Overview of the project

Setting up TEX for physics

Improving mathematical formulas 000000 00000 0

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Experiences typesetting mathematical physics

Dr. Ulrik Vieth

Stuttgart, Germany

EuroT_EX 2009

Improving mathematical formulas 000000 000000 0

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Overview

- Subject of this talk:
 - experiences typesetting mathematical physics
- In this talk:
 - overview of the project (scope, timeline, milestones)
 - setting up T_EX math fonts for typesetting physics
 - improving the appearance of math formulas
- Not in this talk:
 - writing a document class (layout, environments)
 - ensuring consistency (spelling, notation, markup)
 - fiddling with page breaks and figure placement
 - managing and organizing a large-scale project
 - maintaining cross-references and preparing an index
 - dealing with technical difficulties (size, runtime, capacity)

Overview of the project •00

Setting up TEX for physics

Improving mathematical formulas 000000 00000 0

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Scope of the project

- Lecture notes in theoretical physics:
 - 5 main courses
 - classical mechanics
 - electrodynamics
 - quantum mechanics
 - thermodynamics
 - quantum field theory
 - 3 special courses
 - special and general relativity
 - cosmology
 - elementary particle theory
- Total size: 2500+ pages
 - first published as 2 big combined volumes
 - later republished as individual volumes

Overview of the project $0 \bullet 0$

Setting up TEX for physics 0000 000000 00 Improving mathematical formulas 000000 0

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Timeline of the project

- Timeline and Milestones:
 - 1989: begin university studies in math and physics
 - 1990: first contact with TEX, but no computer to run it
 - 1991: got involved in typesetting mathematical physics
 - 1991–1998: employed to work on lecture manuscripts
 - 1991: started the project with LATEX 2.09
 - 1994: converted the project to $L^{ATE}X 2_{\varepsilon}$ wrote custom document class and macro packages
 - 1997: publisher found, plans to publish 2 big volumes reorganized project, switched layout and fonts
 - 1999+2004: volumes 1 and 2 published
 - 2006-2009: individual volumes published

Improving mathematical formulas 000000 00000 0

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Layout details

- Lecture notes edition (1991–1996)
 - full-page layout on A4 paper
 - typeset with Computer Modern fonts at 11 pt
 - loose spacing (non-zero parskip, no parindent)
 - simple environment markup (headings + end marker)
 - · each volume processed as individual books
- Publisher edition (1997–2004)
 - book-size layout on smaller paper (17 imes 24 cm)
 - typeset with Times/MathTime fonts at 10 pt
 - compact spacing (no parskip, non-zero parindent)
 - visual environment markup (examples, exercises)
 - small for non-essential material (examples, proofs)
 - several volumes combined into a single book

Improving mathematical formulas

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Styles of mathematical formulas

- There is no one true universal style of math!
- There are many different styles of math:
 - national styles (based on typographic traditions) e.g. American, French, Russian
 - publisher styles for journals, books, series e.g. AMS, APS, AIP, IOP, Elsevier, Springer
 - standards for fields of sciences e.g. physics (IUPAP), physical chemistry (IUPAC)
 - standards by standard organizations e.g. ISO 31-11:1992, ISO 80000-2:2009
- BUT: There is only one default style of math:
 - TEX implements one particular style (American math)
 - TEX does not support other styles equally well

Improving mathematical formulas

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Requirements for typesetting physics

- Guidelines for typesetting physics:
 - physical quantities in math italic
 - physical units in upright roman
 - vectors in bold math italic
 - tensors in bold sans serif italic
 - chemical elements in upright roman
 - elementary particles in upright roman
 - math constants (e, i, π) in upright roman
 - math operators (d, ∂ , δ , Δ) in upright roman
- applicable to all letters without exceptions (Latin and Greek, uppercase and lowercase)
- applicable to all documents without exceptions (official guidelines vs publisher styles)

Improving mathematical formulas

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Requirements for typesetting physics

- Variations in publisher styles:
 - physical quantities (mostly) in math italic
 - vectors sometimes in bold upright
 - tensors sometimes in bold sans serif upright
 - elementary particles sometimes in italic
 - math constants/operators sometimes neglected or only partially supported (d, e, i, but not ∂ , δ , π)
 - not applicable to all letters without exceptions
- Problems with publisher styles:
 - incomplete support of official guidelines
 - markup not portable across different publisher styles
 - inconsistent markup for physical entities
 - inconsistent markup for math constants/operators

Improving mathematical formulas

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

What T_EX provides and what is missing

- What TEX provides by default:
 - Latin alphabet in italic, switchable to roman or bold
 - Greek uppercase in roman, switchable to italic or bold
 - Greek lowercase in italic, non-switchable to other fonts
- What is missing in TEX:
 - bold math italic exists, but not available as math alphabet
 - bold sans serif italic not available in CM (but exists in LM)
 - Greek lowercase not available in upright roman or bold
 - Greek lowercase not switchable to other fonts
- Limitations in TEX fonts:
 - · some fonts not available or only available in one size
 - different font encodings, different range of alphabets: OML (full Latin+Greek) vs OT1 (Latin+Greek subset)

Improving mathematical formulas

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Defining math fonts and alphabets

- How to define additional math fonts?
 - in LATEX 2.09: not really supported by format
 - in LATEX 2 $_{\ensuremath{\mathcal{E}}}$: supported by NFSS 2 interface
- Define symbol fonts for vectors and tensors:

\DeclareSymbolFont{vectors}{OML}{cmm}{b}{it}
\DeclareSymbolFont{tensors}{OT1}{cmss}{bx}{it}

• Define font switches for symbol fonts:

\DeclareSymbolFontAlphabet{\mathvec} {vectors}
\DeclareSymbolFontAlphabet{\mathtens}{tensors}

- Potential problems:
 - silent font substitutions: cmss/bx/it -> cmss/bx/n

Improving mathematical formulas

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Redefining math codes of symbols

• Uppercase Greek is upright by default (operators) Uppercase Greek should be italic by default (letters)

\DeclareMathSymbol{\Gamma} {\mathalpha}{letters}{"00} \DeclareMathSymbol{\Delta} {\mathalpha}{letters}{"01} ... \DeclareMathSymbol{\Omega} {\mathalpha}{letters}{"0A}

Lowercase Greek is non-switchable by default (\mathord)
 Lowercase Greek should be made switchable (\mathalpha)

\DeclareMathSymbol{\alpha} {\mathalpha}{letters}{"0B} \DeclareMathSymbol{\beta} {\mathalpha}{letters}{"0C} ... \DeclareMathSymbol{\varphi} {\mathalpha}{letters}{"27}

Improving mathematical formulas

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Handling of lowercase Greek

- Lowercase Greek should only switch to some fonts (OML)
 Lowercase Greek should not switch to other fonts (OT1)
- Define test for lowercase Greek:

```
\def\@lowgreektest#1{%
  \setbox\@lowgreekbox=\hbox{$%
    \global\@lowgreekfalse
    \ifnum\alpha>#1\else\ifnum\varphi<#1\else
    \global\@lowgreektrue\fi\fi$}}</pre>
```

• Define conditional font switches:

```
\def\@lowgreekswitch#1#2#3{\@lowgreektest{#1}%
   \if@lowgreek\def\next{#3}\else\def\next{#2}\fi
   \next{#1}}
```

Improving mathematical formulas

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Defining font switches and markup

- Conditional font switches (default style):
 - particles in upright roman, but lowercase Greek in italic
 - tensors in bold sans serif, but lowercase Greek in bold italic

\DeclareRobustCommand{\particle}[1]{%
 \@lowgreekswitch{#1}{\mathrm}{\mathnormal}}
\DeclareRobustCommand{\tens}[1]{%
 \@lowgreekswitch{#1}{\mathtens}{\mathvec}}

- Conditional font switches (publisher styles):
 - · vectors in bold upright, but lowercase Greek in bold italic

• Unconditional font switches (default style):

\let\vec=\mathvec

Improving mathematical formulas

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Defining font switches and markup

• Logical markup for entities in physics:

markup	purpose	font	scope
none (default)	physical quantities	\mathnormal	Latin and Greek
\units	physical units	\mathrm	Latin mostly
\text	textual material	\mathrm	Latin only
\chem	chemical elements	\mathrm	Latin only
\particle	elementary particles	(conditional)	Latin and Greek
\vec	vector quantities	\mathvec	Latin and Greek
\tens	tensor quantities	(conditional)	Latin and Greek

Improving mathematical formulas

Mathematical constants and operators

- Guidelines for typesetting physics:
 - math constants (e, i, π) should be upright roman
 - math operators (d, ∂ , δ , Δ) should be upright roman
- Problems and limitations:
 - lack of suitable fonts for upright Greek (∂ , δ , π)
 - need for author awareness for context-specific markup (*d*, *e*, *i* for physical quantities, d, e, i for math)
 - different markup conventions used by publisher styles (\d, \e, \i vs \dd, \ee, \ii vs \rmd, \rme, \rmi)
 - possible conflicts with standard TEX macros
- Possible workarounds: global changes to math codes \DeclareMathSymbol{d}{\mathalpha}{operators}{'d}

