
Bijlage Q The Document Style Designer as a Separate Entity 67

BIJLAGE Q

The Document Style Designer as a separate Entity

Victor Eijkhout & Andries Lenstra

Abstract

An argument for the need for a programmable meta format: a format that introduces a new
syntactic level in TEX for document style designers.

TEX has a number of characteristics that set it apart from
all other text processors. Its unsurpassed quality of text
setting and its capabilities for handling mathematics are
some of the more visible aspects. On a deeper level,
however, the extreme programmability of TEX is just as
big an asset. Any layout can be automated to an arbitrary
extent. (It is strange that The TEX book gives almost no
hint of this.)

The form such automation usually takes is what is cal-
led ‘generalized markup’. The person who keys in the
text has at his or her disposal commands that describe
the logical structure of the document, and as little as is
possible of the visual structure.

Document styles as they appear in LATEXare examples of
this. Here the layout is not merely automated, it is com-
pletely hidden from the end user. In particular, the same
input can produce widely different output by letting it be
interpreted by different styles.

With LATEX, however, the problem is the production of
document styles. This is a major task, and consequently
most people use either the standard styles, or minor mo-
difications of these. Furthermore, LATEX does not offer
sufficient tools to produce even moderate variations on
the layout of the standard styles.

For scientific use of TEX one can become reconciled to
this situation. A scientist should be more concerned
with the contents than with the looks of a document, so
if there is a format that offers all the tools to get those
contents across to the reader, the visual appearance is of
secondary concern. We may conclude that, for scientists,
LATEX fits the bill.

When a document is not a scientific article, however, the
inflexibility of LATEX renders it useless. The alternative
would seem to be plain TEX, but there the objection is
the long and slow learning curve.

One way out of this dilemma is the ‘front end to TEX’ ap-
proach taken in The Publisher from Arbortext and Grif
from Gipsi. Both systems present almost a ‘wysiwyg’
(what you see is what you get) interface to the user (the
term ‘wysipn’, what you see is pretty neat, has been
used), and allow altering style parameters via dialog

boxes and menus. In both cases, however, programming
the basic style structure and appearance is still less than
trivial.

In this article we describe an approach which brings
down the complexity of programming a style to that of
using it. We propose a front end programming language
for style design, which is itself implemented in TEX.

The ‘Checklist’ Approach to Style De-
finition
If one compares TEX to mouse-and-menu text processor
packages, one runs into two basic characteristics of pro-
gramming that constitute a disadvantage when learning
TEX.

The obvious first point is that TEX has a syntax. Every
TEX programmer knows that you can have no end of fun
with missing or mismatched braces. Mouse riders are
not bothered by this. One can, at most, click the wrong
item, but one cannot click in the wrong way.

The second point is more subtle: programming involves
and imposes algorithmic thinking. Consider the ordinary
loop statement

for i:=1 to n

In many cases, all that is meant is

for all i between 1 and
n inclusive

Thus, the syntactic formulation contains a sequentiality
that may semantically not be present. Similarly, the
statements in a macro definition are sequentially orde-
red, even when the corresponding actions are in no such
relation.

But even when actions are sequentially ordered, it should
not always be necessary for a style designer to specify
them in that same order. For instance, in the design
of a list environment the amounts of white space above
and below the list, and the amount of indentation of the
list, should be specifiable in any order, even though they
correspond to sequentially ordered actions. Also, the
decision whether or not to break a page above a certain

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#5 (90.2); Nov 1990

68 The Document Style Designer as a Separate Entity Bijlage Q

type of heading should be specifiable at any point in the
definition.

Such actions do not really correspond to design deci-
sions, rather they are the specific incarnations of general
parameters and switches. Thus, it would be a valid ap-
proach to style design to offer the person implementing
the style a small number of basic constructs (these could
for instance be headings, lists, and page layouts), each
of which has a ‘checklist’ of parameters and switches
controlling the final layout.

Abandoning sequentiality, and making most specificati-
ons optional with default values, is then a sensible way
to facilitate TEX programming. An implementation of
these demands could take the form of lists of keyword-
value pairs. Such lists can be presented in extremely
simple syntax, and as matching is performed by key-
word instead of by position, such an approach would
meet some of the criticism of algorithmic specification
above.

As an example, the layout of unnumbered section
headings could be given in Lisp ‘property list’ syntax
as,

\defineheading:section
(white_above 6pt plus 2pt minus 1pt)
(white_below 6pt plus 2pt minus 1pt)
(caption (size 12pt) (style bold)

(shape ragged_right))

but any other syntax is just as valid. It is advisable,
however, to steer clear of the idiosyncrasies of the pure
TEX syntax.

Metaformats
Checklists may capture a large part of the variation in
basic constructs, but for any set of parameters there will
be a layout that eludes classification in terms of these
parameters. Thus, it seems inevitable that a style imple-
menter needs to do some programming. However, it is
possible to make a very smooth transition between mar-
king a checklist and programming macros. For this, we
need the distinctionbetween formats and ‘metaformats’.

Let us denote by the term ‘format’ any collection of ma-
cros that gives the end user commands of a higher level
than those of pure TEX. By ‘metaformat,’ we will mean
a format such that the commands for the end user are in
majority not defined in the format. Metaformats offer
the tools with which a style implementer constructs the
commands for the end user.

