BijlageV

FIFO and LIFO incognito 121

FIFO and LIFO incognito

Keesvan der Laan

February 1992

Abstract

FIFO, first-in-first-out, and L1FO, | ast-in-last-out, are well-known techni ques for handling sequences.
In TEX macro writing they are abundant but are not easily recognized as such. TeX templates for

FIFO and LIFO are given and their use illustrated.

1 Introduction

It started with the programming of the Tower of
Hanoi in TeX, see van der Laan (1992). For printing
each tower the general FIFO—Firgt-In-Firgt-Out' —
approach was considered.? In literature (and course-
ware) the programming of these kind of thingsis done
differently by each author, inhibiting intelligibility. In
pursuit of Wirth (1976) TeX templatesfor the FIFO (and
LIFO) paradigma will hopefully improve the situation.

2 FIFO

FIFO can be TeX ed as template via®

\ def\ bf i f o#1#2\ ef i f o{\ process{#1}
\i fx\ enpt y#2\ enpty

\el se\bfifo#2\efifol\fi

}%end \bfifo...\efifo

Printing of atower = can bedonevia
\ def \ process#1{\ kern. 2ex\ hbox t o3ex{%

\ hss\vrul e wi dt h#lex hei ghtlex\hss}}
\vbox{\of finterlineskip\bfifol2\efifo}

The\bfifo...\efifo macro is a basic one. It
allows to procede aong a list and to apply a (user)
specified processto each list element. By thisapproach
the programming of walking through a list is separated
from the various processes to be applied to the ele-
ments. Fundamental!*

The recursion will beterminated if #2 isempty.> One

! See Knuth (1968), section 2.2.1.

can circumvent the buildingup of \ f i "svia’

\ def\ bf i f o#1#2\ ef i f o{\ process{#1}
\'i fx\ enpt y#2\ enpty
\ el se\ def\ aux{\ bfifo#2\efifo}
\ expandaf ter\aux\fi
}%nd \bfifo...\efifo

orvia

\ def\ bf i f o#1#2\ ef i f o{\ process{#1}
\i fx\ enpty#2\ enpt y\ | et\aux=\rel ax
\ el se\def\ aux{\ bfifo#2\efifo}
\filaux

}%nd \bfifo...\efifo

A more TeX-likeimplementation is

\ def\ bfi f o#1{ %
\Vifx\efifo#1\l et\nxt=\rel ax%
\el se\def\ nxt{\ process{#1}\bfifo}%
\filnxt}%nd \bfifo

The advantage of the last implementation is that the
input stream is processed one group or token at atime
until \ ef i f o isencountered. Moreover, it can handle
theinvoke\ bf i f o\ ef i f 0, the empty case. No aux-
iliary stacks are involved. Thisway of programming is
unusual for thosefamiliar with PASCAL-likeprogram-
ming.

2In the Tower of Hanoi article Knuth’slist datastructure was finally used— TeXbook Appendix D.2 —with FIFO inherent.

My first version had the two tokensafter \ i f x reversed— acow flew by — and made me realize the non-commutativity of
the arguments of TEX's conditionals. In math and in programming languageslike PASCAL the equality relation iscommutative!
Note that at least one argument is needed in the above given implementation of FIFO.

*If alist has to be created, Knuth’s list datastructure might be used, however, simplifying the execution of the list. See

TeXbook Appendix D.2.

®Note that the second \ enpt y is not always necessary. Knuth and Mackay (1987) demonstrate yet another variant of
programming the test. The above given form is in agreement with Knuth’s style as demonstrated in\ di spl ayt est, seethe

TeXbook, Appendix D-1, p.376.
% See K abelschacht (1987).

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Reprint MAPS#8 (92.1); May 1992



122 FIFO and LIFO incognito

2.1 Variablenumber of parameters

TEX macros can take at most 9 parameters. The above
\ bf i f o macro can be seen as a macro which is re-
lieved from that restriction. Every group or token in
the input stream after \ bf i f o will become an argu-
ment to the macro. The first token or group is the first
argument to the first invoke. Thisinvoke ends with an
invoke of itself using the next token or group from the
input stream as argument. So the second token is ar-
gument of the second invoke. In general the n!” token
or group is argument of the n!” invoke and so on until
the\ ef i f o tokenisreached, whereupon no invoke of
\ bf i f o will occur.”

2.2 Length of string
An alternative to Knuth’'s macro, TB219, is obtained
viaan appropriate definition of \ pr ocess.

\ newcount\ | engt h
\ def \ process#1{\ advance\l engt h1}

Then\ bf i f o aap\ efi f o yiedsthelength 3.

2.3 Vertical printing

David Salomon treats the problem of vertical print-
ing in his courseware. Via an appropriate defin-
ition of \process and a suitable invoke of
\bfifo..\efifoitiseasly obtained.

\ def\ process#1{\ hbox{#1}}
xy\ vbox{\ bfifo abc\efifo}yx

yields xysyx.8

24 Deetelast character of argument

Againan exampledueto David Sdlomon. Itisrelated to
the well-known \ gobbl e macro to eat the next token
(or group) from the input stream. One could define
an appropriate\ pr ocess but that will require double
testing. Simpler is the following modification of the
\bfifo...\efifotemplate

\ def \ bgobbl el ast #1#2\ egobbl el ast {
\i fx\enpty#2\ enpt y\ | et\aux=\rel ax
\ el se#1\ def\ aux{\ bgobbl el ast #2%
\ egobbl el ast}\ fi\aux%
}%end \ bgobbl el ast ...\ egobbl el ast

Then \ bgobbl el ast aap\ egobbl el ast will
yieldaa .

2.5 To processwords

In document preparation it is important to be able to
handle quantities sequentially as elements of a list.
What about handling alist of words? Amy Hendrick-
son in her courseware considers among others the
problem of underlining words. This can be done
by underlining every character, but that is ow. A
faster solution can be obtained by first modifying the

BijlageV

\bfifo...\efifo template into a version which
picks up words, and to give\ pr ocess thefunctionto
underlineits parameter.”

\def\bfifow#l #2\efifow{\process{#1}%
%°r ocess words recursively;
%o addition of space here (part of
% process if needed).
\ifx\enpty#2\ enpty\l et\aux=\rel ax
\ el se\ def\aux{\ bfifow#2\efifow} %
\filvaux}%end \bfifow ..\efifow

The more TeX-like implementation, where the input
stream is processed word wise, reads

\def\bfifow#l {%
\ifx\efifow#l\let\nxt\rel ax
\ el se\def\ nxt{\ process{#1}\ bfifow}
\fi\nxt}%nd \bfifow

251 Underlining words

In print it is unusua to emphasize words by under-
lining. Generally another font is used, see discussion
of exercise 18.26 in the TeXbook. However, now and
then people ask for (poor man’'s) underlining of words.
Thefollowing\ pr ocess definition underlines words
pickedup by \ bfi fow. ..\efifow

\ def\ process#1{\ vt op{\ hbox{\ st rut #1}
\hrul e}\ }
\l eavevnode\ bfi fow leentje leerde lotje
| open | angs de | ange |indenl aan
\ef i f owh unski p.

yidds: !0
leentje leerde lotje open langs de |ange lindenl aan.

Note that underlining of complete sentences has to be
considered separately if underlining punctuation marks
isforbidden. (Onepossibilityistoredefine\ pr ocess
such that the last symbol of its argument is inspected
and appropriate action taken; another possibility is to
usethe general \ bfi fo. . .\ ef i f 0 macro and sup-
pressunderliningfor punctuationmarksviaappropriate
programming of \ pr ocess.)

3 Nested FIFO

One can nest the FIFO paradigma for example for pro-
cessing linesword per word.'' The template reads

\def\bfifol #1° " M#2\ ef i f ol {
\ bfi f ow#t1\ ef i f ow
\i fx\ enpty#2\ enpty\Il et\ auxl =\rel ax
\el se\def\aux!| {\bfifol #2\ efifol }
\filauxl}%end \bfifol...\efifol

with\ bf i fow. . .\ ef i f owas defined above.

" Another way to circumvent the 9 parameterslimitation is to associate names to the quatities to be used as parameters, let us
say viadef’s, and use these quatities viatheir namesin the macro. Thisisrelated to the so-called keyword parameter mechanism

of command languages.
#Note the use of the\ hbox. . . in process.
?Note that underlining inhibits hyphenation.

1%\ unski p is needed to undo the insertion of the last space.

11 Or character per character, token per token, or group per group.

Reprint MAPS#8 (92.1); May 1992

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands



BijlageV

3.1 Natural data

Datafor\ h(v) al i gn needs & and\ cr marks. We
can get plain TEX to insert an automatic \ cr at each
(natura) input line, TEXbook p.249. An extension of
thisisto get plain TEX to insert \ ¢s-s, column separ-
ators, and\ r s-s, row separators, and eventually to add
\ I r, last row, at the end, in natural data. For example
prior to aninvokeof \ hal i gn, onewantsto get plain
TeX to do the transformation

P*ON P\cs*\csO\csN\rs
DEK* D\csE\csK\cs*\Ir

This can be done via adaptation of the above template
along with an appropriate\ pr ocess definition.

\ Il et\ ea=\ expandaft er

\ newdi nen\ csi ze\ csi ze=3ex

\def\rs{\cr}%eneralization of

\def\lr{\cr}% ast row

\def\cs{& %general i zati on of colum sep

\catcode' *=13 \def *{%rossed out cell

\vrul e wi dthO.6\csize height0.5\csize %

dept hOpt } %si npl e BLACK vari ant

%rore pleasing is the follow ng

%oor man’'s grey

\ newbox\ crs

\ set box\ crs=\ hbox to.6\csize{\leaders%

\ hbox to.2ex{\hss\vrul e height.5\csize

dept hOpt\ hss}\ hfil}

\ def *{\ copy\crs}

%

\catcode'\""M=13 \let" " M-\rel ax

9%i ck up and processing of l|ines

\def\ bfifol #1° " M#2\ efi f ol {%

\ process{#1} %

\i fx\ enpty#2\ enpty\def\aux| {\Ir}%

\el se\def\aux!| {\rs\bfifol #2\ efifol } %

\filauxl }%ensure end conditional before
% nserting tabular mark up

\ def\ process{\bfifo#l\efifo}%

%

% ck up etc of chars per line

\ def\ bfi f o#1#2\ ef i f o{ #1%#1 back

\i fx\enpty#2\ enpty\l et\aux=\rel ax%

\el se\cs% nsert \cs

\def\aux{\bfifo#2\efifo}\fi%

\ aux} %

To demonstrate that it wor—-hey it worksl—ks

%880848886 dat a provi si on %RRRBARL

\ def\ dat a{ %

P*ON

DEK*

1%

9800848886 dat a transform %R88A080

\ ea\ def \ ea\ dat a\ ea{\ ea%
\bfifol\data\efifol}%lefine transform
998888806 application %B8888080

$$\ vbox{\ hal i gn{ & hbox to\csize{%

row sep

FIFO and LIFO incognito 123

\vrul e height.8\csize wi dthOpt
depth. 2\ csi ze\hfil#\ hfil}\cr\data}}$$%

will yield

PO N
D E K

As may be guessed from the layout the above came to
mind when typesetting crosswords, while striving after
the possibility to alow natura input, independent of
\ hal i gn processing. Note that a weak form of the
look ahead principleisimplicitly applied as well.

4 LIFO

A modification of the\ bfi fo. ..\ efifo macro—
\ process{#1} invoked at the end instead of at the
beginning—will yield the Last-In-First-Out template.
Of course LIFO can be applied to reversion ‘on the
flight, without explicitly allocating auxiliary storage.'?

\def\blifo#l#2\elifo{%
\i fx\ enpty#2\ enpty\Il et\aux=\rel ax%
\el se\def\aux{\blifo#2\elifo}\fi%
\ aux\ process{#1} %

}%nd \blifo...\elifo

With the identity—\ def\ pr ocess#1{#1} —the
template can be used for reversion. For example
\blifo aap\elifoyiddspaa

5 Further reading

Zamstraand Rogers (1989), apply the FIFO technique
to a list of figures—or floating bodies—in order to
merge the list appropriately with the main vertical list
in the output routine. Thisis beyond the scope of this

paper.

6 Conclusion

In looking for a fundamental approach to process ele-
ments sequentially—not to confuse with list processing
where the list is also built up, see TEXbook Appendix
D.2—TgX templates for FIFO and LIFO, emerged.

The templates can be used for processing lines, words
or characters. Also processing of words or characters
per line can be handled via nested usage of the FIFO
principle.

TeX'sconditiona sarenon-commutative, whilethesim-
ilar mathematical and programming operations are.

From the application point of view the FIFO principle
along with the look ahead mechanism is applied to
molding natural data into representations required by
subsequent TEX processing.

12Johannes Braams drew my afttention to Knuth and MacKay (1987), which contained among others
\reflect...\tcel fer. They compare#1 with\ enpt y, which isnice. Theinvoke needsan extratoken,\ enpty —a
so-called sentinel, see Wirth (1976) —to be included before\ t cel f er, however. (Knuth and Mackay hide this by another
macrowhichinvokes\ ref l ect.. .\ enpty\tcel f er). My approachrequiresat |east oneargument, with the consequence
that the empty case must be treated separately, or a sentinel must be appended after all.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Reprint MAPS#8 (92.1); May 1992



124 FIFO and LIFO incognito

References

[1] Hendrickson, A (priv. comm.)

[2] Kabelschacht, A (1987): \ expandafter in
conditionas; a generalization of plain’s\ | oop.
TUGboat 8, no. (2), 184-185.

[3] Knuth, D.E (1968): The Art of Computer Pro-
gramming. 1. Fundamental Algorithms. Addison-
Wedley.

[4] Knuth, D.E, P Mackay (1987): Mixing right-
to-left texts with left-to-right texts. TUGboat 7,

Reprint MAPS#8 (92.1); May 1992

BijlageV
no. (1), 14-25.
[5] Knuth, D.E (1984): The TeXbook. Addison-
Wedley.

[6] Laan, C.G. van der (1992): Tower of Hanoi, re-

visited. TUGboat 13, no. (1), 91-94.
[7] Salomon, D (priv. comm.)
[8] Wirth, N (1976): Algorithms + Data Structures

= Programs. Prentice-Hall.
[9] Zamstra, J, D.F. Rogers (1989): A page make-up
macro. TUGboat 10, no. (1), 73-81.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands



