
Bijlage V FIFO and LIFO incognito 121

FIFO and LIFO incognito

Kees van der Laan

February 1992

Abstract

FIFO, first-in-first-out,and LIFO, last-in-last-out,are well-known techniques for handling sequences.
In TEX macro writing they are abundant but are not easily recognized as such. TEX templates for
FIFO and LIFO are given and their use illustrated.

1 Introduction
It started with the programming of the Tower of
Hanoi in TEX, see van der Laan (1992). For printing
each tower the general FIFO — First-In-First-Out1—
approach was considered.2 In literature (and course-
ware) the programming of these kind of things is done
differently by each author, inhibiting intelligibility. In
pursuit of Wirth (1976) TEX templates for the FIFO (and
LIFO) paradigma will hopefully improve the situation.

2 FIFO
FIFO can be TEXed as template via3

\def\bfifo#1#2\efifo{\process{#1}
\ifx\empty#2\empty
\else\bfifo#2\efifo\fi
}%end \bfifo...\efifo

Printing of a tower can be done via
\def\process#1{\kern.2ex\hbox to3ex{%
\hss\vrule width#1ex height1ex\hss}}
\vbox{\offinterlineskip\bfifo12\efifo}

The \bfifo...\efifo macro is a basic one. It
allows to procede along a list and to apply a (user)
specified process to each list element. By this approach
the programming of walking through a list is separated
from the various processes to be applied to the ele-
ments. Fundamental!4

The recursion will be terminated if #2 is empty.5 One

can circumvent the building up of \fi’s via6

\def\bfifo#1#2\efifo{\process{#1}
\ifx\empty#2\empty
\else\def\aux{\bfifo#2\efifo}

\expandafter\aux\fi
}%end \bfifo...\efifo

or via

\def\bfifo#1#2\efifo{\process{#1}
\ifx\empty#2\empty\let\aux=\relax
\else\def\aux{\bfifo#2\efifo}
\fi\aux

}%end \bfifo...\efifo

A more TEX-like implementation is

\def\bfifo#1{%
\ifx\efifo#1\let\nxt=\relax%
\else\def\nxt{\process{#1}\bfifo}%
\fi\nxt}%end \bfifo

The advantage of the last implementation is that the
input stream is processed one group or token at a time
until \efifo is encountered. Moreover, it can handle
the invoke \bfifo\efifo, the empty case. No aux-
iliary stacks are involved. This way of programming is
unusual for those familiar with PASCAL-like program-
ming.

1See Knuth (1968), section 2.2.1.
2In the Tower of Hanoi article Knuth’s list datastructure was finally used— TEXbook Appendix D.2 — with FIFO inherent.
3My first version had the two tokens after \ifx reversed — a cow flew by — and made me realize the non-commutativity of

the arguments of TEX’s conditionals. In math and in programming languages like PASCAL the equality relation is commutative!
Note that at least one argument is needed in the above given implementation of FIFO.

4If a list has to be created, Knuth’s list datastructure might be used, however, simplifying the execution of the list. See
TEXbook Appendix D.2.

5Note that the second \empty is not always necessary. Knuth and Mackay (1987) demonstrate yet another variant of
programming the test. The above given form is in agreement with Knuth’s style as demonstrated in \displaytest, see the
TEXbook, Appendix D-1, p.376.

6See Kabelschacht (1987).

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#8 (92.1); May 1992

122 FIFO and LIFO incognito Bijlage V

2.1 Variable number of parameters
TEX macros can take at most 9 parameters. The above
\bfifo macro can be seen as a macro which is re-
lieved from that restriction. Every group or token in
the input stream after \bfifo will become an argu-
ment to the macro. The first token or group is the first
argument to the first invoke. This invoke ends with an
invoke of itself using the next token or group from the
input stream as argument. So the second token is ar-
gument of the second invoke. In general the nth token
or group is argument of the nth invoke and so on until
the \efifo token is reached, whereupon no invoke of
\bfifo will occur.7

2.2 Length of string
An alternative to Knuth’s macro, TB219, is obtained
via an appropriate definition of \process.
\newcount\length
\def\process#1{\advance\length1}

Then \bfifo aap\efifo yields the length 3.

2.3 Vertical printing
David Salomon treats the problem of vertical print-
ing in his courseware. Via an appropriate defin-
ition of \process and a suitable invoke of
\bfifo..\efifo it is easily obtained.
\def\process#1{\hbox{#1}}
xy\vbox{\bfifo abc\efifo}yx

yields xy
a
bcyx.8

2.4 Delete last character of argument
Again an example due to David Salomon. It is related to
the well-known \gobble macro to eat the next token
(or group) from the input stream. One could define
an appropriate \process but that will require double
testing. Simpler is the following modification of the
\bfifo...\efifo template.
\def\bgobblelast#1#2\egobblelast{

\ifx\empty#2\empty\let\aux=\relax
\else#1\def\aux{\bgobblelast#2%
\egobblelast}\fi\aux%

}%end \bgobblelast...\egobblelast

Then \bgobblelast aap\egobblelast will
yield aa .

2.5 To process words
In document preparation it is important to be able to
handle quantities sequentially as elements of a list.
What about handling a list of words? Amy Hendrick-
son in her courseware considers among others the
problem of underlining words. This can be done
by underlining every character, but that is slow. A
faster solution can be obtained by first modifying the

\bfifo...\efifo template into a version which
picks up words, and to give \process the function to
underline its parameter.9

\def\bfifow#1 #2\efifow{\process{#1}%
%Process words recursively;
%no addition of space here (part of
%\process if needed).
\ifx\empty#2\empty\let\aux=\relax
\else\def\aux{\bfifow#2\efifow}%
\fi\aux}%end \bfifow...\efifow

The more TEX-like implementation, where the input
stream is processed word wise, reads

\def\bfifow#1 {%
\ifx\efifow#1\let\nxt\relax
\else\def\nxt{\process{#1}\bfifow}
\fi\nxt}%end \bfifow

2.5.1 Underlining words

In print it is unusual to emphasize words by under-
lining. Generally another font is used, see discussion
of exercise 18.26 in the TEXbook. However, now and
then people ask for (poor man’s) underlining of words.
The following\process definition underlines words
picked up by \bfifow...\efifow.

\def\process#1{\vtop{\hbox{\strut#1}
\hrule}\ }

\leavevmode\bfifow leentje leerde lotje
lopen langs de lange lindenlaan

\efifow\unskip.

yields:10

leentje leerde lotje lopen langs de lange lindenlaan.

Note that underlining of complete sentences has to be
considered separately if underlining punctuation marks
is forbidden. (One possibilityis to redefine\process
such that the last symbol of its argument is inspected
and appropriate action taken; another possibility is to
use the general \bfifo...\efifo macro and sup-
press underlining for punctuationmarks via appropriate
programming of \process.)

3 Nested FIFO
One can nest the FIFO paradigma for example for pro-
cessing lines word per word.11 The template reads

\def\bfifol#1ˆˆM#2\efifol{
\bfifow#1\efifow
\ifx\empty#2\empty\let\auxl=\relax
\else\def\auxl{\bfifol#2\efifol}
\fi\auxl}%end \bfifol...\efifol

with \bfifow...\efifow as defined above.
7Another way to circumvent the 9 parameters limitation is to associate names to the quatities to be used as parameters, let us

say via def’s, and use these quatities via their names in the macro. This is related to the so-called keyword parameter mechanism
of command languages.

8Note the use of the \hbox... in process.
9Note that underlining inhibits hyphenation.

10\unskip is needed to undo the insertion of the last space.
11Or character per character, token per token, or group per group.

Reprint MAPS#8 (92.1); May 1992 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage V FIFO and LIFO incognito 123

3.1 Natural data
Data for \h(v)align needs & and \cr marks. We
can get plain TEX to insert an automatic \cr at each
(natural) input line, TEXbook p.249. An extension of
this is to get plain TEX to insert \cs-s, column separ-
ators, and \rs-s, row separators, and eventually to add
\lr, last row, at the end, in natural data. For example
prior to an invoke of \halign, one wants to get plain
TEX to do the transformation

P*ON

DEK*
)

P\cs *\csO\csN\rs

D\csE\csK\cs*\lr

This can be done via adaptation of the above template
along with an appropriate \process definition.
\let\ea=\expandafter
\newdimen\csize\csize=3ex
\def\rs{\cr}%generalization of row sep
\def\lr{\cr}%last row
\def\cs{&}%generalization of column sep
\catcode‘*=13 \def*{%crossed out cell
\vrule width0.6\csize height0.5\csize %
depth0pt}%simple BLACK variant
%more pleasing is the following
%poor man’s grey
\newbox\crs
\setbox\crs=\hbox to.6\csize{\leaders%
\hbox to.2ex{\hss\vrule height.5\csize
depth0pt\hss}\hfil}
\def*{\copy\crs}
%
\catcode‘\ˆˆM=13 \letˆˆM=\relax
%Pick up and processing of lines
\def\bfifol#1ˆˆM#2\efifol{%
\process{#1}%
\ifx\empty#2\empty\def\auxl{\lr}%
\else\def\auxl{\rs\bfifol#2\efifol}%
\fi\auxl}%ensure end conditional before

%inserting tabular mark up
\def\process{\bfifo#1\efifo}%
%
%Pick up etc of chars per line
\def\bfifo#1#2\efifo{#1%#1 back
\ifx\empty#2\empty\let\aux=\relax%
\else\cs%insert \cs
\def\aux{\bfifo#2\efifo}\fi%
\aux}%

To demonstrate that it wor—-hey it works!—ks
%%%%%%% data provision %%%%%%%
\def\data{%
P*ON
DEK*
}%
%%%%%%% data transform %%%%%%%
\ea\def\ea\data\ea{\ea%
\bfifol\data\efifol}%define transform
%%%%%%% application %%%%%%%
$$\vbox{\halign{&\hbox to\csize{%

\vrule height.8\csize width0pt
depth.2\csize\hfil#\hfil}\cr\data}}$$%

will yield

P O N

D E K

As may be guessed from the layout the above came to
mind when typesetting crosswords, while striving after
the possibility to allow natural input, independent of
\halign processing. Note that a weak form of the
look ahead principle is implicitly applied as well.

4 LIFO
A modification of the \bfifo...\efifo macro—
\process{#1} invoked at the end instead of at the
beginning—will yield the Last-In-First-Out template.
Of course LIFO can be applied to reversion ‘on the
flight,’ without explicitlyallocating auxiliary storage.12

\def\blifo#1#2\elifo{%
\ifx\empty#2\empty\let\aux=\relax%
\else\def\aux{\blifo#2\elifo}\fi%
\aux\process{#1}%

}%end \blifo...\elifo

With the identity—\def\process#1{#1}—the
template can be used for reversion. For example
\blifo aap\elifo yields paa.

5 Further reading
Zalmstra and Rogers (1989), apply the FIFO technique
to a list of figures — or floating bodies — in order to
merge the list appropriately with the main vertical list
in the output routine. This is beyond the scope of this
paper.

6 Conclusion
In looking for a fundamental approach to process ele-
ments sequentially—not to confuse with list processing
where the list is also built up, see TEXbook Appendix
D.2—TEX templates for FIFO and LIFO, emerged.

The templates can be used for processing lines, words
or characters. Also processing of words or characters
per line can be handled via nested usage of the FIFO
principle.

TEX’s conditionals are non-commutative, while the sim-
ilar mathematical and programming operations are.

From the application point of view the FIFO principle
along with the look ahead mechanism is applied to
molding natural data into representations required by
subsequent TEX processing.

12Johannes Braams drew my attention to Knuth and MacKay (1987), which contained among others
\reflect...\tcelfer. They compare #1 with \empty, which is nice. The invoke needs an extra token, \empty — a
so-called sentinel, see Wirth (1976) — to be included before \tcelfer, however. (Knuth and Mackay hide this by another
macro which invokes\reflect...\empty\tcelfer). My approach requires at least one argument, with the consequence
that the empty case must be treated separately, or a sentinel must be appended after all.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#8 (92.1); May 1992

124 FIFO and LIFO incognito Bijlage V

References
[1] Hendrickson, A (priv. comm.)
[2] Kabelschacht, A (1987): \expandafter in

conditionals; a generalization of plain’s \loop.
TUGboat 8, no. (2), 184–185.

[3] Knuth, D.E (1968): The Art of Computer Pro-
gramming. 1. Fundamental Algorithms. Addison-
Wesley.

[4] Knuth, D.E, P. Mackay (1987): Mixing right-
to-left texts with left-to-right texts. TUGboat 7,

no. (1), 14–25.
[5] Knuth, D.E (1984): The TEXbook. Addison-

Wesley.
[6] Laan, C.G. van der (1992): Tower of Hanoi, re-

visited. TUGboat 13, no. (1), 91–94.
[7] Salomon, D (priv. comm.)
[8] Wirth, N (1976): Algorithms + Data Structures

= Programs. Prentice-Hall.
[9] Zalmstra, J, D.F. Rogers (1989): A page make-up

macro. TUGboat 10, no. (1), 73–81.

Reprint MAPS#8 (92.1); May 1992 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

