the’ ‘a/n’ ‘and’ ‘is’ ‘as’ ‘of’ ‘you’ ‘I’ ‘to’ ‘too’

O � - / ; = L �
‘it’ ‘today’ ‘be’ ‘being’ ‘do’ ‘doing’ ‘in’ ‘thing’

Phrases in psl are simply stenems of two and more
words connected together:13

P Q < � �
‘it is’ ‘it is possible’ ‘do you’ ‘you are’ ‘thank you’

Also one stroke may be struck through a preceding
one in commonly used collocations. Examples of such
intersections are:14

 � �
‘tax form’ ‘company boom’ ‘successful company’

Short forms, phrases and intersections are to be learned
by heart. Our system maintains an abbreviation dictio-
nary of (word, metaform) tuples written in lexc [1].

text2Pitman
text2Pitman is an online system,15 which records input
text as Pitman 2000 shorthand. Just as in [5, 6] the con-
version is done in four steps:

E110 MAPS 39 Stanislav Jan Šarman

1. The input is tokenized. Tokens with a metaform entry
in the abbreviation dictionary are separated from
other words.

2. For a word in the latter category we Vnd its
pronunciation in Unisyn accent-independent keyword
lexicon [2]. The non/writing of minor vowels, the
so-called schwas (@),16 is guided by special psl rules:
in secondary stress syllables most of them are ignored
(‘poster’), rhotic schwas are written out (‘work’) and
some others are to be back-transformed17 (‘data’ vs.
‘date’):

r � 8 9
‘poster’ ‘work’ ‘data’ vs. ‘date’

The pronunciation string is then transformed to a
metaform by the stenemizer – a program coded as
the tokenizer above in the xerox-fst tool xfst [1].
The transformation is carried out by a series of
cascaded context dependent rewrite rules, realized
by Vnite state transducers (fsts). Decomposition of
a stenem into its constituent segments as done by
the stenemizer is unique, but as the underlying psl
grammar allows ambiguities,18 the metaform found
is not always the one commonly used:19

U vs.� and 6 vs.�
3. In a mf run for each of the tokens using the code

resulting from its metaform a Metafont character is
generated.

4. The text is then set with LATEX, rendered with dvips,
. . . and sent as an image to the browser.

Remarks on pattern recognition
text2Pitman can provide test samples for the reversed
procedure – the pattern recognition of handwritten psl.
This task is done in three major steps:20

1. Shape recognition yielding the metaform.
This step requires at Vrst the recognition of the mid
points of segments and of the slope as well of the
curvature sign there. Then the preVxes and suXxes
have to be found and classiVed.

2. Conversion of the metaform into pronunciation
strings.
As our stenemizer is a two-level21 xfst transducer,
this could be accomplished by reversing its order of
operation, but it is more elaborate. Shorthand writers
often omit vowel diacritics in some words, such as:

Figure 1.

� � �
‘territories’ ‘tortures’ ‘traitors’

It is not harmful in long outlines,22 but for short
stenems the correct use of diacritics and observing
the right overall position is essential. Consider an
example of words with nearly the same psl outline:

{ y z
‘rote/wrote’ ‘rode/road’ ‘rot’

As most recognizers do not detect line thickness,
still more shorthand homographs result. Thus,
this complex task can be handled only by taking
into account the word frequencies and using a
weighted transducer. Nevertheless our system could
automatically create a knowledge base of (metaform,
pronunciation string(s)) entries.

3. The transliteration of the pronunciation strings into
English with correct orthography is diXcult because
of the numerous and very frequent English language
homophones.23

Writing Pitman shorthand with Metafont and LATEX EUROTEX 2009 E111

Educational uses of the software
A novel dvitype-based DjVu-backend of our software
to produce a text-annotated and searchable shorthand
record, which can be viewed with a standard DjVu-plugin
to a browser or a standalone viewer. Moving with the
mouse over a stenem displays the originating word(s), as
can be seen in Vgure 1.

Compare our “live”‘ record with a printed textbook,
where the writing or reading “Exercises” are separated
from the “Keys to Exercises”.

It is probable that as shorthand usage declines, publish-
ers of shorthand books will not, as in the past, insist on
their proprietary solutions. In any case, our web server
based software suggests a future with centralized dic-
tionaries and textbooks utilized and maintained by an
interested user community.

References
[1] Kenneth R. Beesley and Lauri Karttunen. Finite

State Morphology. csli Publications, Stanford,
2003.

[2] Susan Fitt. Unisyn multi-accent lexicon, 2006.
http://www.cstr.ed.ac.uk/projects/
unisyn/.

[3] Swe Myo Htwe, Colin Higgins, Graham Leedham,
and Ma Yang. Knowledge based transcription
of handwritten Pitman’s Shorthand using word
frequency and context. In 7th International
Conference on Development and Application
Systems, pages 508–512, Suceava, Romania, 2004.

[4] Donald E. Knuth. The Metafontbook, volume C
of Computers and Typesetting. Addison-Wesley
Publishing Company, Reading, Mass., 5th edition,
1990.

[5] Stanislav J. Šarman. Writing Gregg Shorthand
with Metafont and LATEX. TUGboat, 29(3):458–461,
2008. TUG 2008 Conference Proceedings.

[6] Stanislav J. Šarman. dek-Verkehrsschrift mit
Metafont und LATEX. Die TEXnische Komödie,
21(1):7–20, 2009.

[7] Bohumil Trnka. A Phonological Analysis of
Present-day Standard English. Prague, 1935.
Revised Edition, 1966.

[8] Bohumil Trnka. Pokus o vědeckou teorii a
praktickou reformu těsnopisu. An Attempt at the
Theory of Shorthand and its Practical Application
to the Czech Language. Facultas Philosophica
Universitatis Carolinæ Pragensis, Sbírka pojednání
a rozprav XX, Prague, 1937.

Notes
1. In the following, phonemes are denoted in typewriter type,
the corresponding consonant signs are parenthesized, and vowel,
diphthong and triphone signs are bracketed.
2. There are two signs for r. For the signs of h, w, wh and y see
Section 2.1.
3. (l) can be written in both directions.
4. Dashes are written at right angles to the stroke at the point
where they are placed.
5. which is nearly Jones’ IPA vowel quadrilateral reWected.
6. Optional vs. obligatory parts are enclosed in rounded boxes;
nonterminals are written in cursive, terminals in typewriter
type.
7. The metaform without intervening non-letters corresponds
linearly (stress and schwas excluded), to the pronunciation of a
word, e.g. (r)[ou]&(t)↔ r * ou t
8. ,r is written within the rounded curves while ,l is symbol-
ized by a larger hook.
9. Not all of the 3×24×24 thinkable preVx/suXx combinations
can actually occur, e.g. at the beginning of English words only
the following three consonant sequences spr, str, skr, spl
and skw are possible [7]. Segments starting/ending with ,s-
circles are very common.
10. then the notation ␣ or / is used
11. PSL is classiVed as one of the so-called geometric short-
hand systems, which contrast with cursive systems resembling
smooth longhand writing.
12. drawn either with thick or thin Metafont pens or Vlled.
13. The most common “consonant sign” is the word space.
14. With strokes (f) for ‘form’ and (k) for ‘company’, resp.
15. See our project web site, and also DEK.php for the German
shorthand dek and Gregg.php for Gregg shorthand counter-
parts.
16. the most frequent “(non)vowels”
17. both to their spelling equivalent
18. ‘LaTeX’ as (l)[ei]&(t)[e]&(k) vs.
(l)[ei]:t&[e](k) and ‘computer’ as
^com(p)[yuu]&(t,r) vs. ^com(p)[yuu]:tr. The
metaform can be interactively adjusted.
19. here the Vrst variant
20. See [3] and the references there. We comment on these steps
using our terminology.
21. Lexical transducers carry out both (e.g. morphological) anal-
ysis and synthesis.
22. Although the words shown have the same sequence of con-
sonants, their outlines are distinct.
23. ‘I, eye’, ‘wright, right, rite, write’, ‘hear, here’, ‘by, buy, bye’
are the most frequent.

��N
Stanislav Jan Šarman
Computing Centre
Clausthal University of Technology
Erzstr. 51
38678 Clausthal
Germany
Sarman (at) rz dot tu-clausthal dot de
http://www3.rz.tu-clausthal.de/~rzsjs/steno/
Pitman.php

E112 MAPS 39 Péter Szabó

Optimizing PDF output size of
TEX documents
Abstract
There are several tools for generating PDF output from
a TEX document. By choosing the appropriate tools
and configuring them properly, it is possible to reduce
the PDF output size by a factor of 3 or even more, thus
reducing document download times, hosting and
archiving costs. We enumerate the most common tools,
and show how to configure them to reduce the size of
text, fonts, images and cross-reference information
embedded into the final PDF. We also analyze image
compression in detail.
We present a new tool called pdfsizeopt.py which
optimizes the size of embedded images and Type 1
fonts, and removes object duplicates. We also propose
a workflow for PDF size optimization, which involves
configuration of TEX tools, running pdfsizeopt.py and
the Multivalent PDF compressor as well.

1 Introduction
1.1 What does a PDF document contain
PDF is a popular document Vle format designed for print-
ing and on-screen viewing. PDF faithfully preserves the
design elements of the document, such as fonts, line
breaks, page breaks, exact spacing, text layout, vector
graphics and image resolution. Thus the author of a
PDF document has precise control over the document’s
appearance—nomatter what operating system or renderer
software is used for viewing or printing the PDF. From
the viewer’s perspective, a PDF document is a sequence
of rectangular pages containing text, vector graphics and
pixel-based images. In addition, some rectangular page
regions can be marked as hyperlinks, and Unicode anno-
tations can also be added to the regions, so text may be
copy-pasted from the documents. (Usually the copy-paste
yields only a sequence of characters, with all formatting
and positioning lost. Depending on the software and the
annotation, the bold and italics properties can be pre-
served.) A tree-structured table of contents can be added
as well, each node consisting of an unformatted caption
and a hyperlink within the document.

Additional features of PDF include forms (the user Vlls
some Velds with data, clicks on the submit button, and the

data is sent to a server in an HTTP request), event handlers
in JavaScript, embedded multimedia Vles, encryption and
access protection.

PDF has almost the same 2D graphics model (text, fonts,
colors, vector graphics) as PostScript, one of the most
widespread page description and printer control language.
So it is possible to convert between PDF and PostScript
without loss of information, except for a few constructs,
e.g. transparency and color gradients are not supported
by PostScript. Conversion from PDF to PostScript may
blow up the Vle size if there are many repetitions in the
PDF (e.g. a logo drawn to each page). Some of the inter-
active features of PDF (such as forms, annotations and
bookmarks) have no PostScript equivalent either; other
nonprintable elements (such as hyperlinks and the docu-
ment outline) are supported in PostScript using pdfmark,
but many PDF-to-PostScript converters just ignore them.

1.2 How to create PDF
Since PDF contains little or no structural and semantic
information (such as in which order the document should
be read, which regions are titles, how the tables are built
and how the charts generated), word processors, drawing
programs and typesetting systems usually can export to
PDF, but for loading and saving they keep using their own
Vle format which preserves semantics. PDF is usually not
involved while the author is composing (or typesetting)
the document, but once a version of a document is ready,
a PDF can be exported and distributed. Should the author
distribute the document in the native Vle format of the
word processor, he might risk that the document doesn’t
get rendered as he intended, due to software version
diUerences or because slightly diUerent fonts are installed
on the rendering computer, or the page layout settings in
the word processor are diUerent.

Most word processors and drawing programs and im-
age editors support exporting as PDF. It is also possible to
generate a PDF even if the software doesn’t have a PDF
export feature. For example, it may be possible to install a
printer driver, which generates PDF instead of sending the
document to a real printer. (For example, on Windows,
PDFCreator [22] is such an open-source driver.) Some old

Optimizing PDF output size of TEX documents EUROTEX 2009 E113

programs can emit PostScript, but not PDF. The ps2pdf
[28] tool (part of Ghostscript) can be used to convert the
PostScript to PDF.

There are several options for PDF generation from
TEX documents, including pdfTEX, dvipdfmx and dvips +
ps2pdf. Depending on how the document uses hyperlinks
and PostScript programming in graphics, some of these
would not work. See the details in Subsection 2.1. See
[13] for some more information about PDF and generating
it with LATEX.

1.3 Motivation for making PDF files smaller
Our goal is to reduce the size of PDF Vles, focusing on
those created from TEX documents. Having smaller PDF
Vles reduces download times, web hosting costs and stor-
age costs as well. Although there is no urgent need for
reducing PDF storage costs for personal use (since hard
drives in modern PCs are large enough), storage costs
are signiVcant for publishing houses, print shops, e-book
stores and hosting services, libraries and archives [26].
Usually lots of copies and backups are made of PDF Vles
originating from such places; saving 20% of the Vle size
right after generating the PDFwould save 20% of all future
costs associated with the Vle.

Although e-book readers can store lots of documents
(e.g. a 4GB e-book reader can store 800 PDF books of 5MB
average reasonable Vle size), they get full quickly if we
don’t pay attention to optimized PDF generation. One
can easily get a PDF Vle 5 times larger than reasonable by
generating it with software which doesn’t pay attention to
size, or not setting the export settings properly. Upgrading
or changing the generator software is not always feasible.
A PDF recompressor becomes useful in these cases.

It is not our goal to propose or use alternative Vle
formats, which support a more compact document repre-
sentation or more aggressive compression than PDF. An
example for such an approach is the Multivalent compact
PDF Vle format [25], see Section 5 for more details. There
is no technical reason against using a compact format for
storage, and converting it on the Wy to regular PDF before
processing if needed. The disadvantage of a nonstandard
compact format is that most PDF viewers and tools don’t
support it by default, so the user has to install and run the
conversion tool, which some users can’t or won’t do just
for viewing a PDF. When archiving compact PDF Vles
for a long term, we have to make sure that we’ll have
a working converter at restore time. With Multivalent,
this is possible by archiving the .jar Vle containing the
code of the converter. But this may not suit all needs,
because Multivalent is not open source, there are no
alternative implementations, and there is no detailed
open speciVcation for its compact PDF Vle format.

A pixel-based (Vxed resolution) alternative of PDF is
DjVu (see Section 5).

It is possible to save space in a PDF by removing non-
printed information such as hyperlinks, document outline
elements, forms, text-to-Unicode mapping or user anno-
tations. Removing these does not aUect the output when
the PDF is printed, but it degrades the user experience
when the PDF is viewed on a computer, and it may also
degrade navigation and searchability. Another option
is to remove embedded fonts. In such a case, the PDF
viewer will pick a font with similar metrics if the font
is not installed on the viewer machine. Please note that
unembedding the font doesn’t change the horizontal dis-
tance between glyphs, so the page layout will remain the
same, but maybe glyphs will look funny or hard-to-read.
Yet another option to save space is to reduce the resolu-
tion of the embedded images. We will not use any of the
techniques mentioned in this paragraph, because our goal
is to reduce redundancy and make the byte representa-
tion more eUective, while preserving visual and semantic
information in the document.

1.4 PDF file structure
It is possible to save space in the PDF by serializing the
same information more eUectively and/or using better
compression. This section gives a high-level introduction
to the data structures and their serialization in the PDF
Vle, focusing on size optimization. For a full description
of the PDF Vle format, see [3].

PDF supports integer, real number, boolean, null, string
and name as simple data types. A string is a sequence
of 8-bit bytes. A name is also a sequence of 8-bit bytes,
usually a concatenation of a few English words in Camel-
Case, often used as a dictionary key (e.g. /MediaBox) or an
enumeration value (e.g. /DeviceGray). Composite data
types are the list and the dictionary. A dictionary is an
unordered sequence of key–value pairs, where keys must
be names. Values in dictionaries and list items can be
primitive or composite. There is a simple serialization of
values to 8-bit strings, compatible with PostScript Lan-
guageLevel 2. For example,

<</Integer 5 /Real -6.7 /Null null
/StringInHex <Face> /String ((C)2009\\))
/Boolean true /Name /Foo /List [3 4 5]>>

deVnes a dictionary with values of various types. All data
types are immutable.

It is possible to deVne a value for future use by deVning
an object. For example, 12 0 obj [/PDF /Text] endobj
deVnes object number 12 to be an array of two items
(/PDF and /Text). The number 0 in the deVnition is the
so-called generation number, signifying that the object
has not been modiVed since the PDF was generated. PDF

E114 MAPS 39 Péter Szabó

makes it possible to store old versions of an object with
diUerent generation numbers, the one with the highest
number being the most recent. Since most of the tools
just create a new PDF instead of updating parts of an
existing one, we can assume for simplicity that the gener-
ation number is always zero. Once an object is deVned
it is possible to refer to it (e.g. 12 0 R) instead of typing
its value. It is possible to deVne self-referential lists and
dictionaries using object deVnitions. The PDF speciVca-
tion requires that some PDF structure elements (such as
the /FontDescriptor value) be an indirect reference, i.e.
deVned as an object. Such elements cannot be inlined
into other object, but they must be referred to.

A PDF Vle contains a header, a list of objects, a trailer
dictionary, cross-reference information (oUsets of object
deVnitions, sorted by object number), and the end-of-Vle
marker. The header contains the PDF version (PDF-1.7
being the latest). All of the Vle elements above except
for the PDF version, the list of objects and the trailer are
redundant, and can be regenerated if lost. The parsing
of the PDF starts at the trailer dictionary. Its /Root value
refers to the catalog dictionary object, whose /Pages
value refers to a dictionary object containing the list
of pages. The interpretation of each object depends on
the reference path which leads to that object from the
trailer. In addition, dictionary objects may have the /Type
and/or /Subtype value indicating the interpretation. For
example, <</Subtype/Image ...>> deVnes a pixel-based
image.

In addition to the data types above, PDF supports
streams as well. A stream object is a dictionary aug-
mented by the stream data, which is a byte sequence. The
syntax is X Y obj << dict-items >> stream stream-data
endstream endobj. The stream data can be compressed
or otherwise encoded (such as in hex). The /Filter and
/DecodeParms values in the dictionary specify how to
uncompress/decode the stream data. It is possible to spec-
ify multiple such Vlters, e.g. /Filter [/ASCIIHexDecode
/FlateDecode] says that the bytes after stream should
be decoded as a hex string, and then uncompressed us-
ing PDF’s ZIP implementation. (Please note that the use
of /ASCIIHexDecode is just a waste of space unless one
wants to create an ASCII PDF Vle.) The three most com-
mon uses for streams are: image pixel data, embedded
font Vles and content streams. A content stream contains
the instructions to draw the contents of the page. The
stream data is ASCII, with a syntax similar to PostScript,
but with diUerent operators. For example, BT/F 20 Tf
1 0 0 1 8 9 Tm(Hello world)Tj ET draws the text
“Hello World” with the font /F at size 20 units, shifted up
by 8 units, and shifted right by 9 units (according to the
transformation matrix 1 0 0 1 8 9).

Streams can use the following generic compression
methods: ZIP (also called Wate), LZW and RLE (run-length
encoding). ZIP is almost always superior. In addition
to those, PDF supports some image-speciVc compression
methods as well: JPEG and JPEG2000 for true-color images
and JBIG2 and G3 fax (also called CCITT fax) for bilevel
(two-color) images. JPEG and JPEG2000 are lossy meth-
ods, they usually yield the same size at the same quality
settings—but JPEG2000 is more Wexible. JBIG2 is superior
to G3 fax and ZIP for bilevel images. Any number of
compression Vlters can be applied to a stream, but usu-
ally applying more than one yields a larger compressed
stream size than just applying one. ZIP and LZW support
predictors as well. A predictor is an easy-to-compute,
invertible Vlter which is applied to the stream data be-
fore compression, to make the data more compressible.
One possible predictor subtracts the previous data value
from the current one, and sends the diUerence to the com-
pressor. This helps reduce the Vle size if the diUerence
between adjacent data values is mostly small, which is
true for some images with a small number of colors.

There is cross-reference information near the end of
the PDF Vle, which contains the start byte oUset of all
object deVnitions. Using this information it is possible
to render parts of the Vle, without reading the whole Vle.
The most common format for cross-reference informa-
tion is the cross-reference table (starting with the keyword
xref). Each item in the table consumes 20 bytes, and con-
tains an object byte oUset. The object number is encoded
by the position of the item. For PDFs with several thou-
sand objects, the space occupied by the cross-reference
table is not negligible. PDF 1.5 introduces cross-reference
streams, which store the cross-reference information in
compact form in a stream. Such streams are usually com-
pressed as well, using ZIP and a predictor. The beneVt
of the predictor is that adjacent oUsets are close to each
other, so their diUerence will contain lots of zeros, which
can be compressed better.

Compression cannot be applied to the PDF Vle as a
whole, only individual parts (such as stream data and
cross-reference information) can be compressed. How-
ever, there can be lots of small object deVnitions in the
Vle which are not streams. To compress those, PDF 1.5
introduces object streams. The data in an object stream
contains a concatenation of any number of non-stream
object deVnitions. Object streams can be compressed
just as regular stream data. This makes it possible to
squeeze repetitions spanning over multiple object deV-
nitions. Thus, with PDF 1.5, most of the PDF Vle can be
stored in compressed streams. Only a few dozen header
bytes and end-of-Vle markers and the stream dictionaries
remain uncompressed.

Optimizing PDF output size of TEX documents EUROTEX 2009 E115

Table 1: Output file sizes of PDF generation from The TEXbook,
with various methods. The PDF was optimized with pdf-
sizeopt.py, then with Multivalent.

optimized
method PDF bytes PDF bytes
pdfTEX 2283510 1806887
dvipdfm 2269821 1787039
dvipdfmx 2007012 1800270
dvips+ps2pdf 3485081 3181869

2 Making PDF files smaller
2.1 How to prepare a small, optimizable

PDF with TEX
When aiming for a small PDF, it is possible to get it by
using the best tools with the proper settings to create the
smallest possible PDF from the start. Another approach
is to create a PDF without paying attention to the tools
and their settings, and then optimize PDF with a PDF size
optimizer tool. The approach we suggest in this paper is
a mixture of the two: pay attention to the PDF generator
tools and their fundamental settings, so generating a PDF
which is small enough for temporary use and also easy to
optimize further; and use an optimizer to create the Vnal,
even smaller PDF.

This section enumerates the most common tools which
can generate the temporary PDF from a .tex source. As
part of this, it explains how to enforce the proper com-
pression and font settings, and how to prepare vector and
pixel-based images so they don’t become unnecessarily
large.

Pick the best PDF generation method. Table 2 lists fea-
tures of the 3 most common methods (also called drivers)
which produce a PDF from a TEX document, and Table 1
compares the Vle size they produce when compiling The
TEXbook. There is no single best driver because of the
diUerent feature sets, but looking at how large the out-
put of dvips is, the preliminary conclusion would be to
use pdfTEX or dvipdfm(x) except if advanced PostScript
features are needed (such as for psfrag and pstricks).

We continue with presenting and analyzing the meth-
ods mentioned.

dvips This approach converts TEX source→ DVI→
PostScript→ PDF, using dvips [29] for creating the
PostScript Vle, and ps2pdf [28] (part of Ghostscript)
for creating the PDF Vle. Example command-lines for
compiling doc.tex to doc.pdf:

$ latex doc
$ dvips doc
$ ps2pdf14 -d{\PDF}SETTINGS=/prepress doc.ps

Table 2. Features supported by various PDF output methods.

Feature pdfTEX dvipdfm(x) dvips
hyperref + + +
TikZ + + +
beamer.cls + +o +u

include PDF + +b +
embed bitmap font + + +
embed Type 1 font + + +

embed TrueType font + + −
include EPS − + +
include JPEG + +x −
include PNG + +x −
include MetaPost +m +m +r

psfrag −f −f +
pstricks −f −f +
pdfpages + − −
line break in link + + −

b: bounding box detection with ebb or pts-graphics-helper
f: see [21] for workarounds
m: convenient with \includegraphicsmps defined in pts-
graphics-helper
r: rename file to .eps manually
o: with \documentclass[dvipdfm]{beamer}
u: use dvips -t unknown doc.dvi to get the paper size
right.
x: with \usepackage[dvipdfmx]{graphics} and shell escape
running extractbb

dvipdfmx The tool dvipdfmx [7] converts from DVI to
PDF, producing a very small output Vle. dvipdfmx
is part of TEXLive 2008, but since it’s quite new, it
may be missing from other TEX distributions. Its
predecessor, dvipdfm has not been updated since
March 2007. Notable new features in dvipdfmx are:
support for non-latin scripts and fonts; emitting the
Type 1 fonts in CFF (that’s the main reason for the
size diUerence in Table 2); parsing pdfTEX-style font
.map Vles. Example command-lines:

$ latex doc
$ dvipdfmx doc

pdfTEX The commands pdftex or pdflatex [41]
generate PDF directly from the .tex source, without
any intermediate Vles. An important advantage of
pdfTEX over the other methods is that it integrates
nicely with the editors TEXShop and TEXworks. The
single-step approach ensures that there would be
no glitches (e.g. images misaligned or not properly
sized) because the tools are not integrated properly.
Example command-line:

$ pdflatex doc

The command latex doc is run for both dvips and

E116 MAPS 39 Péter Szabó

dvipdfm(x). Since these two drivers expect a bit diUerent
\specials in the DVI Vle, the driver name has to be com-
municated to the TEX macros generating the \specials.
For LATEX, dvips is the default. To get dvipdfm(x)
right, pass dvipdfm (or dvipdfmx) as an option to
\documentclass or to both \usepackage{graphicx} and
\usepackage{hyperref}. The package pts-graphics-
helper [34] sets up dvipdfm as default unless the doc-
ument is compiled with pdflatex.

Unfortunately, some graphics packages (such as psfrag
and pstricks) require a PostScript backend such as dvips,
and pdfTEX or dvipdfmx don’t provide that. See [21]
for a list of workarounds. They rely on running dvips
on the graphics, possibly converting its output to PDF,
and then including those Vles in the main compilation.
Most of the extra work can be avoided if graphics are
created as external PDF Vles (without text replacements),
TikZ [8] Vgures or MetaPost Vgures. TikZ and MetaPost
support text captions typeset by TEX. Inkscape users can
use textext [46] within Inkscape to make TEX typeset the
captions.

The \includegraphics command of the standard
graphicx LATEX-package accepts a PDF as the image Vle.
In this case, the Vrst page of the speciVed PDF will be
used as a rectangular image. With dvipdfm(x), one also
needs a .bb (or .bbx) Vle containing the bounding box.
This can be generated with the ebb tool (or the extractbb
tool shipping with dvipdfm(x). Or, it is possible to use
the pts-graphics-helper package [34], which can Vnd the
PDF bounding box directly (most of the time).

dvipdfm(x) contains special support for embedding
Vgures created by MetaPost. For pdfTEX, the graphicx
package loads supp-pdf.tex, which can parse the out-
put of MetaPost, and embed it to the document. Unfor-
tunately, the graphicx package is not smart enough to
recognize MetaPost output Vles (jobname.1, jobname.2
etc.) by extension. The pts-graphics-helper package over-
comes this limitation by deVning \includegraphicsmps,
which can be used in place of \includegraphics for in-
cluding Vgures created by MetaPost. The package works
consistently with dvipdfm(x) and pdfTEX.

With pdfTEX, it is possible to embed page regions from
an external PDF Vle, using the pdfpages LATEX-package.
Please note that due to a limitation in pdfTEX, hyperlinks
and outlines (table of contents) in the embedded PDF will
be lost.

Although dvipdfm(x) supports PNG and JPEG image
inclusion, calculating the bounding box may be cumber-
some. It is recommended that all external images should
be converted to PDF Vrst. The recommended software for
that conversion is sam2p [38, 39], which creates a small
PDF (or EPS) quickly.

Considering all of the above, we recommend using
pdfTEX for compiling TEX documents to PDF. If, for
some reason, using pdfTEX is not feasible, we recommend
dvipdfmx from TEXLive 2008 or later. If a 1% decrease
in Vle size is worth the trouble of getting fonts right, we
recommend dvipdfm. In all these cases, the Vnal PDF
should be optimized with pdfsizeopt.py (see later).
Get rid of complex graphics. Some computer algebra pro-
grams and vector modeling tools emit very large PDF (or
similar vector graphics) Vles. This can be because they
draw the graphics using too many little parts (e.g. they
draw a sphere using several thousand triangles), or they
draw too many parts which would be invisible anyway
since other parts cover them. Converting or optimizing
such PDF Vles usually doesn’t help, because the optimizers
are not smart enough to rearrange the drawing instruc-
tions, and then skip some of them. A good rule of thumb
is that if a Vgure in an optimized PDF Vle is larger than
the corresponding PNG Vle rendered in 600DPI, then the
Vgure is too complex. To reduce the Vle size, it is recom-
mended to export the Vgure as a PNG (or JPEG) image
from the program, and embed that bitmap image.

Downsample high-resolution images. For most printers
it doesn’t make a visible diUerence to print in a resolu-
tion higher than 600DPI. Sometimes even the diUerence
between 300DPI and 600DPI is negligible. So convert-
ing the embedded images down to 300DPI may save
signiVcant space without too much quality degradation.
Downsampling before the image is included is a bit of
manual work for each image, but there are a lot of free
software tools to do it (such as GIMP [10] and the con-
vert tool of ImageMagick). It is possible to downsample
after the PDF has been created, for example with the
commercial software PDF Enhancer [20] or Adobe Ac-
robat. ps2pdf (using Ghostscript’s -dDEVICE=pdfwrite,
and setdistillerparams to customize, see parameters in
[28]) can read PDF Vles, and downsample images within
as well, but it usually grows other parts of the Vle too
much (15% increase in Vle size for The TEXbook), and it
may lose some information (it does keep hyperlinks and
the document outline, though).

Crop large images. If only parts of a large image contain
useful and relevant information, one can save space by
cropping the image.

Choose the JPEG quality. When using JPEG (or JPEG2000)
compression, there is a tradeoU between quality and Vle
size. Most JPEG encoders based on libjpeg accept an
integer quality value between 1 and 100. For true color
photos, a quality below 40 produces a severely degraded,
hard-to-recognize image, with 75 we get some harmless

Optimizing PDF output size of TEX documents EUROTEX 2009 E117

glitches, and with 85 the degradation is hard to notice.
If the document contains lots of large JPEG images, it
is worth reencoding those with a lower quality setting
to get a smaller PDF Vle. PDF Enhancer can reencode
JPEG images in an existing PDF, but sometimes not all the
images have to be reencoded. With GIMP it is possible to
get a real-time preview of the quality degradation before
saving, by moving the quality slider.

Please note that some cameras don’t encode JPEG Vles
eUectively when saving to the memory card, and it is pos-
sible to save a lot of space by reencoding on the computer,
even with high quality settings.

Optimize poorly exported images. Not all image process-
ing programs pay attention to size of the image Vle they
save or export. They might not use compression by de-
fault; or they compress with suboptimal settings; or (for
EPS Vles) they try to save the Vle in some compatibil-
ity mode, encoding and compressing the data poorly; or
they add lots of unneeded metadata. These poorly ex-
ported images make TEX and the drivers run slowly, and
they waste disk space (both on the local machine and in
the revision control repository). A good rule of thumb
to detect a poorly exported image is to use sam2p to
convert the exported image to JPEG and PNG (sam2p -c
ijg:85 exported.img test.jpg; sam2p exported.img
test.png), and if any of these Vles is a lot smaller than
the exported image, then the image was exported poorly.

Converting the exported image with sam2p (to any of
EPS, PDF, JPEG and PNG) is a fast and eUective way to
reduce the exported image size. Although sam2p, with its
default settings, doesn’t create the smallest possible Vle,
it runs very quickly, and it creates an image Vle which is
small enough to be embedded in the temporary PDF.

Embed vector fonts instead of bitmap fonts. Most fonts
used with TEX nowadays are available in Type 1 vector
format. (These fonts include the Computer Modern fam-
ilies, the Latin Modern families, the URW versions of
the base 14 and some other Adobe fonts, the TEX Gyre
families, the Vera families, the Palatino family, the cor-
responding math fonts, and some symbol and drawing
fonts.) This is a signiVcant shift from the original TEX
(+ dvips) concept, which used bitmap fonts generated
by MetaFont. While drivers still support embedding
bitmap fonts to the PDF, this is not recommended, be-
cause bitmaps (at 600DPI) are larger than their vector
equivalent, they render more slowly and they look uglier
in some PDF viewers.

If a font is missing from the font .map Vle, drivers tend
to generate a bitmap font automatically, and embed that.
To make sure this didn’t happen, it is possible to detect
the presence of bitmap fonts in a PDF by running grep -a

Table 3: Font .map files used by various drivers and their symlink
targets (default first) in TEX Live 2008.

Driver Font .map file
xdvi ps2pk.map
dvips psfonts.map →

psfonts_t1.map | (psfonts_pk.map)
pdfTEX pdftex.map →

pdftex_dl14.map | (pdftex_ndl14.map)
dvipdfm(x) dvipdfm.map →

dvipdfm_dl14.map | (dvipdfm_ndl14.map)

"/Subtype */Type3" doc.pdf. Here is how to instruct
pdfTEX to use bitmap fonts only (for debugging purposes):
pdflatex "\pdfmapfile\input" doc. The most common
reason for the driver not Vnding a corresponding vector
font is that the .map Vle is wrong or the wrong map Vle
is used. With TEXLive, the updmap tool can be used to
regenerate the .map Vles for the user, and the updmap-sys
command regenerates the system-level .map Vles. Table 3
shows which driver reads which .map Vle. Copying over
pdftex_dl14.map to the current directory as the driver-
speciVc .map Vle usually makes the driver Vnd the font.
Old TEX distributions had quite a lot of problems Vnding
fonts, upgrading to TEXLive 2008 or newer is strongly
recommended.

Some other popular fonts (such as the Microsoft web
fonts) are available in TrueType, another vector format.
dvipdfm(x) and pdfTEX can embed TrueType fonts, but
dvips cannot (it just dumps the .ttf Vle to the .ps Vle,
rendering it unparsable).

OpenType fonts with advanced tables for script and
feature selection and glyph substitution are supported by
Unicode-aware TEX-derivatives such as XeTEX, and also
by dvipdfmx.
Omit the base 14 fonts. The base 14 fonts are Times (in 4
styles, Helvetica (in 4 styles), Courier (in 4 styles), Symbol
and Zapf Dingbats. To reduce the size of the PDF, it is
possible to omit them from the PDF Vle, because PDF
viewers tend to have them. However, omitting the base
14 fonts is deprecated since PDF 1.5. Adobe Reader 6.0 or
newer, and other PDF viewers (such as xpdf and evince)
don’t contain those fonts either, but they can Vnd them
as system fonts. On Debian-based Linux systems, those
fonts are in the gsfonts package.

In TEXLive, directives pdftexDownloadBase14 and
dvipdfmDownloadBase14 etc. in the conVguration Vle
texmf-config/web2c/updmap.cfg specify whether to em-
bed the base 14 fonts. After modifying this Vle (either the
system-wide one or the one in $HOME/.texlive2008) and
running the updmap command, the following font map
Vles would be created:

E118 MAPS 39 Péter Szabó

pdftex_dl14.map Font map Vle for pdfTEX with the
base 14 fonts embedded. This is the default.

pdftex_ndl14.map Font map Vle for pdfTEX with the
base 14 fonts omitted.

pdftex.map Font map Vle used by pdfTEX by default.
Identical to one of the two above, based on the
pdftexDownloadBase14 setting.

dvipdfm_dl14.map Font map Vle for dvipdfm(x) with
the base 14 fonts embedded. This is the default.

dvipdfm_ndl14.map Font map Vle for dvipdfm(x)
with the base 14 fonts omitted.

dvipdfm.map Font map Vle used by dvipdfm(x) by
default. Identical to one of the two above, based on
the dvipdfmDownloadBase14 setting.

It is possible to specify the base 14 embedding settings
without modifying conVguration Vles or generating .map
Vles. Example command-line for pdfTEX (type it without
line breaks):

pdflatex "\pdfmapfile{pdftex_ndl14.map}
\input" doc.tex

However, this will display a warning No Wags speciVed
for non-embedded font. To get rid of this, use

pdflatex "\pdfmapfile{=
pdftex_ndl14_extraflag.map}
\input" doc.tex

instead. Get the .map Vle from [34].
The .map Vle syntax for dvipdfm is diUerent, but

dvipdfmx can use a .map Vle of pdfTEX syntax, like this:

dvipdfmx -f pdftex_dl14.map doc.dvi

Please note that dvipdfm loads the .map Vles speciVed
in dvipdfmx.cfg Vrst, and the .map Vles loaded with the
-f Wag override entries loaded previously, from the con-
Vguration Vle. To have the base 14 fonts omitted, run
(without a line break):

dvipdfmx -f pdftex_ndl14.map
-f dvipdfmx_ndl14_extra.map doc.tex

Again, you can get the last .map Vle from [34]. Without
dvipdfmx_ndl14_extra.map, a bug in dvipdfm prevents
it from writing a PDF Vle without the font—it would
embed a rendered bitmap font instead.

Subset fonts. Font subsetting is the process when the
driver selects and embeds only the glyphs of a font which
are actually used in the document. Font subsetting is
turned on by default for dvips, dvipdfm(x) and pdfTEX
when emitting glyphs produced by TEX.

2.2 Extra manual tweaks on
TEX-to-PDF compilation

This sections shows a couple of methods to reduce the

size of the PDF created by a TEX compilation manually.
It is not necessary to implement these methods if the
temporary PDF gets optimized by pdfsizeopy.py +Multi-
valent, because this combination implements the methods
discussed here.

Set the ZIP compression level to maximum. For pdfTEX,
the assignment \pdfcompresslevel9 selects maximum
PDF compression. With TEXLive 2008, this is the default.
Here is how to specify it on the command-line (without
line breaks):

pdflatex "\pdfcompresslevel9
\input" doc.tex

For dvipdfm(x), the command-line Wag -z9 can be used
to maximize compression. This is also the default. PDF
itself supports redundancy elimination in many diUerent
places (see in Subsection 2.3) in addition to setting the
ZIP compression level.

There is no need to pay attention to this tweak, because
Multivalent recompresses all ZIP streams with maximum
eUort.

Generate object streams and cross-reference streams.
pdfTEX can generate object streams and cross-reference
streams to save about 10% of the PDF Vle size, or even
more if the Vle contains lots of hyperlinks. (The actual
saving depends on the Vle structure.) Example command-
line for enabling it (without line breaks):

pdflatex "\pdfminorversion5
\pdfobjcompresslevel3
\input" doc.tex

According to [27], if ZIP compression is used to com-
press the object streams, in some rare cases it is possible to
save space by starting a new block within the ZIP stream
just at the right points.

There is no need to pay attention to this tweak, because
Multivalent generates object streams and cross-reference
streams by default.

Encode Type 1 fonts as CFF. CFF [2] (Type 2 or /Subtype
/Type1C) is an alternative, compact, highly compressible
binary font format that can represent Type 1 font data
without loss. By embedding vector fonts in CFF instead
of Type 1, one can save signiVcant portion of the PDF Vle,
especially if the document is 10 pages or less (e.g. reducing
the PDF Vle size from 200 kB to 50 kB). dvipdfmx does
this by default, but the other drivers (pdfTEX, dvipdfm,
ps2pdf with dvips) don’t support CFF embedding so far.

There is no need to pay attention to this tweak, because
pdfsizeopt.py converts Type 1 fonts in the PDF to CFF.

Create graphics with font subsetting in mind. For glyphs
coming from external sources such as the included

Optimizing PDF output size of TEX documents EUROTEX 2009 E119

PostScript and PDF graphics, the driver is usually not
smart enough to recognize the fonts already embedded,
and unify them with the fonts in the main document.
Let’s suppose that the document contains included graph-
ics with text captions, each graphics source PostScript
or PDF having the font subsets embedded. No matter
whether dvips, dvipdfm(x) or pdfTEX is the driver, it will
not be smart enough to unify these subsets to a single
font. Thus space would be wasted in the Vnal PDF Vle
containing multiple subsets of the same font, possibly
storing duplicate versions of some glyphs.

It is possible to avoid this waste by using a graphics
package implemented in pure TEX (such as TikZ) or us-
ing MetaPost (for which there is special support in dvips,
dvipdfm(x) and pdfTEX to avoid font and glyph duplica-
tion). The package psfrag doesn’t suUer from this problem
either if the EPS Vles don’t contain any embedded fonts.

There is no need to pay attention to this tweak, because
pdfsizeopt.py uniVes font subsets.
Disable font subsetting before concatenation. If a PDF
document is a concatenation of several smaller PDF Vles
(such as in journal volumes and conference proceeding),
and each PDF Vle contains its own, subsetted fonts, then
it depends on the concatenator tool whether those sub-
sets are uniVed or not. Most concatenator tools (pdftk,
Multivalent, pdfpages, ps2pdf ; see [32] for more) don’t
unify these font subsets.

However, if you use ps2pdf for PDF concatenation,
you can get font subsetting and subset uniVcation by
disabling font subsetting when generating the small PDF
Vles. In this case, Ghostscript (run by ps2pdf) will notice
that the document contains the exact same font many
times, and it will subset only one copy of the font.

There is no need to pay attention to this tweak, because
pdfsizeopt.py uniVes font subsets.
Embed each graphics Vle once. When the same graphics
Vle (such as the company logo on presentation slides) is
included multiple times, it depends on the driver whether
the graphics data is duplicated in the Vnal PDF. pdfTEX
doesn’t duplicate, dvipdfm(x) duplicates only MetaPost
graphics, and dvips always duplicates.

There is no need to pay attention to this tweak, because
both pdfsizeopt.py and Multivalent eliminate duplicates
of identical objects.

2.3 How PDF optimizers save space
This subsection describes some methods PDF optimizers
use to reduce the Vle size. We focus on ideas and methods
relevant to TEX documents.

Use cross-reference streams compressed with the y-
predictor. Each oUset entry in an (uncompressed) cross-

reference table consumes 20 bytes. It can be reduced by
using compressed cross-reference streams, and enabling
the y-predictor. As shown in column xref of Table 4, a
reduction factor of 180 is possible if the PDF Vle contains
many objects (e.g. more than 105 objects in pdfref, with
less than 12000 bytes in the cross-reference stream).

The reason why the y-predictor can make a diUerence
of a factor of 2 or even more is the following. The y-
predictor encodes each byte in a rectangular array of
bytes by subtracting the original byte above the current
byte from the current byte. So if each row of the rectan-
gular array contains an object oUset, and the oUsets are
increasing, then most of the bytes in the output of the y-
predictor would have a small absolute value, mostly zero.
Thus the output of the y-predictor can be compressed
better with ZIP than the original byte array.

Some tools such as Multivalent implement the y-
predictor with PNG predictor 12, but using TIFF predic-
tor 2 avoids stuXng in the extra byte per each row—
pdfsizeopt.py does that.
Use object streams. It is possible to save space in the PDF
by concatenating small (non-stream) objects to an object
stream, and compressing the stream as a whole. One can
even sort objects by type Vrst, so similar objects will be
placed next to each other, and they will Vt to the 32 kB
long ZIP compression window.

Please note that both object streams and cross-
reference streams are PDF 1.5 features, and cross-reference
streams must be also used when object streams are used.

Use better stream compression. In PDF any stream can
be compressed with any compression Vlter (or a combina-
tion of Vlters). ZIP is the most eUective general-purpose
compression, which is recommended for compressing
content streams, object streams, cross-reference streams
and font data (such as CFF). For images, however, there
are specialized Vlters (see later in this section).

Most PDF generators (such as dvipdfm(x) and pdfTEX)
and optimization tools (such as Multivalent) use the zlib
code for general-purpose ZIP compression. zlib lets the
user specify the eUort parameter between 0 (no com-
pression) and 9 (slowest compression, smallest output)
to balance compression speed versus compressed data
size. There are, however alternative ZIP compressor im-
plementations (such as the one in KZIP [30] and PNGOUT
[31, 9]), which provide an even higher eUort—but the
author doesn’t know of any PDF optimizers using those
algorithms.

Recompress pixel-based images. PDF supports more than
6 compression methods (and any combination of them)
and more than 6 predictors, so there are lots of possibil-
ities to make images smaller. Here we focus on lossless

E120 MAPS 39 Péter Szabó

compression (thus excluding JPEG and JPEG2000 used for
compressing photos). An image is rectangular array of
pixels. Each pixel is encoded as a vector of one or more
components in the color space of the image. Typical
color spaces are RGB (/DeviceRGB), grayscale (/Device.
Gray), CMYK (/DeviceCMYK), color spaces where colors
are device-independent, and the palette (indexed) ver-
sions of those. Each color component of each pixel is
encoded as a nonnegative integer with a Vxed number of
bits (bits-per-component, BPC; can be 1, 2, 4, 8, 12 or 16).
The image data can be compressed with any combination
of the PDF compression methods.

Before recompressing the image, usually it is worth
extracting the raw RGB or CMYK (or device-independent)
image data, and then compressing the image the best we
can. Partial approaches such as optimizing the palette
only are usually suboptimal, because they may be inca-
pable of converting an indexed image to grayscale to save
the storage space needed by the palette.

To pick the best encoding for the image, we have to
decide which color space, bits-per-component, compres-
sion method(s) and predictor to use. We have to choose
a color space which can represent all the colors in the
image. We may convert a grayscale image to an RGB
image (and back if all pixels are grayscale). We may also
convert a grayscale image to a CMYK image (and maybe
back). If the image doesn’t have more than 256 diUerent
colors, we can use an indexed version of the color space.
A good rule of thumb (no matter the compression) is to
pick the color space + bits-per-component combination
which needs the least number of bits per pixel. On a draw,
pick the one which doesn’t need a palette. These ideas
can also be applied if the image contains an alpha channel
(which allows for transparent or semi-transparent pixels).

It is possible to further optimize some corner cases, for
example if the image has only a single color, then it is
worth encoding it as vector graphics Vlling a rectangle
of that color. Or, when the image is a grid of rectangles,
where each rectangle contains a single color, then it is
worth encoding a lower resolution image, and increase
the scale factor in the image transformation matrix to
draw the larger image.

High-eUort ZIP is the best compression method sup-
ported by PDF, except for bilevel (two-color) images,
where JBIG2 can yield a smaller result for some inputs.
JBIG2 is most eUective on images with lots of 2D repe-
titions, e.g. images containing lots of text (because the
letters are repeating). Other lossless compression methods
supported by PDF (such as RLE, LZW and G3 fax) are infe-
rior to ZIP and/or JBIG2. Sometimes the image is so small
(like 10× 10 pixels) that compressing would increase its
size. Most of the images don’t beneVt from a predictor

(used together with ZIP compression), but some of them
do. PDF supports the PNG predictor image data format,
which makes it possible to choose a diUerent predictor for
scanline (image row). The heuristic default algorithm in
pnmtopng calculates all 5 scanline variations, and picks
the one having the smallest sum of absolute values. This
facilitates bytes with small absolute values in the uncom-
pressed image data, so the HuUman coding in ZIP can
compress it eUectively.

Most of the time it is not possible to tell in advance
if ZIP or JBIG2 should be used, or whether a predictor
should be used with ZIP or not. To get the smallest pos-
sible output, it is recommended to run all 3 variations
and pick the one yielding the smallest image object. For
very small images, the uncompressed version should be
considered as well. If the image is huge and it has lots
repetitive regions, it may be worth to apply ZIP more
than once. Please note that metadata (such as specifying
the decompression Vlter(s) to use) also contributes to the
image size.

Most PDF optimizers use the zlib code for ZIP compres-
sion in images. The output of some other image com-
pressors (most notably PNGOUT [31], see also OptiPNG
[43] and [42] for a list of 11 other PNG optimization tools,
and more tools in [15]) is smaller than what zlib pro-
duces with its highest eUort, but those other compressors
usually run a 100 times or even slower than zlib.

Howmuch a document size decreases because of image
recompression depends on the structure of the document
(how many images are there, how large the images are,
how large part of the Vle size is occupied by images) and
how eUectively the PDF was generated. The percentage
savings in the image column of Table 4 suggests that
only a little saving is possible (about 5%) if the user pays
attention to embed the images eUectively, according to
the image-related guidelines presented in Section 2.1. It
is possible to save lots of space by decreasing the image
resolution, or decreasing the image quality by using some
lossy compression method (such as JPEG or JPEG2000)
with lower quality settings. These kinds of optimizations
are supported by Adobe Acrobat Pro and PDF Enhancer,
but they are out of scope of our goals to decrease the Vle
size while not changing its rendered appearance.

JPEG Vles could beneVt from a lossless transformation,
such as removing EXIF tags and other metadata. Com-
pressing JPEG data further with ZIP wouldn’t save space.
The program packJPG [33] applies custom lossless com-
pression to JPEG Vles, saving about 20%. Unfortunately,
PDF doesn’t have a decompression Vlter for that.

Convert some inline images to objects. It is possible to
inline images into content streams. This PDF feature saves
about 30 bytes per image as compared to having the image

Optimizing PDF output size of TEX documents EUROTEX 2009 E121

as a standalone image object. However, inline images
cannot be shared. So in order to save the most space,
inline images which are used more than once should be
converted to objects, and image objects used only once
should be converted to inline images. Images having
palette duplication with other images should be image
objects, so the palette can be shared.

Unify duplicate objects. If two or more PDF objects share
the same serialized value, it is natural to save space by
keeping only the Vrst one, and modifying references to
the rest so that they refer to the Vrst one. It is possible to
optimize even more by constructing equivalence classes,
and keeping only one object per class. For example, if the
PDF contains

5 0 obj << /Next 6 0 R /Prev 5 0 R >> endobj
6 0 obj << /Next 5 0 R /Prev 6 0 R >> endobj
7 0 obj << /First 6 0 R >> endobj

then objects 5 and 6 are equivalent, so we can rewrite the
PDF to

5 0 obj << /Next 5 0 R /Prev 5 0 R >> endobj
7 0 obj << /First 5 0 R >> endobj

PDF generators usually don’t emit duplicate objects on
purpose, but it just happens by chance that some object
values are equal. If the document contains the same page
content, font, font encoding, image or graphics more
than once, and the PDF generator fails to notice that,
then these would most probably become duplicate ob-
jects, which can be optimized away. The method dvips
+ ps2pdf usually produces lots of duplicated objects if
the document contains lots of duplicate content such as
\includegraphics loading same graphics many times.

Remove image duplicates, based on visible pixel value.
DiUerent color space, bits-per-pixel and compression set-
tings can cause many diUerent representations of the
same image (rectangular pixel array) to be present in the
document. This can indeed happen if diUerent parts of
the PDF were created with diUerent (e.g. one with pdfTEX,
another with dvips), and the results were concatenated.
To save space, the optimizer can keep only the smallest
image object, and update references.

Remove unused objects. Some PDF Vles contain objects
which are not reachable from the /Root or trailer objects.
These may be present because of incremental updates,
concatenations or conversion, or because the Vle is a
linearized PDF. It is safe to save space by removing those
unused objects. A linearized PDF provides a better web
experience to the user, because it makes the Vrst page
of the PDF appear earlier. Since a linearized PDF can be
automatically generated from a non-linearized one any
time, there is no point keeping a linearized PDF when

optimizing for size.

Extract large parts of objects. Unifying duplicate objects
can save space only if a whole object is duplicated. If
a paragraph is repeated on a page, it will most proba-
bly remain duplicated, because the duplication is within
a single object (the content stream). So the optimizer
can save space by detecting content duplication in the
sub-object level (outside stream data and inside content
stream data), and extracting the duplicated parts to indi-
vidual objects, which can now be uniVed. Although this
extraction would usually be too slow if applied to all data
structures in the PDF, it may be worth applying it to some
large structures such as image palettes (whose maximum
size is 768 bytes for RGB images).

Reorganize content streams and form XObjects. Instruc-
tions for drawing a single page can span over multiple
content streams and form XObjects. To save space, it is
possible to concatenate those to a single content stream,
and compress the stream at once. After all those con-
catenations, large common instruction sequences can be
extracted to form XObjects to make code reuse possible.

Remove unnecessary indirect references. The PDF speci-
Vcation deVnes whether a value within a compound PDF
value must be an indirect reference. If a particular value
in the PDF Vle is an indirect reference, but it doesn’t have
to be, and other objects are not referring to that object,
then inlining the value of the object saves space. Some
PDF generators emit lots of unnecessary indirect refer-
ences, because they generate the PDF Vle sequentially,
and for some objects they don’t know the full value when
they are generating the object—so they replace parts of
the value by indirect references, whose deVnitions they
give later. This strategy can save some RAM during the
PDF generation, but it makes the PDF about 40 bytes larger
than necessary for each such reference.

Convert Type 1 fonts to CFF. Since drivers embed Type 1
fonts to the PDF as Type 1 (except for dvipdfmx, which
emits CFF), and CFF can represent the same font with
less bytes (because of the binary format and the smart
defaults), and it is also more compressible (because it
doesn’t have encryption), it is natural to save space by
converting Type 1 fonts in the PDF to CFF.

Subset fonts. This can be done by Vnding unused glyphs
in fonts, and getting rid of them. Usually this doesn’t
save any space for TEX documents, because drivers subset
fonts by default.

Unify subsets of the same font. As discussed in Sec-
tion 2.1, a PDF Vle may end up containing multiple sub-
sets of the same font when typesetting a collection of

E122 MAPS 39 Péter Szabó

articles (such as a journal volume or a conference pro-
ceedings) with LATEX, or embedding graphics containing
text captions. Since these subsets are not identical, uni-
fying duplicate objects will not collapse them to a single
font. A font-speciVc optimization can save Vle size by
taking a union of these subsets in each font, thus elim-
inating glyph duplication and improving compression
eUectiveness by grouping similar data (font glyphs) next
to each other.

Remove data ignored by the PDF speciVcation. For com-
patibility with future PDF speciVcation versions, a PDF
viewer or printer must accept dictionary keys which are
not deVned in the PDF speciVcation. These keys can be
safely removed without aUecting the meaning of the PDF.
An example for such a key is /PTEX.Fullbanner emitted
by pdfTEX.

Omit explicitly speciVed default values. The PDF speciV-
cation provides default values for many dictionary keys.
Some PDF generators, however, emit keys with the default
value. It is safe to remove these to save space.

Recompress streams with ZIP. Uncompressing a stream
and recompressing it with maximum-eUort ZIP makes
the stream smaller most of the time. That’s because ZIP
is more eUective than the other general purpose compres-
sion algorithms PDF supports (RLE and LZW).

For compatibility with the PostScript language, PDF
supports the /ASCIIHexDecode and /ASCII85Decode Vl-
ters on streams. Using them just makes the stream in
the Vle longer (by a factor of about 2/1 and 5/4, respec-
tively). These Vlters make it possible to embed binary
stream data in a pure ASCII PDF Vle. However, there is no
signiVcant use case for an ASCII-only PDF nowadays, so
it is recommended to get rid of these Vlters to decrease to
Vle size.

Remove page thumbnails. If the PDF Vle has page thumb-
nails, the PDF viewer can show them to the user to make
navigation easier and faster. Since page thumbnails are
redundant information which can be regenerated any
time, it is safe to save space by removing them.

Serialize values more eUectively. Whitespace can be
omitted between tokens, except between a name to-
ken and a token starting with a number or a letter (e.g.
/Ascent 750). Whitespace in front of endstream can be
omitted as well. The binary representation of strings
should be used instead of the hexadecimal, because it’s
never longer and it’s shorter most of the time if used prop-
erly. Only the characters (\) have to be escaped with a
backslash within strings, but parentheses which nest can
be left unescaped. So, e.g. the string a(()))(()\b can be
represented as (a(())\)(\(\\b).

Shrink cross-reference data. Renumbering objects (from
1, consecutively) saves space in the cross-reference data,
because gaps don’t have to be encoded. (Each gap of
consecutive missing objects costs about 10 bytes.) Also if
an object is referenced many times, then giving it a small
object number reduces the Vle size by a few bytes.

Remove old, unused object versions. PDF can store old
object versions in the Vle. This makes incremental up-
dates (e.g. the File / Save action in Adobe Acrobat) faster.
Removing the old versions saves space.

Remove content outside the page. /MediaBox, /CropBox
and other bounding box values of the page deVne a rect-
angle where drawing takes place. All content (vector
graphics or parts of it, images or parts of them, or text)
than falls outside this rectangle can be removed to save
space. Implementing this removal can be tricky for par-
tially visible content. For example, 8-pixel wide bars
can be removed from the edge of a JPEG image without
quality loss in the remaining part.

Remove unused named destinations. A named destina-
tion maps a name to a document location or view. It
can be a target of a hyperlink within the document, or
from outside. Some PDF generator software (such as
FrameMaker) generates lots of named destinations never
referenced. But care has to be taken when removing
those, because then hyperlinks from outside the docu-
ment wouldn’t work.

Flatten structures. To facilitate incremental updates, PDF
can store some structures (such as the page tree and the
content streams within a page) spread to more objects
and parts than necessary. Using the simplest, single-level
or single-part structure saves space.

3 PDF size optimization tools
3.1 Test PDF files
In order to compare the optimization eUectiveness of the
tools presented in this section, we have compiled a set of
test PDF Vles, and optimized them with each tool. The
totals column of Table 4 shows the size of each Vle (the
+ and − percentages can be ignored for now), and other
columns show the bytes used by diUerent object types.
The test Vles can be downloaded from [36]. Some more
details about the test Vles:

cU 62-page technical documentation about the CFF
Vle format. Font data is a mixture of Type 1, CFF
and TrueType. Compiled with FrameMaker 7.0, PDF
generated by Distiller 6.0.1.

beamer1 75 slide-steps long presentation created with

Optimizing PDF output size of TEX documents EUROTEX 2009 E123

Table 4. PDF size reduction by object type, when running pdfsizeopy.py + Multivalent.

document contents font image other xref total
cff 141153− 02% 25547− 02% 0 178926− 91% 174774− 100% 521909− 65%
beamer 169789− 03% 44799− 54% 115160− 00% 445732− 96% 56752− 98% 832319− 62%
eu2006 1065864− 01% 3271206− 91% 3597779− 06% 430352− 80% 45792− 94% 8411464− 43%
inkscape 10679156− 20% 230241− 00% 6255203− 20% 943269− 79% 122274− 94% 18245172− 24%
lme2006 1501584− 14% 314265− 73% 678549− 06% 176666− 91% 31892− 93% 2703119− 25%
pdfref 6269878− 05% 274231− 04% 1339264− 00% 17906915− 79% 6665536− 100% 32472771− 65%
pgf2 2184323− 03% 275768− 51% 0 1132100− 84% 190832− 96% 3783193− 36%
texbook 1507901− 01% 519550− 48% 0 217616− 84% 35532− 87% 2280769− 21%
tuzv 112145− 03% 201155− 84% 0 21913− 77% 2471− 88% 337764− 57%

The first number in each cell is the number of bytes used in the original document.
The −. . .% value indicates the percentage saved by optimization.
The data in this table was extracted from the original and optimized PDF files using pdfsizeopy.py --stats.
contents: content streams
font: embedded font files
image: pixel-based image objects and inline images, the latter created by sam2p
other: other objects
xref: cross-reference tables or streams
total: size of the PDF file

beamer.cls [40]. Contains hyperlinks, math formulas,
some vector graphics and a few pixel-based images.
Compiled with pdfTEX. Font data is in Type 1 format.

eu2006 126-page conference proceedings (of EuroTEX
2006) containing some large images. Individual
articles were compiled with pdfTEX, and then PDF
Vles were concatenated. Because of the concatenation,
many font subsets were embedded multiple times,
so a large part of the Vle is font data. Font data is
mostly CFF, but it contains some Type 1 and TrueType
fonts as well. Most fonts are compressed with the less
eUective LZW instead of ZIP.

inkscape 341-page software manual created with
codeMantra Universal PDF [5]. Contains lots of
screenshots and small images. Font data is a mixture
of Type 1, CFF and TrueType.

lme2006 240-page conference proceedings in Hun-
garian. Contains some black-and-white screenshot
images. Individual articles were compiled with
LATEX and dvips (without font subsetting), and the
PostScript Vles were concatenated and converted to
PDF in a single run of a modiVed ps2pdf. Since font
subsetting was disabled in dvips, later ps2pdf was
able to subset fonts without duplication. Font data is
in CFF.

pdfref 1310-page reference manual about PDF 1.7
containing quite a lot of duplicate xref tables and
XML metadata of document parts. Optimization
gets rid of both the duplicate xref tables and the
XML metadata. Font data is in CFF. Compiled
with FrameMaker 7.2, PDF generated by Acrobat

Distiller 7.0.5.
pgf2 560-page software manual about TikZ, with lots of

vector graphics as examples, with an outline, without
hyperlinks. Compiled with pdfTEX. Font data is in
Type 1 format.

texbook 494-page user manual about TEX (The
TEXbook), compiled with pdfTEX. No pixel images,
and hardly any vector graphics.

tuzv Mini novel in Hungarian, typeset on 20 A4 pages
in a 2-column layout. Generated by dvipdfm. It
contains no images or graphics. Font data is in Type 1
format.

None of the test PDF Vles used object streams or cross-
reference streams.

3.2 ps2pdf
The ps2pdf [28] script (and its counterparts for speciVc
PDF versions, e.g. ps2pdf14) runs Ghostscript with the
Wag -sDEVICE=pdfwrite, which converts its input to PDF.
Contrary to what the name suggests, ps2pdf accepts not
only PostScript, but also PDF Vles as input.

ps2pdf works by converting its input to low-level
PostScript drawing primitives, and then emitting them
as a PDF document. ps2pdf wasn’t written to be a PDF
size optimizer, but it can be used as such. Table 5 shows
that ps2pdf increases the Vle size many times. For the
documents cU and pdfref, we got a Vle size decrease be-
cause ps2pdf got rid of some metadata, and for pdfref, it
optimized the cross-reference table. For eu2006 it saved
space by recompressing fonts with ZIP. The document

E124 MAPS 39 Péter Szabó

tuzv became smaller because ps2pdf converted Type 1
fonts to CFF. The reason for the extremely large growth
in beamer1 is that ps2pdf blew up images, and it also em-
bedded multiple instances of the same image as separate
images. (It doesn’t always do so: if the two instances of
the image are close to each other, then ps2pdf reuses the
same object in the PDF for representing the image.)

ps2pdf keeps all printable features of the origi-
nal PDF, and hyperlinks and the document outline as
well. However, it recompresses JPEG images (back
to a diUerent JPEG, sometimes larger than the orig-
inal), thus losing quality. The only way to disable
this is specifying the Wags -dEncodeColorImages=false
-dEncodeGrayImages=false, but it would blow up the
Vle size even more, because it will keep photos uncom-
pressed. Specifying -dColorImageFilter=/FlateEncode
would convert JPEG images to use ZIP compression with-
out quality loss, but this still blows up the Vle size. Thus,
it is not possible to set up pdf2ps to leave JPEG images as
is: it will either blow up the image size (by uncompress-
ing the image or recompressing it with ZIP), or it will do
a transformation with quality loss. The Distiller option
/PassThroughJPEGImages would solve this problem, but
Ghostscript doesn’t support it yet.

ps2pdf doesn’t remove duplicate content (although
it removes image duplicates if they are close by), and it
also doesn’t minimize the use of indirect references (e.g.
it emits the /Length of content streams as an indirect
reference). The only aspects ps2pdf seems to optimize
eUectively is converting Type 1 fonts to CFF and removing
content outside the page. Since this conversion is also
done by pdfsizeopt.py, it is not recommended to use
ps2pdf to optimize PDF Vles.

Table 5. PDF optimization effectiveness of ps2pdf.

document input ps2pdf psom
cff 521909 264861 180987
beamer1 832319 3027368 317351
eu2006 8411464 6322867 4812306
inkscape 18245172 failed 13944481
lme2006 2703119 3091842 2033582
pdfref 32472771 15949169 11237663
pgf2 3783193 4023581 2438261
texbook 2280769 2539424 1806887
tuzv 337764 199279 146414

All numeric values are in bytes. Italic values indicate that
the optimizer increased the file size.
ps2pdf: Ghostscript 8.61 run as
ps2pdf14 -dPDFSETTINGS=/prepress
psom: pdfsizeopt.py + Multivalent

3.3 PDF Enhancer
PDF Enhancer [20] is commercial software which can
concatenate, split, convert and optimize PDF documents,
and remove selected PDF parts as well. It has lots of
conversion and optimization features (see the table in [4]),
and it is highly conVgurable. With its default settings, it
optimizes the PDF without removing information. It is
a feature-extended version of the PDF Shrink software
from the same company. The use of the GUI version
of PDF Enhancer is analyzed in [12]. A single license
for the server edition, needed for batch processing, costs
about $1000, and the advanced server edition (with JBIG2
support) costs about twice as much. The standard edition
with the GUI costs only $200.

Columns input and pdfe of Table 6 show how eUec-
tively PDF Enhancer optimizes. The server edition was
used in our automated tests, but the standard edition gen-
erates PDF Vles of the same size. Looking at columns pdfe
and a9p4 we can compare PDF Enhancer to Adobe Acro-
bat Pro. Please note that PDF Enhancer doesn’t generate
object streams or cross-reference streams, that’s why we
compare it to a9p4 instead of a9p5 in the table. Feeding
the output of PDF Enhancer to Multivalent decreases the
Vle size even further, because Multivalent generates those
streams. The column epsom of Table 6 shows the PDF
output Vle sizes of the PDF Enhancer + pdfsizeopt.py
+Multivalent combination, which seems to be the most
eUective for TEX documents.

According to the messages it prints, PDF Enchancer
optimizes content streams within the page. Most other
optimizers (except for Adobe Acrobat Pro) don’t do this.
Text-only content streams generated from TEX don’t ben-
eVt from such an optimization, but for the pgf2 document,
which contains lots of graphics, this optimization saved
about 10% of the content streams.

It is worth noting that PDF Enhancer failed when op-
timizing one of the test documents (see in Table 6). The
developers of PDF Enhancer reply quickly to bug reports,
and they are willing to track and Vx bugs in the software.

3.4 Adobe Acrobat Pro
Adobe’s WYSIWYG PDF manipulation program, Adobe
Acrobat Pro [1] also contains a PDF optimizer (menu item
Advanced / PDF Optimizer). A single license of the whole
software costs $450; it is not possible to buy only the
optimizer. There seems to be no direct way to run the
optimizer on multiple Vles in batch mode. Columns a9p4
and a9p5 of Table 6 shows the eUectiveness of the opti-
mizer: values in the column a9p4 are for PDF 1.4 output,
and column a9p5 belongs to PDF 1.5 output. The PDF 1.5
Vles are much smaller because they make use of object
streams and cross-reference streams. The optimizer lets

Optimizing PDF output size of TEX documents EUROTEX 2009 E125

Table 6. PDF optimization effectiveness of PDF Enhancer and Adobe Acrobat Pro.

document input pdfe epsom psom apsom a9p4 a9p5
cff 521909 229953 174182 180987 158395 548181 329315
beamer1 832319 756971 296816 317351 317326 765785 363963
eu2006 8411464 failed n/a 4812306 3666315 8115676 7991997
inkscape 18245172 14613044 12289136 13944481 11807680 14283567 13962583
lme2006 2703119 2263227 1781574 2033582 1830936 2410603 2279985
pdfref 32472771 23794114 11009960 11237663 9360794 23217668 20208419
pgf2 3783193 3498756 2245797 2438261 n/a failed failed
texbook 2280769 2273410 1803166 1806887 1804565 2314025 2150899
tuzv 337764 338316 147453 146414 150813 344215 328843

All numeric values are in bytes. Italic values indicate that the optimizer increased the file size.
pdfe: PDF Enhancer 3.2.5 (1122r) server edition
epsom: PDF Enhancer + pdfsizeopt.py + Multivalent
psom: pdfsizeopt.py + Multivalent
apsom: Adobe Acrobat Pro 9 creating PDF 1.4 + pdfsizeopt.py + Multivalent
a9p4: Adobe Acrobat Pro 9 creating PDF 1.4
a9p5: Adobe Acrobat Pro 9 creating PDF 1.5

the user specify quite a few settings. For the tests we have
enabled all optimizations except those which lose infor-
mation (such as image resampling). It turned out that we
had to disable Discard User Data / Discard all comments,
forms and multimedia, otherwise the optimizer removed
hyperlinks from the document beamer1.

It is worth noting that Adobe Acrobat Pro 9 failed with
an image-related error when optimizing document pgf2.
Oddly enough, that PDF Vle doesn’t contain any images.

3.5 pdfcompress
pdfcompress [45] is the command-line version of the
PDF optimizer in Advanced PDF Tools. It is commercial
software, a single-computer license costs less than $80.
It can resample and recompress images based on a few
set of settings for monochrome, gray and color images.
It can also recompress streams, and it can remove some
PDF features (such metadata, JavaScript, page thumbnails,
comments, embedded Vles, outlines, private data and
forms). We haven’t analyzed it, because PDF Enhancer
seems to have all the features of pdfcompress.

3.6 Multivalent tool.pdf.Compress
Multivalent [17] is a collection of programs for document
viewing, annotation, organization, conversion, validation,
inspection, encryption and text extraction (etc.). It sup-
ports multiple Vle formats such as HTML, PDF, DVI and
man pages. It is implemented in Java; the 2006 January
version is available for download [18] as a single .jar
Vle, and it needs Java 1.4 or later. It contains a PDF op-
timizer [24, 27], which can be invoked like this at the
command-line (without line breaks):

java -cp Multivalent20060102.jar

Table 7: PDF optimization effectiveness of Multivalent and
pdfsizeopt.py.

document input multi psom pso
cff 521909 181178 180987 230675
beamer1 832319 341732 317351 443253
eu2006 8411464 7198149 4812306 4993913
inkscape 18245172 13976597 13944481 17183194
lme2006 2703119 2285956 2033582 2349035
pdfref 32472771 11235006 11237663 23413875
pgf2 3783193 2584180 2438261 3449386
texbook 2280769 2057755 1806887 1992958
tuzv 337764 314508 146414 166863

All numeric values are in bytes. The Italic value indicates
that Multivalent alone was better than with pdfsizeopt.py.
multi: Multivalent 20060102 tool.pdf.Compress
psom: pdfsizeopt.py + Multivalent
pso: pdfsizeopt.py without Multivalent

tool.pdf.Compress doc.pdf

This creates the optimized PDF in Vle doc-o.pdf. If we
don’t indicate otherwise, by the term Multivalent we
mean its PDF optimizer. Although the 2006 January ver-
sion of Multivalent with full functionality is available
for download, Multivalent is not free software or open
source. For example, its license allows running the PDF
optimizer from the command-line. For other uses of the
optimizer, a commercial license has to be acquired. The
web site doesn’t show details about commercial licenses.

According to [27], the Mutivalent did the following
optimizations in 2003: remove object duplicates; recom-
press LZW to ZIP; generate object streams; generate a
cross-reference stream; serialize values more eUectively;
remove old object versions; remove page thumbnails;

E126 MAPS 39 Péter Szabó

remove some obsolete values such as /ProcSet; inline
small objects such as stream lengths; remove unused ob-
jects; omit default values; shrink cross-reference data.
In addition to those above, Multivalent recompresses all
streams with maximum-eUort ZIP, and it also moves up
/MediaBox etc. in the page tree.

Column multi of Table 7 shows how eUectively Mul-
tivalent optimizes. The column psom indicates that run-
ning pdfsizeopt.py before Multivalent usually decreases
the Vle size even more. That’s because pdfsizeopt.py
can convert Type 1 fonts to CFF, unify CFF font subsets,
and it also has a more eUective image optimizer than
Multivalent.

3.7 pdfsizeopt.py
pdfsizeopt.py [37] was written as part of this work. Its
purpose is to implement the most common optimizations
typical TEX documents beneVt from, but only those which
are not already done by Multivalent. As described in
Section 4, to get the smallest PDF, the optimizations done
by pdfsizeopt.py should be applied Vrst, and the result
should be processed by Multivalent. The 20060102 version
of Multivalent optimizes images, and it replaces the image
even if the optimized version is larger than the original,
so pdfsizeopt.py implements a Vnal step to put those
original images back which are smaller.

pdfsizeopt.py can be used as a stand-alone PDF op-
timizer (without Multivalent), but the Vnal PDF will be
much smaller if Multivalent is run as well.

pdfsizeopt.py is free software licensed under the GPL.
It is written in Python. It needs Python 2.4 (or 2.5 or
2.6). It uses only the standard Python modules, but it
invokes several external programs to help with the op-
timizations. These are: Ghostscript (8.61 or newer is
recommended), sam2p [38] (0.46 is needed), pngtopnm,
tool.pdf.Compress of Multivalent [24] (which needs
Sun’s JDK or OpenJDK), optionally jbig2 [14], optionally
PNGOUT [31]. Installation instructions are given in [35].
Most of these are free software, except for the Multivalent
tools, which are not free software or open source, but they
can be downloaded and used on the command line free
of charge; for other uses they have to be licensed com-
mercially. PNGOUT is not free software or open source
either, but the binaries available free of charge can be
used without restriction.

pdfsizeopt.py implements these PDF size optimization
methods:

Convert Type 1 fonts to CFF It is done by generating
a PostScript document with all fonts, converting
it to PDF with Ghostscript (just like ps2pdf), and
extracting the CFF fonts from the PDF. Another

option would be to use dvipdfmx, which can read
Type 1 fonts, and emit them as CFF fonts. Please
note that Ghostscript inlines subroutines (/Subrs) in
the Type 1 font, so the CFF becomes larger—but we
are compressing the font with ZIP anyway, which
eliminates most of the repetitions.

Unify subsets of the same CFF font
Ghostscript is used for parsing CFF to a font dictionary,
and also for serializing the modiVed dictionary as CFF.
Again, the latter is done by generating a PostScript
Vle with all the fonts, then converting it to a PDF
using Ghostscript. Limitations: it only works for CFF
(and former Type 1) fonts; it doesn’t unify fonts with
diUerent names; it won’t unify some fonts if one of
them has slightly diUerent metrics.

Convert inline images to objects We need this be-
cause most tools (including pdfsizeopy.py) do not
optimize inline images. Limitations: it only detects
inline images generated by sam2p; it only detects
inline images within a form XObject (not in a content
stream).

Optimize individual images First the data gets de-
compressed (with Ghostscript if the image data is
compressed with anything other than simple ZIP),
then it is recompressed with high-eUort ZIP, then it is
converted to PNG, then several external PNG compres-
sors are run to get the optimized PNG, and Vnally the
smallest representation (among the optimized PNG
Vles, intermediate images and the original image)
is picked, i.e. the one with the smallest PDF image
object representation, counting the stream dictionary
and the compressed stream as well. The following
PNG optimizers are used: sam2p without predictor,
sam2p with PNG predictor, PNGOUT (very slow, but
generates a few percent smaller PNG Vles) and jbig2
(only for bilevel images). Limitations: no CMYK
support; no device-independent color space support
(only RGB with or without palette and grayscale
is supported); no images with an alpha channel;
only some types of transparency; images with lossy
compression (JPEG or JPEG2000) are not optimized.

Remove object duplicates Equivalence classes are
used, so duplicate subtrees referring to objects
between themselves or each other are also removed.
(Multivalent also has this feature.)

Remove image duplicates Images are compared based
on RGB pixel data, so duplicates using a diUerent
compression or color space or bits-per-component are
also detected and removed. This is useful if the PDF
is a concatenation of PDF Vles in the same collection,
each PDF compiled with a diUerent method, and then
concatenated. The newest version of sam2p (0.46)

Optimizing PDF output size of TEX documents EUROTEX 2009 E127

produces exactly the same output Vle for two images
with identical RGB pixel data, so image duplicates are
identiVed by comparing the Vles created by sam2p.
There are also several early checks in the optimization
algorithm to detect the duplicate before wasting time
on running the many diUerent optimizers.

Remove unused objects All objects unreachable from
the trailer object are removed.

Serialize values more eUectively Extra spaces are
removed; hex strings are converted to binary; strings
are serialized without extra backslashes; comments
are removed; garbage between object deVnitions
is removed; gaps in the cross-reference table are
removed; objects with high reference counts are given
low numbers.

The column pso of Table 7 shows how eUectively
pdfsizeopt.py optimizes. The column psom shows the
combined eUectiveness of pdfsizeopt.py +Multivalent.
Please note that it is not with running pdfsizeopt.py
alone, because pdfsizeopt.py was designed to do only
those optimizations which Multivalent does not provide
(or, such as image compression, does suboptimally). On
the other hand, it is almost always worth running pdf-
sizeopt.py before Multivalent, rather than running Multi-
valent alone. The only exception we could Vnd was the
document pdfref, where the combined approach yielded
a 0.02% larger Vle size.

pdfsizeopt.py can count the total byte size of various
object types in a PDF. Table 4 shows the results on our test
PDF Vles. The percentages in the table cells are savings by
running pdfsizeopt.py +Multivalent. Although it is not
visible in the table, most of the savings come from Multi-
valent, except in the font and image columns, where the
contributions of pdfsizeopt.py are important. The large
font savings for the document tuzv are because the docu-
ment is short and it contains many Type 1 fonts. For the
document eu2006 we get an even larger saving, because
there was lots of glyph duplication across the articles in
the collection, and also because LZW was used instead of
ZIP to compress the fonts. Only a few of our test docu-
ments beneVt from image optimization, and even there
the contribution of pdfsizeopt.py is small because the
original PDF contains the images emitted eUectively, and
also Multivalent does a decent (though suboptimal) job
at image optimization. So for the document eu2006Mul-
tivalent alone saves about 1.55%, and pdfsizeopt.py alone
saves 6.14%. (There is no data on the extra size reduc-
tion by combining the two tools, because pdfsizeopt.py
disables Multivalent’s image optimizations since most
images won’t beneVt.) For the document lme2006Multi-
valent alone saves 3.41%, and pdfsizeopy.py alone saves

6.39%. The document inkscape beneVts most from im-
age recompression: Multivalent alone saves 19.87%, and
pdfsizeopy.py alone saves 20.35%.

Columns psom, apsom and epsom of Table 6 show that
optimizing with PDF Enhancer or Adobe Acrobat Pro
before running the pdfsizeopt.py +Multivalent combi-
nation almost always decreases the Vle size, sometimes
by a few percent, but in the case of document beamer1
the extra gain of running PDF Enhancer Vrst was 6.46%.
It seems that for TEX documents PDF Enhancer (with the
combination) is the more eUective, and Adobe Acrobat
Pro is more eUective for other documents.

See ideas for improving pdfsizeopt.py in Section 6.

4 Suggested PDF optimization
workflow

Based on the optimization tests in Section 3 we suggest
the following PDF generation and optimization workWow:

1. Upgrade Ghostscript to at least 8.61, and upgrade to
TEXLive 2008.

2. For TEX documents, create the PDF using pdf-
TEX or dvipdfmx, with the settings discussed in
Subsection 2.1. Use dvips + ps2pdf only if absolutely
necessary, because of the large PDF Vles it produces.

3. Use pdftk or Multivalent’s PDF merge tool (as
shown in [32]) to concatenate PDF Vles if necessary.
Pay attention to the hyperlinks and the document
outline after concatenation. Don’t concatenate with
Ghostscript, because that it would blow up the Vle
size.

4. If you have access to PDF Enhancer, optimize the
PDF with it. Otherwise, if you have access to Adobe
Acrobat Pro, optimize the PDF with it.

5. Optimize the PDF with pdfsizeopt.py, including the
last step of running Multivalent as well.

Most of the optimization steps above can be fully auto-
mated and run in batch, except if Adobe Acrobat Pro is
involved.

5 Related work
There are several documents discussing PDF optimization.
[23] gives a list of ideas how to generate small PDF Vles.
Most of those are present in this work as well. PDF En-
hancer and Adobe Acrobat Pro are analyzed in [12], but
that article focuses on reducing image resolution and un-
embedding fonts, which are not information-preserving
optimizations. [44] gives a simple introduction to (pos-
sibly lossy) PDF image compression and content stream

E128 MAPS 39 Péter Szabó

compression.
Since web browsers can display PNG images, several

PNG optimization tools [15, 43, 31] have been developed
to reduce web page loading times. These tools can be used
for optimizing (mainly non-photo) images in PDF docu-
ments as well. But since PDF has a more generic image
and compression model than PNG, it would be possible
to save a little bit more by developing PDF-speciVc tools,
which take advantage of e.g. using the TIFF predictor and
ZIP compression together.

An alternative document Vle format is DjVu [6], whose
most important limitation compared to PDF is that it
doesn’t support vector graphics. Due to the sophisticated
image layer separation and compression, the size of a
600DPI DjVu Vle is comparable to the corresponding op-
timized PDF document: if the PDF contains text with
embedded vector fonts and vector graphics, the DjVu
Vle can be about 3 times larger than the PDF. If the PDF
contains mainly images (such as a sequence of scanned
sheets), the DjVu Vle will become slightly smaller than
the PDF. Of course these ratios depend on the software
used for encoding as well. There are only a few DjVu
encoders available: pdf2djvu and djvudigital are free,
and Document Express is a commercial application. PDF
is more complex than DjVu: the PDF 1.7 reference [3]
itself is 1310 pages long, and it relies on external speciV-
cations such as ZIP, JBIG2, G3 fax, JPEG, JPEG2000, Type 1,
CFF, TrueType, OpenType, CMap, CID font, XML, OPI,
DSA, AES, MD5, SHA-1, PKCS, PANOSE, ICC color proVles,
JavaScript and more. PDF 1.7 became an ISO standard [11]
in 2008, which adds additional long documents. Having
to understand many of these makes PDF viewers hard
to implement and complex. This problem can become
more severe for long-term archiving if we want to view a
PDF 20 or 50 years from now; maybe today’s PDF viewers
won’t work on future architectures, so we have to imple-
ment our own viewer. In contrast, the DjVu speciVcation
[16] is only 71 pages long, and more self-contained. Since
the DjVu Vle format uses very diUerent technologies than
PDF, one can archive both the PDF and the DjVu version
of the same document, in case a decent renderer won’t be
available for one of the formats decades later.

The PDF Database [19] contains more than 500 PDF
documents by various producers, with diUerent sizes and
versions. These PDF Vles can be used can be used for
testing PDF parsers and optimizers.

Multivalent introduced the custom Vle format compact
PDF [25, 27], which is about 30% to 60% smaller than a
regular PDF. The disadvantage is that only Multivalent
can read or write this format so far (but it supports fast
and lossless conversion to regular PDF). Compact PDF
achieves the size reduction by grouping similar objects

next to each other, and compressing the whole document
as one big stream with bzip2, which is superior to ZIP.
Another improvement is that compact PDF stores Type 1
fonts unencrypted, with boilerplate such as the 512-byte
font tailer and random bytes for encryption stripped out.

6 Conclusion and future work
Since it is not the primary goal for most PDF generators
to emit the smallest possible PDF, simple techniques done
by Multivalent and pdfsizeopt.py can yield signiVcant
size reduction (up to a factor of 3) depending on the gen-
erator and the PDF features used. Rearranging the draw-
ing instructions (contents streams and form XObjects, as
done by Adobe Acrobat Pro and PDF Enhancer) is a more
complicated optimization, and saves some more space in
addition to the simple techniques. It also matters how the
PDF was generated (e.g. pdfTEX generates a smaller and
more optimizable PDF than dvips + ps2pdf).

The workWow proposed in this article has too many
dependencies. Python (for pdfsizeopt.py) and Java (for
Multivalent) runtimes, and Ghostscript (needed by pdf-
sizeopt.py for Type 1 and CFF font parsing, CFF genera-
tion and arbitrary stream Vltering) are the heaviest ones.
It is possible to get rid of these by reimplementing pdf-
sizeopt.py from scratch. To get rid of Python, we could
use Lua, and build a statically linked C binary with the
Lua interpreter, zlib and all the Lua bytecode linked in.
We could reimplement the optimizations done by Multi-
valent in Lua. (This would include reading and writing
object streams and cross-reference streams.) Gradually
we could move some functionality to C or C++ code to
speed up the optimizer. We could reuse the xpdf code-
base to be able to use all PDF Vlters without invoking
Ghostscript. We would have to implement Type 1 and
CFF parsing and CFF generation, possibly relying on the
dvipdfmx codebase. Other dependencies such as jbig2,
sam2p, pngtopnm, PNGOUT and PDF Enhancer are not
so problematic, because they can be compiled to small,
statically linked, stand-alone executables.

Some optimizations of pdfsizeopt.py could be general-
ized to cover more cases. Examples are: add CMYK image
optimization; make CFF matching more permissive (be-
fore uniVcation); recognize more inline images (not only
those created by sam2p, and not only in form XObjects).
pdfsizeopt.py would also beneVt from compiling a test
set of PDF Vles (possibly based on the PDF Database [19]),
and adding a framework which automatically checks that
pdfsizeopt.py detected the opportunity to optimize, and
did the optimization properly in each case.

When preparing a collection (such as a journal vol-
ume or a conference proceedings) with TEX, in a typical

Optimizing PDF output size of TEX documents EUROTEX 2009 E129

workWow individual articles are compiled to PDF, and the
PDF Vles are then concatenated. See [32] for tools which
can do PDF concatenation. The concatenated document
can be optimized using pdfsizeopt.py + Multivalent to
get rid of redundancy (such as duplicate glyphs in fonts
and duplicate images) across articles. Not all concatena-
tors can preserve hyperlinks and the document outline
for TEX documents. Adding concatenation support to
pdfsizeopt.py would make creating small and interactive
collections more straightforward.

References
[1] Adobe. Adobe Acrobat Pro 9 (project page).

http://www.adobe.com/products/acrobatpro/.
[2] Adobe. The Compact Font Format SpeciVcation,

1.0 edition, 4 December 2003. http://www.adobe.
com/devnet/font/pdfs/5176.CFF.pdf.

[3] Adobe. PDF Reference, Adobe Portable Document
Format Version 1.7. Adobe, 6th edition, November
2006. http://www.adobe.com/devnet/acrobat/
pdfs/pdf_reference_1-7.pdf.

[4] Apago. Which features are in what PDF Enhancer
edition?, 29 July 2009. http://www.apagoinc.
com/prod_feat.php?feat_id=30&feat_disp_
order=7&prod_id=2.

[5] codeMantra Universal PDF, a PDF generator.
http://codemantra.com/universalpdf.htm.

[6] DjVu: A tutorial. http://www.djvuzone.org/
support/tutorial/chapter-intro.html.

[7] DVIPDFMx, an extended DVI-to-PDF translator.
http://project.ktug.or.kr/dvipdfmx/.

[8] Till Tantau ed. The TikZ and PGF Packages.
Institute für Theoretische Informatik, Universität
zu Lübeck, 2.00 edition, 20 February 2008.
http://www.ctan.org/tex-archive/graphics/
pgf/base/doc/generic/pgf/pgfmanual.pdf.

[9] Jonathon Fowler. PNGOUT port for Unix systems,
2007. http://www.jonof.id.au/kenutils.

[10] Gimp, the GNU Image Manipulation Program.
http://www.gimp.org/.

[11] ISO 32000-1:2008 Document management—
Portable document format—part 1: PDF
1.7, 2008. http://www.iso.org/iso/iso_
catalogue/catalogue_tc/catalogue_detail.
htm?csnumber=51502.

[12] Andy King. Optimize PDF Vles. http://
websiteoptimization.com/speed/tweak/pdf/,
25 September 2006.

[13] Ralf Koening. Creative use of PDF Vles in
LATEX environments. http://www.tu-chemnitz.
de/urz/anwendungen/tex/stammtisch/chronik/

pdf_interna.pdf, 18 June 2004.
[14] Adam Langley. jbig2enc, a JBIG2 encoder (project

page). http://github.com/agl/jbig2enc/tree/
master.

[15] List of PNG recompressors. http://en.
wikipedia.org/wiki/OptiPNG#See_also.

[16] Lizardtech. DjVu Reference, djVu v3 edition,
November 2005. http://djvu.org/docs/
DjVu3Spec.djvu.

[17] Multivalent, digital documents research and de-
velopment. http://multivalent.sourceforge.
net/.

[18] Multivalent, download location. http:
//sourceforge.net/projects/multivalent/
files/.

[19] PDF database, 20 April 2005. http://www.
stillhq.com/pdfdb/db.html.

[20] PDF Enhancer, a PDF converter, concatenator
and optimizer. http://www.apagoinc.com/prod_
home.php?prod_id=2.

[21] Workarounds for PDF output with the PSTricks
LATEX package. http://tug.org/PSTricks/main.
cgi?file=pdf/pdfoutput.

[22] PDFCreator, a free tool to create PDF Vles
from nearly any Windows application. http:
//www.pdfforge.org/products/pdfcreator.

[23] Shlomo Perets. Best practices #1: Reducing
the size of your PDFs, 7 August 2001. http:
//www.planetpdf.com/creative/article.asp?
ContentID=6568.

[24] Thomas A. Phelps. Compress, the Multivalent
PDF compression tool. http://multivalent.
sourceforge.net/Tools/pdf/Compress.html.

[25] Thomas A. Phelps. Compact PDF speciVcation,
March 2004. http://multivalent.sourceforge.
net/Research/CompactPDF.html.

[26] Thomas A. Phelps and P.B. Watry. A no-
compromises architecture for digital document
preservation. In Proceedings of European
Conference on Digital Libraries, September
2005. http://multivalent.sourceforge.net/
Research/Live.pdf.

[27] Thomas A. Phelps and Robert Wilensky. Two
diet plans for fat PDF. In Proceedings of ACM
Symposium on Document Engineering, Novem-
ber 2003. http://multivalent.sourceforge.
net/Research/TwoDietPlans.pdf.

[28] ps2pdf, a PostScript-to-PDF converter. http:
//pages.cs.wisc.edu/~ghost/doc/svn/Ps2pdf.
htm.

[29] Tomas Rokicki. Dvips: A DVI-to-PostScript
translator, January 2007. http://mirror.ctan.

E130 MAPS 39 Péter Szabó

org/info/doc-k/dvips.pdf.
[30] Ken Silverman. KZIP, a PKZIP-compatible

compressor focusing on space over speed.
http://advsys.net/ken/utils.htm#kzip.

[31] Ken Silverman. PNGOUT, a lossless PNG size
optimizer, 2009. http://advsys.net/ken/utils.
htm#pngout.

[32] Matthew Skala. How to concatenate PDFs
without pain, 13 May 2008. http://ansuz.sooke.
bc.ca/software/pdf-append.php.

[33] Matthias Stirner and Gerhard Seelmann. pack-
JPG, a lossless compressor for JPEG images
(project page), 21 November 2007. http:
//www.elektronik.htw-aalen.de/packjpg/.

[34] Péter Szabó. Extra Vles related to PDF generation
and PDF size optimization. http://code.google.
com/p/pdfsizeopt/source/browse/#svn/trunk/
extra.

[35] Péter Szabó. Installation instructions for
pdfsizeopt.py. http://code.google.com/p/
pdfsizeopt/wiki/InstallationInstructions.

[36] Péter Szabó. PDF test Vles for pdfsizeopt.py.
http://code.google.com/p/pdfsizeopt/wiki/
ExamplePDFsToOptimize.

[37] Péter Szabó. pdfsizeopt.py, a PDF Vle size
optimizer (project page). http://code.google.
com/p/pdfsizeopt.

[38] Péter Szabó. sam2p, a pixel image converter
which can generate small PostScript and PDF.
http://www.inf.bme.hu/~pts/sam2p/.

[39] Péter Szabó. Inserting Vgures into TEX documents.
In EuroBachoTEX, 2002. http://www.inf.bme.
hu/~pts/sam2p/sam2p_article.pdf.

[40] Till Tantau. The beamer class, 3.07 edi-
tion, 11 March 2007. http://www.ctan.org/
tex-archive/macros/latex/contrib/beamer/
doc/beameruserguide.pdf.

[41] Hàn Thế Thành, Sebastian Rahtz, Hans Hagen,
et al. The pdfTEX manual, 1.671 edition,
25 January 2007. http://www.ctan.org/get/
systems/pdftex/pdftex-a.pdf.

[42] Cosmin Truţa. A guide to PNG optimization.
http://optipng.sourceforge.net/pngtech/
optipng.html, 2008.

[43] Cosmin Truţa. OptiPNG, advanced PNG
optimizer (project page), 9 June 2009. http:
//optipng.sourceforge.net/.

[44] VeryPDF.com. Compressing your PDF Vles,
13 July 2006. http://www.verypdf.com/
pdfinfoeditor/compression.htm.

[45] VeryPDF.com. PDF Compress Command Line
User Manual, 13 July 2006. http://www.verypdf.

com/pdfinfoeditor/pdfcompress.htm.
[46] Pauli Virtanen. TexText, an Inkscape extension

for adding LATEX markup, 6 February 2009.
http://www.elisanet.fi/ptvirtan/software/
textext/.

Péter Szabó
Google
Brandschenkestrasse 110
CH-8002, Zürich, Switzerland
pts (at) google dot com
http://www.inf.bme.hu/~pts/

Taco Hoekwater EUROTEX 2009 E131

Generating PDF for e-reader devices
Abstract
NotuDoc is a commercial Internet application that uses
ConTEXt for the on-the-fly generation of PDF documents
for, amongst other things, the e-reader devices of iRex tech-
nologies. This articles offers a glimpse behind the scenes.

Introduction
This article is about the generation of PDF documents for
e-reader devices. Before we delve into that, let’s look at
the controlling application (NotuDoc) that this process
is a part of, and do a short introduction of the e-reader
devices that are used.

Generating PDF from within NotuDoc is a fairly small
part of the application, but even so there is a fair amount
of complexity.

NotuDoc
The Dutch company NotuBiz (http://www.notubiz.nl)
focuses on everything related to the recording and pub-
lishing of (council) meeting reports using modern media.
For example, NotuBiz takes care of live streaming and
the publication of digital meeting reports on the Internet.
The clients of NotuBiz are local government bodies in
The Netherlands, but increasingly also in neighboring
countries.

In practical use, it turned out that the information
stream leading up to the actual meetings was far from
optimal. NotuDoc was born out of this realization: No-
tuDoc is an Internet application that links (preliminary
or Vnal) meeting agendas to the corresponding meeting
documents like commission reports, presentations and
quotations. Afterwards, the resulting combination is
made available to the relevant meeting parties via the
Internet and/or PDF document export functionality.

By gathering and combining all the necessary docu-
ments in one place, it becomes easier for the participants
to prepare for the meeting. As a bonus, afterwards the
oXcial meeting report can be linked to already existing
meeting data easily and therefore everything is set up
for near-eUortless publication to the members of the
community (as is required by law).

NotuDoc is a plug-and-go commercial product with
quite extensive conVguration possibilities. This is impor-
tant because the web interface has to integrate nicely
with the layout of the client’s website, but it goes
further than that: not all clients have the same meeting

structures and only a very few use the same internal
document management system (DMS). NotuDoc comes
with pre-installed support for the most commonly used
systems in the Netherlands, and the extensibility ensures
that support for other DMS-s is easily added.

The NotuDoc code is implemented and maintained
by Elvenkind in close cooperation with NotuBiz and is
based on Elvenkind’s development framework, written
using Perl 5.

Figure 1. An example main screen
of the NotuDoc Internet application

E-reader devices
At present, NotuDoc comes prepared for the genera-
tion of PDF documents for two speciVc e-reader de-
vices, both developed by iRex Technologies (http://www
.irextechnologies.com), a spin-oU of Philips Interna-
tional. Besides these two speciVc devices (iLiad and
DR1000) it is naturally also possible to generate PDF
for printing and for interactive work on a computer /
notebook.

Both the iLiad and the newer DR1000 are based on
the same core technology. The iLiad has been around
for a few years now and amongst other things it is
the publishing platform for the digital version of ‘NRC
Handelsblad’ (a Dutch newspaper comparable to the
Wall Street Journal). The DR1000 has a new design and it

E132 MAPS 39 Taco Hoekwater

Figure 2. iLiad (left) and DR1000 (right).

oUers a larger screen and somewhat faster hardware, but
technologically there are very few diUerences between
the two devices.

Both devices are based on ‘digital paper’, a technology
whereby the displayed data stays visible without the
need to refresh the screen many times a second.

The key advantage of this technology is that it uses far
less power, resulting in much longer battery life when
compared to traditional TFT or LCD screens. Another
good thing is that because there is no need for a back
light, actually looking at the screen is a lot easier on the
eyes.

On the other hand, there are downsides to electronic
paper. The two largest of these: the reaction time, which
is much slower than for conventional computer displays,
and the output is grayscale only. Hopefully, future devel-
opments will remove both limitations.

Both devices make use of ‘Wacom Penabled’ technol-
ogy (http://wacom.com/tabletpc/what_is_penabled.cfm)
that makes it possible to write and sketch directly on
the display, so that you can create notes directly into the
PDF. The companion software (for Windows) is able to
merge these notes with the original PDF document into
a new PDF document for later use.

The supported formats for both devices are the same
as well: PDF, HTML, mobipocket, and a few bitmap image
formats. All software used and developed by iReX is
open source, based on a Linux distribution for embedded

devices. Connection to the PC for exchanging documents
is done via USB or optionally (for iLiad) using a wireless
network. Both iLiad and DR1000 use removable memory
cards as storage medium.

PDF generation
The PDF generation in NotuDoc is handled by a Perl
script that is completely template driven. It uses near-
identical code both for the generation of TEX input Vles
and for HTML pages. Only the character escape functions
and Vlenames are adjusted speciVcally for TEX. Just like
the web pages, the PDF documents are generated at
runtime by calling texexec. The TEX subsystem uses
ConTEXt supplied by the ‘contextgarden’ distribution
(http://minimals.contextgarden.net/).

ConTEXt templates
For each client, the application stores a setting for the
desired PDF output type. The following example uses
iliad, but it can also be something else like dr1000 or
just a4. Separate from this global preference, it is possible
to deVne a client-speciVc layout that creates a document
layout that corresponds to the desired house style.

Layout deVnitions are implemented via ConTEXt
macros that are separated out from the Internet appli-
cation. The application only takes care of converting the
database records of a meeting agenda into a ConTEXt
input source and exporting the required meeting doc-

Generating PDF for e-reader devices EUROTEX 2009 E133

Hierbij wordt u uitgenodigd voor de openbare vergadering van de
Gemeenteraad

Datum: donderdag 18 september 2008
Aanvang: 20:00 uur
Locatie: Raadzaal, Stadhuis, ingang Markt 11

1. Vaststellen agenda
Agenda - Agenda (pdf)

2. Onderzoek geloofsbrieven nieuw te benoemen raadslid J. Silos

3. Afleggen van de eed cq. verklaring en belofte door het nieuwbe-
noemde raadslid J. Silos

4. Verslag van de raadsvergadering van 2/3 juli 2008
Notulen - Verslag 2/3 juli 2008 (pdf)

5. Spreekrecht burgers
Burgers kunnen zelf het woord voeren tijdens het Sprekersplein,
voorafgaand aan de commissievergaderingen, en tijdens raads-
vergaderingen. Neemt u hiervoor uiterlijk 8 uur vóór de verga-
dering contact op met de griffier. Meer informatie kunt u hier
vinden

6. Mondelinge vragenronde raadsleden

7. Lijst Ingekomen Stukken
Lijst ingekomen stukken - Lijst IS (pdf)

8. Benoemen nieuw lid van de jury van de Vlaardingse horecaprijs
De Vlaardingse UITblinker

9. Herbenoeming bestuurslid Stichting Wijzer
Raadsvoorstel - Bijlage (pdf)

Figure 3. The first and one of the following pages of a PDF generated for the iLiad

uments to PDF Vles. Everything else is handled by
ConTEXt macros; the application only copies from a
template include Vle into the TEX Vle. The used Vles are:

agenda-iliad.tex
This is the main TEX Vle, and in this Vle two diUerent
types of replacements take place.

In the listing below you see two lines that look
like HTML syntax for so-called ‘server side includes’.
That is not a coincidence: as mentioned above, the
application uses the same code for TEX Vles and
HTML page generation.

The two #include Vles are read by the Perl script,
and inserted in that place in the TEX output. The con-
tents of those Vles are explained in the next para-
graph.

The second type of replacement deals with the
words in all caps between # markers. These keywords
are replaced by the actual content (and meta-data)
of the meeting. The keyword #LIST# is the most im-
portant of those because eUectively that contains the
whole content of the agenda, which is built up recur-
sively.

A meeting agenda consists of meta-information
like place and time, and a variable number of meet-
ing items. Items can be organized into categories, and
for each item there can be an optional number of re-
lated meeting documents. All of this is controlled by
small template Vles that are inserted at various levels.
Their names are predeVned system constants.

\unprotect
<!--#include src=’agenda-macros-00.tex’ -->
<!--#include src=’agenda-macros-iliad.tex’ -->
\protect

\starttext
\startagenda[Gremium={#GREMIUM#},

Datum={#DATUM#},
Datumkort={#DATUMKORT#},
Categorie={#CATEGORIE#},
Aanvang={#AANVANG#},
Locatie={#LOCATIE#},
Aanhef={#AANHEF#},
Koptitel={#TITLE2#},
Titel={#TITLE#}]

\startpunten
#LIST#
\stoppunten

\stopagenda
\stoptext

header_line.tinc
This template is used for any category section head-
ings.

\startheaderline
[Titel={#TEXT#},Pagina=#PAGE#,Aard={#AARD#}]

\startheaderbody
#BODY#
\stopheaderbody
\stopheaderline

E134 MAPS 39 Taco Hoekwater

puntnr_line.tinc
This is the template for each of the separate agenda
items.
#BODY# contains the explanatory text for this item,
#DOCS# is a placeholder for the list of relevant meet-
ing documents. The latter is itself built up program-
matically because there can be any number of rele-
vant documents per item.

\startpunt
[Nummer={#NR#},Titel={#PUNT#},Aard={#AARD#}]
\startpuntbody
#BODY#
\stoppuntbody
\startpuntdocs
#DOCS#
\stoppuntdocs
\stoppunt

puntdoc_line.tinc
This is the Vrst of three possible templates for a
meeting document. It is used for meeting documents
(i.e. exported PDF Vles) that will be included in the
generated PDF as appendices.

\agendadocument[#ICON#]{#LINK#}{#LABEL#}

puntnodoc_line.tinc
This template will be used for meeting documents
that should be included as appendices, but for which
it is decided (based on a conVguration parameter)
that they are too large for actual inclusion. A sepa-
rate macro is used so that an explanatory text can be
printed in the output.

\agendanodocument[#ICON#]{#LABEL#}

puntdoc_line_noembed.tinc
This is the third possibility, intended for non-PDF
meeting documents like Microsoft Word documents
and PowerPoint presentations. Because Vles in these
formats cannot be handled in the PDF output, no hy-
perlink is possible; thus the keyword #LINK# is not
present in this case.

\agendadocument[#ICON#]{}{#LABEL#}

ConTEXt macros
As mentioned above, the used ConTEXt macros are split
over two separate Vles.

The Vrst has the name agenda-macros-00.tex, and
is used unaltered for all clients and all PDF layout. It
contains a generic implementation of the macros we
saw earlier in the template Vles. These macros only

take care of the infrastructure; they don’t do any layout
themselves. Handling the layout is passed on to other
macros via the ConTEXt command \directsetup.

Typical for the content of this Vle are macro deVnitions
like this:

\def\dostartagenda[#1]%
{\getparameters

[Agenda]
[Gremium=,Datum=,Datumkort=,
Categorie=,Aanvang=,Locatie=,
Aanhef=,Titel=,Koptitel=,
Voorzitter=,
#1]%

\pagereference[firstpage]
\directsetup{agenda:start}}

\def\stopagenda
{\directsetup{agenda:stop}}

and this:

\def\agendadocument[#1]#2#3%
{\doifnotempty {#2}

{\doglobal \appendtoks
\addimage{#2}{#3}\to \everyendagenda }%

\def\DocumentType{#1}%
\def\DocumentFile{#2}%
\def\DocumentBody{#3}%
\pagereference[#2-referer]
\directsetup{agenda:document}}

The macro \addimage is the most interesting macro in
this Vle. It receives the id and Vle name of an exported
PDF document as arguments, and ensures that that PDF
document is added page by page via \externalfigure.
In slightly simpliVed form it looks like this:

\unexpanded\def\addimage#1#2{%
\pagereference[#1]
\xdef\previouspdf{\currentpdf}%
\gdef\currentpdf{#1}%i
\getfiguredimensions[#1.pdf]%
\imgcount=\noffigurepages
\dorecurse

{\the\imgcount}
{\externalfigure

[#1.pdf]
[page=\recurselevel,
factor=max,
size=cropbox]%

\page}%
\pagereference[#1-last]

}

Generating PDF for e-reader devices EUROTEX 2009 E135

In the appendices of the generated PDF (see Vgure 3)
there is an extra interaction line at the bottom of the page
containing three buttons that jump to the Vrst page of the
current appendix, the Vrst page of the next appendix, and
to the reference to this appendix in the meeting agenda
itself. These hyperlinks use the values of \currentpdf
and \previouspdf.

The needed setups and the general layout deVnitions
are in the Vle agenda-macros-iliad.tex. This Vle can
be instantiated with a speciVc version for a single client,
but otherwise a generic version will be used: there is a
default implementation Vle for each of the predeVned
PDF output types.

The PDF output layout for the e-reader devices diUer
from the layouts for PC screens or printer, but most
of those diUerences are obvious. Of course there is
a diUerent (smaller) paper format. The room on an
e-reader screen is limited, so it must be used optimally
and therefore very small margins are used. PDF object
compression is turned oU because the e-reader hardware
is very limited compared to a PC. The color support in
ConTEXt is turned on, but only using grayscale.

The biggest diUerence is that the meeting documents
that would normally remain separate Vles are included
into the main output document. This makes moving the
result Vle to the e-reader easier, but most important is
that it improves the user friendliness of the result: exter-
nal PDF links on the e-reader are either not supported at
all (on the iLiad) or extremely slow (on the DR1000).

Parts of the content of agenda-macros-iliad.tex:

\definepapersize [iliad]
[width=124mm,height=152mm]

\setuppapersize [iliad] [iliad]

\enableregime[utf8]

\pdfminorversion = 4

\setuplayout[height=14.5cm,
footer=12pt,
footerdistance=6pt,
width=11cm,
topspace=12pt,
header=0pt,
backspace=24pt,
leftmargin=12pt,
rightmargin=12pt]

\setupcolors[state=start,conversion=yes,
reduction=yes,rgb=no,cmyk=no]

\definecolor[papercolor][r=1,b=1,g=1]

...

\setupbackgrounds[page]
[state=repeat,
background=color,
backgroundcolor=papercolor]

...

\startsetups agenda:start
\blank
\setupfootertexts[\dofooteragenda]
\setupfooter[state=high]
\AgendaGremium
\blank
\starttabulate[|l|p|]
\NC Datum: \NC \ss\AgendaDatum\NC \NR
\NC Aanvang: \NC \ss\AgendaAanvang\NC\NR
\NC Locatie: \NC \ss\AgendaLocatie \NC\NR
\stoptabulate
\blank

\stopsetups

\startsetups agenda:stop
\page
\the\everyendagenda
\everyendagenda={}

\stopsetups

\startsetups punten:start
\startitemize[width=24pt]

\stopsetups

\startsetups punten:stop
\stopitemize

\stopsetups

....

\startsetups agenda:nodocument
{\DocumentBody
{\tfx bestand te groot voor inclusie}\par }%

\stopsetups

Summary
The generation of PDF documents is a small but impor-
tant part of NotuDoc. We chose to use TEX for the high
quality of the output and ConTEXt in particular because
of the simple methods it oUers to separate the layout
deVnitions from the actual data.

Taco Hoekwater
Elvenkind BV
taco (at) elvenkind dot com

E136 MAPS 39 Taco Hoekwater

LuaTEX says goodbye to
Pascal
Abstract
LuaTEX 0.50 features a complete departure from Pascal source code. This article explains a
little of the why and how of this change.

Introduction
For more than a quarter of a century, all implementations of the TEX programming
language have been based on WEB, a literate programming environment invented by
Donald Knuth.WEB input Vles consist of a combination of Pascal source code and TEX
explanatory texts, and have to be processed by special tools to create either input that
is suitable for a Pascal compiler to create an executable (this is achieved via a program
called tangle) or input for TEX82 to create a typeset representation of the implemented
program (via a program called weave).

AWEB Vle is split into numerous small building blocks called ‘modules’ that consist
of an explanatory text followed by source code doing the implementation. The expla-
nations and source are combined in theWEB input in a way that attempts to maximise
the reader’s understanding of the program when the typeset result is read sequentially.
This article will, however, focus on the program source code.

Pascal WEB
The listing that follows shows a small part of the WEB input of TEX82, deVning two
‘modules’. It implements the function that scans for a left brace in the TEX input
stream, for example at the start of a token list.

@ The |scan_left_brace| routine is called when a left brace is supposed to
be the next non-blank token. (The term ‘‘left brace’’ means, more precisely,
a character whose catcode is |left_brace|.) \TeX\ allows \.{\\relax} to
appear before the |left_brace|.

@p procedure scan_left_brace; {reads a mandatory |left_brace|}
begin @<Get the next non-blank non-relax non-call token@>;
if cur_cmd<>left_brace then
begin print_err("Missing { inserted");

@.Missing \{ inserted@>
help4("A left brace was mandatory here, so I’ve put one in.")@/
("You might want to delete and/or insert some corrections")@/
("so that I will find a matching right brace soon.")@/
("(If you’re confused by all this, try typing ‘I}’ now.)");

back_error; cur_tok:=left_brace_token+"{"; cur_cmd:=left_brace;
cur_chr:="{"; incr(align_state);
end;

end;

@ @<Get the next non-blank non-relax non-call token@>=
repeat get_x_token;
until (cur_cmd<>spacer)and(cur_cmd<>relax)

LuaTEX says goodbye to Pascal EUROTEX 2009 E137

It would take too much space here to explain everything about theWEB programming,
but it is necessary to explain a few things. Any @ sign followed by a single character in-
troduces aWEB command that is interpreted by tangle, weave or both. The commands
used in the listing are:

@ This indicates the start of a new module, and the explanatory text that follows
uses special TEX macros but is otherwise standard TEX input (this command is fol-
lowed by a space).

@p This command starts the Pascal implementation code that will be transformed
into the compiler input.

@< When this command is seen after a @p has already been seen, the text up to the
following @> is a reference to a named module that is to be inserted in the compiler
output at this spot. If a @p has not been seen yet, then instead it deVnes or extends
that named module.

@. This deVnes an index entry up to the following @>, used by weave and Vltered
out by tangle.

@/ This is a command to control the line breaks in the typeset result generated by
weave.

If you are familiar with Pascal, the code above may look a bit odd to you. The main
reason for that apparent weirdness of the Pascal code is that the WEB system has a
macro processor built in. The symbol help4 is actually one of those macros, and it
handles the four sets of parenthesized strings that follow. In expanded form, its output
would look like this:

begin
help_ptr:=4;
help_line[3]:="A left brace was mandatory here, so I’ve put one in.";
help_line[2]:="You might want to delete and/or insert some corrections";
help_line[1]:="so that I will find a matching right brace soon.";
help_line[0]:="(If you’re confused by all this, try typing ‘I}’ now.)";

end

The symbol print_err is another macro, and it expand into this:

begin if interaction=error_stop_mode then wake_up_terminal;
print_nl("! "); print("Missing { inserted");
end

Tangle output
Now let’s have a look at the generated Pascal.

{:381}{403:}procedure scanleftbrace;begin{404:}repeat getxtoken;
until(curcmd<>10)and(curcmd<>0){:404};
if curcmd<>1 then begin begin if interaction=3 then;
if filelineerrorstylep then printfileline else printnl(262);print(671);
end;begin helpptr:=4;helpline[3]:=672;helpline[2]:=673;helpline[1]:=674;
helpline[0]:=675;end;backerror;curtok:=379;curcmd:=1;curchr:=123;
incr(alignstate);end;end;{:403}{405:}procedure scanoptionalequals;

That looks even weirder! Don’t panic. Let go through the changes one by one.

@ First, tangle does not care about indentation. The result is supposedly only read
by the Pascal compiler, so everything is glued together.

@ Second, tangle has added Pascal comments before and after each module that give
the sequence number of that module in the WEB source: those are 403 and 404.

@ Third, tangle removes the underscores from identiVers, so scan_left_brace be-
came scanleftbrace etcetera.

E138 MAPS 39 Taco Hoekwater

@ Fourth, many of the identiVers you thought were present in the WEB source are
really macros that expand to constant numbers, which explains the disappearance
of left_brace, spacer, relax, left_brace_token, and error_stop_mode.

@ Fifth, macro expansion has removed print_err, help4 and wake_up_terminal
(which expands to nothing).

@ Sixth, WEB does not make use of Pascal strings. Instead, the strings are collected
by tangle and output to a separate Vle that is read by the generated executable
at runtime and then stored in a variable that can be indexed as an array. This ex-
plains the disappearance of all the program text surrounded by ".

@ Seventh, addition of two constants is optimized away in some cases. Since sin-
gle character strings in the input have a Vxed string index (its ASCII value),
left_brace_token+"{" becomes 379 instead of 256+123.

Web2c
Assuming you have generated the Pascal code above via tangle, you now run into a
small practical problem: the limited form of Pascal that is used by the WEB program
is not actually understood by any of the current Pascal compilers and has not for a
quite some time. The build process of modern TEX distributions therefore make use of
a diUerent program called web2c that converts the tangle output into C code.

The result of running web2c on the above snippet is in the next listing.

void scanleftbrace (void)
{
do {

getxtoken () ;
} while (! ((curcmd != 10) && (curcmd != 0))) ;
if (curcmd != 1)
{
{
if (interaction == 3)
;
printnl (262) ;
print (671) ;

}
{
helpptr = 4 ;
helpline [3]= 672 ;
helpline [2]= 673 ;
helpline [1]= 674 ;
helpline [0]= 675 ;

}
backerror () ;
curtok = 379 ;
curcmd = 1 ;
curchr = 123 ;
incr (alignstate) ;

}
}

This output is easier to read for us humans because of the added indentation and the
addition of parentheses after procedure calls, but does not signiVcantly alter the code.

Actually, somemore tools are used by the build process of modern TEX distributions,
for example there is a small program that splits the enormous source Vle into a few
smaller C source Vles, and another program converts Pascal write procedure calls to C
printf function calls.

LuaTEX says goodbye to Pascal EUROTEX 2009 E139

Issues with WEB development
Looking at the previous paragraphs, there are number of issues when using WEB for
continuous development.

@ Compiling WEB source, especially on a modern platform without a suitable Pascal
compiler, is a fairly complicated and lengthy process requiring a list of dedicated
tools that have to be run in the correct order.

@ Literate programming environments like WEB never really caught on, so it is hard
to Vnd programmers that are familiar with the concepts, and there are nearly no
editors that support its use with the editor features that modern programmers have
come to depend on, like syntax highlighting.

@ Only a subset of an old form of Pascal is used in the Knuthian sources, and as this
subset is about the extent of Pascal that is understood by the web2c program, that
is all that can be used.

This makes interfacing with external programming libraries hard, often requir-
ing extra C source Vles just to glue the bits together.

@ The ubiquitous use of WEB macros makes the external interface even harder, as
these macros do not survive into the generated C source.

@ Quite a lot of useful debugging information is irretrievably lost in the tangle
stage. Of course, TEX82 is so bug-free that this hardly matters, but when one is
writing new extensions to TEX, as is the case in LuaTEX, this quickly becomes
problematic.

@ Finally, to many current programmers WEB source simply feels over-documented
and even more important is that the general impression is that of a Vnished book:
sometimes it seems like WEB actively discourages development. This is a subjec-
tive point, but nevertheless a quite important one.

Our solution
In the winter of 2008–2009, we invested a lot of time in hand-converting the entire
LuaTEX code base into a set of C source Vles that are much closer to current program-
ming practices. The big WEB Vle has been split into about Vve dozen pairs of C source
Vles and include headers.

During conversion, quite a bit of eUort went into making the source behave more
like a good C program should: most of theWEBmacros with arguments have been con-
verted into C #defines, most of the numerical WEB macros are now C enumerations,
and many of the WEB global variables are now function arguments or static variables.
Nevertheless, this part of the conversion process is nowhere near complete yet.

The new implementation of scan_left_brace in LuaTEX looks like this:

/*
The |scan_left_brace| routine is called when a left brace is supposed
to be the next non-blank token. (The term ‘‘left brace’’ means, more
precisely, a character whose catcode is |left_brace|.) \TeX\ allows
\.{\\relax} to appear before the |left_brace|.
*/

void scan_left_brace(void)
{ /* reads a mandatory |left_brace| */

/* Get the next non-blank non-relax non-call token */
do {

get_x_token();
} while ((cur_cmd == spacer_cmd) || (cur_cmd == relax_cmd));

if (cur_cmd != left_brace_cmd) {
print_err("Missing { inserted");

E140 MAPS 39 Taco Hoekwater

help4("A left brace was mandatory here, so I’ve put one in.",
"You might want to delete and/or insert some corrections",
"so that I will find a matching right brace soon.",
"If you’re confused by all this, try typing ‘I}’ now.");

back_error();
cur_tok = left_brace_token + ’{’;
cur_cmd = left_brace_cmd;
cur_chr = ’{’;
incr(align_state);

}
}

I could write down all of the diUerences with the previously shown C code, but that
is not a lot of fun so I will leave it to the reader to browse back a few pages and spot
all the changes. The only thing I want to make a note of is that we have kept all of
theWEB explanatory text in C comments, and we are actively thinking about a way to
reinstate the ability to create a beautifully typeset source book.

Taco Hoekwater
taco (at) luatex dot org

Taco Hoekwater EUROTEX 2009 E141

The Typesetting of Statistics
Abstract
The Dutch translation of the 750 page textbook ‘Introduc-
tion to the Practice of Statistics’ is typeset using a set of
ConTEXt macros. This article gives a short impression of
the production process of this book, showing that the use of
TEX for the actual typesetting was perhaps the least cum-
bersome part of the process.

The original version
‘Introduction to the Practice of Statistics’ is a fairly hefty
textbook in what I consider a typical ‘United States’
style: it is full-color throughout, in a fairly large format
that combines theory and practice, bound in a single
hardcover book, and is printed on rather thin paper. It
has been typeset using LATEX.

The Dutch version
‘Statistiek in de praktijk’ in turn is a fairly typical
adaptation to the Dutch market: The body is printed in
grayscale, it has a slightly smaller format, the original
is split into two paperbacks (a textbook and a workbook)
and it is printed on standard thickness paper. It is typeset
using ConTEXt.

History of the Dutch version
The Vrst edition was printed elsewhere, and the original
Dutch sources that I received used macroTEX by Amy
Hendrickson. This source was converted to plain TEX for
the second and third editions, using a bunch of special
purpose extension macros.

During this time, there was one TEX source Vle for
each chapter body, one for each chapter title page, and
one for each chapter preface.

The Dutch publisher skipped the fourth edition to
save on expenses.

For the Vfth edition, I switched to ConTEXt for easier
use of graphic objects and references. In the process, the
source Vle layout was converted to the standard ConTEXt
model for projects so that a single texexec call can be
used to generate each of the books. However, makeindex
is still being used for the index generation instead of the
normal ConTEXt methods.

The fifth edition
The Dutch translation of the Vfth edition was sent to
us as a bunch of Microsoft Word Vles (one per original
chapter), and we were lucky enough to also receive the
original sources of the English version.

The Word data format itself was Vne with us, but actual
content posed a number of problems:

@ There were quite a lot of vocabulary diUerences be-
tween the chapters because four diUerent translators
had been working simultaneously.

E142 MAPS 39 Taco Hoekwater

@ Parts of the translation were missing: anything in the
Vfth edition that was identical to the text in the third
edition was not translated. We were expected to copy
these blocks over from the Dutch sources of the third
edition.

@ There were accidental omissions in the translation.
@ The graphics also needed to be translated, converted

to grayscale, and corrected in Adobe Illustrator, then
exported as EPS, and Vnally converted to PDF.

@ The page location remarks in the translation Vles
referred to the Dutch version of the third edition,
instead of to the actual page numbers in the English
Vfth edition.

The last item above was by far the most problematic,
because after the Vrst proofs came back, it became
necessary to have Vve pretty large piles of paper on the
desk at all times:

1. The printout of the original Word Vles (because of
the meta data).

2. The Dutch third edition (for continuous reference).
3. The English Vfth edition (also for reference).
4. The editor-corrected printout of the Dutch Vfth edi-

tion proofs (for correction).

5. A stack of printouts of various email messages and
documents with corrections and addenda sent in by
the translators.

Handling Word files
For the main text, the Word Vles were exported to HTML
in OpenOXce, followed by a cleanup script written by
Siep Kroonenberg.

The tabular material was imported from the English
LATEX sources using a dedicated ConTEXt module that
implements the LATEX tabular environment. Using that,
much of the tabular data could be copied straight over.
The exceptions were tables containing decimal points
(those were converted to commas) and tables dealing
with money (where all amounts had to be converted into
euros).

Mathematical formulas were re-keyed. This was not
a big problem, as almost all formulas needed editing for
localization anyway.

Taco Hoekwater
Elvenkind BV
taco (at) elvenkind dot com

Hans Hagen & Taco Hoekwater EUROTEX 2009 E143

MetaPost 2 project goals
Abstract
Now that MetaPost 1.200 has been released the time has
finally come to focus on the numerical precision extensions
that we have been hinting at for some years already. Version
2.000 of MetaPost will have a runtime configurable preci-
sion and infinite numeric input range.

Introduction
A few years ago John Hobby transferred MetaPost de-
velopment to a team of users of which Taco Hoekwater
is now responsible for the coding. Some pending bugs
were resolved and a few extensions made.

A major step was made when the code base was
converted to C and MetaPost became a library compo-
nent. This made usage in, for instance, luaTEX possible,
and we could also get rid of some dependencies of
external programs. This project was funded by TEX user
groups and the results have been reported at user group
meetings and in journals.

Recently an extra backend was added (SVG) which
was also partially funded. The version that ships with
TEX Live 2009 is the Vrst version that is built on top of
the library and it has these extensions on board.

More extensions
However, we are not yet Vnished as it has been a long
standing wish to free MetaPost from one particularly
signiVcant limitation. In the original MetaPost library
proposal we wrote in May 2007, one of the big user-side
problem points mentioned was:

“All number handling is based on fractions of a 32-
bit integer and user input often hits one of the
many boundaries that are the result of that. For
instance, no numbers can be larger than 16384
and there is a noticeable lack of precision in the
intersection point calculations.”

It is for this reason that we will start the next stage in
the development of the MetaPost library. The aim is to
resolve the mentioned limitation once and for all.

In order to do so, we will have to replace the MetaPost
internal 32-bit numeric values with something more
useful, and to achieve that, the plan is to incorporate one
or both of the following external libraries.

GNU MPFR library
From the web site:

“The MPFR library is a C library for multiple-
precision Woating-point computations with cor-
rect rounding. MPFR has continuously been sup-
ported by the INRIA and the current main authors
come from the CACAO and Arénaire project-
teams at Loria (Nancy, France) and LIP (Lyon,
France) respectively; see more on the credit page.
MPFR is based on the GMP multiple-precision
library.

The main goal of MPFR is to provide a li-
brary for multiple-precision Woating-point com-
putation which is both eXcient and has a well-
deVned semantics. It copies the good ideas from
the ANSI/IEEE-754 standard for double-precision
Woating-point arithmetic (53-bit mantissa).”

See http://www.mpfr.org/ for more details.

IBM decNumber
From the web site:

“decNumber is a high-performance decimal arith-
metic library in ANSI C, especially suitable for
commercial and human-oriented applications.”

See http://www.alphaworks.ibm.com/tech/decnumber/
for more details.

We have not decided yet which one will be used, and
possibly we will include both. MPFR will likely be faster
and has a larger development base, but decNumber is
more interesting from a user interface point of view
because decimal calculus is generally more intuitive. For
both libraries the same internal steps need to be taken,
so that decision can be safely postponed until later in the
project. The Vnal decision will be based on a discussion
to be held on the MetaPost mailing list.

The goals of the project
The project can be split up into a number of subsidiary
goals.

E144 MAPS 39 Hans Hagen & Taco Hoekwater

Dynamic memory allocation
Because values in any numerical calculation library are
always expressed as C pointers, it is necessary to move
away from the current array-based memory structure
with overloaded members to a system using dynamic
allocation (using malloc()) and named structure com-
ponents everywhere, so that all internal MetaPost values
can be expressed as C pointers internally.

As a bonus, this will remove the last bits of static
allocation code from MetaPost so that it will Vnally be
able to use all of the available RAM.

Internal API
An internal application programming interface layer
will need to be added for all the internal calculation
functions and the numeric parsing and serialization
routines. All such functions will have to be stored in
an array of function pointers, thus allowing a run-time
switch between 32-bit backward-compatible calculation
and an arbitrary precision library.

This internal interface will also make it possible to add
additional numerical engines in the future.

The external application programming interface layer
will be extended to make direct access to the numerical
and path handling functions possible.

Backends
The SVG and PostScript backends need to be updated
to use double precision Woat values for exported points
instead of the current 32-bit scaled integers.

In the picture export API, doubles are considered to
be the best common denominator because there is an
acceptable range and precision and they are simple to
manipulate in all C code. This way, the actual SVG
and PostScript backend implementations and the Lua
bindings can remain small and simple.

Input language
The input language needs to be extended in order to fulVl
the following project objectives.

1. It must be possible to select which numerical engine
to use.

2. In the case of an arbitrary precision engine, it has to
be possible to set up the actual precision.

3. It has to be possible to read (and write) numerical
values in scientiVc notation.

4. Some mathematical functions (especially trigonom-
etry) and constants (like π) will have to be added to
make sure all the numerical engines present a uniVed
interface while still oUering the best possible preci-
sion.

Here is a tentative input example that would select the
decNumber library with 50 decimal digits of precision:

mathengine := "decNumber";
mathprecision := 50;
beginfig(1);
z1 = (1/3,0.221533334556544532266322);
v = 23.45678888E512;
x2 = v/1E511;
endfig;
end.

Timeline
Thanks to funding received from various local user
groups, we hope to be able to have MetaPost 2 ready
in time for the TUG and EuroTEX conferences in 2010.

Hans Hagen & Taco Hoekwater
taco (at) metapost dot org

John Trapp EUROTEX 2009 E145

Using LATEX as a computing
language
Introduction
It is possible to use LATEX as a primitive computing language to do some repetitive
calculations, examples of which are

@ calculation of dates for a timetable

@ vector and scalar products

@ solution of second-order constant coeXcient linear diUerential equations

@ cancelling common factors in a fraction

@ adding up marks on a student’s script

My question is whether these are useful? If so, whether it is worth extending this?

Dates on a timetable
Introduction. I produce a timetable for the lecture course I give. The dates on the
timetable are a constant number of days relative to the start date (e.g. if the start date is
8 January, then the Vrst computing practical is on 22 January, a fortnight later).

I had done my own programming before I was aware of the datenumber and ifthen
packages, and would use those instead now.

The material is used for a slide at the beginning of the course, and in LATEX 2.09
format—don’t change a winning formula.

Coding. The coding is within the actual input Vle, and not a separate package.
\makeatletter

\newcount{\@startdate}
\@startdate=0
\newcount{\@tempdate}
\newcount{\@dayplus}
\newcommand{\startdate}[1]%

{\advance \@startdate by #1}%
\newcommand{\dayplus}[1]%

{\@tempdate = \@startdate \advance \@tempdate by #1%
\ifnum \@tempdate < 32 \the\@tempdate~January%

\else \advance \@tempdate by -31 \the\@tempdate~February\fi}%
\makeatother

\begin{slide}{}
\begin{center} \bf Format of this component\end{center}
\begin{description}

\item[7 Formal lectures] on Tuesdays and Thursdays
{\em start at 9 o’clock}
\startdate{15}

E146 MAPS 39 John Trapp

\item[4 Informal Lectures] on Saturdays,
including this Saturday, \dayplus{2}

\item[Examples classes] on Thursday \dayplus{7}
in Computing Room, 2.00 -- 3.15\,p.m., \\3.30 -- 4.45\,p.m.,
4.45 -- 6.00\,p.m.

\item[Computer] Practical Classes on
Thursdays\\ \dayplus{14} and \dayplus{21},
2.00 -- 3.15\,p.m., 3.30 -- 4.45\,p.m., 4.45 -- 6.00\,p.m.

\item[Assessed practical]
Thursday \dayplus{28}, \\ 2.00 -- 3.15\,p.m.,
3.30 -- 4.45\,p.m., \\4.45 -- 6.00\,p.m.

\end{description}
\end{slide}

Example of output. This produces the output in Figure 1.

Format of this component

7 Formal lectures on Tuesdays and Thurs-
days start at 9 o’clock

4 Informal Lectures on Saturdays, including
this Saturday, 14 January

Examples classes on Thursday 19 January in
Computing Room, 2.00 – 3.15 p.m.,
3.30 – 4.45 p.m., 4.45 – 6.00 p.m.

Computer Practical Classes on Thursdays
26 January and 2 February, 2.00 – 3.15 p.m.,
3.30 – 4.45 p.m., 4.45 – 6.00 p.m.

Assessed practical Thursday 9 February,
2.00 – 3.15 p.m., 3.30 – 4.45 p.m.,
4.45 – 6.00 p.m.

1

Figure 1. Example of dates on a timetable

Calculating cross- and dot-products of vectors
DeVnitions. Exercises involving the products, be they cross or dot, of vectors are
invariably with integer coeXcients, and so it is easy to calculate them using integer
arithmetic.

If two vectors a and b have Cartesian components a1, a2, a3 (or a1i+a2j+a3k) and
b1, b2, b3 (or b1i+ b2j+ b3k) respectively, then the dot (or scalar) product is deVned1
by

a . b = a1b1 + a2b2 + a3b3
and the cross (or vector) product is deVned by

a× b = (a2b3 − a3b2)i+ (a3b1 − a1b3)j+ (a1b2 − a2b1)k.

Although it is easy to do the arithmetic using the calc package, good style in mathemat-
ics dictates that 0i+ 4j+ 0k is not as elegant as 4j and that intermediate calculations
that involve a negative number ought to have that negative number in brackets, e.g.
4×−3−−3× 2 should be replaced by (4× (−3))− ((−3)× 2).

Using LATEX as a computing language EUROTEX 2009 E147

So in this package, I have tried to avoid these lapses of style.

Coding of the package. The package coding is:
\RequirePackage{calc, ifthen}

\renewcommand{\i}{{\mathbf i}}
\renewcommand{\j}{{\mathbf j}}
\renewcommand{\k}{{\mathbf k}}

\newcommand{\bfcdot}%
{\mathbin{\mbox{\normalfont \bf \raise 0.4ex \hbox{.}}}}

\newcommand{\bftimes}{\mathbin{\mbox{\normalfont \bf\textsf{x}}}}

%% Define the counters for each of the components and a temporary one.
\newcounter{@ai}\newcounter{@aj}\newcounter{@ak}
\newcounter{@bi}\newcounter{@bj}\newcounter{@bk}
\newcounter{@ci}\newcounter{@cj}\newcounter{@ck}
\newcounter{@temp}

%% A command to include brackets if the value is less than zero
\newcommand{\@negbrackets}[1]%

{\setcounter{@temp}{#1}
\ifthenelse{\value{@temp}<0}%

{(\the@temp)}%
{\the@temp}

} % end \@negbrackets

%% to check whether a previous component exists
\newboolean{@previous}
\setboolean{@previous}{false}

%% to be used for the first non-zero component
\newcommand{\@firstcomponent}[2]%

{\setcounter{@temp}{#1}
\ifthenelse{\value{@temp}=0}%

{\relax}%
{\setboolean{@previous}{true}
\ifthenelse{\value{@temp}=1}%

{#2}%
{\the@temp\,#2}

}
} % end \@firstcomponent

%% to be used if the previous component is not zero
\newcommand{\@subsequentcomponent}[2]%

{\setcounter{@temp}{#1}
\ifthenelse{\boolean{@previous}}%

{\ifthenelse{\value{@temp}=0}%
{\relax}%
{\ifthenelse{\value{@temp}=1}%

{+#2}%
{\ifthenelse{\value{@temp}=-1}%

{-#2}%
{\ifthenelse{\value{@temp}<0}%

{\the@temp\,#2}%
{+\the@temp\,#2}

}
}

}

E148 MAPS 39 John Trapp

}%
{\@firstcomponent{#1}{#2}}%

} % end \@subsequentcomponent

%% writes a zero vector if all previous components are zero,
%% and resets the switch
\newcommand{\@zerovector}%

{\ifthenelse{\boolean{@previous}}%
{\setboolean{@previous}{false}}%
{\mathbf 0}

} % ends \@zerovector

%% puts it all together and produces the output
\newcommand{\crossproduct}[6]%

{\setcounter{@ai}{#1}\setcounter{@aj}{#2}\setcounter{@ak}{#3}
\setcounter{@bi}{#4}\setcounter{@bj}{#5}\setcounter{@bk}{#6}
\setcounter{@ci}{\value{@aj}*\value{@bk}-\value{@ak}*\value{@bj}}
\setcounter{@cj}{\value{@ak}*\value{@bi}-\value{@ai}*\value{@bk}}
\setcounter{@ck}{\value{@ai}*\value{@bj}-\value{@aj}*\value{@bi}}%
(\@firstcomponent{#1}{\i}%
\@subsequentcomponent{#2}{\j}\@subsequentcomponent{#3}{\k}

\@zerovector) \bftimes
(\@firstcomponent{#4}{\i}%
\@subsequentcomponent{#5}{\j}\@subsequentcomponent{#6}{\k}

\@zerovector)\\
&=& \left(\@negbrackets{\the@aj}\times\@negbrackets{\the@bk}

-\@negbrackets{\the@ak}\times\@negbrackets{\the@bj} \right)\i +
\left(\@negbrackets{\the@ak}\times\@negbrackets{\the@bi}
-\@negbrackets{\the@ai}\times\@negbrackets{\the@bk}\right)\j +
\left(\@negbrackets{\the@ai}\times\@negbrackets{\the@bj}
-\@negbrackets{\the@aj}\times\@negbrackets{\the@bi}\right)\k \\

&=& \@firstcomponent{\the@ci}{\i} \@subsequentcomponent{\the@cj}{\j}
\@subsequentcomponent{\the@ck}{\k}\@zerovector

} %ends \crossproduct

\newcommand{\dotproduct}[6]%
{\setcounter{@ai}{#1}\setcounter{@aj}{#2}\setcounter{@ak}{#3}
\setcounter{@bi}{#4}\setcounter{@bj}{#5}\setcounter{@bk}{#6}
\setcounter{@ci}{\value{@ai}*\value{@bi}+\value{@aj}*\value{@bj}+
\value{@ak}*\value{@bk}}%
(\@firstcomponent{#1}{\i}%
\@subsequentcomponent{#2}{\j}%
\@subsequentcomponent{#3}{\k}

\@zerovector) .
(\@firstcomponent{#4}{\i}%
\@subsequentcomponent{#5}{\j}\@subsequentcomponent{#6}{\k}

\@zerovector)\\
&=& \@negbrackets{\the@ai}\times\@negbrackets{\the@bi}

+\@negbrackets{\the@aj}\times\@negbrackets{\the@bj}
+\@negbrackets{\the@ak}\times\@negbrackets{\the@bk} \\

&=& \the@ci
} %ends \dotproduct

Input to the package. With this package, the following produces the output in Figure 2.

\begin{eqnarray*}
\mathbf{p} \bftimes \mathbf{q}& = &\crossproduct{-3}{-1}{6}{2}{-2}{4}

\end{eqnarray*}

\begin{eqnarray*}

Using LATEX as a computing language EUROTEX 2009 E149

\mathbf{p} \bftimes \mathbf{q}& = &\crossproduct{8}{-1}{6}{0}{0}{4}
\end{eqnarray*}

\begin{eqnarray*}
\mathbf{q}\bftimes \mathbf{r} &=& \crossproduct{-3}{0}{4}{0}{0}{4}

\end{eqnarray*}

\begin{eqnarray*}
\mathbf{q}\bftimes \mathbf{r} &=& \crossproduct{0}{0}{0}{0}{0}{0}

\end{eqnarray*}

\begin{eqnarray*}
\mathbf{p} \bfcdot \mathbf{q}& = &\dotproduct{-3}{-1}{6}{2}{-2}{4}

\end{eqnarray*}

\begin{eqnarray*}
\mathbf{p} \bfcdot \mathbf{q}& = &\dotproduct{8}{-1}{6}{0}{0}{4}

\end{eqnarray*}

\begin{eqnarray*}
\mathbf{q}\bfcdot \mathbf{r} &=& \dotproduct{-3}{0}{4}{0}{0}{4}

\end{eqnarray*}

\begin{eqnarray*}
\mathbf{q}\bfcdot \mathbf{r} &=& \dotproduct{0}{0}{0}{0}{0}{0}

\end{eqnarray*}

A very similar package is written for calculating determinants of 2× 2 and 3× 3
matrices.

Solution of second-order constant coefficient homogeneous linear
differential equations
DeVnitions. I shan’t be solving diUerential equations; but reverse engineer them from
the solution.

If the solutions to the auxiliary equation are real, say λ1 and λ2, then the diUerential
equation is

d2y

dx2
− (λ1 + λ2)

dy

dx
+ λ1λ2y = 0

and has solution
y = Aeλ1x +Beλ2x.

So Vrst choose λ1 and λ2 and then generate the question and solution from those two
numbers.

If the solutions to the auxiliary equation are complex, say α±βi, then the diUerential
equation is

d2y

dx2
− 2α

dy

dx
+

(
α2 + β2

)
y = 0

and has solution
y = eαx (A cos(βx) +B sin(βx)) .

So Vrst choose α and β and generate the question and solution from those two numbers.

Coding.
\RequirePackage{ifthen, calc}
\parindent 0pt

\newboolean{@positive} % to cater for negative sign

E150 MAPS 39 John Trapp

p× q = (−3 i− j+ 6k)× (2 i− 2 j+ 4k)

= ((−1)× 4− 6× (−2)) i+ (6× 2− (−3)× 4) j+ ((−3)× (−2)− (−1)× 2)k

= 8 i+ 24 j+ 8k

p× q = (8 i− j+ 6k)× (4k)

= ((−1)× 4− 6× 0) i+ (6× 0− 8× 4) j+ (8× 0− (−1)× 0)k

= −4 i− 32 j

q× r = (−3 i + 4k)× (4k)

= (0× 4− 4× 0) i + (4× 0− (−3)× 4) j+ ((−3)× 0− 0× 0)k

= 12 j

q× r = (0)× (0)

= (0× 0− 0× 0) i + (0× 0− 0× 0) j+ (0× 0− 0× 0)k

= 0

p . q = (−3 i− j+ 6k).(2 i− 2 j+ 4k)

= (−3)× 2 + (−1)× (−2) + 6× 4

= 20

p . q = (8 i− j+ 6k).(4k)

= 8× 0 + (−1)× 0 + 6× 4

= 24

q . r = (−3 i+ 4k).(4k)

= (−3)× 0 + 0× 0 + 4× 4

= 16

q . r = (0).(0)

= 0× 0 + 0× 0 + 0× 0

= 0

Figure 2. Example of dot and cross products

\setboolean{@positive}{true}

\newcounter{@a}\newcounter{@b}
\newcounter{@trace}\newcounter{@det}
\newcounter{diffcoefficient} % for external use
\newcounter{functioncoefficient} % for external use
\newcounter{@x}
\setcounter{@a}{3}

Using LATEX as a computing language EUROTEX 2009 E151

\setcounter{@b}{4}

\newcommand{\sign}{\ifthenelse{\boolean{@positive}}{+}{-}}

\newcommand{\dequreal}[2]%
{\setcounter{@a}{#1}\setcounter{@b}{#2}
\setcounter{@x}{\value{@a}+\value{@b}}
\setcounter{diffcoefficient}{-\value{@a}-\value{@b}}
\setcounter{functioncoefficient}{\value{@a}*\value{@b}}
\frac{\mathrm{d}^2y}{\mathrm{d}x^2}
\ifthenelse{\value{@x}=0}%

{\relax}%
{\ifthenelse{\value{@x}<0}%

{\setcounter{@trace}{-\value{@x}}\setboolean{@positive}{true}}%
{\setboolean{@positive}{false}\setcounter{@trace}{\value{@x}}}

\sign
\ifthenelse{\value{@trace}=1}%

{\relax}%
{\the@trace} %% to remove 1

\frac{\mathrm{d}y}{\mathrm{d}x}
}
\setcounter{@x}{{\value{@a}*\value{@b}}}
\ifthenelse{\value{@x}<0}%

{\setcounter{@det}{-\value{@x}}\setboolean{@positive}{false}}%
{\setcounter{@det}{\value{@x}}\setboolean{@positive}{true}}

\sign
\ifthenelse{\value{@det}=1}%

{\relax}%
{\the@det} %% to remove 1

y=0 %\quad (\mbox{arguments are } #1,#2)
} % ends dequreal

\newcommand{\auxiliaryreal}[2]%
{\setcounter{@a}{#1}\setcounter{@b}{#2}
\setcounter{@x}{\value{@a}+\value{@b}}
\lambda^2
\ifthenelse{\value{@x}=0}%

{\relax}%
{\ifthenelse{\value{@x}<0}%

{\setcounter{@trace}{-\value{@x}}\setboolean{@positive}{true}}%
{\setboolean{@positive}{false}\setcounter{@trace}{\value{@x}}}

\sign
\ifthenelse{\value{@trace}=1}{\relax}{\the@trace} %% to remove 1
\lambda}

\setcounter{@x}{{\value{@a}*\value{@b}}}
\ifthenelse{\value{@x}<0}%

{\setcounter{@det}{-\value{@x}}\setboolean{@positive}{false}}%
{\setcounter{@det}{\value{@x}}\setboolean{@positive}{true}}

\sign \ifthenelse{\value{@det}=1}{\relax}{\the@det} %% to remove 1
=0

} % ends \auxiliaryreal

\newcommand{\auxiliaryfactors}[2]%
{(\lambda \setcounter{@x}{-#1}
\ifthenelse{\value{@x}<0}%

{\relax}%
{+}

\the@x)
(\lambda \setcounter{@x}{-#2}
\ifthenelse{\value{@x}<0}%

E152 MAPS 39 John Trapp

{\relax}%
{+}

\the@x) =0
} % ends \auxiliaryfactors

\newcommand{\cfreal}[2]%
{y=A\mathrm{e}^{#1 x}+B\mathrm{e}^{#2 x}
} % ends \cfreal

\newcommand{\dequcomplex}[2]%
{\setcounter{@a}{#1}\setcounter{@b}{#2}
\setcounter{@x}{2*\value{@a}}
\setcounter{diffcoefficient}{-2*\value{@a}}
\setcounter{functioncoefficient}

{{\value{@a}*\value{@a}+\value{@b}*\value{@b}}}
\frac{\mathrm{d}^2y}{\mathrm{d}x^2}
\ifthenelse{\value{@x}=0}%

{\relax}%
{\ifthenelse{\value{@x}<0}%

{\setcounter{@trace}{-\value{@x}}\setboolean{@positive}{true}}%
{\setboolean{@positive}{false}\setcounter{@trace}{\value{@x}}}

\sign
\ifthenelse{\value{@trace}=1}{\relax}{\the@trace} %% to remove 1

\frac{\mathrm{d}y}{\mathrm{d}x}}
\setcounter{@x}{{\value{@a}*\value{@a}+\value{@b}*\value{@b}}}
+ \the@x y=0 %\quad (\mbox{arguments are } #1,#2)

} % ends \dequcomplex

\newcommand{\auxiliarycomplex}[2]%
{\setcounter{@a}{#1}\setcounter{@b}{#2}
\setcounter{@x}{2*\value{@a}}
\lambda^2
\ifthenelse{\value{@x}=0}%

{\relax}%
{\ifthenelse{\value{@x}<0}%

{\setcounter{@trace}{-\value{@x}}\setboolean{@positive}{true}}%
{\setboolean{@positive}{false}\setcounter{@trace}{\value{@x}}}

\sign
\ifthenelse{\value{@trace}=1}%

{\relax}%
{\the@trace} %% to remove 1

\lambda
}

\setcounter{@x}{{\value{@a}*\value{@a}+\value{@b}*\value{@b}}}
+ \the@x y=0
} % ends \auxiliarycomplex

\newcommand{\bsquared}{\relax}

\newcommand{\bsquaredd}[1]{\renewcommand{\bsquared}{#1}}

\newcommand{\auxiliaryquadratic}[2]%
{\setcounter{@a}{#1}\setcounter{@b}{#2}
\ifthenelse{\value{@b}<0}%

{\setcounter{@b}{-\value{@b}}}%
{\relax}

\setcounter{@x}{2*\value{@a}}
\ifthenelse{\value{@a}>0}%

{\bsquaredd{(\setcounter{@trace}{-2*\value{@a}}\the@trace)^2}}%
{\bsquaredd{\setcounter{@trace}{-2*\value{@a}}\the@trace^2}}%

Using LATEX as a computing language EUROTEX 2009 E153

\setcounter{@det}{{\value{@a}*\value{@a}+\value{@b}*\value{@b}}}
\lambda = \frac{\the@x\pm\sqrt{\bsquared-4\times \the@det}}{2}
\setcounter{@det}{4*\value{@b}*\value{@b}}
= \frac{\the@x\pm\sqrt{-\the@det}}{2}
} % ends \auxiliaryquadratic

\newcommand{\desolreal}[2]%
{For the second-order differential equation,
\[\dequreal{#1}{#2}\] the auxiliary function is
\[\auxiliaryreal{#1}{#2}\]
which factorizes to \[\auxiliaryfactors{#1}{#2}\]
and has solutions \[\lambda= #1, #2.\]
The complementary function is \[\cfreal{#1}{#2}.\]
} % end \desolreal

\newcommand{\cfcomplex}[2]{%
\setcounter{@b}{#2}
\ifthenelse{\value{@b}<0}%

{\setcounter{@b}{-\value{@b}}}%
{\relax}

y=\ifthenelse{#1=0}%
{\relax}%
{\mathrm{e}^{#1 x}\left(}A\cos(\the@b x) + B\sin(\the@b x)
\ifthenelse{#1=0}{\relax}{\right)}

} % end \cfcomplex

\newcommand{\desolcomplex}[2]%
{For the second-order differential equation,
\[\dequcomplex{#1}{#2}\]
the auxiliary function is
\[\auxiliarycomplex{#1}{#2}\]
which does not factorize, and so, using the quadratic formula solution,
the solutions are given by
\[\auxiliaryquadratic{#1}{#2};\] this gives the roots
\[\lambda= #1\pm

\ifthenelse{#2<0}%
{\setcounter{@x}{-#2}\the@x}%
{#2}

\,\mathrm{i}.
\]
The complementary function is \[\cfcomplex{#1}{#2}.\]
} % end \desolcomplex

The input. As an example the following input (with horizontal rules to separate out the
solutions from the questions):
\usepackage{second_order.des.sty}
\begin{document}
{\large Solve the following differential equation:}
\[\dequreal{-3}{4}\]
\emph{The solution is} \hrulefill\par
\desolreal{-3}{2}\\\emph{End of solution} \hrulefill\par
{\large Solve the following differential equation:}
\[\dequcomplex{-3}{4}\] \emph{The solution is} \hrulefill\par
\desolcomplex{-3}{4}\\\emph{End of solution} \hrulefill
\end{document}

produces the output in Figure 3.

E154 MAPS 39 John Trapp

Solve the following differential equation:

d2y

dx2
− dy

dx
− 12y = 0

The solution is

For the second-order differential equation,

d2y

dx2
− dy

dx
− 12y = 0

the auxiliary function is
λ2 − λ− 12 = 0

which factorizes to
(λ+ 3)(λ− 4) = 0

and has solutions
λ = −3, 4.

The complementary function is

y = Ae−3x +Be4x.

End of solution

Solve the following differential equation:

d2y

dx2
+ 6

dy

dx
+ 25y = 0

The solution is

For the second-order differential equation,

d2y

dx2
+ 6

dy

dx
+ 25y = 0

the auxiliary function is
λ2 + 6λ+ 25y = 0

which does not factorize, and so, using the quadratic formula solution, the solutions are
given by

λ =
−6±

√
62 − 4× 25

2
=

−6±√−64

2
;

this gives the roots
λ = −3± 4 i.

The complementary function is

y = e−3x (A cos(4x) +B sin(4x)) .

End of solution

Figure 3. Example of second-order differential equations and their solutions

Cancelling fractions
Sometimes it is useful to write down the numerator and the denominator of a fraction,
and for the common factors to be removed, so that the numerator and denominator are
relatively prime.

In this package, the cancellation is done automatically, reducing the numerator and
denominator to being relatively prime to each other. If the denominator is 1, then a
whole number is printed; it also takes care of the signs.

The programming is semi-eXcient; eXcient in that it Vnds the minimum of the
denominator and numerator, and Vnds factors up to the square root of this minimum;
ineXcient in that it tries every number between 2 and this minimum value, so there is
some duplication (e.g. it tries 6 as a factor, after it has tried both 2 and 3).

Coding.
\NeedsTeXFormat{LaTeX2e}[1994/06/01]

\RequirePackage{ifthen,calc}

Using LATEX as a computing language EUROTEX 2009 E155

\newcounter{@a}\newcounter{@b}
\newcounter{@min}\newcounter{@i}
\newcounter{@c}\newcounter{@d}
\newcounter{@temp}

\newboolean{@minus}
\newboolean{@less}
\newboolean{@found}
\setboolean{@minus}{false}
\newboolean{@factor}
\setboolean{@factor}{true}
\newboolean{cancellation} % flag to tell user whether

% a fraction has been simplified

\newcommand{\Isfactor}[2]%
{\setcounter{@c}{#1}\setcounter{@d}{#2}
\setcounter{@temp}{(\value{@c}/\value{@d})*\value{@d}}
\ifthenelse{\value{@temp}=\value{@c}}%

{\setboolean{@factor}{true}}%
{\setboolean{@factor}{false}}

} %% ends \Isfactor

\newcommand{\Fraction}[2]%
{\setcounter{@a}{#1}\setcounter{@b}{#2}
\setboolean{cancellation}{false}
\setboolean{@found}{true}
\setboolean{@less}{true}
\setcounter{@i}{2} %% to start the first factor
\Findabsmin{\value{@a}}{\value{@b}}
\whiledo{\boolean{@less}}%

{\whiledo{\boolean{@found}}%
{\Isfactor{\value{@a}}{\value{@i}}
\ifthenelse{\boolean{@factor}}%

{\Isfactor{\value{@b}}{\value{@i}}
\ifthenelse{\boolean{@factor}}%

{\setcounter{@a}{\value{@a}/\value{@i}}
\setcounter{@b}{\value{@b}/\value{@i}}%
\setboolean{cancellation}{true}}%
{\setboolean{@found}{false}}

}
{\setboolean{@found}{false}}

}
\addtocounter{@i}{1}\setboolean{@found}{true}
\setcounter{@temp}% %% check if less than square

{\value{@i}*\value{@i}-\value{@min}-1}
\ifthenelse{\value{@temp}<0}%

{\relax}%
{\setboolean{@less}{false}}

}
\ifthenelse{\boolean{@minus}}

{\setcounter{@a}{-\value{@a}}}{\relax} %% minus sign
\ifthenelse{\value{@b}=1}{\the@a}{\frac{\the@a}{\the@b}}
} % ends \Fraction

\newcommand{\Findabsmin}[2]%% to find the minimum absolute value
%% of two numbers

{\setcounter{@a}{#1}\setcounter{@b}{#2}
\ifthenelse{\value{@a}<0}%

E156 MAPS 39 John Trapp

{\setcounter{@a}{-\value{@a}}\setboolean{@minus}{true}}%
{\setboolean{@minus}{false}}

\ifthenelse{\value{@b}<0}%
{\setcounter{@b}{-\value{@b}}
\ifthenelse{\boolean{@minus}}%

{\setboolean{@minus}{false}}
{\setboolean{@minus}{true}}}%

{\relax}
\ifthenelse{\value{@a}<\value{@b}}%

{\setcounter{@min}{\value{@a}}}%
{\setcounter{@min}{\value{@b}}}

} %% ends \Findabsmin

Example of input and output. For this input:
\usepackage{fractioncancellation}
\begin{document}
\section{Textstyle}

$\frac{16}{24}=\Fraction{16}{24},
\quad \frac{270}{-75}=\Fraction{270}{-75},
\quad \frac{512}{64}=\Fraction{512}{64},
\quad \frac{-4800}{364}= \Fraction{-4800}{364}

$
\section{Displaystyle}

\[\frac{125}{-25}= \Fraction{125}{-25},
\quad \frac{-120}{-36}= \Fraction{-120}{-36},
\quad \frac{4800}{364}= \Fraction{4800}{364}

\]
\end{document}

the output is shown in Figure 4.

1 Textstyle

16
24

= 2
3
, 270

−75
= −18

5
, 512

64
= 8, −4800

364
= −1200

91

2 Displaystyle

125

−25
= −5,

−120

−36
=

10

3
,

4800

364
=

1200

91

Figure 4. Example of fraction cancellation

Giving marks and comments on a student’s script
I wanted to create a style sheet for giving comments and marks on a student’s script.
The marks for each section are known in advance, so the LATEX package checks that the
marks given do not exceed the maximum for that part, gives a comment if no marks
have been given for a part, and adds up the marks for each section, and ultimately for
the whole assignment.

Coding.

\NeedsTeXFormat{LaTeX2e}
\ProvidesClass{msxr209tma02}[2007/12/08 v1.1 (John Trapp)]
\LoadClass[fleqn,12pt]{article}
\RequirePackage{fancyhdr}
\RequirePackage{graphicx}
\RequirePackage{amsmath}
\RequirePackage[a4paper]{geometry}%

Using LATEX as a computing language EUROTEX 2009 E157

\RequirePackage{calc}
\RequirePackage[pageshow]{supertabular}
\RequirePackage{varioref}

\def\lastpage@putlabel{\addtocounter{page}{-1}%
% borrowed from the lastpage package
\immediate\write\@auxout{\string
\newlabel{LastPage}{{}{\thepage}}}%
\addtocounter{page}{1}}

\AtEndDocument{\comments%
\clearpage\lastpage@putlabel}%

\newcommand{\@firstname}{\relax}
\newcommand{\@surname}{\relax}
\newcommand{\@studentpin}{\relax}
\newcommand{\@tutor}{\relax}
\newcommand{\@signoff}{\relax}
%%
\addtolength{\parskip}{1ex}

\setlength{\headheight}{15pt}

\newcommand{\firstnameis}[1]{\renewcommand{\@firstname}{#1}}
\newcommand{\surnameis}[1]{\renewcommand{\@surname}{#1}}
\newcommand{\studentpinis}[1]{\renewcommand{\@studentpin}{#1}}
\newcommand{\tutoris}[1]{\renewcommand{\@tutor}{#1}}
\newcommand{\signoff}[1]{\renewcommand{\@signoff}{#1}}

%% set up the header and footer

\pagestyle{fancy}
\lfoot{}\rfoot{} %Empty header and footer boxes
\fancyheadoffset[L,R]{\marginparsep}
\fancyhead{} \fancyfoot{}
\lhead{\@firstname\ \@surname\ \@studentpin}
\rfoot{\today}
\lfoot{\@tutor}
\rhead{\textrm{Page\ \thepage \ of\ \pageref{LastPage}}}
%\cfoot{{\sc\name\space\pin}}
\renewcommand{\footrulewidth}{0.2pt}
\setcounter{secnumdepth}{3}

%% Set up text width and height.

\geometry{textwidth=160mm}
\geometry{textheight=250mm}
\geometry{marginparwidth=00mm}
\geometry{lmargin=20mm,marginparsep=0mm}
\geometry{includehead,reversemp}%%,includemp

\raggedbottom
\setlength{\parindent}{0pt}

\renewcommand\today{\number\day\space \ifcase\month\or
January\or February\or March\or April\or May\or June\or
July\or August\or September\or October\or November\or December\fi
\space \number\year} %% to give the date in UK format

E158 MAPS 39 John Trapp

% Set up default comment text, zero marks, description label and mark total

\def\commentdefault #1#2#3{\begingroup \expandafter \endgroup%
\expandafter \commentdefault@next

\csname #1@text\expandafter\endcsname
\csname #1@marktotal\expandafter\endcsname
\csname #1@mark\expandafter\endcsname
\csname #1@error\expandafter\endcsname
\csname #1@line\endcsname
{#2}{#3}{#1@@mark}}

\def\commentdefault@next #1#2#3#4#5#6#7#8{%
\def #1{No comment}% set comments for subsection from supplied parameter
\def #2{#6}% set total mark for subsection using parameter supplied
\def #3{0}% set default mark as 0
\def #4{No mark}% set default comment if no mark has been entered
\def #5{#7 & \noexpand{#1} & \noexpand{#3}/#2 & \noexpand{#4}\\}
\newcounter{#8}\setcounter{#8}{0}% set default mark as 0
}

\commentdefault{definition}{3}{Description}
\commentdefault{aspect}{2}{Aspect}
\commentdefault{outline}{5}{Outline}
\commentdefault{assumptions}{7}{Assumptions}
\commentdefault{variables}{5}{Variables}
\commentdefault{formulation}{13}{Formulation}
\commentdefault{solve}{6}{Solve the model}
\commentdefault{drawgraphs}{2}{Draw graphs}
\commentdefault{deriveresults}{2}{Derive results}
\commentdefault{collectdata}{3}{Collect data}
\commentdefault{describeinwords}{7}{Describe}
\commentdefault{decisioncompare}{3}{Compare}
\commentdefault{comparereality}{6}{Compare to reality}
\commentdefault{criticizemodel}{11}{Criticize model}
\commentdefault{describerevision}{3}{Description}
\commentdefault{revision}{7}{Formulation}
\commentdefault{conclusions}{5}{Conclusions}
\commentdefault{basicpresentation}{5}{Basic}
\commentdefault{discretionary}{5}{Discretionary}

% Set up construct for comments
\def\comment #1#2#3%
{\begingroup \expandafter \endgroup%
\expandafter \comment@next

\csname #1@text\expandafter\endcsname
\csname #1@marktotal\expandafter\endcsname
\csname #1@mark\expandafter\endcsname
\csname #1@error\endcsname
{#2}{#1@@mark}{#3}}

\def\comment@next #1#2#3#4#5#6#7{%
\def #1{#5}% \wibble@text
\def #3{#7}% \wibble@mark
\def #4{\ifnum #7 > #2 {Error} \else \relax \fi}% \wibble@error
\setcounter{#6}{#7}%

}

\parindent 0pt

\newcounter{@onemark}

Using LATEX as a computing language EUROTEX 2009 E159

\newcounter{@twomark}
\newcounter{@threemark}
\newcounter{@fourmark}
\newcounter{@fivemark}
\newcounter{@sixmark}
\newcounter{@sevenmark}
\newcounter{@eightmark}

\newcounter{@total}
\setcounter{@total}{100}
\renewcommand{\arraystretch}{1.5}
%\shrinkheight{-1cm}

\newcommand{\@overallcomments}{No overall comments}
\newcommand{\overallcomments}[1]{\renewcommand{\@overallcomments}{#1}}

\newcommand{\@postscript}{\relax}
\newcommand{\postscript}[1]{\renewcommand{\@postscript}{#1}}

\newcommand{\subheading}[1]{\multicolumn{3}{l}{\bf #1}& \\}
\newcommand{\subtotal}[1]{%

&\multicolumn{2}{r}{Sub-total}&{\large \bf #1}\\ \hline}

\tabletail{\multicolumn{4}{r}{\em continued on next page}\\}
%% to show continuation at bottom of each page
\tablelasttail{&&&\\} % to avoid continuation message at end of table

\newcommand{\comments}%% The main command to assemble all the material.
{Dear \@firstname,\par \@overallcomments
\begin{center}
\@signoff\\[1in]
\end{center}
\begin{flushright}
\@tutor\\[1cm]

\end{flushright}
\textbf{\large Comments and marks on each section}\par%

%% set up the counters for the marks at each subsection, and for the total

\setcounter{@onemark}{\value{definition@@mark}+\value{aspect@@mark}}
\setcounter{@twomark}{\value{outline@@mark}+\value{assumptions@@mark}+
\value{variables@@mark}+\value{formulation@@mark}}

\setcounter{@threemark}{\value{solve@@mark}+\value{drawgraphs@@mark}+
\value{deriveresults@@mark}}

\setcounter{@fourmark}
{\value{collectdata@@mark}+\value{describeinwords@@mark}+
\value{decisioncompare@@mark}}

\setcounter{@fivemark}
{\value{comparereality@@mark}+\value{criticizemodel@@mark}}

\setcounter{@sixmark}
{\value{describerevision@@mark}+\value{revision@@mark}}

\setcounter{@sevenmark}{\value{conclusions@@mark}}
\setcounter{@eightmark}

{\value{basicpresentation@@mark}+\value{discretionary@@mark}}
\setcounter{@total}{\value{@onemark}+\value{@twomark}+
\value{@threemark}+\value{@fourmark}+\value{@fivemark}+
\value{@sixmark}+\value{@sevenmark}+\value{@eightmark}}

%% construct the table of comments and marks

E160 MAPS 39 John Trapp

\begin{supertabular*}{\linewidth}{lp{4.5in}rr}\hline
\subheading{Specify the purpose of the mathematical model}

\definition@line \\
\aspect@line\\

\subtotal{\the@onemark}
\subheading{Create the model}

\outline@line \\
\assumptions@line \\
\variables@line \\
\formulation@line \\
\subtotal{\the@twomark}

\subheading{Do the mathematics}
\solve@line \\
\drawgraphs@line \\
\deriveresults@line \\

\subtotal{\the@threemark}
\subheading{Interpret the results}

\collectdata@line \\
\describeinwords@line \\
\decisioncompare@line \\

\subtotal{\the@fourmark}
\subheading{Evaluate the model}

\comparereality@line \\
\criticizemodel@line \\

\subtotal{\the@fivemark}
\subheading{Revise the model}

\describerevision@line \\
\revision@line \\

\subtotal{\the@sixmark}
\subheading{Conclusions}

\conclusions@line \\
\subtotal{\the@sevenmark}

\subheading{Presentation}
\basicpresentation@line \\

\discretionary@line\\
\subtotal{\the@eightmark}

&\multicolumn{2}{r}{\textbf{\large Total}} &
\textbf{\large \the@total/100}\\ \cline{3-4}

\end{supertabular*}
\@postscript}

The template to be populated by the tutor.
\documentclass{msxr209tma02}

\signoff{Best wishes,} %% Whatever closing (centred)
% statement that one wants
\tutoris{John Trapp\\00953618} %% In a flushright environment,
% so can have multiple lines

\firstnameis{} %% student first name
\surnameis{} %% student surname
\studentpinis{} %% student PIN

\begin{document}

\overallcomments{} %% overall comments before detailed comments and marks,
% closed by \signoff and tutor’s name

%% Write the comments for the subsection as the second parameter,

Using LATEX as a computing language EUROTEX 2009 E161

% and the marks as the third parameter; the first parameter
% being the subheading to which it refers. The total marks for
% that section are commented out at the end, as a reminder.

\comment{definition}{}{}%{3}
\comment{aspect}{}{}%{2}
\comment{outline}{}{}%{5}
\comment{assumptions}{}{}%{7}
\comment{variables}{}{}%{5}
\comment{formulation}{}{}%{13}
\comment{solve}{}{}%{6}
\comment{drawgraphs}{}{}%{2}
\comment{deriveresults}{}{}%{2}
\comment{collectdata}{}{}%{3}
\comment{describeinwords}{}{}%{7}
\comment{decisioncompare}{}{}%{3}
\comment{comparereality}{}{}%{6}
\comment{criticizemodel}{}{}%{11}
\comment{describerevision}{}{}%{3}
\comment{revision}{}{}%{7}
\comment{conclusions}{}{}%{5}
\comment{basicpresentation}{}{}%{5}
\comment{discretionary}{}{}%{5}

\postscript{} %% To add anything after the table of comments and marks.

%% All these comments and marks are assembled outwith this file.
\end{document}

An example in use. To reduce the length, the comments are minimal; I have also
included examples of marks not being given for a section, and too many marks in a
sub-part.

With this input
\documentclass{msxr209tma02}

\signoff{Best wishes,} %% Whatever closing statement (centred) that one wants
\tutoris{John Trapp\\00953618} %% In a flushright environment,

%% so can have multiple lines

\begin{document}

\firstnameis{Andrew}
\surnameis{Aardvark}
\studentpinis{12345678}

\overallcomments{You have written an excellent modelling report,
and you seem to have a good idea of how to model.
I particularly liked your presentation of the graphs and figures.}

\comment{definition}{You have stated the problem very well\ldots}{2}%{3}

\comment{aspect}{You had some good ideas,
but I thought that you should have mentioned \ldots
}{4}%{2}

\comment{outline}{A very good outline of the problem,
and gives me a good idea of what you will be doing}{5}%{5}

\comment{assumptions}{You seem to have covered all
the assumptions}{6}%{7}

E162 MAPS 39 John Trapp

\comment{variables}{You had some good ideas,
but I thought that you should have mentioned \ldots
}{5}%{6}

\comment{formulation}{You had some good ideas,
but I thought that you should have mentioned \ldots }{13}%{13}

\comment{solve}{Ooooh}{4}
\comment{drawgraphs}{Oh good}{2}%{2}
\comment{deriveresults}{Good picture}{2}%{2}
\comment{collectdata}{Useful data that you have collected}{2}%{3}
\comment{describeinwords}{Good description of the solution }{6}%{7}
\comment{decisioncompare}{Not really come to grips with this}{1}%{3}
\comment{comparereality}{Sort of on the right lines}{4}%{6}
\comment{criticizemodel}{Very good criticism,

and useful comments; however, you should refer
to your evaluation and try to assess which
revision will help you to obtain a better model}{9}%{11}

\comment{conclusions}{Uggh}{4}
\comment{basicpresentation}{Very good presentation;

you have been very clear in your description,
and your use of Mathcad is exemplary}{7}%{5}

\comment{discretionary}{You had some good ideas,
but I thought that you should have mentioned \ldots }{4}%{5}

\postscript{This is a section just in case one wants
to add something after the detailed marks and comments}

%% All these comments and marks are assembled outwith this file.
\end{document}

the output is given in Figures 5, 6 and 7.

Notes
1. Note to non-mathematicians: these deVnitions are useful, and not arbitrarily plucked out of
the ether.

John Trapp

Using LATEX as a computing language EUROTEX 2009 E163

Andrew Aardvark 12345678 Page 1 of 3

Dear Andrew,

You have written an excellent modelling report, and you seem to have a good idea of how
to model. I particularly liked your presentation of the graphs and figures.

Best wishes,

John Trapp
00953618

Comments and marks on each section

Specify the purpose of the mathematical model

Description You have stated the problem very well. . . 2/3

Aspect You had some good ideas, but I thought that you should have
mentioned . . .

4/2 Error

Sub-total 6

Create the model

Outline A very good outline of the problem, and gives me a good idea
of what you will be doing

5/5

Assumptions You seem to have covered all the assumptions 6/7

Variables You had some good ideas, but I thought that you should have
mentioned . . .

5/5

Formulation You had some good ideas, but I thought that you should have
mentioned . . .

13/13

Sub-total 29

continued on next page

John Trapp
00953618

12 October 2009

Figure 5. First page of marking example

E164 MAPS 39 John Trapp

Andrew Aardvark 12345678 Page 2 of 3

Do the mathematics

Solve the model Ooooh 4/6

Draw graphs Oh good 2/2

Derive results Good picture 2/2

Sub-total 8

Interpret the results

Collect data Useful data that you have collected 2/3

Describe Good description of the solution 6/7

Compare Not really come to grips with this 1/3

Sub-total 9

Evaluate the model

Compare to reality Sort of on the right lines 4/6

Criticize model Very good criticism, and useful comments; however, you should
refer to your evaluation and try to assess which revision will help
you to obtain a better model

9/11

Sub-total 13

Revise the model

Description No comment 0/3 No mark

Formulation No comment 0/7 No mark

continued on next page

John Trapp
00953618

12 October 2009

Figure 6. Second page of marking example

Using LATEX as a computing language EUROTEX 2009 E165

Andrew Aardvark 12345678 Page 3 of 3

Sub-total 0

Conclusions

Conclusions Uggh 4/5

Sub-total 4

Presentation

Basic Very good presentation; you have been very clear in your de-
scription, and your use of Mathcad is exemplary

7/5 Error

Discretionary You had some good ideas, but I thought that you should have
mentioned . . .

4/5

Sub-total 11

Total 80/100

This is a section just in case one wants to add something after the detailed marks and
comments

John Trapp
00953618

12 October 2009

Figure 7. Last page of marking example

E166 MAPS 39 Ulrik Vieth

Experiences typesetting
mathematical physics
Abstract
Twenty years ago, the author was just about to start his university studies in math and
physics. A year or so later, he not only discovered a fascinating program called TEX,
but he also got involved in a project of typesetting a series of lecture notes which
eventually became book manuscripts for a complete course in theoretical physics. In
the end, he spent about seven years working on typing, editing, revising, and
formatting more than 2500 book pages containing a large amount of math.
While there are many experiences from such a project one could talk about, ranging
from issues of project management to document design and layout, this talk will focus
on two specific topics: adapting LATEX to deal with the specific requirements of
mathematical notation in physics and fine-tuning the appearance of math formulas.

Keywords
math typesetting, physics, notation

Given the conference motto of educational uses of TEX, this paper is based on the
author’s personal experiences of typesetting a series of lecture notes which eventually
became a series of textbooks for a complete course in theoretical physics [1, 2, 3, 4, 5, 6].

Introduction: How I got started typesetting physics
When I started my university studies in math and physics in 1989, I did not know any-
thing about TEX or about typesetting in general. However, I quickly noticed that there
was a vast diUerence in quality of typeset material when it came to math formulas. As it
turned out, TEX was already being used by several of the math and physics departments
for routine typesetting tasks (such as the weekly handouts of homework exercises to
students), while other departments were still using a mathematical typewriter.

I Vrst got to know TEX in the summer of 1990 through some of my friends, who had
gotten a TEX distribution from the staU of the university computer center. Unfortunately,
I did not have a decent computer to run it until a few months later, so instead of jumping
into using TEX right away, I started by reading several books about it, including The
TEXbook itself. When I eventually got started some time later that year, I soon began
looking under the hood, trying to understand how the various bits and pieces of a TEX
distribution Vt together.

I got started with typesetting physics in early 1991, when the professor who held the
theoretical physics course asked for volunteers to help him typeset his lecture notes, so
they could be printed and handed out to students. After working on this project for
several months on a voluntary basis, I was eventually employed as a student assistant
from 1991 to 1995, getting paid to work on editing and typesetting lecture notes with
TEX. After Vnishing my diploma and staying on to work on a PhD project at the same
department, I continued to work on book manuscripts until the end of 1998.

From 1991 to 1993 the Vrst editions were prepared for the principal courses in

Experiences typesetting mathematical physics EUROTEX 2009 E167

theoretical physics, consisting of the volumes on mechanics, electrodynamics, quantum
mechanics, thermodynamics, and quantum Veld theory.

From 1994 to 1996 some additional volumes were added for special courses in general
relativity, cosmology, and elementary particle theory.

Over time, as I learned more about typography and about typesetting rules for math,
I revised the layout and the macros several times and began to write my own document
classes and macro packages, switching from LATEX 2.09 in 1991 to NFSS2 in 1993 and to
LATEX2ε in 1994.

Using a full-page layout on A4 paper and Computer Modern fonts at 11 pt type size,
the series amounted to 2000 printed pages in total, consisting of six volumes of 300 to
350 pages each and two volumes of 100 pages each.

From 1996 to 1999 the second editions of several volumes were prepared, when the
courses were held again for the next generation of students. By this time, a publisher
had been found who was interested in publishing the lecture notes as textbooks, but
since they already had another series of theoretical physics lectures in their program,
it was decided to run several volumes together as an omnibus edition of two large
volumes of 1200 to 1300 pages each.

For the publisher edition, the layout was revised using Times and MathTime fonts
at 10 pt type size on a smaller page size and using a more compact layout, arriving at
about 2500 book pages in total. At the same time the macros for math typesetting were
revised once more, taking advantage of some of the extra fonts in the MathTime Plus
distribution such as an upright Greek font.

The Vrst volume of the omnibus edition Vnally appeared in 1999 [1], shortly after
I had left university, followed by the second volume in 2004 [2], shortly after my
professor retired. (In the meantime, second editions of the remaining volumes were
prepared from 1999 to 2003, when the courses were held again.)

After the series was Vnally completed and deemed successful by the publisher,
individual volumes [3, 4, 5, 6] were also published separately in recent years.

In summary, working on this project for seven years from 1991 to 1998 was an
interesting experience in a wide range of topics, ranging from project organization to
support and maintenance of TEX installations, and from high-level document design of
layout to low-level details of math typesetting.

Regarding the technical progress, there are some interesting stories to be told:
In 1991, running a complete book of 300 to 350 pages on a 16 MHz 386 PC required

taking a lengthy break and occasionally resulted in crashing TEX, if you forgot to use a
BigTEX and had too many labels and references. Usually, running chapters separately
with \includeonly was the preferred way of working, but this still took several minutes
per chapter for each run.

In 1998, running a combined edition of 1200 pages on a 100 MHz 486 PC was already
much quicker, but it also required enlarging some parameters in texmf.cnf to make it
work without running out of memory.

Nowadays, we have ghz computers with gbytes of memory, and modern TEX
distributions have become big enough by default, so speed and size are no longer an
issue, although it still takes time to process 1200 pages.

On the other hand, getting the Vne points of math typesetting right is still far from
trivial, so we will concentrate on these topics in the following sections. In the next
section of this paper, we will look at the diXculties of how to set up (LA)TEX for properly
typesetting physics according to the standards of the Veld. In the Vnal section, we will
look at some examples of how to improve the appearance of math formulas and how to
deal with special requirements of notation.

E168 MAPS 39 Ulrik Vieth

Adapting (LA)TEX for typesetting physics
While TEX, in general, does a very good job of typesetting math, diUerent Velds of
sciences have slightly diUerent conventions how math should be typeset, and TEX does
not support all of them equally well.

By default, TEX’s built-in rules for typesetting math-mode material are geared
towards the conventions applicable for an American style of typesetting math, as
speciVed by style manuals such as The Chicago Manual of Style [7] or the style guides
of well-respected math publishers [8]. However, this is only one particular style and
not everyone favors the same style. For example, the French tradition may suggest a
diUerent style and the Russian tradition yet another one.

In physics and related Velds, the established conventions are speciVed by the hand-
books of professional societies, such as the IUPAP red book [9, 10] in physics or the
IUPAC green book [11, 12, 13] in physical chemistry, or by international standards such
as iso 31-11 or iso 80000-2 [14, 15].

In essence, the most important points can be summarized as follows:

� Symbols for physical quantities should be typeset in math italic.

� Symbols for vectors should be typeset in bold math italic.

� Symbols for tensors should be typeset in bold sans serif italic.

� Symbols for physical units should be typeset in upright roman.

� Symbols for chemical elements should be typeset in upright roman.

� Symbols for elementary particles should be typeset in upright roman.

� Mathematical constants (such as e, i, π) should be upright roman.

� Mathematical operators (such as d, ∂ , δ, ∆) should be upright roman.

In theory, these rules should apply universally to typesetting physics and they should
apply to all symbols without exceptions, regardless of whether they are Latin or Greek,
uppercase or lowercase. In practice, however, many science publishers insist on their
own style guides, which follow the oXcial standards only to a greater or lesser degree
[16, 17].

For example, upright bold might be used for vectors instead of bold italic and upright
bold sans serif might be used for tensors instead of bold sans serif italic. In addition,
the rules for typesetting mathematical constants and mathematical operators are often
neglected.

While it is easy to summarize the rules in a few sentences, it is far from easy to
implement them using a standard TEX system with a standard set of Computer Modern
fonts. In fact, even some recent editions of the guidebooks typeset with TEX suUer from
these limitations, so they have become less reliable than some of the earlier editions
typeset with traditional methods.

Given the default setup of (LA)TEX (for an American style of mathematics), we have
to deal with the following inconsistencies:

� Symbols from the Latin alphabet are typeset in math italic by default, and they
can be switched to upright roman (or other alphabets).

� Symbols from the uppercase Greek alphabet are in roman by default, and they
can be switched to math italic (or other alphabets).

� Symbols from the lowercase Greek alphabet are in math italic by default, but
cannot switch families, because they are not available otherwise.

Experiences typesetting mathematical physics EUROTEX 2009 E169

In addition, we have to deal with the following limitations of fonts:

� A bold math italic font (suitable for vectors) does exist in the standard set of
Computer Modern fonts, but is not available as a math alphabet by default.

� A bold sans serif italic font (suitable for tensors) does not exist in the standard set
of Computer Modern fonts, but could be substituted using non-standard fonts.

� An upright Greek font (suitable for elementary particles) is not available in the
Computer Modern fonts and cannot easily be substituted, unless you switch to a
diUerent set of fonts.

To develop a setup suitable for typesetting physics according to the rules, the following
steps must be taken:

� Load additional math families for bold math italic (suitable for vectors) and bold
sans serif italic (suitable for tensors).

� RedeVne the math codes of uppercase Greek letters, so that they are typeset in
math italic instead of upright roman by default.

� RedeVne the math codes of lowercase Greek letters, so that they can switch
families where possible (in a controlled way).

� DeVne font switching macros for vectors, tensors, particles, and units, which
prevent lowercase Greek letters from switching to math alphabets where they do
not exist.

� DeVne macros for the markup of mathematical constants and operators to be set
in upright roman where possible.

� DeVne macros for additional math operators and speciVc notations needed in
physics.

Loading math families and math alphabets
In the early years of the project, when LATEX 2.09 was still being used, deVning additional
math families or font switches was not really supported by the LATEX format, so it was
impractical to do for authors of macro packages. Instead, clumsy workarounds were
being used to get a bold math italic font by standard means, which involved switching
to \boldmath from inside an \hbox.

It was only after the introduction of nfss2 in 1993 and LATEX2ε in 1994 that it
became feasible for authors of math support packages to redeVne math fonts as needed.
Given the LATEX2ε interface, loading additional math families for vectors or tensors is
relatively straight-forward:

\DeclareSymbolFont{vectors}{OML}{cmm}{b}{it}
\DeclareSymbolFont{tensors}{OT1}{cmss}{bx}{it}

Similarly, font switching commands for math alphabets can be deVned as follows:

\DeclareSymbolFontAlphabet{\mathvec} {vectors}
\DeclareSymbolFontAlphabet{\mathtens}{tensors}

The only problem with this setup might be that the font shape cmss/bx/it does not exist
in cm fonts and is silently substituted by cmss/bx/n, which results in using upright bold
sans serif for tensors as often done by publishers. (This would work better with lm fonts
nowadays, but we did not have them in the 1990s.) Once these fonts and alphabets are
loaded, it becomes a matter of redeVning the math codes to get the symbols to appear
in the proper shape by default.

E170 MAPS 39 Ulrik Vieth

Redefining math codes
Given the default setup of (LA)TEX, the math codes for uppercase Greek letters are
deVned to be of type \mathalpha (which means: allowed to switch families), using the
operators symbol font (upright roman) by default. To get them to use the letters
symbol font (math italic) by default, we have to redeVne the math codes as follows:

\DeclareMathSymbol{\Gamma} {\mathalpha}{letters}{"00}
\DeclareMathSymbol{\Delta} {\mathalpha}{letters}{"01}
...
\DeclareMathSymbol{\Omega} {\mathalpha}{letters}{"0A}

In a more sophisticated setup, we could even make the default font conVgurable by a
package option, using a macro to select the appropriate font. Nowadays, many support
packages for math fonts tend to provide such switching mechanisms (and sometimes
they also deVne extra macros such as \upGamma or \varGamma), but in the mid-1990s this
was not the case.

For lowercase Greek letters, the situation is somewhat diUerent. By default, the math
codes are deVned to be of type \mathord (which means: not allowed to switch families),
using the letters symbol font (math italic) by default. To get them to switch to the
vectors symbol font (bold math italic), we have to redeVne the math codes using the
type \mathalpha:

\DeclareMathSymbol{\alpha} {\mathalpha}{letters}{"0B}
\DeclareMathSymbol{\beta} {\mathalpha}{letters}{"0C}
...
\DeclareMathSymbol{\varphi} {\mathalpha}{letters}{"27}

Defining font switching macros
Unfortunately, allowing lowercase Greek letters to switch families not only allows them
to switch to families that exist (such as bold math italic), but also allows them to switch
to families which do not exist (such as upright roman), potentially causing unexpected
results.

In order to prevent such eUects, we found it necessary to add some intelligence to
font switching macros to check whether the argument of the font switch is a lowercase
Greek letter or something else which does not require special treatment. The solution
we came up with consists of the following code:

\newif\if@lowgreek \newbox\@lowgreekbox

\def\@lowgreektest#1{\setbox\@lowgreekbox=\hbox{$%
\global\@lowgreekfalse
\ifnum\alpha>#1\else\ifnum\varphi<#1\else
\global\@lowgreektrue\fi\fi

$}}
\def\@lowgreekswitch#1#2#3{\@lowgreektest{#1}%
\if@lowgreek\def\next{#3}\else\def\next{#2}\fi\next{#1}}

In essence, we use a numeric comparison of math codes in \@lowgreektest to check if
the argument is lowercase Greek (between \alpha and \varphi) and we use the result
of this check in \@lowgreekswitch to choose between two alternative font commands
to use for lowercase Greek letters or everything else. Given these macros, we can deVne
font switching macros as follows:

\DeclareRobustCommand{\particle}[1]{%
\@lowgreekswitch{#1}{\mathrm}{\mathnormal}}

\DeclareRobustCommand{\tens}[1]{%
\@lowgreekswitch{#1}{\mathtens}{\mathvec}}

Experiences typesetting mathematical physics EUROTEX 2009 E171

The eUect should be that \particle will switch to \mathnormal (math italic) for lower-
case Greek and to \mathrm (upright roman) for everything else. Similarly, \tens will
switch to \mathvec (bold math italic) for lowercase Greek and to \mathtens (bold sans
serif italic or upright) for everything else.

For vectors, no special font switching macros are needed, if the default style of bold
math italic is used. However, if a publisher style prefers to use \mathbf (upright bold)
for vectors, a similar switch would also be needed:

% if publisher insists on \mathbf (upright bold) for vectors
\DeclareRobustCommand{\vec}[1]{%

\@lowgreekswitch{#1}{\mathbf}{\mathvec}}

% otherwise, if using \mathvec (bold math italic) for vectors
\let\vec=\mathvec

As will be obvious from this discussion, setting up the appropriate font families to
satisfy the requirements of physics could be relatively straight-forward if all the fonts
were math fonts providing the full range of Greek and Latin alphabets and not just
text fonts providing only a subset. However, given the traditional setup of (LA)TEX and
its limitations, such kinds of workarounds seem to be unavoidable to provide for font
substitutions when symbols are not available.

Defining logical markup for physics
As shown above, we have redeVned \vec as a font switch, thereby overwriting the
default deVnition as a math accent in (LA)TEX. Following the principle of logical markup,
we have chosen to use \vec and a number of similar macros to mark up the meaning of
entities in physical notation consistently, regardless of how they will be represented
depending on package options of a macro package.

In summary, we have deVned macros such as \vec (vectors), \tens (tensors), \text
(textual indices), \units (physical units), \chem (chemical elements), or \particle
(elementary particles), as summarized in the following table.

markup purpose font scope
none (default) physical quantities \mathnormal Latin and Greek
\units physical units \mathrm Latin mostly
\text textual material \mathrm Latin only
\chem chemical elements \mathrm Latin only
\particle elementary particles see above Latin and Greek
\vec vector quantities see above Latin and Greek
\tens tensor quantities see above Latin and Greek

In many cases, these macros are simply implemented as font switches if no special
provisions for font substitutions are needed. In other cases, they could be either deVned
as font switches or as math accents with diUerent representations depending on the
preferred style of the author or publisher.

When using such markup, it is important to ensure a certain level of discipline and
consistency when typing formulas. For example, there may be a diUerence between
typing \dot\vec{x}} and \vec{\dot{x}}, especially if font substitutions involving
\@lowgreektest and \@lowgreekswitch are used.

In general, macros which are known to be math accents (such as \dot or \hat)
should be applied on the outer level to macros which could be implemented either
as math accents or font switches (such as \vec or \tens). In addition, such macros
should usually be applied to individual symbols only, so you should make sure to type
\vec{E} \times \vec{B} instead of taking shortcuts such as \vec{E \times B}.

E172 MAPS 39 Ulrik Vieth

Defining markup for mathematical constants and operators
Besides the requirements for physical notation discussed so far, there are also require-
ments for mathematical constants (such as e, i, π) and for mathematical operators
(such as d, ∂ , δ, ∆), which are supposed to be typeset in upright roman, if the rules for
typesetting physics are to be implemented to the full extent.

In practice, however, these rules are often neglected or only partially implemented
for various reasons. One obvious problem is the lack of suitable fonts, making it diXcult
or impossible to typeset lowercase Greek letters (such as δ) and certain other symbols
(such as ∂) in upright roman.

Another problem is the question of markup, which requires careful attention by
authors or editors to make sure that individual letters (such as d, e, i) are typeset in the
proper font depending on the context where they are used.

In particular, not every occurrence of these letters represents a mathematical constant
or operator which should be typeset in upright roman. It always depends on the context:
d could also be used as a distance, e could be used as the charge of an electron, and
i could be used as a component index. In such cases, the letters would be considered
physical quantities and typeset in math italic.

It is only when dx is used as a diUerential operator, ex is used as an exponential term,
and i is used as the imaginary unit, that these letters would be considered mathematical
constants or operators and typeset in upright roman.

Concerning suitable markup, there does not seem to be any agreement between
authors of macro packages how these entities should be represented. Obviously, it
would be inconvenient for authors to type \mathrm all over the place and this would
also violate the principle of logical markup. On the other hand, deVning the shortest
possible macros (such as \d, \e, \i) conWict with standard TEX macros for the under-dot
and the dotless-i in text mode. (Alternatively, one might prefer to use \dd, \ee, \ii
for these macros, which are still easy enough to type, but will not cause conWicts with
existing macros.)

In our case, we have indeed chosen the shortest possible macros, but using a slightly
more sophisticated setup to limit the redeVnitions to math mode while retaining the
original deVnitions in text mode (assuming that \@@d and \@@i are used to capture the
original meanings):

\DeclareRobustCommand{\d}{%
\relax\ifmmode\mathrm{d}\else\expandafter\@@d\fi}

\DeclareRobustCommand{\e}{%
\relax\ifmmode\mathrm{e}\else\error\fi}

\DeclareRobustCommand{\i}{%
\relax\ifmmode\mathrm{i}\else\expandafter\@@i\fi}

Yet another approach might be to use explicit markup only for some letters which
will be used in diUerent contexts (such as e, i), while using a special setup of math
codes to achieve global changes for other letters which will always be used in the same
context (such as d). For example, if the latter is only used as a mathematical operator,
its math codes might just as well be redeVned globally to set it in upright roman by
default (using the operators font), thereby eliminating the need for authors to apply
any special markup:

\DeclareMathSymbol{d}{\mathalpha}{operators}{‘d}

Using this approach, authors could simply type dx without being aware of the Vne
details, while getting the proper rendering dx instead of d x automatically. Obviously,
the same approach could also be used to set the preferred shape of other symbols which
are almost always used as math operators (such as ∂ , δ,∆), provided that suitable fonts
are available.

Experiences typesetting mathematical physics EUROTEX 2009 E173

Summary and conclusions on setting up math fonts
In the previous sections, we have discussed a low-level approach to set up (LA)TEX
for typesetting physics, based on the state of the art of the mid-1990s. At that time,
there were relatively few choices of math fonts available besides Computer Modern,
Concrete, or Euler; and math font support packages for LATEX usually provided little else
but the essential setup. When we later switched to the commercial MathTime font set,
relatively little changed in the basic setup, except that we created a custom virtual font
to take advantage of the upright Greek font in the MathTime Plus edition.

In recent years, many more choices of math fonts have become available (such
as txfonts, pxfonts, fourier, mathdesign), often providing useful additions such as
upright or bold fonts; and several math font support packages for LATEX have started to
provide various switching options (such as slantedgreek or uprightgreek) to conVgure
the preferred style of rendering uppercase and lowercase Greek letters. Unfortunately,
there is no universal interface for all such packages, and the details of what is available
and/or conVgurable still vary quite a lot.

On another front of development, several packages have appeared which deal with
the speciVcs of notations, including a recently released isomath package, which acts
as a meta-package on top of other packages. Unfortunately, none of these packages
covers all the details we encountered in our projects, and there is still no comprehensive
package for a physics environment.

Looking towards the future, many recent developments of new TEX engines have
concentrated on providing support for Unicode and OpenType font technology, in-
cluding support for OpenType math fonts. Given these developments, the traditional
concept of alphabetic symbols, which may switch between diUerent font families, has
to be reconsidered fundamentally.

In a traditional 8-bit TEX engine, multiple math fonts are loaded into diUerent font
families, each using the same slots for Latin or Greek alphabets to be rendered in
diUerent styles (such as roman, italic, bold, bold italic, script, etc.). In a Unicode setup,
however, there will be only a single math font, using a diUerent range of slots for each
style of alphabets, so the font switching commands would actually have to switch
between diUerent slots, as shown in the following table:

font style Latin alphabet slots Greek alphabet slots
upright roman U+0041 . . . U+005A U+0391 . . . U+03A9

U+0061 . . . U+007A U+03B1 . . . U+03C9
math italic U+1D400 . . . U+1D433 U+1D6A8 . . . U+1D6E1
upright bold U+1D434 . . . U+1D467 U+1D6E2 . . . U+1D71B
bold math italic U+1D468 . . . U+1D49B U+1D71C . . . U+1D755
bold sans upright U+1D5D4 . . . U+1D607 U+1D756 . . . U+1D79F
bold sans italic U+1D63C . . . U+1D66F U+1D790 . . . U+1D7C9

On the technical side, this method of switching alphabetic symbols between diUerent
Unicode slots will cause a lot of overhead to the implementation of font switching
macros in support packages such as unicode-math, but fortunately these macros will
have to be implemented only once and for all, since the same layout will be applicable
to all forthcoming OpenType math fonts.

Regarding the range of available alphabets, Unicode math provides not only the
above-mentioned alphabets, but also several more (including script, bold script, fraktur,
bold fraktur, or blackboard bold). Moreover, the range of symbols includes not only
the full uppercase and lowercase Latin and Greek alphabets, but also some letter-like
operators such as ∇ and ∂ . Given all these provisions, developing a full setup for
typesetting physics should Vnally become much easier.

E174 MAPS 39 Ulrik Vieth

Improving the appearance of math formulas
Many users of TEX in academic research have spent little time on learning TEX, relying
only on introductory (LA)TEX books or popular online guides such as lkurz or lshort.
While these guides are useful to get started quickly, they usually do not spend much
room on explaining the Vne points of typesetting math. By contrast, The TEXbook
devotes four chapters on the topic of math typesetting including a full chapter on the
Vne points of typing math formulas.

Before making any attempts to improve the appearance of math formulas, it is
important to make sure that formulas are properly coded, and it may be worthwhile to
refresh your reading of The TEXbook for this purpose.

Avoiding common mistakes
Some common mistakes by inexperienced users include forgetting to type the proper
symbol (such as using <= or << instead of \le or \ll for ≤ or �) or failing to note
the diUerence between similar symbols (such as using < and > instead of \langle and
\rangle as delimiters for 〈x〉).

Another common mistake is forgetting to deVne suitable macros when special
notations are needed. For example, in vector analysis, operators for the gradient,
divergence, and rotation (curl) of a vector Veld may be deVned as follows:

\def\grad{\mathop{\operator@font grad}\nolimits}
\def\div{\mathop{\operator@font div}\nolimits}
\def\rot{\mathop{\operator@font rot}\nolimits}

Simply typing \mathrm{div} or even \mbox{div} instead of using a \mathopmay appear
to give similar results, but will not produce the proper spacing.

Alignment of indices
By default, TEX uses a diUerent shift amount for the placement of subscripts when a
subscript appears by itself (such as in x0) or when a subscript appears together with
a superscript (such as in x ′0). While each case may be perfectly Vne by itself, an
inconsistency becomes apparent when both cases appear in the same formula, as in the
example of a simple coordinate transform:

x(t) = x0 + v0 t . x ′(t) = x ′0 + v′0 t .

To avoid this kind of inconsistency there are two possible solutions (besides hacking
the fontdimen parameters of math fonts, which may be a questionable solution). One
solution consists of adding empty groups as phantom superscripts by typing x_{0}^{}
to get x0. In this case, all subscripts would be lowered a little bit more, as if a superscript
was always present:

x(t) = x0 + v0 t , x ′(t) = x ′0 + v′0 t .

Another solution consists of inserting empty groups to avoid a build-up of superscripts
and subscripts by typing x’{}_{0} to get x ′0. In this case, all subscripts would be
lowered a little bit less, as if each appeared by itself without a superscript. Unfortunately,
some backspacing will be needed to close the visual gaps, so you would have to type
x’{}_{\!\!\!0} to get the following result:

x(t) = x0 + v0 t , x ′(t) = x ′0 + v′0 t .

In general, the Vrst solution may be easier to use in displays, but the second one may
be useful if you want to prevent an expression from becoming too big.

Experiences typesetting mathematical physics EUROTEX 2009 E175

Sizes of delimiters
By default, TEX automatically determines the required size of big delimiters if \left
and \right are used around a subformula. However, there are situations where \left
and \right cannot be used, and there are also some situations where you may want to
adjust the size of delimiters manually. In a typical setup, TEX provides the macros \big,
\Big, \bigg, and \Bigg, which can be used to select speciVc sizes of delimiters, such as
12 pt, 18 pt, 24 pt, and 30 pt.

One example of using explicit font sizes is to avoid inconsistencies which may occur
using the default settings. Consider the following equation:

�cosα

α

�2

+
�

sinβ

β

�2

As it turns out, the fraction involving cosα is surrounded by 18 pt (Big) delimiters
whereas the fraction involving sinβ requires 24 pt (bigg) delimiters. The reason is
simply that cosα is smaller because it has no ascenders or descenders, whereas sinβ is
bigger because it has both. If you want to ensure a consistent size of delimiters, it may
be preferable to use \bigg (24 pt) on both expressions:

�
cosα

α

�2

+
�

sinβ

β

�2

Another example of using explicit sizes is to prevent delimiters from becoming too
big. Consider the following equation:

R =

N∑

i=1

mi ri

!
/M , M =

N∑
i=1

mi .

Whenever you have delimiters around a summation the size calculation incorporates
the upper and lower limits as well. If you just want to cover the summation sign
without limits, it may be preferable to use \Big (18 pt) in this case:

R =
� N∑

i=1

mi ri

�
/M , M =

N∑
i=1

mi .

Yet another example of using explicit sizes is to make delimiters bigger than they
would normally appear. Consider the following equation:

δ

∫ t1

t0

F (x(t), ẋ(t), t) = 0 .

Here, the outer level of delimiters is exactly the same size as the inner level, despite
using \left and \right to get big delimiters. If you want the outer level to be more
visible, it may be preferable to use \big (12 pt) in this case:

δ

∫ t1

t0

F
�

x(t), ẋ(t), t
�
= 0 .

The same principle also applies if you have diUerent kinds of nested delimiters and
want the outer level to stand out, such as in this example:

d〈bp〉
dt
=

1

iħh
¬
[bp, bH]

¶
.

E176 MAPS 39 Ulrik Vieth

Sizes of radicals
Unlike the size of delimiters which can be inWuenced manually, the size of radicals is
always determined automatically based on the size of the subformula under the radical.
In unfortunate circumstances, TEX may happen to choose a bigger size than you would
like, such as in the following example:

q
p2c2 +m2

0c4 ,
1Æ

p2c2 +m2
0c4

.

A tricky way to avoid this problem is to use staggered indices (as discussed earlier) to
prevent subscripts from being lowered too much:

p
p2c2 +m0

2c4 ,
1p

p2c2 +m0
2c4

.

Whether or not this problem occurs strongly depends on the choice of fonts and the
relative size of indices used with these fonts.

When using a font family which provides optical design sizes, a typical setup will
use font sizes of 10 pt / 7 pt / 5 pt for the text font and the Vrst and second level indices.
In this case, the 7 pt indices are usually small enough, so that a build-up of superscripts
and subscripts does not exceed the body size.

When using a font without optical design sizes, the second level indices may become
unreadable if a scaled-down version of the base font is used at 5 pt, so a diUerent
progression of sizes is used, such as 10 pt / 7.5 pt / 6 pt. In this case, the 7.5 pt indices
may turn out a little too big, so that a build-up of superscripts and subscripts may
require the next larger sizes of roots or delimiters.

Spacing and backspacing
By default, TEX does a good job of spacing in math mode based on the various classes of
math symbols such as ordinary symbols, binary operators, relations, openings, closings,
or punctuation. However, in some cases, it may be desirable or even required to insert
space manually for better results.

The most common example of manual spacing occurs in integrals, where a thinspace
(\,) is usually inserted before each diUerential term, such as in:

∫
F(x , y, z)d3V ,

∫
F(r,ϑ,ϕ) r2dr sinϑdϑdϕ .

(There is no need for a thinspace after an index or exponent (such as in r2dr) where a
visual gap may not be needed or before an operator (such as before sinϑ) where space
is inserted automatically. However, there is a need for a thinspace before dϑ and dϕ
and also before r2dr .)

In addition, it is also a good idea to insert manual spacing before punctuation
in displayed equations (as already shown in many examples), and in places where
you want to emphasize the logical structure, such as after a preVx term or before an
exponential term, as shown in the following example:

ψ(x , t) =

∫
A(k)ei (kx−ω(k)t) dk .

Besides such examples of manual spacing used to emphasize the logical structure, there
are also situations where manual spacing is needed to avoid visual collisions or where

Experiences typesetting mathematical physics EUROTEX 2009 E177

manual backspacing is needed to avoid visual gaps (such as in v2/c2). Some typical
examples are explained in The TEXbook.

Another typical example of manual backspacing occurs when exponents are attached
to big delimiters, as shown in the following example:

iħh
∂ψ

∂ t
=

1

2m

�ħh
i
∇− qA

�2

ψ .

Since TEX considers font metrics in terms of rectangular boxes and does not use an
italic correction in this situation, the placement of superscripts is based only on the
size of the box and does not take into account the rounded shape. To improve the
appearance, it may be helpful to insert manual backspacing in the exponent by typing
\right)^{\!\!2}, arriving at this result:

iħh
∂ψ

∂ t
=

1

2m

�ħh
i
∇− qA

�2

ψ .

Obviously, such corrections only apply to rounded or angular shapes, whereas square
brackets do not need such corrections.

Finally, another interesting example of manual spacing or backspacing is the use of
staggered indices in tensor analysis, such as in:

gλµgµν = δ
λ
ν , gλµgµν = δλ

ν .

Just inserting an empty group between superscripts and subscripts may create visual
gaps, which may be compensated by a little bit of backspacing:

gλµgµν = δ
λ
ν , gλµgµν = δλ

ν .

Howe much backspacing is needed may depend on the individual letters involved, as
the diagonal shape of λ and ν happens to coincide in this particular example.

Summary and conclusions on fine-tuning math formulas
In the previous sections, we have presented several examples of math formulas, illus-
trating various kinds of problems that may beneVt from manual adjustments in order
to improve the appearance of math formulas. Drawing from 2500 pages of material
and seven years of experience, lots of examples and variety of notations have been
seen, which are impossible to cover in this paper, but hopefully our examples may give
helpful advice to authors involved in similar projects.

References
[1] Eckhard Rebhan: Theoretische Physik I: Mechanik, Elektrodynamik, Spezielle und Allgemeine

Relativititätstheorie, Kosmologie.
Spektrum Akademischer Verlag, Heidelberg, 1999. xxvi + 1222 pp., ISBN 3-8274-0246-8

[2] Eckhard Rebhan: Theoretische Physik II: Quantenmechanik, Quantenfeldtheorie, Elementarteilchen,
Thermodynamik und Statistik.
Spektrum Akademischer Verlag, Heidelberg, 2004. xxii + 1354 pp., ISBN 3-8274-0247-6

[3] Eckhard Rebhan: Theoretische Physik: Mechanik.
Spektrum Akademischer Verlag, Heidelberg, 2006. xiv + 390 pp., ISBN 3-8274-1716-3

[4] Eckhard Rebhan: Theoretische Physik: Elektrodynamik.
Spektrum Akademischer Verlag, Heidelberg, 2007. xii + 406 pp., ISBN 3-8274-1717-1

[5] Eckhard Rebhan: Theoretische Physik: Quantenmechanik.
Spektrum Akademischer Verlag, Heidelberg, 2008. xii + 536 pp., ISBN 3-8274-1718-3

E178 MAPS 39 Ulrik Vieth

[6] Eckhard Rebhan: Theoretische Physik: Thermodynamik.
Spektrum Akademischer Verlag, Heidelberg, 2009 (to appear). ISBN 3-8274-1719-X

[7] University of Chicago Press: The Chicago Manual of Style.
University of Chicago Press, 15th revised edition, 2003. xvii + 956 pp., ISBN 0-226-10403-6
http://www.chicagomanualofstyle.org/

[8] Ellen Swanson: Mathematics into Type.
American Mathematical Society, updated edition, 1999. x + 102 pp., ISBN 0-8218-1961-5

[9] International Union of Pure and Applied Physics, S.U.N. Commission: Symbols, Units, and
Nomenclature in Physics. Document U.I.P. 20 (1978), also published in Physica A, 93:1–60, 1978.

[10] International Union of Pure and Applied Physics, SUNAMCO Commission: Symbols, Units,
Nomenclature and Fundamental Constants in Physics. Document IUPAP 25 (1987), SUNAMCO
87-1, also published in Physica A, 146:1–67, 1987.

[11] International Union of Pure and Applied Chemistry, Physical Chemistry Division: Quantities,
Units, and Symbols in Physical Chemistry.
Blackwell Science, 1st edition, 1988.

[12] International Union of Pure and Applied Chemistry, Physical Chemistry Division: Quantities,
Units, and Symbols in Physical Chemistry.
Blackwell Science, 2nd edition, 1993.
http://old.iupac.org/publications/books/gbook/green_book_2ed.pdf

[13] International Union of Pure and Applied Chemistry, Physical Chemistry Division: Quantities,
Units, and Symbols in Physical Chemistry.
Royal Society of Chemistry, 3rd edition, 2007.

[14] International Organization for Standardization: Quantities and Units — Part 11: Mathematical
signs and symbols for use in the physical sciences and technology. Technical Report ISO 31-11:1992.
International Organization for Standardization, Geneva, 1992.

[15] International Organization for Standardization: Quantities and Units — Part 2: Mathematical signs
and symbols to be used in the natural sciences and technology. Technical Report ISO 80000-2:2009.
International Organization for Standardization, Geneva, 2009.

[16] Claudio Beccari: Typesetting mathematics for science and technology according to ISO 31-11.
TUGboat, 18(1):39–48, March 1997.
http://www.tug.org/TUGboat/Articles/tb18-1/tb54becc.pdf

[17] Ulrik Vieth: Requirements for Typesetting Physics.
Math Font Group discussion document. Unpublished. October 1997.
http://www.tug.org/twg/mfg/papers/ulrik/physreq.pdf

Dr. Ulrik Vieth
Vaihinger Straße 69
70567 Stuttgart
Germany
ulrik dot vieth (at) arcor dot de

EUROTEX 2009 E179

Abstracts without papers
Using TEX For Educational Publishing
Hans Hagen
It is no secret that we started using TEX to typeset edu-
cational materials: it shaped ConTEXt. Currently we still
use TEX for projects that relate to education. Although
we see a shift to more web based education we also see
that print is in high demand for proper reading as well
as examination. In this presentation I will show some of
our current usage of TEX, for instance in XML to PDF
workWows and PDF assembling workWows.

TEX and the art of course maintenance
Lucien Lemmens
A course can be considered as a collection of of elements
that are connected and depend on each other. If you
change something in element A, it has consequences for
element B. References to material outside the notes –
software-distributions, wiki-books, websites – generate
changes that are outside the control of the maintainer
of the course. Others are made by the author: correction
of typos, rephrasing, using other examples etc. If not well
organized these changes can be very time consuming
and have unexpected consequences – adding a few lines
in a text can spoil the layout.

Using for instance a ‘statistics course’ as an example,
the structure of the elements in the course: data, math
→ algorithm → Vgure, implies a connection between
elements in the notes: table, formula→ code→ graphics.
A change in the elements of the course implies a change
in the notes.

For the statistical analysis the open source realization
of the S-language R is used. Change in the data, keeping
the math unchanged, results in changes in the code and
the graphics. Giving the changed Vles the same name
after one has archived the Vles that will be changed,
LATEX and ConTEXt have respectively the packages and
the commands to deal with these changes smoothly.
When tables are involved LATEX has an advantage due to
the exportation properties of R. A little bit of coding in
R allows that the exported table can be read by ConTEXt
directly.

A change in the references requires a better organiza-
tion. The log-file gives the indication that something
is missing but leads almost always to a time consuming
procedure to get the references correct. A hidden Vle
that shows the connections requires discipline to make

but once it exists, it improves the maintenance of the
notes considerably. Two examples will be shown and
discussed: the Vrst one is a report, made by a student, in
LATEX and R, by a student, on a simulation. The second
one is a subsection of my notes, typeset using ConTEXt
on a course on data-analysis.

LATEX for students, teachers and researchers
— some remarks
Zofia Walczak
As we all know TEX was designed more than 30 years
ago. Throughout the years TEX spread over three diUer-
ent groups of people – scientists, school teachers and, as
a consequence, students.

The major group of TEX users is mathematicians as it
was created specially for them. At present there is a wide
range of TEX users. I will show some examples how LATEX
can be useful for diUerent purposes in diUerent domains.

TEX at The Open University
Jonathan Fine
The Open University is the UK’s leading provider of
distance learning. Since 1992 it has used TEX for the pro-
duction of mathematics and upper-level physics courses.
It is used to produce custom authored course-book, as-
signment booklets, exams and supplementary materials.
Most of these materials are printed commercially, in two
or four colours.

This talk will give a survey of the past, present and
future use of TEX at the OU.

TEXworks: Lowering the entry barrier
to the TEX world
Jonathan Kew
A brief presentation of the TEXworks project to tell and
show what it is, and a report on the current status.

Typesetting lyrics with ConTEXt
Vyatcheslav Yatskovsky
My workWow includes getting lyrics from the Web,
printing them on separate sheets of paper, inscribe guitar
chords (harmony) and binding into a "songbook". While
most artists preferMSWord or plain text formats, I found
ConTEXt best suitable for my task for the following
reasons:

E180 MAPS 39

@ output formatting is consistent and rich, and this
comes with almost no eUorts comparing to WYSIWYG
editors;

@ marking a lyrics with keywords like verse, chorus,
solo, etc, clariVes its structure and makes the song
much easier to memorize and perform.

I will be glad to explain the environment internals, show
my workWow, and demonstrate the collection of 150+
neatly formatted pdfs.

Rejoining the mainstream
Jonathan Fine
Much has changed in the world of publishing and
communication since the release of TEX in 1982. TEX
was rapidly adopted by mathematicians and physicists
as a much-loved document preparation system, although
with a steep learning curve. It is also used in other
specialist areas, such as technical documentation and
database publishing.

Since the 1990s computer power and networking has
grown many times, as has use of computers. IBM has
been replaced by Microsoft as the dominant commercial
force in computing, which is now in turn challenged by
Google. People are looking to the internet, particularly
the Web, for information, services and solutions.

Although TEX remains mainstream for mathematical
content, as open-source software it has slipped, and its
Web presence is weak. In 2009 TUG was rejected by
Google as a mentoring organisation for their Summer
of Code. TEX-related websites are somewhat dated and
developer communities isolated, compared to the organ-
isations that were accepted.

This talk presents recent work and proposals aimed
at helping TEX and related software return to the main-
stream of document processing.
1. On-line documentation for TEX, LATEX and ConTEXt
2. Social networking :

1. Mathematical content
2. TEX development and support

3. Typesetting:
− Web service
− Shared objects and callable functions

4. Standards:
1. LATEX syntax and XML
2. Mathematical content and MathML
3. Unicode (and X ETEX)

A comparison of free PDF libraries
Martin Schröder
One of the reasons for the success of pdfTEX is the
quality of the PDF inclusion, which uses code from XPDF.
Over the last years a number of (free) PDF libraries and
tools have been developed. I will show some of these and
compare them.

Playing with font features
Hans Hagen
In this presentation we will explore what OpenType
features are, what they do, or don’t do, where they
succeed or fail. I will use an interactive tool that ships
with the ConTEXt distribution. One of the objectives of
this presentation is to make users aware that OpenType
is great but that one needs to be aware of limitations,
potential side eUects and that while installation and
usage has become easier a somewhat greater knowledge
is expected with respect to what they make possible.

Dynamic font features
Hans Hagen
In ConTEXt MkIV we have several ways to enable Open-
Type features. In base mode we use TEX’s core methods,
while in node mode we do everything in Lua. Both are
static methods in the sense that the set of features to
be applied is associated with a font instance. Instead of
these (or on top of these) you can use dynamic features.
This method has several variants and these will be dis-
cussed in this presentation cq. tutorial. I will show what
they do as well as present the user interface to them.
When time permits I will also give a demonstration
of yet another mechanism, tagged font strategies. This
method is used in the Oriental TEX project.

SVG support in MetaPost 1.200
Taco Hoekwater
Since version 1.110, Metapost has an alternative backend.
Besides the ability to create Encapsulated PostScript, it
is now also possible to create Scalable Vector Graphics
output. This talk shows some examples of this new
backend and also highlights a few related extensions to
Metapost that have been added in version 1.200.

Licensing of the TEX Gyre family of fonts
Jerzy Ludwichowski
URW++ Design and Development, the well-known font
foundry, which in 1996 donated the so-called basic 35
PostScript Type 1 fonts to the public under both the GNU
Public License (GPL) and Aladdin Free Public License
(AFPL), has on 22nd June 2009 agreed to release the same
fonts under the LATEX Project Public License (LPPL).

This presentation will explain the signiVcance of
URW’s decision for the TEX community, with special
emphasis on the TEX Gyre font family.

Math fonts: Notes from the trenches
Bogusław Jackowski
About a year ago, a math fonts expedition was organ-
ised by TEX LUGs. After a brave beginning, however,
the oUensive is now stuck in its trenches. Nonetheless,

Abstracts without papers EUROTEX 2009 E181

optimistic signs of the future victory are more and more
apparent.

The necessary background information and the avail-
able technical data will be given along with the layout of
the plans for the imminent math fonts oUensive.

Handwriting fonts, METAFONT
and OpenType
Karel Píška
The fonts cover handwriting scripts used in Czech, Ar-
menian and Georgian schools. METAFONT, Type 1 and
OpenType solutions are presented. DiUerent techniques
applied in METAFONT and OpenType, especially for
inclusion of numerous connections between letters or
various glyph modiVcations, will be compared.

The original METAFONT Czech font slabikar was
created by Petr Olšák; other fonts have been produced
by the author. The fonts could be used for educational
purposes.

Secrets of a TEX distribution:
ConTEXt minimals
Mojca Miklavec & Arthur Reutenauer
What does it take for a packaging system to follow the
fast pace of the ever-improving ConTEXt? The ‘new’
ConTEXt minimals are an attempt at an answer.

Now the successor to the Vrst ‘minimal distribution’
that was available as zip Vles from the Pragma web site,
it ships all the necessary Vles in a single structure: the
ConTEXt core of course, with its TEX and Lua code and
its support scripts, but also third-party modules that can
be retrieved upon desire since we aim at modularity; and,
more importantly, the distribution also includes all the
necessary binaries for the most popular architecture, in
a suXciently new version: Mark IV always needs a very
recent version.

This latter point was one of the major incentives to
create a new distribution; another one was the desire
to avoid downloading big archive Vles when only a few
source Vles were modiVed: in order to achieve that, we
now use the rsync protocol, together with a minimal
setup script on Unix systems, including Mac OS, and
an install wizard for Windows, written by Vyacheslav
Yatskovsky.

PPCHTEX revisited
Hans Hagen
About 15 years ago I wrote a module for typesetting
chemical structure formulas: PPCHTEX. The next few
years it evolved and stabilized pretty well. The only
extension till now has been that MetaPost replaced the
PicTEX graphics but still PicTEX was used to position
the lot. Although not commonly known, the fact that
at that point ConTEXt had a Dutch user interface while
PPCHTEX was kind of generic is one of the reasons why
ConTEXt now has multiple user interfaces and became
useable for those who didn’t like Dutch.

Triggered by a question at the ConTEXt mailing list I
decided to freeze the MkII version and played a bit with
the code. I quickly concluded that it was about time to
reprogram the lot for MkIV and get rid of the dependency
on PicTEX. In this workshop for ConTEXt users I will
demonstrate how we can combine the power of TEX,
MetaPost and Lua to make quite eXcient and compact
modules that otherwise demand quite some auxiliary
code.

New structures in ConTEXt
Hans Hagen
Most of the structure related code in ConTEXt has been
rewritten and uses Lua extensively for housekeeping.
This step Vnalized the move of all multipass data to Lua.
As we carry more state information around, we can also
more conveniently support for instance multipass XML.
In this presentation I will show where information ends
up and in what way future versions will provide users
with access to additional information.

Upcoming spacing mechanisms
Hans Hagen
One of the complications with vertical spacing is that the
more a macro package provides, the more interference
between structural components is possible. There is only
so much one can do about it, especially because TEX is
not that good at looking back. In MkIV we will have a
revisited vertical spacing model, one that eventually will
replace the existing model.

E182 MAPS 39

Participant list
Frans Absil, The Netherlands

Netherlands Defence Academy
Nino Bašić, Slovenia

FMF, University of Ljubljana
Gyöngyi Bujdosó, Hungary

University of Debrecen
Wybo Dekker, The Netherlands
Alain Delmotte, Belgium

Le Liseron éditions
Willi Egger, The Netherlands

BOEDE
Jonathan Fine, United Kingdom

Open University
Frans Goddijn, The Netherlands

Stichting Johan Polak
Michel Goossens, Switzerland

CERN
Steve Grathwohl, USA
Patrick Gundlach, Germany
Michael Guravage, The Netherlands

Literate Solutions
Hans Hagen, The Netherlands

PRAGMA ADE
Hartmut Henkel, Germany

von Hoerner & Sulger GmbH
Taco Hoekwater, The Netherlands

Bittext
Klaus Höppner, Germany

DANTE e.V.
Jean-Michel HuYen, France

University of Franche-Comté – LIFC
Jelle Huisman, United Kingdom

SIL International
Bogusław Jackowski, Poland

GUST
K. M. Jeary, United Kingdom

University of Cambridge
Jonathan Kew, United Kingdom
Rukhsar Khan, Germany

Airnet Technologie- und Bildungszentrum GmbH
Harald König, Germany
Reinhard Kotucha, Germany
Siep Kroonenberg, The Netherlands

Rijksuniversiteit Groningen, Faculteit economie en
bedrijfskunde

Johannes Küster, Germany
typoma GmbH

Kees van der Laan, The Netherlands

Lucien Lemmens, Belgium
Universiteit Antwerpen

Manfred Lotz, Germany
Jerzy Ludwichowski, Poland

GUST
Gisela Mannigel, Germany
Niall MansVeld, United Kingdom

UIT
Bernd Militzer, Germany
Wolfgang Murth, Austria

WMS Modell & Technik
Mahdi Omidali, Iran

Islamic Azad University (Ghazvin Branch)
Karel Píška, Czech Republic

Institute of Physics, Academy of Sciences
John Plaice, Australia

The University of New South Wales
Bernd Raichle, Germany

DANTE e.V.
Arthur Reutenauer, France

GUTenberg
Stanislav Jan Šarman, Germany

Rechenzentrum der TU Clausthal
Luigi Scarso, Italy

logosrl
Martin Schröder, Germany

QuinScape GmbH
Martin Sievers, Germany

Einfach schöner publizieren
Péter Szabó, Switzerland

Google
Philip Taylor, United Kingdom
John Trapp, United Kingdom

Open University
Eszter Urbán, Hungary
Eva Van Deventer, South Africa

University of South Africa
Ulrik Vieth, Germany
Mari Voipio, Finland

K-Patents Oy
Jan de Vries, The Netherlands

Netherlands Defence Academy
ZoVa Walczak, Poland

University of Łódź
Kevin Warnock, USA

gOXce.com
SteUen Wolfrum, Germany
Vyatcheslav Yatskovsky, Ukraine

National Aviation University

EUROTEX 2009 E183

The information here comes from the consultants
themselves. We do not include information we know
to be false, but we cannot check out any of the
information; we are transmitting it to you as it was
given to us and do not promise it is correct. Also, this
is not an official endorsement of the people listed here.
We provide this list to enable you to contact service
providers and decide for yourself whether to hire one.

TUG also provides an online list of consultants
at http://tug.org/consultants.html. If you’d
like to be listed, please see that web page.
To place a larger ad in TUGboat, please see
http://tug.org/TUGboat/advertising.html.

Dangerous Curve
PO Box 532281
Los Angeles, CA 90053
+1 213-617-8483
Email: typesetting (at) dangerouscurve.org

Web: http://dangerouscurve.org/tex.html

We are your macro specialists for TEX or LATEX fine
typography specs beyond those of the average LATEX
macro package. If you use X ETEX, we are your
microtypography specialists. We take special care to
typeset mathematics well.

Not that picky? We also handle most of your typical
TEX and LATEX typesetting needs.

We have been typesetting in the commercial and
academic worlds since 1979.

Our team includes Masters-level computer scientists,
journeyman typographers, graphic designers,
letterform/font designers, artists, and a co-author of a
TEX book.

Martinez, Mercè Aicart
Tarragona 102 4o 2a

08015 Barcelona, Spain
+34 932267827
Email: m.aicart (at) ono.com

Web: http://www.edilatex.com

We provide, at reasonable low cost, TEX and LATEX
typesetting services to authors or publishers world-
wide. We have been in business since the beginning of
1990. For more information visit our web site.

Peter, Steve
New Jersey, USA
+1 732 287-5392
Email: speter (at) mac.com

Specializing in foreign language, linguistic, and
technical typesetting using TEX, LATEX, and ConTEXt,
I have typeset books for Oxford University Press,
Routledge, and Kluwer, and have helped numerous
authors turn rough manuscripts, some with dozens of
languages, into beautiful camera-ready copy. I have
extensive experience in editing, proofreading, and
writing documentation. I also tweak and design fonts.
I have an MA in Linguistics from Harvard University
and live in the New York metro area.

TEXConsultants

Shanmugam, R.
No. 38/1 (New No. 65), Veerapandian Nagar, Ist St.
Choolaimedu, Chennai-600094, Tamilnadu, India
+91 9841061058
Email: rshanmugam92 (at) yahoo.com

As a Consultant, I provide consultation, training, and
full service support to individuals, authors, typesetters,
publishers, organizations, institutions, etc. I support
leading BPO/KPO/ITES/Publishing companies in
implementing latest technologies with high level
automation in the field of Typesetting/Prepress,
ePublishing, XML2PAGE, WEBTechnology,
DataConversion, Digitization, Cross-media
publishing, etc., with highly competitive prices.
I provide consultation in building business models &
technology to develop your customer base and
community, streamlining processes in getting ROI on
our workflow, New business opportunities through
improved workflow, Developing eMarketing/E-Business
Strategy, etc. I have been in the field BPO/KPO/ITES,
Typesetting, and ePublishing for 16 years, handled
various projects. I am a software consultant with
Master’s Degree. I have sound knowledge in TEX,
LATEX2ε, XMLTEX, Quark, InDesign, XML, MathML,
DTD, XSLT, XSL-FO, Schema, ebooks, OeB, etc.

Sievers, Martin
Im Treff 8, 54296 Trier, Germany
+49 651 49 651 4936567-0
Email: info (at) schoenerpublizieren.com

Web: http://www.schoenerpublizieren.com

As a mathematician with ten years of typesetting
experience I offer TEX and LATEX services and
consulting for the whole academic sector (individuals,
universities, publishers) and everybody looking for a
high-quality output of his documents.

From setting up entire book projects to last-minute
help, from creating individual templates, packages and
citation styles (BibTEX, biblatex) to typesetting your
math, tables or graphics — just contact me with
information on your project.

Veytsman, Boris
46871 Antioch Pl.
Sterling, VA 20164
+1 703 915-2406
Email: borisv (at) lk.net

Web: http://www.borisv.lk.net

TEX and LATEX consulting, training and seminars.
Integration with databases, automated document
preparation, custom LATEX packages, conversions and
much more. I have about fourteen years of experience
in TEX and twenty-seven years of experience in
teaching & training. I have authored several packages
on CTAN, published papers in TEX related journals,
and conducted several workshops on TEX and related
subjects.

