
130 Syntactic Sugar Bijlage Z

Syntactic Sugar

Kees van der Laan

Hunzeweg 57,
9893 PB Garnwerd, The Netherlands

cgl@rug.nl

September 1992

Abstract

A plea is made for being honest with TEX and not imposing alien structures upon it, otherwise than via
compatible extensions, or via (non-TEX) user interfaces to suit the publisher, the author, or the typist.
This will facilitate the process to get (complex) publications out effectively, and typographically of
high-quality.

Keywords: (nested) loop, switch, array addressing,
keyword and optional parameters, linear search, sort-
ing, plain TEX, macro writing, education.

1 Introduction
TEX is a formatter and also a programming language.
TEX is different from current high-level programming
languages, but very powerful. A class on its own, and
therefore unusual, and unfamiliar.
Because of TEX being different, macro writers propose
to harnass TEX into a more familiar system, by impos-
ing syntaxes borrowed from various successful high-
level programming languages. In doing so, injustice
to TEX’s nature might result, and users might become
intimidated, because of the difficult—at least unusual—
encoding used to achieve the aim. The more so when
functional equivalents are already there, although per-
haps hidden, and not tagged by familiar names. This is
demonstrated with examples about the loop, the switch,
array addressing, optional and keyword parameters.
Furthermore, TEX encodings are sometimes peculiar,
different from the familiar algorithms, possiblybecause
macro writers are captivated by the mouth processing
capabilities of TEX. Users who don’t care so much
about TEX’s programming power, but who are attracted
by the typesetting quality, which can be obtained with
TEX as formatter, can be led astray when in search for
a particular functionality they stumble upon unusual
encodings. They might conclude that TEX is too diffi-
cult, too error-prone and more things like that and flee
towards Wordwhatever, or embrace Desk Top Pub-
lishing systems.
The way out is education, next to the provision of
compatible, well-documented and supported user in-
terfaces, which don’t act like syntactic sugar, by neg-

lecting, or hiding, the already available functional equi-
valents. Neither the publication of encodings, nor the
provision of encodings via file servers or archives—
although a nice supporting feature for the TEX-ies—is
enough. The quality, compatibility and the simplicity
of the (generic) macros should be warranted too.
It is not the aim of this paper to revitalize a programming
languages notation war, but to stimulate awareness, and
exchange ideas.

2 Loops
DEK’s loop, TEXbook p.219, implements the flow

-

?

pretst

?

�
�

H
H

H
H

�
�

tst

posttst

?

‘\else’

with syntax1

\loophpretsti\if...hposttsti\repeat.

Special cases result when either hpretsti, or hposttsti
is empty. The former is equivalent to for example PAS-
CAL’s while : : :do : : : , and the latter to repeat: : :until.
With this awareness, I consider the variants as proposed
by for example Pittman, [22], and Spivak, [26], as syn-
tactic sugar.
If \ifcase... is used, then we have for hposttsti
several parallel paths, of which one—determined

1No (user) ‘\else’ is allowed in here, because it is already used in ‘\iterate,’ TEXbook p219.

Reprint MAPS#9 (92.2); Nov 1992 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage Z Syntactic Sugar 131

dynamically—will be traversed. Provide and choose
your path! What do you mean by traversing the\else-
path?

2.1 Why another loop?
Kabelschacht, [12], and Spivak, [26], favour a loop
which allows the use of \else.2 I have some objec-
tions to Kabelschacht’s claim that his loop is a gener-
alization of plain’s loop.
First, it is not a generalization, just a clever, but variant,
implementation of the loop flow chart.
Second, it is not compatible with plain’s loop. His exit
path is via the \then branch (or via any of the \or-
s, when \ifcase is used), and not via the \else
branch.
The reason, I can think of, for introducing another
loop, while the most general form has been imple-
mented already, is the existence of commands like
\ifvoid, and \ifeof, and the absence of their neg-
atives \ifnonvoid, respectively \ifnoneof. In
those cases we like to continue the loop via the \else
branch. For the latter case this means to continue the
loop when the file is not ended. This can be attained via
modifying the loop, of course, but I consider it simpler
to use a \newif parameter, better known as ‘boolean’
or ‘logical’ in other programming languages. With the
\newif parameter, \ifneof, the loop test for an end
of file—functionally:\ifeof—can be obtained via

\ifeof\neoffalse\else\neoftrue\fi\ifneof

For an example of use, see the Sort It Out subsection.
Related to the above encoding of the logical :, are the
encodings of the logical and, ^, and or, _, via

Functional code TEX encoding
:\if... \if...\notfalse\else

\nottrue\fi\ifnot
\if...^\if... \andtrue\if...\if...

\else\andfalse
\else\andfalse\fi\fi
\ifand

\if..._\if... \ortrue
\if...\else\if...\else
\orfalse\fi\fi \ifor

with the \newif-s: \ifnot, \ifand, and \ifor.

2.2 Nesting of loops
Pittman, [22], argued that there is a need for other loop
encodings.

‘Recently, I encountered an application
that required a set of nested loops and
local-only assignments and definitions.
TEX’s \loop...\repeat construc-
tion proved to be inadequate because of

the requirement that the inner loop be
grouped.’

If we take his (multiplication) table—I like to clas-
sify these as deterministic tables, because the data as
such are not typed in—to be representative, then be-
low a variant encoding is given, which does not need
Pittman’s double looping. The table is typographically
a trifle, but it is all about how the deterministic data
are encoded. My approach is to consider it primarily
as a table, which it is after all. Within the table the
rows and columns are generated, via recursion, and not
via the \loop. Furthermore, I prefer to treat rules, a
frame, a header and row stubs as separate items to be
added to the table proper, [17]. The creation of local
quantities is a general TEX aspect. I too like the idea
of a hidden counter, and the next best TEX solution via
the local counter. The local versus global creation of
counters is a matter of taste, although very conveni-
ent now and then. The creation of local quantities is
tacitly discouraged by DEK’s implementation, because
there is no explicit garbage collector implemented and
therefore no memory savings can be gained. The only
thing that remains is protection against programming
mistakes, which is indeed important.
Pittman’s table, focused at the essential issue of gener-
ating the elements, can be obtained via

$$\vbox{\halign{&\ \hfil#\hfil\strut\cr
\rows}}$$

with

\newcount\rcnt\newcount\ccnt\newcount\tnum
\newcount\mrow\newcount\mcol \mrow2 \mcol3
\def\rows{\global\advance\rcnt1

\global\ccnt0 \cols\ifnum\rcnt=\mrow\swor
\fi\rs\rows}

\def\swor#1\rows{\fi\crcr}
\def\cols{\global\advance\ccnt1

\tnum\rcnt \multiply\tnum\ccnt \the\tnum
\ifnum\ccnt=\mcol\sloc\fi\cs\cols}

\def\sloc#1\cols{\fi}
\def\rs{\cr}\def\cs{&}

The result is
1 2 3
2 4 6

The termination of the recursion is unusual. It is similar
to the mechanism used on p.379 of the TEXbook, in the
macro \deleterightmost. The latter TEXnique is
elaborated in [6], and [19].

The above shows how to generate in TEX deterministic
tables, where the table entries in other programming
languages are generally generated via nested loops.
One can apply this to other deterministic math tables—
trigonometric tables for example— but then we need
more advanced arithmetic facilities in TEX (or inputting
the data calculated by other tools), not to mention the

2Their loops are equivalent to the general form of the loop with the execution of an extra part after the loop.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#9 (92.2); Nov 1992

132 Syntactic Sugar Bijlage Z

appropriate mapping of tables which extend the page
boundaries.

For a more complete encoding see Table Diversions,
[17]. The idea is that rules and a frame be commanded
via \ruled, and \framed. The header via an appro-
priate definition of \header, �, the indication that
we deal with a multiplication table, in \first, and
the row stubs via definition of the row stub list. All
independent and separate from the table proper part.

2.3 Loops and novices
Novice TEXies find DEK’s loop unusual, so they sugar it
into the more familiar while, repeat, or for constructs,
encouraged to do so by exercises as part of courseware.
From the functionality viewpoint, there is no need for
another loop notation.

With respect to the for loop, I personally like the idea
of a hidden counter, [15], and [22]. The hidden counter
has been used in an additionalway to plain’s loop in for
example [15] (via \preloop and \postloop), and
will not be repeated here. This way of doing is a matter
of taste, which does not harm, nor hinder, because it is
a compatible extension.

And, : : : for the nesting of loops we need scope braces,
because of the parameter separator\repeat. If braces
are omitted, the first\repeat is mistaken for the outer
one, with the result that the text of the outer loop will
not become the first \body. The good way is, to make
the inner \repeat invisible at the first loop level, by
enclosing the inner loop in braces.

The point I like to get accross is, that there is no real
need for another loop encoding. Syntactic sugar, yes.

3 Switches, is there a need?
Apart from the \ifcase... construct, TEX seems to
lack a multiple branching facility with symbolic names.
Fine, [6], introduced therefore

\def\fruit#1{\switch\if#1\is
a \apple
b \banana
c \cherry
d \date \end}

I have 2, or rather 3, remarks to the above.
First, the ‘switch’-functionality is already there.
Second, Fine’s implementation is based upon

‘It is clear that\switchmust go through
the alternatives one after another, repro-
ducing the test: : : ’

Well, : : :going through the alternatives one after an-
other is not necessary.
Third, his example, borrowed from Schwarz, [24], can

be solved more elegantly without using a ‘switch’ or
nested \if-s at all, as shown below.
The first two aspects are related. Fine’s functionality
can be obtained via

\def\fruit#1{\csname fruit#1\endcsname}
%with
\def\fruita{\apple}
\def\fruitb{\banana} %et cetera

With for example \def\apple{{\bf apple}},
\fruit a yields apple.

And what about the ‘else’ part? Thanks to
\csname, \relax will return when the control
sequence has not yet been defined. So, if noth-
ing has to happen we are fine. In the other situ-
ations one could define \def\fruitelse{...},
and make the else fruits refer to it,
for example \def\fruity{\fruitelse},
\def\fruitz{\fruitelse}, etc. When the set
is really uncountable we are in trouble, but I don’t know
of such situations. And, : : : the five letters ‘fruit’ are
there only to enhance uniqueness of the names.

As example Fine gives the problem, treated by Schwarz,
[24], to print vowels in bold face.3

The problem can be split into two parts. First, the
general part of going character by character through a
string, and second, to decide whether the character at
hand is a vowel or not.
For the first part use for example, \dolist, TEXbook
ex11.5, or \fifo, [19].

\def\fifo#1{\ifx\ofif#1\ofif\fi\process
#1\fifo} \def\ofif#1\fifo{\fi}

For the second part, combine the vowels into a string,
aeiou, and the problem is reduced to the question
hchari 2 aeiou? Earlier, I used the latter approach
when searching for a card in a bridge hand, [14].4 That
was well-hidden under several piles of cards, I pre-
sume? Anyway, searching for a letter in a string can
be based upon \atest, TEXbook, p.375, or one might
benefit from \ismember, p.379. I composed the fol-
lowing

\def\loc#1#2{%locate #1 in #2
\def\locate##1#1##2\end{\ifx\empty##2%
\empty\foundfalse\else\foundtrue\fi}
\locate#2.#1\end} \newif\iffound

Then \fifo Audacious\ofif
yields Audacious, with

\def\process#1{\uppercase{\loc#1}%
{AEIOU}\iffound{\bf#1}\else#1\fi}

3A bit misplaced example because the actions in the branches don’t differ, except for the non-vowel part.
4The macro there was called \strip.

Reprint MAPS#9 (92.2); Nov 1992 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage Z Syntactic Sugar 133

Note that en-passant we also accounted for uppercase
vowels. By the way, did you figure out why a period—a
free symbol—was inserted between the arguments for
\locate? It is not needed in this example.5 Due
to the period one can test for substrings: string1 2
string2? Because, fstring1 2 string2g^fstring2 2
string1g) fstring1 = string2g, we also have the
possibility to test for equality of strings, via \loc.
Happily, there exists the following straightforward, and
TEX-specific, way of testing for equality of strings

\def\eq#1#2{\def\st{#1}\def\nd{#2}
\ifx\st\nd\eqtrue\else\eqfalse\fi}

For lexicographic comparison, see [18], [19].