In a restricted sense, the LATEX format is a metaformat.
A good example here is the\@startsectionmacro,
which is basic to LATEX, and in terms of which commands
like \section are defined in the style files. The para-
meters of this command are mainly numeric parameters
determining the layout. One parameter functions as a
switch.

As another example, the \list command, which is
the basis for various environments in LATEX, offers the
style designer the possibility for programmable exten-
sion. Such extensions are specified by passing a piece
of TEX code as the second parameter, that is, LATEX does
not really provide the style implementer with a separate
syntactic level.

CallingLATEX a ‘parameterized metaformat,’ we can also
envision ‘programmable metaformats.’ There is no ob-
jection against implementing a new programming lan-
guage in TEXwhich would be easier to learn and to use.

The challenge is then to find primitives that allow for-
mulation in a simple syntax and that are sufficiently
powerful for producing a wide range of layouts.

By any other name : : :

One choice for the primitives of a metaformat is imme-
diately clear: the boxes and glue of TEX itself. Any TEX
programmer knows that you can do all typesetting with
boxes and glue, so why not give them to a style designer?
The problem of course is how to simplify their declara-
tion. It is here that the writer of the metaformat takes
certain decisions.

Consider, as an example, section headings such as they
appear in the LATEX article style.

1. Section title
1.1. Subsection title

These take the form (but not the implementation) of two
boxes on the same line: one containing the number, the
other containing the text. Also the headings of the ‘arti-
kel’ style can be described thus.

1. Section title
1.1. Subsection title

But the box of the number then has a prescribed width.
In both cases, however, the sum of the width is the text
width. We can therefore imagine that these two layouts
were specified as

\defineheading:section
(inline

((value sectionnumber)
(spaces 2))
(title))

for the standard LATEX heading, and
\defineheading:section

(inline
((value sectionnumber)
(FillUpTo labelwidth))
(title))

Here the metacommand ‘inline’ is just an \hbox to
\hsize in disguise. It takes all boxes and sets them
at natural or specified width, and the width of the box
containing the actual heading is calculated to fill the
remainder of the text width.

Headlines and footlines provide a nice example of how
a programmable metaformat can make intelligent use of

Reprint MAPS#5 (90.2); Nov 1990 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage Q The Document Style Designer as a Separate Entity 69

TEX’s glue. Like section headings, footlines are a dis-
guised \hbox to \hsize. A footline with just a left
aligned page number can be specified like

(footline (value pagenumber))

where the format supplies a trailing \hfil to prevent
an underfull box. Cases where the number should be
right aligned can be specified as

(footline (whitespace fillerup)
(value pagenumber))

where the ‘whitespace’ is an \hfill, squashing the
trailing \hfil at the end of the line.

A syntax and instruction set, such as sketched in these
examples, tax the programming capabilities of the for-
mat designer, but not those of the style designer. In
effect, the format designer implements a new program-
ming language on top of TEX with a simple syntax, a
small instruction set, and at the same time, sufficient
generality to produce a wide range of layouts.

Obviously, a smaller instruction set makes learning the
format easier. Another advantage is less immediately
clear: it reduces the chance of errors. More compact
instructions will likely have a more defined function; so
on the one hand the style implementer need not specify
those actions that must be taken anyway, and on the other
hand the format can perform some consistency checking
on the intentions of its user.

Conclusion
We have argued the need for a ‘programmable metafor-
mat:’ a format that introduces a new syntactic level in
TEX for document style designers. Such a level should
probably have a different syntax from pure TEX, and it
should contain a relatively small instruction set in which
the actual user macros are written. We have indicated
that elements of such a format can, to a large extent,
be captured in ‘checklists.’ Others can take the form of
intelligently disguised TEX primitives. We believe that
a format incorporating these principles is possible, and
that it can be taught to people with little knowledge of
TEX.

As an illustration of these ideas we present the style
definition of this article in the ‘Lollipop’ format.

Example
The following piece of code is the style definition for
this article given in the ‘Lollipop’ format.

\typeface:Computer
\fontsize:10 \fontstyle:roman

%declare \parindent
\distance:indentation=20pt
%white space around text elements
\distance:whiteline=6pt plus 2pt

minus 2pt
\distance:leadingwhite=whiteline
\distance:trailingwite=0pt

%lots of defaults used here
\defineheading:section

fontstyle:bold stop

%very simple page layout
\definelayout:twocolumn

height:22.5cm width:16.5cm
band:start column

whitespace:0.6cm
column
band:end

stop
\twocolumn %install output routine

%paragraph shape
\defineparagraph:flushright indent:yes

rightjustified:yes stop
\flushright %install paragraph shape

%bibliography
\definelist:literature counter:1

item:left
litteral:[value:itemnumber
litteral:]

item:end stop
\externalreferences:yes

Bibliography
Braams, Johannes, Victor Eijkhout, and Nico Poppelier,
“The development of national LATEX styles,” TUGboat,
Vol 10(4), 1989.

Grif manual / Les languages de Gipsi, Gipsi 1989

Knuth, Donald E. The TEX book, Addison-Wesley Pub-
lishing Company, 1984.

Lamport, Leslie. LATEX, a document preparation system,
Addison-Wesley Publishing Company, 1986.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#5 (90.2); Nov 1990

