
Bijlage P An Introduction to TEX --- part I (NTG course) --- 63

An introduction to TEX
--- part I ---

NTG course June 1992

David Salomon

1. Introduction

TEX is not written TEX, it is not spelled `T' `E' `X', and is not pronounced tex. It is written TEX (a
trademark of the AMS), it is spelled Tau Epsilon Chi, and is pronounced tech or rather teck.

TEX is not a word processor. It is a program that sets text in lines and paragraphs|but its design philosophy,
its methods, and its approach|are all di�erent from those of a word processor. A modern, state of the art
word processor is a WYSIWYG type program; TEX is not, it uses one-dimensional input to generate its two-
dimensional output. With a word processor it is easy to generate special printing e�ects, easy to underline
text, to italicize and emphasize; TEX can do those things|and with a lot more attention to detail|but the
user has to work harder. The same is true for applications that mix text with graphics. Good, modern word
processors can also create diagrams, whereas TEX does not support graphics and some work is necessary to
insert diagrams into its output. Other features that are standard and easy to use in a word processor are
either non-existent or are hard to use with TEX.

If TEX is not a word processor, then what is it?

From the point of view of the user, TEX is a typesetting program which can be extended to a complete
computerized typesetting system by adding a printer driver, the MET A F O N T program and some utilities.

From the point of view of the computer, however, TEX is a compiler whose main task is to compile a
source program. The source language has variables (with types), block structure, two executable statements
(assignment & if), and a powerful macro facility that makes it possible to extend the language. The main
output of the compiler is a �le containing, not machine instructions, but detailed instructions on how to
place characters on a page.

When a compiler sees something in the source �le which does not belong in the source language, it issues
an error message. TEX, on the other hand, simply typesets any material in the source �le that's not part of
the language. The source �le for TEX contains the text to be typeset, embedded commands, and comments.
It's a text �le and can thus be prepared with any editor or word processor. TEX generates two outputs, a
log �le|with run-time information and error messages|and a dvi �le (for Device Independent), containing
the page coordinates of each character to be typeset. A separate printer-driver program later reads the dvi
�le and generates printer commands (which are di�erent for di�erent printers) to print the text.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#8 (92.1); May 1992

64 An Introduction to TEX --- part I (NTG course) --- Bijlage P

Two font �les must exist for each font used in the text. A .tfm �le and a bitmap �le (which is usually
called .gf or .pk �le). The .tfm �le (for TEX Font Metric) contains the dimensions of each character in
the font (width, height, & depth) and some other information. The bitmap �le contains the actual shape of
the characters. TEX only uses the .tfm �le. When the position of a character on the page is determined,
TEX uses the character's width to move the reference point to where the next character should appear. As a
result, TEX is ignorant of the actual shape of the characters, and its �nal output is a list of commands that
specify what should be placed on the page and where. A typical command is a triplet of the form:

<char. # in current font, x-coord., y-coord.>

The bitmap �le is only used by the printer driver, which sends the individual pixels of each character to the
printer.

The diagram above summarizes the relationships between TEX, MET A F O N T , the printer driver, and the �les
involved.

To come back to the point of view of the user, the main aim of TEX is to produce beautifully typeset

documents, especially documents containing mathematics. As a result, TEX is ideal for book publishing,
for documents that should look beautiful|such as concert programs and invitations|and for technical
publishing. Since typesetting is not a simple process (it is in fact very complex, especially the typesetting
of tables and mathematics), TEX is not easy to use. It has several features that are complex and hard to
master. As a result, new users tend to use TEX only if they need high quality output. When such a user
needs a quick letter, a simple memo, or a short note, they usually go back to their familiar word processor.
However, advanced users usually have macros that help produce all kinds of documents easily, thus using
TEX's power all the time. Either way, if you like beautiful text, or if you write mathematics, TEX is by far
the best typesetting tool available today.

To understand the power of TEX, it is necessary to understand the di�erence between traditional typing and
book printing. When upgrading from a typewriter to a computer keyboard, some adjustment is necessary.
The keys for `1' and `l' are identical on a typewriter but di�erent on a computer. Most typewriters only
have one, non-oriented single quote (
), but computer keyboards typically have two oriented single quotes,
a left (`) and a right ('). When taking the next step of upgrading from word processing to typesetting (or
book printing), a few more adjustments become necessary. The most important ones are:

Computer keyboards have just one kind of double-quote (") but books have two kinds, a left double-quote
(\) and a right one ("). To produce them in TEX, you simply type two single quotes of the apropriate kind
in a row. Thus to typeset \with regret." you need to type ``with regret.''

Another important di�erence is the dash (or hyphen). Computer keyboards have only one dash, namely
(-); in a carefully typeset book, however, there are four di�erent symbols:

a hyphen (-);
an en-dash ({);
an em-dash (|);
a minus sign (�);

Hyphens are used for compound words like `right-quote' or `X-Register'. En-dashes are used for number
ranges, like `Exercises 12{34'. They are obtained by typing two consecutive dashes `--'. Em-dashes are used
for punctuation in sentences|like the ones around this section|they are what we usually call dashes. To
get one, just type three consecutive dashes. Minus signs are, of course, used in typesetting mathematics.

The main task of TEX can be described as converting a one-dimensional stream of text into a two-
dimensional page where all lines have the same width. This is done by stretching or shrinking the spaces
between words on each line. In �ne typesetting, however, those interword spaces have limited
exibility, so
sometimes words have to be hyphenated. TEX uses a sophisticated hyphenation algorithm, so hyphenation
is automatic. In cases where the algorithm does not work, the user can specify the correct hyphenation of
words.

Well-printed books use ligatures and kerning. Certain combinations of letters, like `�', `
', `�', `�', look
better in the traditional roman type when the letters are combined. Such a combination is called a ligature.
Foreign languages may have other ligatures, such as `ij' in Dutch. Compare, for instance, the word `
u�er'
set by TEX to the same word `fluffier' generated by a word processor. When a font is designed for TEX,
the designer should specify all the special combinations that should be replaced by ligatures, and design

the ligatures. That information goes into the font's .tfm �le and is used by TEX to substitute the ligatures
automatically. TEX can even remove a ligature later, for example, if it decides to hyphenate the word at

Reprint MAPS#8 (92.1); May 1992 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage P An Introduction to TEX --- part I (NTG course) --- 65

that point.

Kerning refers to certain letter combinations that should be moved closer (negative kerning) or apart (positive
kerning) for better appearance. An `A' adjacent to a `V' is a good example (compare `AVAV' to `AVAV').
Other examples are `away', `by', `ox', `ov', `xe', and `OO' (the last one has positive kerning). Again, the font
designer decides what the kerning should be, and that information also goes into the font's .tfm �le. TEX,
of course, allows the user to easily override ligatures and to change the kerning to any desired value.

Ligatures and kerning improve the relationship between adjacent letters. They, together with hyphens and

exible interword spaces, are the main participants in the delicate balancing act required for the line break
decisions.

Considering the power and
exibility of TEX, it is surprising that its basic algorithms are based mostly on
three concepts|boxes, glue and penalties.

A box in TEX is an indivisible unit of material to be typeset. TEX will not break the contents of a box
across lines or between pages.

To begin with, each character in a font is enclosed in a box whose dimensions (width, height, and depth)
become the dimensions of the character. When TEX typesets a word, it pastes the individual character boxes
side by side, with no spaces in between (except when kerning demands shifting boxes horizontally, or when
the user wants boxes moved|which is how the TEX logo is produced). The result is a box containing the
typeset word. The width of such a box is the total widths of the boxes inside, plus the kernings which, of
course, may be negative. The height of the word-box is the maximum height of the component boxes, and
the same is true for the depth.

Similarly, when TEX decides to break a line, it pastes the individual word boxes side by side, with appropriate
spaces between them, and generates a new horizontal box, a line-box. The width of the line-box is the sum
of widths of the word boxes inside it plus the sum of the spaces (glue) between the individual word boxes.
The height and depth of the line box are the maximum heights and depths of the component boxes.

To set an entire page, TEX accumulates enough horizontal line-boxes; it then pastes them vertically, one
below the other, with appropriate interline spaces, to generate a vertical page-box. The next step is to call
an output routine which is either written by the user or supplied by TEX. The output routine adds �nishing
touches such as heading, footing, and page numbers. It may even decide to trim the page, to return part of
the bottom of the page to TEX (to become the top of the next page), or do anything else to the page. The
output routine should normally execute \shipout, which translates the contents of the page box to dvi �le
specs. TEX then continues to read the source to build the next page.

The term `glue' refers to the spaces between boxes. In order to justify the text, TEX adjusts the spaces
between words (but not the spaces between characters in a word). Those spaces must, therefore, be
exible.
The same applies to interline spaces on the page. A glob of glue in TEX is a triplet < w; y; z > where w

speci�es the natural size of the glue, y is the amount of stretch in the glue and z, the amount by which it
can shrink. For interword glue, these values depend on the font and are speci�ed by the font designer. For
the standard 10 point roman font used by TEX, the values are <3.3333pt, 1.66666pt, 1.1111pt>. The line
breaking algorithm considers various alternatives of combining words into lines, and for each alternative it
calculates the amount by which the individual globs of glue have to be stretched or shrunk. After considering
all the possible line breaks for an entire paragraph, the best line breaks are chosen (best in a sense that
will be explained elsewhere), the entire paragraph is set, and TEX reads the next item from the source �le
(usually the start of the next paragraph).

The third mathematical construct used by TEX is the penalty. A penalty can be inserted into the text
at any point either explicitly, by the user, or automatically, by TEX. The penalty speci�es the desirability
of breaking a line or a page at the point, and it is used to discourage bad breaks, to encourage good ones,
to force certain breaks, and to avoid others. Penalty values are in the range [�10000; 10000]. Any value
� �10000 is treated as �1, and any value � 10000 is considered +1. The user may, for example, insert
`\penalty100' at a certain point in a paragraph, which has the e�ect that, if TEX decides to break the
line at that point, a penalty of 100 will be added to the line, making that breakpoint less desirable. This
tends to discourage line breaking at that point. A negative penalty is actually a merit, and it encourages
a break. In�nite penalty prohibits a line break where it is speci�ed, and �1 forces one. The commands
(control sequences) \break \nobreak can be used to insert those in�nite penalties at any point in the text.
There are two common examples of penalties. The �rst occurs at any hyphenation. When TEX decides to
hyphenate a word, it inserts a penalty of 50 at any potential hyphenation point. The second has to do with

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#8 (92.1); May 1992

66 An Introduction to TEX --- part I (NTG course) --- Bijlage P

psychologically bad breaks. In a text containing `: : :Appendix G' it is psychologically bad to break between
the two words because it interrupts the smooth
ow of reading. To prevent such a break, a TEX user should
type `Appendix~G'.

The tilde (~) acts as a `tie'. It ties the two words such that in the �nal document there will be a space
between them but no line break.

Similar examples are:

Table~G-5 Figure~18 dimension~d Louis~XVI 1,~2, or~3 from 0 to~1
Y~Register modulo~ex Rev.~Henry HRH~prince Abdul

Each tie is converted by TEX into a penalty of �1 to prevent a break.

This mechanism of boxes, glue, and penalties to arrange text in lines and pages, has proved extremely
exible
and powerful. It makes it possible to set text in non-standard ways to achieve special e�ects. Features such as
narrow paragraphs, newspaper formats, paragraphs with variable line widths, punctuations in the margins,
ragged right margins, centered text, and complex indentations, can all be achieved with TEX. This mechanism
is one of the main innovations introduced by TEX.

2. Line breaking and page layout

To achieve a straight right margin, TEX adjusts the spaces between words but not the spaces between
characters in a word. The boxes de�ning each character are juxtaposed with no intervening spaces, for the
following reasons:
It makes for a more uniform appearance of the page. Because of the nature of human vision, spaces

between words disturb the eye less than spaces between characters in a word.
In an underlined font, spacing the characters would break the underline into separate segments.

This is perhaps a good point to discuss underlining in TEX. Underlining is one of the features that distinguish
TEX from word processors, and can give an insight into the design philosophy of TEX. In a word processor
it is usually easy to underline text; in TEX, underlining is discouraged. The reason is that TEX is not
a word processor but a typesetter designed to produce beautiful books. In a book, underlining is rare,
and emphasizing is done using either boldface, italics, or slanted fonts. If a certain text requires a lot of
underlining, the best way to do it in TEX is to design a special font in which all the letters are underlined.
Such a font requires no spaces between the characters in a word.

To achieve a uniform page layout, TEX uses two principles: 1. The vertical distance between lines is kept as
constant as possible, using the rules below. 2. When a good page break requires squeezing another line on a
page, or removing a line from a page, TEX changes the vertical distance between paragraphs (or between
math formulas), not between lines. This again has to do with the way our eyes see, and guarantees that all
the pages would appear to have the same proportion of black to white areas.

To determine the vertical distance between consecutive lines, three parameters a; b; c are used. Their values
depend on the font, and for the common 10 point roman font they are: a = 12pt, b = 0, c = 1pt. Typically,
consecutive lines are not juxtaposed vertically but are spaced such as to make the distance between conse-
cutive baselines equal to a. However, if the distance [top of lower line]�[bottom of upper line] is less than
b, then the lines are spaced such that that distance is set equal to c. This may happen if the line contains a
large (say, 18pt) character. Parameters a; c are of type <glue> so they may have
exibility. Typically this

exibility is zero, but the user may want to de�ne, e.g. a =<12; 2; 1>. Such value makes sense for a short,
one page, document. The
exibilty of the glue would make it easier for TEX to �t the text on one page.

Any discussion of TEX's line breaking algorithm should start with an outline of a typical line breaking
algorithm used by a modern, commercial word processor. The method uses three values|for the natural,
minimum and maximum spacings between words|and proceeds by appending words to the current line,
assuming natural spacing. If, at the end of a certain word, the line is too long, the algorithm tries to
shrink the line. If that is successful, the next word will start the next line, and the current line is printed.
Otherwise, the word processor discards the last word and tries to stretch the line. If that is successful, the
discarded word becomes the �rst one of the next line. If neither shrinking nor stretching works (both exceed
the preset parameters), a good word processor tries to hyphenate the o�ending word, placing as much of it
on the current line as would �t. The user may be asked to con�rm the hyphenation, and the rest of the
hyphenated word is placed at the start of the next line. A word processor that does not hyphenate has to
resort to overstretching and may generate very loose lines.

The important feature of all such methods is that once a break point is determined, the algorithm does not

Reprint MAPS#8 (92.1); May 1992 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage P An Introduction to TEX --- part I (NTG course) --- 67

memorize it but starts afresh with the next line. We can call such an algorithm `�rst �t' and its main feature
is that it does not look at the paragraph as a whole. Such an algorithm produces reasonably good results.
For a high quality typesetting job, however, it is not fully satisfactory. For such a job, an algorithm is needed
which considers the paragraph as a whole. Such an algorithm makes only tentative decisions for line breaks
and may, if something goes bad toward the end of the paragraph, go back to the �rst lines and change their
original, tentative, breakpoints. TEX's algorithm determines several feasible breakpoints for each line and
calculates quantities called the badness and demerits of the line for each such breakpoint. After doing this
for the entire paragraph, the �nal breakpoints are determined in a way that minimizes the demerits of the
entire paragraph. Mathematically the problem is to �nd the shortest path in an acyclic graph.

3. Fonts

Traditionally, the word font refers to a set of characters of type that are all of the same size and style, e.g.,
Times Roman 12 point. A typeface is a set of fonts of di�erent sizes but in the same style, e.g., Times
Roman. A typeface family is a set of typefaces in the same style, e.g., Times.

The size of a font is normally measured in points (more accurately printer's points), where 72:27 points equal
1 inch. The reader should refer to [Ch. 10] for a description of all the valid dimensions in TEX. The style

of a font describes its appearance. Traditional styles are roman, boldface, italic, slanted, typewriter and
�sans serif. In TEX, a font can have up to 256 characters, although most fonts only have 128 characters.

4. The CM fonts

Computer Modern (CM) is a metafont, developed in MET A F O N T , from which many di�erent fonts have been
derived, by di�erent settings of parameters. The fonts all look di�erent, but they blend together. They are
called the CM fonts, and their names start with `cm'. The standard CM fonts are:
cmr or Roman. These are used for plain text. The standard sizes are (the `*' indicates fonts that are

automatically loaded by the plain format) cmr17 cmr12 cmr10* cmr9 cmr8 cmr7* cmr6 cmr5*.
cmsl or Slanted. They are slanted versions of the cmr characters. The standard sizes are cmsl12 cmsl10*

cmsl9 cmsl8.
cmdunh or Dunhill. Same as cmr but with higher ascenders. Only cmdunh10 is standard.
cmbx or Bold Extended. These are used for Boldface characters. cmbx12 cmbx10* cmbx9 cmbx8 cmbx7*

cmbx6 cmbx5*.
cmb or Bold. This is bold but too narrow for normal use. cmb10.
cmbxsl or Bold Extended Slanted. cmbxsl10.
cmtt or Typewriter. Fixed-space, resembling old typewriter style. cmtt12 cmtt10* cmtt9 cmtt8.
cmvtt or Variable Typewriter. Same as cmtt but with proportional spacing. cmvtt10.
cmsltt or Slanted Typewriter. cmsltt10.
cmss or Sans Serif. Used for headings and for formal texts. cmss17 cmss12 cmss10 cmss9 cmss8.
cmssi or Sans Serif Italics. cmssi17 cmssi12 cmssi10 cmssi9 cmssi8.
cmssbx or SS Bold Extended. cmssbx10.
cmssdc or SS Demibold Condensed. Normally used for chapter headings. cmssdc10.
cmssq or SS Quote. Special SS font for quotations. cmssq8.
cmssqi or SS Quote Italics. Again used for quotations. cmssqi8.
cminch or Roman Inch. These are used for titles. cminch.
cmfib or Fibonacci. In this version the parameters have relative sizes determined by the Fibonacci se-

quence. cmfib8.
cmff or Funny Font. Di�erent from the other cm fonts. Rarely used. cmff10.
cmti or Text Italics. This is the normal italics font. cmti12 cmti10* cmti9 cmti8 cmti7.
cmmi or Math Italics. Slightly di�erent from text italics, and without spaces (spaces are automatically

supplied in math mode). cmmi12 cmmi10* cmmi9 cmmi8 cmmi7* cmmi6 cmmi5*.
cmbxti or Bold Extended Text Italics. cmbxti10.
cmmib or Math Italics Bold. For math mode. cmmib10.
cmitt or (text) Italics typewriter. cmitt10.
cmu or Unslanted (text) Italics. Unslanted version of cmti. Used for Editor's notes in TUGboat. cmu10.
cmfi or Funny Italics. An Italics version of cm�. cmfi10.
cmsy or Math Symbols. Contains the math symbols normally used by TEX. cmsy10* cmsy9 cmsy8 cmsy7*

cmsy6 cmsy5*.
cmbsy. A Bold version of the math symbols. cmbsy10.
cmex or Extension. More math symbols. cmex10*.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#8 (92.1); May 1992

68 An Introduction to TEX --- part I (NTG course) --- Bijlage P

cmtex or TEX Extended. An extended ASCII font. cmtex10 cmtex9 cmtex8.
cmcsc or Caps & Small Caps. Contains small caps instead of lower case letters. cmcsc10.
cmtcsc. A Typewriter version of cmcsc. cmtcsc10.
cmc or Concrete. These were specially developed for the book Concrete Mathematics, to blend with the

Euler math fonts.

Some of these fonts are rarely used, but were easy to obtain, by trying various settings of parameters. Any
special sizes not mentioned above should also be easy to derive.

In plain TEX, the default font is cmr10. Also, macros \bf, \it, \sl and \tt are set [351] to select the
di�erent styles in 10 point size. If large parts of the document should be typeset in, say, 12 point, the
de�nitions of \bf and its relatives should be changed accordingly. To do this, the di�erent twelve point fonts
should be loaded, at the start of the document, and assigned names by

\font\twerm=cmr12

\font\twebf=cmbx12

\font\tweit=cmit12

\font\twesl=cmsl12

\font\twett=cmtt12

Macro \twelve should then be de�ned as

\def\twelve{\def\rm{\twerm}\def\bf{\twebf}\def\it{\tweit}%

\def\sl{\twesl}\def\tt{\twett}%

\rm}

Text areas that should be set in 12 points should be bounded by \begingroup\twelve and \endgroup.

The CM family (Ref. 1) represents the most ambitious attempt so far to develop a general metafont. It is
based on an earlier version called AM (almost modern), which is now obsolete. Two interesting adaptations
of CM are outline fonts (Ref. 2) and the Pica fonts. The reader should refer to [Chs. 2, 4, 9 & App. F] for
more information on the CM fonts.

Many special fonts have been developed in MET A F O N T . Examples are exotic languages, music notes, chess
�gures, astronomical symbols & logic gates. Ref. 3 is a detailed listing. The MetaFoundry (Ref. 4) developed
many fonts in the early 1980s. However, very few other metafonts exist, the most well known of which are:

Pandora, developed by N. Billawala (Ref. 5).

The Euler family, designed by Herman Zapf, and developed at Stanford (Ref. 6). It is not a true metafont,
as the characters were digitized.

The Gothic family, including Fractur and Schwabacher, developed by Y. Haralambus (Ref. 7).

5. Font examples

This is an example of font cmr10 (roman)

This is an example of font cmbx10 (bold extended)

Some math symbols Thisisanexample

Notice the absence of spacing in the next two lines. Math italics is automatically used and spaced in the
math mode.

Thisisanexampleoffontcmmi10(mathitalics)

Thisisanexampleoffontcmmi5(mathit5pt)

This is an example of font cmti10 (text italics)

This is an example of font cmtt10 (typewriter)

This is an example of font helvetica (sans serif)

This is an example of font Courier (fixed spacing)

This is an example of font Palatino

Reprint MAPS#8 (92.1); May 1992 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage P An Introduction to TEX --- part I (NTG course) --- 69

This is an example of font times (roman)

This is an example of font CMCSC10 (caps and small caps)

This is an example of font cmdunh10 (ascenders).

This is an example of font cmssdc10 (sans serif demibold condensed)

6. Magni�cation

The \magnification command scales the entire document. Everything|except the width & height of the
text, and the margins|is made bigger or smaller. The magni�cation gactor in an integer, thus `\mag-
nification=2000' scales everything by a factor of 2 (the document will spread over more pages), and
`\magnification=500' makes everything half its original size. Note that this command can only be used
once in a document, and should be placed at the beginning.

It is also possible to magnify individual fonts using the scaled parameter. Thus if font cmr12 is not available,
it is possible to say `\font\twelve=cmr10 scaled 1200'. However, font \twelve will not look as good as
the real thing.

Experience shows that certain font sizes blend together better than others. To encourage users to use
those sizes, plain TEX includes [349] the quantities \magstep0 (= 1000), \magstep1 (= 1440), \magstep2
(= 1728), \magstep3 (= 2074), \magstep4 (= 2488), and \magstephalf (= 1095). Again, it should be
emphasized that magni�cation of fonts reduces their quality. For best results, all the fonts needed in a
document should be available without having to magnify anything.

7. Advanced Introduction

The rest of this chapter is an advanced introduction to TEX, stressing the main parts, main operations, and
certain, advanced, concepts. As with most other presentations of this type, some terms have to be mentioned
before they are fully introduced, so the best way to bene�t from this material is to read it twice.

8. Registers

A register is temporary storage, a place where data can be saved for later use. Using a register thus involves
two steps. In the �rst step something is stored in the register; in the second step, the contents of the register
is used. With the exception of box registers, the contents of a register can be used and reused inde�nitely.
There are six classes of registers, summarized in the following table.

Class Contents Default value

\count integer 0
\dimen dimension 0pt
\skip glue 0pt plus0pt minus0pt
\muskip muglue 0mu plus0mu minus0mu
\toks token string empty
\box a box void

Note that each class of registers can only be used for
data of a certain type. The registers are thus similar
to strongly typed variables used in many program-
ming languages. Each class contain 256 registers,
so there are, e.g., the 256 count registers \count0

through \count255.

Reserved Registers. Certain registers are reserved by TEX for special purposes. \box255 is used by the OTR.
\count0 through \count9 are used by the plain format for the page number. Those registers should not
be used unless you know what you are doing.

Declaring registers. Since it is not a good idea to refer to registers explicitly, the plain macro \new should
be used to declare registers and assign them names. Thus \newcount\temp is a typical use. It allocates the
next available count register, and assigns it the name \temp.

Five of the six register classes are similar, but box registers are di�erent. Boxes have dimensions and internal
structure, they can be nested by other boxes, and tend to consume memory space. As a result, there are
di�erences between box registers and other registers.

The command \newcount\temp creates a quantity \temp whose value is, e.g., \count18. In contrast,
\newbox\Temp creates \Temp as the number 18. Saying `A�B' is thus identical to `A�B'. (This can be veri�ed
by \show\temp.)

Assigning a new value to a register is done by an assignment statement of the form \temp=1234. Assigning
a new value to a box register is done by means of `\setbox\Temp=...'.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#8 (92.1); May 1992

70 An Introduction to TEX --- part I (NTG course) --- Bijlage P

Box register 255 is reserved for the use of the OTR. Registers \count255, \skip255 etc. are available for
general use.

A box register is emptied when it is used. The register thus becomes void. In contrast, other registers
cannot be void; they must always contain a value.

The contents of any register, except a box register, can be written on a �le. Thus we can say, e.g.,
\write\abc{\the\skip0}, but we cannot say \write\abc{\the\box0}. The reason is that boxes are com-
plex structures.

The primitive \the can be used to produce the value of any register except a box register.

At the start of a job boxes are normally void, but there is a subtle point, involving \box0 and the plain
format, that users should keep in mind. The plain format says (on [361]) \setbox0=\hbox{\tenex B}.
This is used in the de�nition of macro \bordermatrix. As a result, \box0 is not void at the start of a job.
This point is mentioned again, in connection with \lastbox.

9. \the

The primitive \the can be used to produce the values of certain internal quantities. TEX novices are always
confused by it. A typical complaint is \Why do I say `\box0' to typeset \box0 but `\the\count0' to typeset
\count0?" The answer is|to make it easier for TEX to compile the document and to detect errors.

The command \themust be followed by an internal quantity, such as a register. It produces tokens that repre-
sent the value of the quantity. Thus after saying `\newcount\temp \temp=1234', the command \the\temp

creates the tokens `1234'. Thus `\hskip\the\temp pt' will skip 1234 points, and `ABC\the\temp GHK' will
typeset `1234' between the C and the G.

The command \temp, in contrast, does not create tokens. TEX considers it the start of an assignment, unless
it expects an integer at this point. Consider, e.g., the command `\hskip\temp pt'. After TEX has read the
\hskip, it expects a dimension (a number followed by a valid unit of dimension). This command will thus
skip 1234 points.

The two examples above suggest that \temp and \the\temp produce the same results, but this is not generally
true. Consider the assignment `\skip0=3pt plus 2pt'. Saying `\hskip\the\skip0 minus 1pt' will skip
by `3pt plus 2pt minus 1pt', but saying `\hskip\skip0 minus 1pt' will skip by `3pt plus 2pt' and will
consider the `minus1pt' text to be typeset.

In the former case, the tokens produced by \the\skip0 blend with the rest of the document and become
part of the \hskip command. In the latter case, TEX expects the \hskip to be followed by a valid dimension
and, on �nding \skip0, is satis�ed and executes the command, not looking for any more arguments.

10. Modes

Of all the advanced concepts, the idea of modes [Ch. 13] is, perhaps, the most important. At any given
time, TEX is in one of six modes, and its behaviour depends on the current mode. The mode can frequently
change and can also be nested. The six modes are:

Horizontal, or h, mode. TEX is in this mode when it reads the text of a paragraph.

Vertical, or v, mode. This is where TEX usually spends its time between paragraphs, executing commands.

Restricted horizontal (or rh) mode. TEX switches to this mode when it builds an \hbox. This mode is
very similar, but not identical to, h mode.

Internal vertical (or iv) mode. Commands such as \vbox or \vtop force TEX to go into this mode, which
is very similar, but not identical to, v mode.

Inline math mode, where a math inline formula is built.

Display math mode, where a display formula is constructed.

When TEX starts, it is in v mode (between paragraphs). It reads the input �le and, when it sees the �rst
character to be typeset (or anything that's horizontal in nature, such as \noindent, \vrule), it switches
to h mode. In this mode, it �rst executes the tokens in \everypar, then reads the entire paragraph into
memory. The paragraph is terminated by \par, by a blank line, or by anything that doesn't belong in h

mode (such as \vskip or \hrule). TEX then switches to v mode, where it sets the paragraph and takes care
of page breaking.

Reprint MAPS#8 (92.1); May 1992 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage P An Introduction to TEX --- part I (NTG course) --- 71

A paragraph is set by breaking it into lines which are appended|each as an \hbox|to the main vertical

list (MVL). After appending the lines of a paragraph to the MVL, TEX determines whether there is enough
material in the MVL for a full page. If there is, the page breaking algorithm is invoked to decide where to
break the page. It moves the page material from the main vertical list to \box255 and invokes the output
routine. Some material is usually left in the MVL, to eventually appear at the top of the next page. The
routine can further modify \box255, can add material to it or return some material from it to the main
vertical list. Eventually, the output routine should invoke \shipout to prepare the dvi �le. TEX stays in v
mode and continues reading the input �le.

Modes can be nested inside one another. When in v mode, between paragraphs, TEX may be asked to build
a \vbox, so it enters iv mode. While in this mode, it may �nd characters of text, which send it temporarily
to h mode. In that mode, it may read a `$', which causes it to switch to inline math mode. The curious
example on [88] manages to nest all the modes at once.

11. Anatomy of TEX

A quote, from [38], is in order. \It is convenient to learn the concept (of tokens) by thinking of TEX as if
it were a living organism." We will develop this concept further, and try to get a better understanding of
the overall organization of TEX by considering the functions performed by its main \organs", namely eyes,
mouth, gullet, stomach, and intestines (see anatomical diagram on [456]).

TEX uses its \eyes" to read characters from the current input �le. The \input command causes TEX to
`shift its gaze' and start reading another input �le.

In its \mouth", TEX translates the input characters into tokens, which are then passed to the \gullet."
Spaces and end-of-line characters are also converted into tokens and sent to the gullet. A token is either a
character of text or a control sequence. Thus the name of a control sequence, which may be long, becomes a
single token. The process of creating tokens involves attaching a category code (see below) to each character
token, but not to a control sequence token.

The \gullet" is the place where tokens are expanded and certain commands executed. Expandable tokens
[373] are macros, \if...\fi tests, and some special operations such as \the and \input.

A token arriving at the gullet is sent to the stomach, unless it is expandable. Expanding a token results in
other tokens that are, in turn, either expanded, if they are expandable, or sent to the stomach. This process
continues until no more expandable tokens remain in the gullet, at which point the next token is moved from
the mouth to the gullet, starting the same process (the word \regurgitation", on [267], nicely describes this
process). Certain commands, such as \expandafter & \noexpand, a�ect the expansion of tokens, so they
are executed in the gullet.

Expandable tokens are macros, active characters, conditionals, and some primitives, e.g. \romannumeral,
listed on [215]. They are expanded in the gullet. For macros with no parameteres the expansion is a simple
replacement (also for some primitives, such as \jobname). Normally, however, the token expanded depends
on arguments, which have to be read before the expansion can take place.

Exceptions: The construct \expandafterhtoken1ihtoken2i is treated by the gullet in a special way. It is
replaced by htoken1ihexpansion of token2i, which is then scanned again by the gullet.

A \noexpandhtokeni prevents the gullet from expanding the token.

As a result, there is a constant stream of tokens arriving at the \stomach", where they get executed. Most
tokens are characters of text, and are simply typeset (appended to the current list). Tokens which are TEX
primitive commands are executed, except that the \stomach" may have to wait for the arguments of the
command to arrive from the gullet. Recall that non-primitive commands are macros and are expanded in
the gullet.

Another way of explaining stomach operations is: The stomach executes tokens coming from the gullet. It
classi�es all tokens into two groups, tokens used to construct lists, and tokens that are mode independent.
The former group includes characters of text, boxes and glue. They are mode sensitive, can change the
mode, and are appended to various lists. The latter can be assignments, such as \def, or other tokens, such
as \message or \relax. The \relax control sequence deserves special mention. It is a primitive and thus
unexpandable. The gullet passes it to the stomach, where its execution is trivial. It is an important control
sequence, however, because it serves as a delimiter in both the gullet and the stomach.

The result of executing tokens in the stomach is larger and larger units of text. Individual characters are

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#8 (92.1); May 1992

72 An Introduction to TEX --- part I (NTG course) --- Bijlage P

combined to make words, which are combined to form lines, which are combined to make pages of text.
When the next page of text is ready, it is sent to the \intestines."

The output routine corresponds to the \intestines" of TEX. It receives a page of text and, after some
processing, translates it into dvi commands that are appended to the dvi �le. The processing may consist of
adding something to the page (such as a header, a footer, footnotes or margin notes) or deleting something
from it (certain lines or even a big chunk). The deleted material is either discarded or is returned to the
stomach.

The dvi �le is the �nal output of TEX, and it comes out of the intestines in pages. It consists of commands
that tell where each character is to be placed on the page. Ref. 8 is a detailed description of the dvi �le
format.

The entire anatomy is summarized in the diagram below.

Source
�le

eyes
����!

ASCII
chars

mouth
������! Tokens

gullet
�����! Tokens

stomach
�������! Lists

OTR
����!

dvi

�le

The advantage of this anatomical description is that we can think of the process as a pipeline. Material
(mostly tokens) advances from organ to organ and is processed in stages. However, the individual organs
sometimes a�ect each other. The best example is the \catcode primitive. It is executed in the stomach, and
immediately starts a�ecting the way the mouth assigns catcodes to tokens. Another example is the \def

primitive. When a \def\abc is executed, the de�nition becomes available for the gullet to use whenever
\abc has to be expanded. As soon as another \def\abc is executed in the stomach, the gullet is a�ected,
and will use the new de�nition in future expansions of \abc.

12. Characters

TEX inputs characters from the input �le and outputs characters to the dvi �le, so characters are important
for an overall understanding of TEX. Characters usually come from the input �le (through the eyes), but
may also come from the expansion of macros (in the gullet). These are the only character sources of TEX.
Most characters are simply typeset, but some, such as `\' and `$', have special meanings and start TEX on
special tasks.

A character is input as an ASCII code, which becomes the character code. The character then gets a category

code attached to it (in the mouth), which determines how TEX will process the character. When a macro
is de�ned (in the stomach), catcodes are attached to each character (actually, to each character token) in
the de�nition, and are used when the macro is later expanded (in the gullet). Advanced users would like
to know that a certain amount of processing goes on even in the mouth. Among other things (see complete
description on [46{49]) consecutive spaces are compressed into one space, carriage returns are inserted at
the end of each line, consecutive spaces at the beginning of a line are ignored, and spaces following a control
word are ignored (they never become space tokens).

There is a simple way to �nd the ASCII code of a character. Just write a left quote followed by the character
[44]. Thus `b has the value 98, and \number`b will actually typeset a 98.

Exercise 1: What will be typeset by \number`1 and what, by \number`12?

Answer. The result of \number`1 is 49, the character code of `1', being typeset. The result of \number`12
is the same 49, which is typeset, and is immediately followed by a 2; thus 492.

Exercise 2: What is the result of \number`{0} and what, of \number`%?

Answer. The character code of `{' (123) will be typeset, The right brace will cause an error (too many
`}'). The % in \number`% will be considered a comment, so the result will be the code of whatever character
happens to follow (see later on how to get the character code of %).

The ASCII table provides 128 codes, but keyboards normally don't have that many keys. The \char

command or the `^^' notation [45{46] can be used to refer to a keyless character. Thus the notation `^^x',
where x is any character, refers to the character whose ASCII code is either 64 greater than, or 64 less than,
the ASCII code of x. Examples are `^^M' (return), `^^J' (line feed), `^^@' (null), `^^I' (horizontal tab), and
the other ASCII control characters. The \char command is easy to use; if the current font is cmr10, then
\char98 is the code of `b'. In general, \char127 is the code of the character in position 127 of the current
font.

Reprint MAPS#8 (92.1); May 1992 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage P An Introduction to TEX --- part I (NTG course) --- 73

The di�erence between the two notations is that \char is easier to use but is executed in the stomach (i.e.,
late); in contrast, a `^^x' is preprocessed into a single token in the mouth (i.e., as soon as it is input). As a
result, the concoction \def\a^^"c{...} de�nes a macro \abc, but \def\a\char98c{...} de�nes a macro
\a with the string \char98c as a delimiter.

13. End of line

We intuitively think of a line of text as ending with a carriage return. TEX, as usual, o�ers a more general
treatment of this feature. At the end if every line of text, a special character is inserted, that is the value
of parameter \endlinechar [48]. This parameter is set by INITEX to a hreturni (^^M), but can be changed
by the user. If \endlinechar is negative or is greater than 255, no end-of-line character is inserted. In this
case, the input is considered one long line. The same e�ect can be obtained by ending every line with a
comment character.

14. Numbers

Not everything can be typeset by \the. The de�nition of a macro (its replacement text), e.g., can only be
typset by \meaning. To print a numeric quantity, the primitive \number can always be used. Even if the
number is the value of a macro. De�ning the macro \def\ctst{10}, we cannot say \the\ctst, but we can
say \number\ctst. Also \dimen registers are printed di�erently by \the and by \number.

The left-quote character usually acts as a normal character of text. Sometimes, however, it signi�es the
start of a number. Similarly, the right-quote and double-quote characters sometimes have special meanings;
they signify the start of an octal or hexadecimal number. When these characters arrive at the stomach, they
are tokens with catcode 12 (other). If the stomach is expecting a number, it will assign them their special
meanings and expect them to be followed by digits (decimal, octal, or hex). Otherwise, they will simply be
typeset.

The following are all valid representations of the decimal number 98: 98 +98 098 '142 "62 `b `\b. They
may be used with any command requiring an argument of type hnumberi (see de�nition of hnumberi on [269]).
Thus \number`b wil typeset 98, and \catcode+98="D will convert the letter `b' into an active character.
(Incidentally, once you do that, `b' isn't a letter any longer, so something like \bye will be interpreted as
the control symbol \b [52], followed by the letters `ye'.)

Exercise 3: What is the result of \catcode101=14 \number`e?

Answer. The character code of `e' is 101, so the assignment makes `e' a comment character. The \number
is now considered the control sequence \numb (which is normally unde�ned), followed by a comment. The
result is the error message ! Undefined control sequence \numb.

Both notations `b and `\b produce the character code of `b'. The di�erence between them is that the latter
form can be used with any character. Thus \number`\% produces 37 but \number`% will treat the `%' as
a comment, and will look for an argument on the next line. Similarly, \number`\^^M produces 13 (ASCII
hreturni), but \number`^^Mwill consider the ^^M an end-of-line, will replace it with a space, and will produce
32 (ASCII hspacei).

Non-integer numbers can only be used with dimensions, and are considered multipliers. Thus 1pt multiplies
the basic unit of a pt by one, and 2.5\baselineskip mutiplies the current natural size of \baselineskip
(not its stretch and shrink components) by 2.5.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#8 (92.1); May 1992

74 An Introduction to TEX --- part I (NTG course) --- Bijlage P

15. Category Codes

One of the main considerations behind the design of TEX was to make it as general and
exible as possible,
so it could be adapted to many di�erent tasks. Thus the character `\' is normally used to start the name of
a control sequence (it is the escape character), but if the `\' is needed for other purposes, any character can
be de�ned as the escape character. The same thing is true for the other special characters, namely f g $ &
^ _ and %.

Each of those characters is special only because it is assigned a special category code when TEX starts. It
is easy to change the category codes, thereby changing the meanings of characters. There are 16 category
codes [37] numbered 0 to 15:

0 Escape character 4 Alignment tab 8 Subscript 12 Other character
1 Begin. of group 5 End of line 9 Ignored character 13 Active character
2 End of group 6 Parameter 10 Space 14 Comment character
3 Math shift 7 Superscript 11 Letter 15 Invalid character

The category code of the character `A' can be typeset by the command \the\catcode`A. It can be displayed
in the log �le by \showthe\catcode`A. The category code is assigned to a character in the mouth, and
that assignment is permanent. The pair hcharacter code, category codei becomes a token. The mouth also
converts control sequences into tokens, but they do not get a catcode.

When a macro is de�ned (in the stomach) each token of the replacement code gets a catcode assigned. When
the macro is later expanded (in the gullet), the replacement code is copied, with arguments replacing the
parameters, and the resulting tokens are sent to the stomach.

The catcode of a character can be changed by the \catcode primitive. The most common example is
\catcode`\@=11, which makes `@' a letter. It can now be used in control words, as any other letter, and
the plain format [App. B] makes heavy use of this in order to de�ne `private' macros, inaccessible to the
user. Another example is \catcode`\<=1, \catcode`\>=2, which de�ne the characters `<' and `>' as group
delimiters. This does not change the de�nition of the braces, so now a group may be speci�ed by {...>.

Here are some notes about catcodes:

A character created by `^^' is assigned a catcode in the mouth, but a character created by \char is not
assigned a catcode at all! This is because \char is a primitive and is thus executed in the stomach. Executing
\char always creates a character of text, which is typeset.

Code 14 (comment) causes the rest of the input line to be ignored, is itself ignored, and no end-of-line
character is appended to the line.

A space following an active character is not ignored.

Category 9 is always ignored, but can be used to delimit a control sequence name. Thus if we change the
catcode of `x' to 9 (by \catcode`\x=9), future occurrences of `x' will be ignored, and the string `NxO' will be
typeset as `NO'. However, a macro \abc can now be expanded by saying \abcx.... The ignored character
`x' serves to delimit the name \abc the way a space normally does. When TEX starts, the only ignored
character is the ASCII hnulli (^^@).

Exercise 4: What's the reason for category 9 (in other words, why type a character and then ignore it)?

Answer. When TEX is used to produce graphics, we sometimes want to suppress all spaces (see example
on [390]). This can be done by \catcode`\ =9. A carriage return can be ignored by saying

\catcode`\

=9

on two separate lines. Also, certain control characters can sometimes be added to a �le when it is transmitted
between computers, and they should be ignored by TEX.

Each blank line becomes a \par token, so there may be several consecutive such tokens, of which only the
�rst is executed by the stomach.

Category 15 (invalid character) is initially assigned to the ASCII hdeletei (^^?). TEX complains when it
reads an invalid character.

Reprint MAPS#8 (92.1); May 1992 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage P An Introduction to TEX --- part I (NTG course) --- 75

16. Commands

Many di�erent commands are available in TEX, and they can be classi�ed in two ways:

A command can be classi�ed as a primitive, a character, or user-de�ned. The latter category is further
classi�ed into a macro or an active character.

A command can also be classi�ed as either horizontal, vertical, or neither.

Beginners learn very quickly that a command should start with a `\'. However, an active character is also a
command, and even a character of text (catcodes 11, 12) is one (see [267]). When a command is used very
often, we want its name to be as short as possible, so we de�ne it as an active character (catcode 13). It
then becomes a one-character command, without even a `\'.

It is useful to consider a character of text (other than a space) a command. Such a command tells TEX to
start a new paragraph or, if it is already in h mode, to typeset the character. A character is thus a horizontal

command. If we want TEX to treat a character as not horizontal, we can place it in an \hbox. Interestingly,
an \hbox is not inherently horizontal (but neither is it inherently vertical).

A command starting with a `\' is called a control sequence. If it consists of letters only (catcode 11), it is
called a control word ; if it consists of a non-letter (any catcode 6= 11), it is called a control symbol. Any
spaces (or end of line) following a control word are ignored by TEX since it assumes that they are there only
to delimit the word. However, a control symbol can only have one character following the `\', so there is no
need for any delimiters. Spaces following a control symbol are not ignored, and a situation such as `\?1' is
interpreted as the control symbol \? (normally unde�ned), followed by a `1' (which is normally typeset).

The ignore-space rule above, however, applies only to characters coming from the input �le; if a control
sequence comes from a token list [39], a space following it will not be ignored.

Exercise 5: Devise tests to prove the preceding statements!

Answer.

\def\abc{`} \abc ' \abc\ '

\def\?{\message{ok}} `\?1' `\? '

\toks0={\abc}

\toks0=\expandafter{\the\toks0 '} \showthe\toks0

The concept of a delimiter is worth a little discussion. If we want to expand a macro \abc we can say
`\abc '. However, \abc1... is also okay. The `\' tells TEX that a control sequence starts, the `a' tells it
that this is a control word (just letters), and the `1' delimits the string of letters. After TEX reads the `1' it
backspaces over it, executes \abc, and rereads the `1'. The point it that the `1' is read twice and, when it
is �rst read, it is not assigned a catcode.

This is a subtle point that may, sometimes, lead to errors. Consider the following:

\def\abc{\catcode`\%=11 }

\abc%

\abc%

The �rst line de�nes \abc as a macro that makes the `%' a letter. The second line uses `%' to delimit the
string of letters abc. The `%' is thus read twice. When it is �rst read, it is not assigned a catcode, and
\abc has not been expanded yet. When the `%' is read again, \abc has already been expanded, so the `%'
is assigned a catcode of 11, which causes it to be typeset. When the third line is input, the `%' already has
catcode 11, so it is considered a letter. TEX thus ends up with the string `abc%', and tries to expand macro
\abc% which is normally unde�ned. The result is the message ! Undefined control sequence \abc%.

Exercise 6: Why is there a space following the `11' in the de�nition of \abc above, and what happens
without that space.

Answer. This is a result of the general rule that says that a number should normally be terminated by a
space. TEX considers the space a terminator, so it does not get typeset. To better understand this rule, try
the following:

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#8 (92.1); May 1992

76 An Introduction to TEX --- part I (NTG course) --- Bijlage P

\count20=20%

1stop

This example sets \count20 to 201 and typesets `stop'. The reason is that, after reading the `20', TEX reads
ahead, hoping to �nd more digits. It �nds the `1' since the `%' does not terminate a number.

Without the space, our three-line example is executed in the following steps:
1. The �rst line is read, and \abc is de�ned.
2. The second line is scanned. The `%' is read, which terminates the name \abc. The macro is expanded
and the last thing, of course, is the `11'. Therefore, before executing the expansion, TEX reads the next
character, hoping to �nd more digits. Since the next character is the `%', TEX skips to the next line and
starts expanding \abc, still hoping to �nd more digits. The expansion of \abc on the third line, however,
does not start with a digit.
3. At this point, TEX realizes that there are no digits following the `11' (from the second line). It therefore
executes \abc from the second line, which changes the catcode of `%'.
4. Next, \abc from the third line is executed, which does not change a thing.
5. The `%' of the third line is reread and, since it is now considered a letter, it is typeset. (End of answer.)

There is an important di�erence between a character and a control sequence. A character has a catcode
attached to it, which tells the gullet and the stomach what to do with the character. A control sequence has
no catcode and may be rede�ned at any time, so the gullet has to look up the current de�nition before it
can expand the control sequence.

A command may have arguments. Thus \kern must be followed by a dimension, and a `^' in math mode
must be followed by the superscript. Sometimes the arguments are optional (the `=' in an assignment is a
typical example), and sometimes there is a choice of arguments (\leaders should be followed [281] by either
a hboxi or a hrulei, so it can be followed by one of the following: \box15 \copy16 \vsplit17 \lastbox

\hbox \vbox \vtop \hrule or \vrule). The \font command [16] makes for an interesting example. It
starts with \font\hnamei=h�le namei, followed by the optional arguments `at hsizei' or `scaled hfactori'.
The words `at', `scaled' are called keywords, and don't have a `\'. See [61] for a complete list of keywords.

In a command such as \setbox0=\hbox{...}, the arguments are `0=\hbox{...}'.

17. Assignments

An assignment [275] is any command that assigns a new meaning to a control sequence or to an internal
quantity. Examples are \def, \hsize=..., \font\abc=..., \setbox0=... & \advance\x.... Note that
the `=' is always optional. Assignments are examples of commands that are executed in the same way
regardless of the current mode.

Exercise 7: What other commands are executed in a mode-independent way?

Answer. See list on [279{281].

Reprint MAPS#8 (92.1); May 1992 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage P An Introduction to TEX --- part I (NTG course) --- 77

18. Lists

This is another important concept. The contents of a box is a list, as is the contents of a math formula. A
list is made up of items such as boxes, glue & penalties.

TEX is assembling a horizontal list when it is in h mode (building paragraphs) or in rh mode (building an
\hbox). The items of such a list are strung horizontally, left to right, and must be h mode material [95].
In h mode, a list is terminated when TEX reads a \par (or a blank line), or anything that's vertical in
nature (such as a \vskip). In rh mode, TEX terminates a list when it �nds the `}' of the \hbox. If it �nds
inherently vertical material in this mode, it issues an error. Examples of horizontal commands are \vrule,
\valign, \char and a character of text (see [283] for the complete list).

A character of text is a horizontal command whose meaning is: Add me to the current horizontal list or, if
there is no current h list, start one with me as the �rst item.

TEX is assembling a vertical list when it is in v mode (between paragraphs) or in iv mode (building a \vbox).
The items of such a list are stacked vertically, top to bottom, and must be v mode material [110]. In v

mode, a list is terminated when TEX sees an inherently horizontal command, such as an \hskip or the �rst
character of the next paragraph. In iv mode, TEX terminates a list when it �nds the `}' of the \vbox. If
it �nds inherently horizontal material in this mode, it issues an error. Examples of vertical commands are
\hrule, \halign & \end (see [286] for the complete list).

Kern is an interesting example of an item that may appear in either horizontal or vertical lists. Even though
the same command, \kern, is used, it has di�erent meanings in those lists. Kern is essentially rigid glue
with the di�erence that TEX does not break a line or a page at a kern. Thus if two boxes are separated by
a kern, they will remain tied. Of course, if the kern is followed by glue, a break is possible at the glue.

19. Whatsits

A whatsit is an item that may appear in either a horizontal or a vertical list. It has no dimensions and
signi�es an operation that should be delayed. The paragraph builder and page builder scan lists submitted
to them and execute certain whatsits. There are three types of whatsits:

\special. This command requires two arguments. They are �rst stored in the MVL, and end up being
written, at \shipout time, to the dvi �le. They are interpreted and executed by the printer driver. Indivi-
dual printer drivers support di�erent \special arguments, so \special is an example of a non-compatible
command. A document using it may only be printed with certain printer drivers. A typical example is
\special{postscript hpostscript commandsi}. When the printer driver �nds this in the dvi �le, it sends
the ps commands to the printer, so that special printing e�ects can easily be achieved.

The three non-immediate output commands \openout, \closeout & \write. They are also stored in the
MVL and are executed later, at \shipout time. The reason for their delayed execution is that they may
have to write the page number on an output �le, and that number is only known in the output routine.

The \language and \setlanguage commands [455] also produce whatsits each time the language is swit-
ched in the midst of a paragraph (e.g., from Icelandic to Serbo-Croatian). These whatsits are stored in
memory with the rest of the current paragraph, while the paragraph text is being read in h mode. When
the paragraph builder typesets the paragraph (determines the line breaks), the whatsits are used to select
the set of hyphenation rules appropriate for each language.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#8 (92.1); May 1992

78 An Introduction to TEX --- part I (NTG course) --- Bijlage P

20. Parameters

Many numeric values are used by TEX, that a user may want to examine or modify. Those values are,
therefore, given names, and are considered parameters of TEX (di�erent from macro parameters). They are
all listed on [272{275]. A typical example of a parameter is \hsize. Its value is a dimension, so it may be
used whenever a dimension is necessary, as in \hbox to\hsize or \hskip\hsize. It may also be assigned a
new value by \hsize=3.5in (however, the `=' is optional).

The rule is that the value of a parameter is used if its name appears in a context where such a value is
needed. The value is changed if the name appears in any other context. A common error is a sentence such
as `The width of a line is normally \hsize but,: : : ' When TEX sees \hsize, it is in the midst of typesetting
our sentence, so it is in a context where it does not need a dimension. It assumes, therefore, that \hsize is
an attepmt to modify \hsize, and reads ahead, expecting the new value. Finding the word `but' instead, it
complains of a missing number. The correct sentence should, of course, be `The width of a line is normally
\the\hsize but,: : : .'

21. Macros

This material is intended for users who rarely use macros but are otherwise experienced. A macro is a list of
tokens that's been given a name, typically because it is used a lot in certain documents. For example, if the
following is used many times in a document `\medskip\bullet\enskip', it can be given a name, such as
\section, and de�ned as a macro by `\def\section{\medskip\bullet\enskip}'. After this de�nition,
the macro can be expanded by simply saying `\section'. To expand a macro means to expand the tokens
that constitute it. Those tokens are also called the replacement text of the macro, since they replace the
macro name during expansion.

However, the feature that makes macros so useful and powerful is the use of parameters. By using parameters,
each expansion of the same macro may be di�erent. Our macro above may be extended by adding a
parameter, such as the name of the section. After `\def\section#1{\medskip\bullet\enskip{\it#1}}',
each expansion must supply some text that will be typeset as the name of the new section. Thus, e.g.,
`\section{Advanced Techniques}' will expand the tokens of the macro, and replace the parameter #1 by
the argument `Advanced Techniques'.

Note the di�erence between parameters, which are formal and have no �xed value, and actual arguments

which are text and commands that TEX can process. The notion of parameters also generalizes the concept
of a token. Up until now, a token was either a control sequence or a single character. From now on, a token
can also be a macro parameter, something of the form `#x', where x is one of the digits 1; 2; : : : ; 9. A macro
can have up to 9 parameters and, each time it is expanded, arguments must be supplied to replace each
parameter.

Our �rst macro is now extended by adding another parameter, `#2', whose value is the section number.
De�ning `\def\section#1#2{\medskip\bullet\enskip{\bf#2.\thinspace}{\it#1}}', each expansion
must have the form `\section{Advanced Techniques}6'. The second argument, `6', is not enclosed in
braces because of the following rule: \The argument of a macro is a single token (the next token in the input
stream, except that it cannot be any of the braces), unless it is delimited or enclosed in braces." The �rst
argument `Advanced Techniques' is long, so braces are used to indicate its boundaries. The second argument
is a single character (a token), so no braces are necessary; but what is a delimited argument?

When a macro is de�ned, each of the parameters #1, #2, can be followed by any characters (except, of course,
`#' and `{') which are its delimiter. If this is done, then each argument in any of the expansions must be
followed by the same characters. Our \section macro is now extended to include delimiters
`\def\section#1;#2.{\medskip\bullet\enskip{\bf#2.\thinspace}{\it#1}}' Each expansion of the
new macro must look like `\section Advanced Techniques;26.' The �rst argument is everything up to,
but not including, the �rst `;'. The second argument is everything following the `;' up to the next period.
The delimiters themselves are skipped and do not become part of the actual arguments.

A simple example of delimiters is `\def\test1#1#2. #3\end{...}'. The �rst parameter has no delimiter,
so it must be either a single token or braced. However, it must be preceded by a `1'. The second token is
delimited by the two characters `. ' (not just a period), and the third one, by the characters \end. Since
the delimiters are skipped, the \end is not expanded (what would happen if it were?) If we now expand
`\test10123. 45\end', the parameters will be `0', `123', `45'. If the expansion does not provide the right
delimiters|such as in `\test210123. 45\end', `\test10123.45\end'|TEX issues the error message
! Use of \test doesn't match its definition.

Reprint MAPS#8 (92.1); May 1992 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage P An Introduction to TEX --- part I (NTG course) --- 79

When a parameter is delimited, the argument may contain braces, but they must be balanced. Thus in:
\def\x#1\end{\message{`#1'}} \x 1{2\end3}4\end5, the argument is `1{2\end 3}4'.

Delimited parameters may get complex and confusing (see example on [203]), so the \message command
may be used to �nd out the precise value assigned to each parameter
\def\test1#1#2. #3\end{\message{arg1=#1; arg2=#2; arg3=#3}...}. Another useful debugging tool
is the \tracingmacros command, discussed among advanced macro features.

In addition to \def, macros can also be de�ned by \let, \chardef, and as active characters. It has already
been mentioned that an active character is a control sequence whose name is limited to a single character,
without even a `\', but whose replacement text can be of any length. The \chardef command [44] is, in a
sense, the opposite of an active character. It de�nes a control sequence whose replacement text is limited to
just one number (in the range 0{255), but whose name can be any valid cs name.

Thus \chardef\abc=98 or \chardef\abc=`\bde�ne \abc as a macro whose replacement text is the character
code of `b'. It is equivalent to \def\abc{\char98}. Also \chardef\active=13 de�nes \active as a macro
whose value is the number 13.

The \let command is still di�erent. Its general form is \let hcontrol sequencei=htokeni. It de�nes the
control sequence as being identical to the token. Thus de�ning

\def\a{X}

\let\g=\a \def\k{\a}

\g\k

produces `XX'. If we now rede�ne \a, the meaning of \k will change (since it was de�ned by \def) but
\g will not change. Thus \def\a{*} \g\k produces `X*'. The di�erence between \def and \let is now
clear. \let\g=\a creates \g as an independent macro that does not change if \a is modifed. In contrast,
\def\k{\a} Creates \k as a macro pointing to \a, so it is always dependent on \a.

22. Formats

When TEX starts, there are no user-de�ned macros, and the only commands available are the primitives.
There are about 300 of them. The primitive \def can be used to de�ne macros, which are then added to
the repertoire of available commands. When \def is executed in the stomach, it loads the replacement text
of the new macro into a special table in memory.

When a large document, such as a book, is developed, many macros may have to be de�ned. Each time the
document is typeset, all the de�nitions have to be prepared by the stomach and loaded in memory, which
may be time consuming. In such a case, it is better to convert the macros into a format. A format is a
collection of commands (macros and primitives), written in a special way on a �le, to facilitate rapid loading.

A complete TEX system includes a program called INITEX [39] that is used to install TEX. INITEX is like
TEX but can also prepare formats and hyphenation tables, and perform other tasks. To prepare a format,
INITEX should be run, the relevant macros should be de�ned, and the \dump command [283] executed. This
command dumps the table containing the macros from memory onto a �le. That �le is called a format �le,
and it can later be loaded fast simply be copying its contents directly into memory. A format �le is loaded,
like any other �le, by the \input command.

A very useful format, the plain format, comes with every TEX implementation. It is written on �le
plain.fmt and it consists of about 600 macros that are described throughout the TEXbook, and are useful for
general purpose typesetting. The plain format is also listed in [App. B]. Many commonly used commands,
such as \bye % \smallskip, are part of this format.

When macros are developed for a speci�c document, they are normally used together with the plain format.
It is easy to create a new format containing all the plain macros plus any user-de�ned ones. See [344] for
directions.

TEXtures, a Macintosh TEX implementation, makes it particularly easy to create formats since it can execute
the \dump command without any need for INITEX. It is also easy to load any existing format in TEXtures at
the
ick of the mouse, without having to execute any commands.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#8 (92.1); May 1992

80 An Introduction to TEX --- part I (NTG course) --- Bijlage P

23. References

1. Knuth. D. E, Computers and Typesetting, vol. E, Addison-Wesley, 1986.
2. Henderson, D, Outline fonts with MET A F O N T , TUGboat 10(1) April 1989, 36.
3. Wujastyk, D, The many faces of TEX, TUGboat 9(2) August 1988, 131.
4. Tobin, G. K. M, The OCLC roman family of fonts, TUGboat 5(1) May 1984, 36.
5. Billawala, N, Metamarks: Preliminary Studies for a Pandora's Box of Shapes, Report STAN-CS-89-1256,
Computer Science Department, Stanford University, 1989.
6. Siegel, D. R, The Euler Project at Stanford, Department of Computer Science, Stanford University, 1985
7. Haralambous, Y, Typesetting Old German, TUGboat 12(1) March 1991, 129.
8. Fuchs, D, The Format of TEX's dvi Files, Version 1, TUGboat 2(2), July 1981, 12.

Do not ye yet understand,

that whatsoever entereth in at the mouth

goeth into the belly,

and is cast out into the draught?

| Mathew 15:17

Now there are times when a whole generation is caught : : :between two ages, between two modes of life and

thus loses the feeling for itself, for the self-evident, for all morals, for being safe and innocent.

| Hermann Hesse, Steppenwolf

Reprint MAPS#8 (92.1); May 1992 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

