
Bijlage T Prolegomena toward a font selection scheme 115

Prolegomena toward a font selection scheme

Victor Eijkhout

Department of Computer Science University of Tennessee
104 Ayres Hall

Knoxville, Tennessee 37996, USA

eijkhout@cs.utk.edu

1 Introduction
Most users of plain TEX do not get very sophisticated
in their use of fonts. Often they resort to declaring all
used fonts explicitly with \font. There are some ob-
vious disadvantages to that: it is not possible to switch a
whole document in a simple way to a different typeface,
or to a different size. As a result, I’ve seen such phe-
nomena as an article with an abstract in 8 or 9 point,
but where the formulas were still in 10 point, or pages
of ‘magnified’ type where the lines were cramped, be-
cause the \baselineskip was not increased with
the type size.

The need for a good font selection scheme is thus quite
obvious, but the implementation of one is not.

2 Concepts
2.1 Font parameters
One point that most people agree on is that fonts are
characterized by a number of parameters, and that it
should be possible in an easy way to select the font
that arises from changing just one of those parameters.
For instance, switch to italics for emphasis, switch to a
smaller size for a footnote, switch to the Greek alphabet
to give an erudite – and untranslated, of course – quote
from Homer.

However, the exact number of parameters is a point
of contention. Appendix E of TEX Users Group, [2],
gives macros that are based on size and style (\rm,
\it, et cetera). An obvious third parameter – which
Knuth, working exclusively in Computer Modern did
not need – is the typeface. In [3, 4] Frank Mittelbach
and Rainer Schöpf use an extra parameter, splitting
style into ‘shape’ and ‘series’. The series parameter
combines the typographical qualities weight and width.

Furthermore, Karl Berry in [1] splits the typeface para-
meter into ‘foundry’ and ‘typeface family’1, and Yannis
Haralambous suggested that the parameter ‘alphabet’ is
also needed.

An international standard for font properties even ex-
ists: in section 8.6 of [5] 23 font properties are given.

However, not all of these can be independently var-
ied. For instance, the design copyright and the list
of excluded characters are merely informational. The
parameters suitable for inclusion in a font selection
scheme are here: typeface name, posture (upright, ob-
lique, italic, : : : ), weight (light, medium, bold, : : : ),
proportionate width (condensed, medium, expanded,
: : : ), structure (solid, outline, : : : ), and design size.
Notably missing is the alphabet parameter.

2.2 More parameters, less parameters; do we
have an argument?

To a certain degree, the above font classifications clash
less than they seem to. Most parameters are ortho-
gonal: if parameter 1 has p1 values and parameter 2
has p2 values, then all p1 � p2 values make sense. But
in that case we can introduce a new parameter 3 which
has that many values. Thus the above schemes differ
mostly in how far they split up the variety of fonts, not
along what lines.

The number of parameters is to some extent a matter
of taste, but a few common sense observations can be
made.
� It is possible to live completely without any para-

meters by using only the control sequences that have
been defined with\font declarations. This is very
inconvenient.

� Certain DTP packages make it easy for you to (pro-
duce horrible typography: you simply) switch to
‘outline’ or ‘shadow’ (or both) for whatever font you
are currently using. This is no reason to introduce
independent parameters ‘outline’ and ‘shadow’ for
every conceivable mutilation of typefaces.

� Some parameters are not likely to get varied: it is
hard to conceive how the same font will be used
from two different foundries in the same text, other
than in texts that write specifically about typeface
comparisons.

� Readers may have wondered why the distinction
between serif and sans serif has not come up yet.
The reason is that this is not an orthogonal category.
Most typefaces exist only in seriffed or serifless

1It should be noted that this is not a proposal for of a font selection scheme, but for systematic filenames. The number of
user parameters can either be more or less than the properties encoded in the file names.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#8 (92.1); May 1992



116 Prolegomena toward a font selection scheme Bijlage T

design, but not both. For the occasional exception
(Computer Modern, for instance) it is easiest to pre-
tend that the seriffed and serifless subfamilies are
simply two typeface families.

3 Implementation
The previous section described some of the issues in-
volved in providing the user with suitable parameters
for handling fonts. We must now look at the other side
of the question: the parameters have to be translated
into the name of a tfm file.

Any implementation of a font selection scheme has to
pay attention to a couple of points.
� Certain combinations of parameters may not corres-

pond to an existing font. A substitution may have
to be performed, and in any case the user has to be
told.

� For large sizes there must be a mechanism that
makes a reasonable guess as to the file name.

� The memory usage of the font selection scheme
should be as low as possible.

The last point can be elaborated a bit: memory usage
should increase in a controlled manner if more para-
meters or more typefaces are added. Adding paramet-
ers may seem a bit strange to do, but it makes sense for
such parameters as ‘structure’: suppose all fonts so far
have been solid, and suddenly a printer is bought that
can make an outline from any given font. Is the amount
of memory for the font selection scheme then increased
by a small quantity, or is it doubled?

Specifying for every combination of all parameters
what file name results (as is done in the font selection
scheme in [3]; in order “to implement the four dimen-
sional grid of fonts” it keeps “for every combination
of font family/series/shape” a list of size/external name
pairs) is in one sense the optimal solution: any system
(or absence thereof) of file names can be accommod-
ated. However, the space needed is proportional to the
product of all possible values of all parameters.

On the other hand, if file names are systematic (as in the
naming scheme in [1], and as in the Computer Modern
typefaces and all Bitstream and PostScript typefaces as
far as I’ve seen), then considerable savings are possible:
it becomes possible to translate a few parameters jointly
into a fragment of the file name, and concatenate such
fragments into the full file name. This reduces storage
to a higher power root of the original amount2.

This approach of componentwise translation offers an
additional advantage for the ‘size’ parameter: for Post-
Script fonts the size can be given procedurally, for in-
stance specifying

size: at #1pt

thus taking a fixed amount of storage for an infinite
number of values.

An entirely modular translation is probably not pos-
sible. For instance, the translation of shape and series
into a file name fragment is most likely dependent on the
typeface, although it may be the same for all typefaces
from a certain foundry.

Another impediment to modular translation is the hand-
ling of special cases. For instance, for certain typefaces
certain styles may not be available, or styles may not
be available in all sizes (probably the smaller sizes).
However, such exceptions can most likely still be
treated in a procedural manner.

References
[1] Karl Berry. Filenames for fonts. TUGboat, 11:517–

520, 1991.
[2] Donald E. Knuth. The TEXbook. Addison Wesley,

1984. reprinted with corrections 1989.
[3] Frank Mittelbach and Rainer Schöpf. A new font

selection scheme for TEX macro packages. TUG-
boat, 10:222–238, 1989.

[4] Frank Mittelbach and Rainer Schöpf. The new font
family selection – user interface to standard LATEX.
TUGboat, 11:297–305, 1990.

[5] ISO standard. Information technology – Font in-
formation interchange – Part 1: Architecture; in-
ternational standard ISO/IEC 9541-1, 1991.

2For instance, translating three parameters independently makes storage proportional to the sum of the values of the three
instead of the product. Thus storage is proportional to the cube root of what it would be in a fully explicit scheme.

Reprint MAPS#8 (92.1); May 1992 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands


