
Bijlage S Introduction to MetaPost 89

Introduction to MetaPost�

John D. Hobby

AT&T Bell Laboratories
600 Mountain Ave.

Murray Hill, New Jersey 07974
hobby@research.att.com

Abstract

MetaPost is a picture-drawing language very much likeMET A F O N T except with PostScript output.
The language provides access to all major features of Level 1 PostScript and it has facilities for
integrating graphics with typeset text.
This paper gives a brief overview of the MetaPost language and how it can be used. A few of the
more interesting features are described in detail.

Keywords: Metapost, graphics languages, MET A -
F O N T , PostScript

1 Introduction
Although MET A F O N T was originally designed as a
font-making tool, many people have recognized that
it is also a powerful graphics language. The problem
is that MET A F O N T ’s output is in the form of bitmap
images instead of graphics primitives. A diagram can
sometimes be created in MET A F O N T and typeset as
a single huge character, but this is cumbersome and
makes it difficult to deal with textual labels. A good
examples of work along these lines appears in [4] and
[8].

Another approach is to modify the MET A F O N T inter-
preter so that it outputsPostScript. Previous workalong
these lines presented in [1] and [10] has concentrated on
producing PostScript fonts rather than graphics. Unlike
these earlier systems, the MetaPost system involves the
creation of a new language similar toMET A F O N T , but
specifically designed for producing PostScript graphics.
Preliminary comments on MetaPost appeared in [2].

Since MetaPost is based on the public-domainMET A -
F O N T source code given in [6], MetaPost has been able
to inherit all the features of MET A F O N T that make it a
powerful graphics language:
� The ability to store and manipulate coordinate pairs,

straight and curved paths, coordinate transforma-
tions, pen shapes, and complete pictures.

� A Flexible and powerful mechanisms for construct-
ing smooth curves and straight lines.

� The ability to draw straight and curved lines of any
thickness and to fill a region given its boundary.

� Mechanisms for solving linear equations so that

geometric information can be specified in a largely
declarative manner.

� A powerful macro facility that allows the language
to be extended syntactically and semantically.

� Operators for intersecting curves, finding tangent
lines, finding points on a curve that match a given
tangent direction, and extracting subpaths.

In addition to these features, MetaPost allows pictures
to contain text, dashed lines, clipping paths, and areas
filled with gray or other colors. There are also data
types for colors and recipes for dashed lines. In ad-
dition, there are important facilities for generating and
manipulating typeset text. Readers familiar with other
graphics languages such as Kernighan’s Pic [5] and
Wichura’s PicTEX [9] will see that MetaPost is consid-
erably more powerful.

Section 2 gives a general idea of what the language
is like and what can be done with it. More detailed
discussions of interesting features follow in Section 3.
This includes Section 3.1 on integrating text and graph-
ics, Section 3.2 on dealing with dashed lines, and Sec-
tion 3.3 on drawing arrows. Finally, Section 4 deals
with macro packages and Section 5 presents some con-
cluding remarks.

2 Overview of the Language
MetaPost is a batch-oriented graphics language that
achieves great power and flexibility by giving up some
the ease of use found in interactive graphics editors
such as MacDraw. A MetaPost user prepares an input
file such as the one shown in Figure 1. Invoking the
MetaPost interpreter produces an encapsulated Post-
Script output file that can be included in a TEX doc-

�Presented at EuroTEX ’92, September 14–18, Prague, Czechoslovakia.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#9 (92.2); Nov 1992

90 Introduction to MetaPost Bijlage S

beginfig(1);
draw (20,20)--(0,0)--(0,30)--(30,0)--(0,0);
endfig;

end

Figuur 1: A MetaPost input file and the resulting output

0

2

4
3

1

(a)

0

2

4
3

1

(b)

Figuur 2: A sequence of points and a curve formed by connecting them.

2

4

0

3

1

(a) (b) (c)

Figuur 3: A closed curve and some effects that can be achieved by rescaling it.

ument or viewed with a PostScript interpreter such as
GhostScript. The input file in the figure has a single
beginfig: : :endfig block. There could be more
such blocks, in which case each would produce a sep-
arate output file

Since this paper is not intended to be a user’s manual,
no attempt will be made to show the exact syntax used
to create subsequent examples. Instead, we concen-
trate on general concepts with the aim of showing what
MetaPost can do. The interested reader can refer to [3]
for details.

Another thing MetaPost can do is draw curved lines. If
points P0, P1, : : : , P4 are as in Figure 2a, asking the
interpreter to connect them in order produces the curve
in Figure 2b.

Asking for a smooth closed curve through the same se-
quence of points produces Figure 3a. Since MetaPost
has data types and operators for objects like curved
lines, it is possible to store the curve in a path vari-
able p and use a statement like

draw p scaled s

to draw rescaled versions ofp. Figure 3b was generated
by placing this statement in a loop that scans various
values of s.

There is also a fill statement that fills the interior of
a closed curve with a color or a shade of gray. The
filled regions in Figure 3c illustrate how overlapping
fills overwrite each other. The figure was generated by
filling the outermost curve with light gray, then filling
the next smaller curve with white, then the next smaller
curve with dark gray, etc.

The examples given so far suggest that MetaPost al-
lows drawing and filling, it has data types for num-
bers, coordinate pairs, and curved paths, it has oper-
ators for doing things like rescaling paths, and it has
programming-language constructions such as loops. It
also inherits fromMET A F O N T the ability to solve lin-
ear equations and deal with a broad class of coordinate
transformations.

Figure 4 illustrates linear equations and coordinate
transformations. It was generated by introducing an
unknown transformation T, giving a pair of equations

Reprint MAPS#9 (92.2); Nov 1992 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage S Introduction to MetaPost 91

1

2

3

4

Figuur 4: An example of repeated transformations.

a
b

(0,0)

Figuur 5: A labeled diagram.

that declare it to be shape-preserving, and declaring that
it maps Point 1 into Point 2 and Point 3 into Point 4.
The figure was created by generating a simple pictureP
and repeatedly drawing P and transforming it by T.

3 Interesting Features
Anyone familiar with MET A F O N T can see that Sec-
tion 2 did not begin to cover all the language features
mentioned in the introduction. While it is impractical
to give a detailed treatment of the entire language, we
can concentrate on a few of the features that distinguish
MetaPost from MET A F O N T and from other graphics
languages.

3.1 Text in Pictures
MetaPost has a number of features for including labels
and other text in the figures it generates. The simplest
way to do this is to use the label statement to specify
the label text and the point to be labeled. If you are
labeling some feature of a diagram you probably want
to offset the label slightly to avoid overlapping. This is
illustrated in Figure 5 where statements of the form

label.top("a", hexpression1i);
label.lft("b", hexpression2i);

put the"a" label above the midpoint of the line it refers
to and the "b" label is to the left of the midpoint of its
line. (In addition to top and lft, there are six other
optional suffixes for other label positions.)

There is also adotlabel command that marks a point
with a dot and positions text as the label command
does. For instance, the command

dotlabel.bot("(0,0)", (0,0))

generates a dot marked “(0,0)” as in Figure 5.

For labeling statements such aslabel anddotlabel
that use a string expression for the label text, the string

gets typeset in a default font as determined by the
string variable defaultfont. The initial value of
defaultfont is likely to be "cmr10", but it can be
changed to a different font name by giving an assign-
ment such as

defaultfont:="Times-Roman"

When you change defaultfont, the new font name
should be something that TEX would understand since
MetaPost gets height and width information by read-
ing the tfm file. (See [7]). It should be possible to
use built-in PostScript fonts, but the names for them
are system-dependent. Some systems may use rptmr
or ps-times-roman instead of Times-Roman. A
TEX font such as cmr10 is a little dangerous because it
does not have a space character or certain ASCII sym-
bols. In addition, MetaPost does not use the ligatures
and kerning information that comes with a TEX font.

The MetaPost language does not need elaborate type-
setting abilities because there is a preprocessor that
extracts TEX commands, runs them through TEX (or
LaTEX), and translates the output into a form that the
interpreter understands. There is even a separate pre-
processor that handles troff commands. Any time you
say

btex htypesetting commandsietex
in a MetaPost input file, the preprocessor translates the
htypesetting commandsi into a MetaPost picture ex-
pression that can be used in a label or dotlabel
statement. For instance, a statement of the form

label.lrt(btex $\sqrt x$ etex, hcoordinatesi)

was used to placed the label
p
x in Figure 6.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#9 (92.2); Nov 1992

92 Introduction to MetaPost Bijlage S

p
x

x

y

Figuur 6: A figure with labels done in TEX.

x axis

y
a
x
is

y =
2

1 + cos x

Figuur 7: An example of how typeset labels can be rotated

Figure 7 illustrates some of the more complicated things
that can be done with labels. Since the result of btex
: : :etex is a picture, it can be operated on like a pic-
ture. In particular, it is possible to rotate the picture by
giving

btex y axis etex rotated 90

as the argument to a label statement.

Here is how TEX material gets translated into a form
MetaPost understands: The MetaPost processor skips
over btex : : : etex blocks and depends on a pre-
processor to translate them into low level MetaPost
commands. If the main file is fig.mp, the translated
TEX material is placed in a file named fig.mpx. This
is normally done silently without any user intervention
but it could fail if one of the btex : : : etex blocks
contains an erroneous TEX command. Then the erro-
neous TEX input is saved in the file mpxerr.tex and
the error messages appear in mpxerr.log.

TEX macro definitions or any other auxiliary TEX
commands can be enclosed in a verbatimtex : : :

etex block. The difference between btex and
verbatimtex is that the former generates a picture
expression while the latter only adds material for TEX to
process. For instance, if you want TEX to typeset labels
using macros defined in mymac.tex, your MetaPost
input file would look something like this:

verbatimtex ninput mymac etex

beginfig(1);

...

label(btex hTEX material using mymac.texi
etex; hcoordinatesi);

...

MetaPost has an internal variable called prologues
that controls the handling of text in pictures. Giv-
ing this internal variable a positive value causes causes
output to be formatted as “structured PostScript” gen-
erated on the assumption that text comes from built-in
PostScript fonts. This makes MetaPost output much
more portable, but it generally does not work with TEX
fonts unless you have them in PostScript Type 1 format.
Many dvi-to-PostScript programs download bitmaps
for only those characters actually used in the document.
Such programs can handle MetaPost output if they un-
derstand the nonstandard PostScript comments that the
MetaPost interpeter uses to indicate which characters
need to be downloaded. Recent versions of Rokicki’s
dvips have this capability.

3.2 Dashed Lines
The MetaPost language provides many ways of chan-
ging the appearance of a line besides just changing
its width. This is done by specifying a dash pattern
when drawing a straight or curved line. Figure 8 shows
a few examples of dash patterns and the lines they

Reprint MAPS#9 (92.2); Nov 1992 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage S Introduction to MetaPost 93

evenly

evenly scaled 2

evenly scaled 4

withdots

withdots scaled 2

Figuur 8: Dashed lines each labeled with the dash pattern used to create it.

e4

e4 shifted (6bp,0)

e4 shifted (12bp,0)

e4 shifted (18bp,0)

Figuur 9: Dashed lines each labeled with the corresponding dash pattern, where e4 refers to the dash pattern
evenly scaled 4.

1

3

5

2 drawarrow z1..z2

4 drawarrow reverse(z3..z4)

6 drawdblarrow z5..z6

Figuur 10: Three ways of drawing arrows.

generate. There is a predefined dash pattern called
evenly that makes dashes 3 points long separated by
gaps of the same size. Another predefined dash pattern
withdots produces dotted lines with dots 5 points
apart. As shown in the figure, scaling the dash pattern
produces dots further apart or longer dashes further
apart.

Another way to change a dash pattern is to alter its phase
by shifting it horizontally. Shifting to the right makes
the dashes move forward along the path and shifting to
the left moves them backward. Figure 9 illustrates this
effect. The dash pattern can be thought of as an infin-
itely repeating pattern strung out along a horizontal line
where the portion of the line to the right of the y axis is
laid out along the path to be dashed.

When you shift a dash pattern so that the y axis crosses
the middle of a dash, the first dash gets truncated. Thus
the line with dash pattern e4 starts with a dash of
length 12bp followed by a 12bp gap and another 12bp
dash, etc., whilee4 shifted (18bp,0) produces
a 6bp dash, a 12 bp gap, then a 12bp dash, etc. This
dash pattern could be specified more directly via the
dashpattern function:

dashpattern(on 6bp off 12bp on 6bp)

This means “draw the first 6bp of the line, then skip the
next 12bp, then draw another 6bp and repeat.” If the
line to be dashed is more than 30bp long, the last 6bp
of the first copy of the dash pattern will merge with the
first 6bp of the next copy to form a dash 12bp long.

3.3 Arrows
Drawing arrows like the ones in Figure 10 is simply a
matter of saying

drawarrow hpath expressioni
instead of draw hpath expressioni. This draws the
given path with an arrowhead at the end. If you want
the arrowhead at the beginning of the path, there is
an operator that reverses a path. For double-headed
arrows, there is a drawdblarrow statement.

The size of the arrowhead is guaranteed to be larger
than the line width, but it might need adjusting if the
line width is very large. This is done by assigning a new
value to the internal variable ahlength that determ-
ines arrowhead length as shown in Figure 11. Increas-
ing ahlength from the default value of 4 PostScript
points to 1.5 centimeters produces the large arrowhead
in Figure 11. There is also an ahangle parameter
that controls the angle at the tip of the arrowhead. The
default value of this angle is 45 degrees as shown in the
figure.

The arrowhead is created by filling the triangular region
that is outlined in white in Figure 11 and then draw-
ing the boundary with the current line width. Readers
familiar with MET A F O N T will recognize this as the
filldraw statement.

4 Macro Packages
This section describes auxiliary macros not included in
Plain MetaPost. The macros described in Section 4.1

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#9 (92.2); Nov 1992

94 Introduction to MetaPost Bijlage S

ahlength

ahlength
ahangle

Figuur 11: A large arrowhead with key parameters labeled and paths used to draw it marked with white lines.

n

c

s

ne

e

se

nw

w

sw

dy

dy

dxdx

Figuur 12: The relationship between the picture given to boxit and the associated variables. The picture is
indicated by a gray rectangle.

Box a

Box b

Figuur 13: A “well-targeted arrow” generated by trimming the dashed sections from a curved path.

make it convenient to do things that pic is good at
[5]. Section 4.2 makes some brief remarks about other
macro packages. In order to use a macro package, it is
necessary to give a MetaPost command that names the
macro file and asks the interpreter to read it.

4.1 Macros for Boxes
The box-making macros are contained in a macro file
called boxes.mp. This file can be accessed by giv-
ing the MetaPost command input boxesbefore any
figures that use the box making macros.

The basic tool for making boxes is the command

boxit:hbox namei(hpicture expressioni)
This creates variables hbox namei.c, hbox namei.n,
hbox namei.e, : : : that can then be used for position-
ing the picture before drawing it. The actual drawing is
done by a separate command drawboxed that takes a
list of box names.

If the command is boxit.bb(hpicturei), the box
name is bb and the contents of the box is the hpic-
turei. In this case, bb.c the position where the center

of the picture is to be placed, and bb.sw, bb.se,
bb.ne, and bb.nw are the corners of a rectangular
path that will surround the picture. Variables bb.dx
and bb.dy give the spacing between the picture and
the surrounding rectangle, and bb.off is the amount
by which the picture has to be shifted to achieve all this.

When the boxit macro is called with box name b,
it gives linear equations that force b.sw, b.se, b.ne,
and b.nw to be the corners of a rectangle aligned on the
x and y axes with the box contents centered inside as
indicated by the gray rectangle in Figure 12. The values
of b.dx, b.dy, and b.c are left unspecified so that the
user can give equations for positioning the boxes. If no
such equations are given, macros such as drawboxed
can detect this and give default values. The default
values for dx and dy variables are controlled by the
internal variables defaultdx and defaultdy.

If b represents a box name, drawboxed(b) draws the
rectangular boundary of box b and then the contents
of the box. This bounding rectangle can be accessed

Reprint MAPS#9 (92.2); Nov 1992 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage S Introduction to MetaPost 95

di� � � ni ni+1 di+1 � � � nk dkndtable:

...

hashtab:

ndblock

Figuur 14: An example of what can be done with the boxes.mp macros

n

c

s

ew

dy

dy

dxdx

Figuur 15: The relationship between the picture given to circleit and the associated variables. The picture is
indicated by a gray rectangle.

Start
B

(ajb)�a

C

b�

D

(ajb)�ab Stop

b

b

a

a

a

b b

a

a

b

Figuur 16: Circular and oval boxes generated using the boxes.mp macros.

separately as bpath b, or in general

bpath hbox namei
One interesting use of the bounding rectangle is for gen-
erating “well-targeted arrows” as shown in Figure 13.
Given a path from the center of Box a to the center of
Box b, there are MetaPost operators that make it con-
venient to chop off the parts of the path before the first
intersection with bpath a and after the last intersec-
tion with bpath b.

There is also a special command

boxjoin(hequation texti)
that controls the relative position of consecutive boxes.

Within the hequation texti, a and b represent the box
names given in consecutive calls to boxit and the
hequation texti gives equations to control the relative
sizes and positions of the boxes. For example, the
MetaPost code for Figure 14 uses

boxjoin(a.se=b.sw; a.ne=b.nw)

to causes boxes to line up horizontally. (It is instructive
to compare this figure with the similar one in the pic
manual [5]).

The boxes.mp macros also provide for circular and
oval boxes. These are a lot like rectangular boxes ex-
cept for the shape of the bounding path. Such boxes

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#9 (92.2); Nov 1992

96 Introduction to MetaPost Bijlage S

are set up by the circleit macro:

circleithbox namei(hpicture expressioni)

The circleit macro defines pair variable just as
boxit does, except that there are no corner points
hbox namei.ne, hbox namei.sw, etc. A call to

circleit.a(: : :)

gives relationshipsamong pointsa.c, a.s, a.e, a.n,
a.w and distances a.dx and a.dy. Together with
a.c and a.off, these variables describe how the pic-
ture is centered in an oval as can be seen from the
Figure 15.

The drawboxed and bpath macros work for
circleit boxes just as they do for boxit boxes.
By default, the boundary path for a circleit box is
a circle large enough to surround the box contents with
a small safety margin controlled by the internal variable
circmargin. Figure 16 gives an example. The oval
boundary paths around “Start” and “Stop” in the figure
are due to equations of the form

hbox namei:dx = hbox namei:dy
that force those boxes to be noncircular.

4.2 Other Packages
Why aren’t the boxes.mp macros automatically pre-
loaded like the plain macros? One reason is that they
are too specialized to really be treated as part of the
core language. Another reason is that boxes.mp was
intended to be the first of several macro packages, each
one extending the language to cover another specialized
application.

In fact, there already is another macro package called
rboxes.mp. This package builds on boxes.mp
by providing another box shape: a rectangular box
with rounded corners. Other box shapes could also
be provided if there were a demand for them.

There should also be a macro package for drawing
graphs. No such package has been designed yet, but
there have been promising preliminary experiments
with the automatic generation of axis labels for uni-
form and logarithmic spacing.

5 Conclusion
Building on MET A F O N T has made MetaPost a very
powerful and flexible graphics language. It is espe-

cially well suited to generating figures in technical doc-
uments which may involve mathematical constraints
that are best expressed symbolically. Such figures lack
the aesthetic requirements that make font design so
challenging.

This paper has introduced the MetaPost language via
examples concentrating on interesting features that dis-
tinguish the language from other graphics languages
and from MET A F O N T . Readers who want to use the
language should refer to [3]. The MetaPost interpreter
is currently available to academic institutions under
non-disclosure agreement.

References
[1] Leslie Carr. Of MET A F O N T and PostScript. In

TEX User’s Group Eighth Annual Meeting Confer-
ence Proceedings. TEX User’s Group, Providence,
Rhode Island, 1988.

[2] John D. Hobby. AMET A F O N T -like system with
PostScript output. Tugboat, the TEX User’s Group
Newsletter, 10(4):505–512, December 1989.

[3] J. D. Hobby. A user’s manual for MetaPost.
Computing Science Technical Report no. 162,
AT&T Bell Laboratories, Murray Hill, New Jer-
sey, April 1992. Can be obtained by mail-
ing “send 162 from research/cstr” to
netlib@research.att.com.

[4] Alan Jeffrey. Labelled diagrams inMET A F O N T .
TUGboat, Communications of the TEX User’s
Group, 12(2):227–229, June 1991.

[5] Brian W. Kernighan. Pic—a graphics language
for typesetting. In Unix Research System Papers,
Tenth Edition, pages 53–77. AT&T Bell Laborat-
ories, 1990.

[6] D. E. Knuth. MET A F O N T the Program. Addison
Wesley, Reading, Massachusetts, 1986. Volume
D of Computers and Typesetting.

[7] D. E. Knuth. The TEXbook. Addison Wesley,
Reading, Massachusetts, 1986. Volume A of
Computers and Typesetting.

[8] Richard O. Simpson. Nontraditional uses of
MET A F O N T . In Malcom Clark, editor, TEX Ap-
plications, Uses, Methods, pages 259–271. Ellis
Horwood, 1990.

[9] Michael J. Wichura. The PiCTEX Manual. TEX
User’s Group, Providence, Rhode Island, 1987.

[10] Shimon Yanai and Daniel M. Berry. Environment
for translating MET A F O N T to PostScript. TUG-
boat, Communications of the TEX User’s Group,
11(4):525–541, November 1990.

Reprint MAPS#9 (92.2); Nov 1992 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