Overview of the project

Setting up TEX for physics

Improving mathematical formulas 000000 0

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Summary and conclusions

- Situation in the mid-1990s:
 - little choices of math fonts (CM, Concrete, Euler, MathTime)
 - limited range of symbols and math alphabets
 - limited support by macro packages for math fonts
- Situation in recent years:
 - more choices of math fonts (tx, px, pazo, fourier, mathdesign)
 - more extensive range of symbols and math alphabets
 - more extensive macro support (\upGamma, \itGamma)
 - better support for switching options (slanted vs uprightgreek)
- Conclusions:
 - better font and macro support for typesetting physics
 - BUT: still no comprehensive physics package

Overview of the project

Setting up TEX for physics

Improving mathematical formulas 000000 0

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Summary and conclusions

- Future considerations:
 - Unicode math has encoded all possible math alphabets
 - OpenType math fonts provide reference implementations
 - X_∃T_EX and LuaT_EX have added support for OpenType math
 - BUT: inconvenient to use math alphabets at U+1Dxxx
- Future work needed:
 - concepts of font switches in math have to be reconsidered
 - font switching macros have to be reimplemented differently
 - font switching macros have to be done only once and for all
- Conclusions:
 - logical markup for entities in physics still needed
 - author awareness still needed for context-specific markup

Improving mathematical formulas

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Improving the appearance of math formulas

- Before attempting to improve math formulas:
 - make sure that math formulas are properly coded
 - make sure that proper markup is used (e.g. \mathop)
 - make sure that suitable macros are defined and used
 - read or refresh the math chapters of The TEXbook
- Some reasons to improve math formulas:
 - fix inconsistencies in alignment of indices
 - fix inconsistencies in size of delimiters
 - prevent delimiters from becoming too big
 - make delimiters bigger for visual emphasis
 - adjust spacing to emphasize logical structure
 - adjust spacing to remove unexpected visual gaps

Improving mathematical formulas

Improving the appearance of math formulas

- Fixing inconsistent alignment of indices:
 - alignment of subscripts with or without superscripts:

 $x(t) = x_0 + v_0 t \quad {\rm vs} \quad x'(t) = x_0' + v_0' t$

• 1st solution: add phantom superscripts:

 $x(t) = x_0 + v_0 t \quad {\rm vs} \quad x'(t) = x_0' + v_0' t$

• 2nd solution: use staggered indices:

 $x(t) = x_0 + v_0 t$ vs $x'(t) = x'_0 + v'_0 t$

- problem: need for backspacing with staggered indices
- Evaluating the solutions:
 - 1st solution: easier to use, but more height (in displays)
 - 2nd solution: more difficult, but less height (cramped style)

Improving mathematical formulas

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Improving the appearance of math formulas

- Fixing inconsistent size of delimiters:
 - automatic sizes of delimiter with \left, \right
 - specific sizes with \big, \Big, \bigg, \Bigg
- Problems and solutions with automatic sizes:
 - automatic sizes: depends on ascenders + descenders

$$\left(\frac{\cos\alpha}{\alpha}\right)^2$$
 vs $\left(\frac{\sin\beta}{\beta}\right)^2$

• specific sizes: using \bigg (= 24 pt = 2 lines)

$$\left(\frac{\cos\alpha}{\alpha}\right)^2$$
 vs $\left(\frac{\sin\beta}{\beta}\right)^2$

Improving mathematical formulas

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Improving the appearance of math formulas

- Preventing delimiters from becoming too big:
 - automatic sizes of delimiter with \left, \right
 - specific sizes with \big, \Big, \bigg, \Bigg
- Problems and solutions with automatic sizes:
 - automatic sizes: depends on enclosed material

$$R = \left(\sum_{i=1}^{N} m_i r_i\right) / M, \qquad M = \sum_{i=1}^{N} m_i$$

• specific sizes: using Big (= 18 pt = 1.5 lines)

$$R = \left(\sum_{i=1}^{N} m_i r_i\right) / M, \qquad M = \sum_{i=1}^{N} m_i$$

Improving mathematical formulas

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Improving the appearance of math formulas

- Making delimiters bigger to emphasize structure:
 - automatic sizes of delimiter with \left, \right
 - specific sizes with \big, \Big, \bigg, \Bigg
- Problems and solutions with automatic sizes:
 - automatic sizes: nested delimiters just big enough

$$\delta \int_{t_0}^{t_1} F(x(t), \dot{x}(t), t) = 0$$

• specific sizes: using $\big (= 12 \, \text{pt} = 1 \, \text{line})$

$$\delta \int_{t_0}^{t_1} F\bigl(x(t), \dot{x}(t), t\bigr) = 0$$

Improving mathematical formulas

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Improving the appearance of math formulas

- Preventing radicals from becoming too big:
 - automatic sizes: depends on enclosed material
 - specific sizes: not available for radicals
- Problems and solutions with automatic sizes:
 - automatic sizes: depends on placement of indices

$$\sqrt{p^2 c^2 + m_0^2 c^4} \qquad \frac{1}{\sqrt{p^2 c^2 + m_0^2 c^4}}$$

• specific sizes: using staggered indices:

$$\sqrt{p^2 c^2 + m_0^2 c^4} \qquad \frac{1}{\sqrt{p^2 c^2 + m_0^2 c^4}}$$

Improving mathematical formulas

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Improving the spacing of math formulas

- How spacing of math works in TEX:
 - T_EX does spacing of math based on class of symbols Ord, Op, Bin, Rel, Open, Close, Punct, etc.
 - TEX does not understand logical structure of formulas
 - TEX does spacing in terms of boxes of glyph metrics
 - TEX does not understand about visual gaps or collisions
 - TEX does not know about exceptions to the rules
- Reasons for manual spacing and backspacing:
 - emphasizing logical structure of formulas
 - preventing visual gaps (backspacing)
 - preventing visual collisions (spacing)
 - preventing or correcting mis-interpretations

Improving mathematical formulas

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Improving the spacing of math formulas

- Examples of manual spacing:
 - before sentence punctuation in displays
 - before differential quantities in integrals
 - after prefix / before suffix terms
 - before exponential terms
 - for invisible multiplication: n(n-1) vs. n(n-1)
 - following factorial terms: n!k! vs. n!k!
 - following radical terms: $\sqrt{2}x$ vs. $\sqrt{2}x$
- Examples of manual backspacing:
 - when using staggered indices: $m_0^2 c^4$ vs. $m_0^2 c^4$
 - when using slashed fractions: v^2/c^2 vs. v^2/c^2
 - following exponents in differentials: $d^3 V$ vs. $d^3 V$
 - in exponents attached to big delimiters

Improving mathematical formulas

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Improving the spacing of math formulas

- Examples of manual spacing:
 - without spacing

$$\int F(x, y, z) \mathrm{d}^3 V = \int F(r, \vartheta, \varphi) r^2 \mathrm{d}r \sin \vartheta \mathrm{d}\vartheta \mathrm{d}\varphi.$$

with spacing

$$\int F(x, y, z) \, \mathrm{d}^3 V = \int F(r, \vartheta, \varphi) \, r^2 \mathrm{d}r \sin \vartheta \, \mathrm{d}\vartheta \, \mathrm{d}\varphi \,.$$

- Details:
 - space advisable after prefix term F(...), unless provided
 - no space needed after exponent in $r^2 dr$, but before term
 - no space needed before mathop in $\sin\vartheta\,\mathrm{d}\vartheta$
 - space needed before differential terms in $\mathrm{d}\vartheta$ and $\mathrm{d}\varphi$
 - space needed before sentence-end punctuation

Improving mathematical formulas

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Improving the spacing of math formulas

- Examples of manual spacing:
 - without backspacing

$$\psi(x,t) = \int A(k) \mathrm{e}^{\mathrm{i}(kx - \omega(k)t)} \mathrm{d}k.$$

with backspacing

$$\psi(x,t) = \int A(k) e^{i(kx - \omega(k)t)} dk.$$

- Details:
 - space advisable after prefix term A(k), unless provided
 - space advisable before exponential term $\mathrm{e}^{\mathrm{i}\,(kx-\omega(k)t)}$
 - space needed before differential term $\mathrm{d}k$
 - space needed before sentence-end punctuation

Improving mathematical formulas

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Improving the spacing of math formulas

- Examples of manual spacing:
 - without spacing

$$\mathrm{i}\hbar\frac{\partial\psi}{\partial t} = \frac{1}{2m}\left(\frac{\hbar}{\mathrm{i}}\nabla - qA\right)^2\psi.$$

with spacing

$$\mathrm{i}\hbar \, \frac{\partial \psi}{\partial t} = \frac{1}{2m} \left(\frac{\hbar}{\mathrm{i}} \nabla - qA \right)^2 \psi \,.$$

- Details:
 - space advisable after factor, before fraction
 - backspace advisable in exponent to big delimiters
 - backspace advisable after big delimiter before ψ
 - space needed before sentence-end punctuation

Improving mathematical formulas

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Summary and conclusions

- Suggestions:
 - many improvements to math formulas are possible
 - many examples already discussed in The TEXbook
 - it is worth reading math chapters of The TEXbook
 - lots of experience needed for good math typesetting
 - lots of examples are helpful to develop understanding
- Caution:
 - it is easy to go overboard on manual adjustments
 - see the advice on kerning in The METAFONTbook
 - only use half as much of what you think looks right