4 Array addressing
Related to the switch, or the old computed goto as it
was called in FORTRAN, is array addressing. In TEX
this can be done via the use of \csname. An array
element, for example elements identified among others
in PASCAL by a[1] or a[apple], can be denoted
in TEX via the control sequences

\csname a1\endcsname
%respectively
\csname aapple\endcsname

For practical purposes this accessing, or should we say
‘reading,’ has to be augmented with macros for writing,
as given in [7], and [9]. Writing to an array element
can be done via

\def\a#1#2{\ea\def\csname a#1%
\endcsname{#2}}\a{1}{Contents}

Typesetting (reading) via\csname a1\endcsname
yields Contents, after the above.
The point I like to make is, that ‘array addressing’—
also called table lookup by some authors—is already
there, although unusual and a bit hidden, but, : : :we are
used to things like strong type-checking, isn’t? Once
we can do array addressing we can encode all kind of
algorithms, which make use of the array data structure.
What about sorting? See the Sort It Out subsection,
for a glimpse, and the in depth treatment, [18], with
O(n logn) algorithms, and application to glossary and
index sorting.

5 Keyword parameters
In TEX literature the functionality of keyword paramet-
ers is heavily used. Some authors impose the syntax
known from command languages upon TEX, for ex-
amples see [2], or [25]. In my opinion this is syn-
tactic sugar, because of the following rhetorical ques-
tion. What is essentially the difference between

\ref
\key W\by A. Weil
\paper Sur ...
...
\endref

as detailed in [25], and for example

{\def\key{W}\def\by{A. Weil}
\def\paper{Sur ...}...
\endref}%?

The typesetting is done in the cited case by
\ref...\endref, and in the alternative case by
\endref. The values for the keys are the background
defaults and those temporarily redefined. Note that in
both cases the order of the specifications is free and that
defaults (empty) are used, for not explicitly specified
values.

In my bordered table macro, [17], I could have in-
troduced keyword parameters obeying the command
languages syntax. Happily, I refrained from that. I
needed several parameters. A parameter for framing,
with functionalitiesnonframed, framed, and dotframed.
A parameter for ruling, with functionalities nonruled,
ruled, hruled, vruled, and dotruled. And a parameter
for positioning of the elements, with functionalities
centered, flushed left, and flushed right. (The first ele-
ment of each enumerated list of values, acting as the
default value.)
Furthermore, I decided to provide the user the possibil-
ity to optionally specify a caption, a header, a rowstub
list, or a footer. If any of these is not explicitly spe-
cified, then the item will be absent in print too.6 This
resembles optional parameter behaviour, but has been
realized by Knuth’s parameter mechanism.
In following DEK’s approach, I succeeded in keeping
the encoding compact, and transparent. I experienced
it as simple, direct, and serving extremely-well the
purpose.7

5.1 Optional parameters
Among others, in LATEX, [20], the mechanism of op-
tional parameters is used. Optional parameters are a
special case of keyword parameters. Knuth used op-
tional/keywordparameters abundantly, and called them
just parameters, as opposed to arguments of macros.
(Think for example of his various parameters and his
\every...-s.) So it is already there, although in an
unusual way.

Another example which illustrates the arbitrariness of
the syntax choice with respect to optional/keyword
parameters vs. Knuth’s parameters is TUGboat’s
\twocol vs. LATEX’s twocolumn style option.8

5If omitted the find of ‘bb’ in ‘ab’ goes wrong: abbb vs. ab.bb, will be searched.
6Another difficulty was to provide a default template, which can be overridden by the user. This was solved by the same

approach.
7Earlier, I had a similar experience, van der Laan (1990).
8LATEX also provides \twocolumn.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#9 (92.2); Nov 1992

134 Syntactic Sugar Bijlage Z

5.2 Salomon’s plain Makeindex
At NTG’s 92 spring meeting David Salomon reported
about his work in progress about adapting MakeIndex
to work with plain. He used optional parameters, with
the function as given in the following table

Typeset
Source

document index

ˆ[abc] abc abc
ˆ[xyz]{abc} abc xyzabc
ˆ|abc| abc abc
ˆ|\abc| \abc \abc
ˆ{\abc} replacement

text of \abc
same

ˆ[|\abc|!xyz]{} nothing \abc,
xyz

and combinations thereof.
The same functionalitycan be obtained via DEK’s para-
meter mechanism. Only one parameter is needed. Let
us call this the token variable \p. The idea is that the
contents of \p has to be inserted before the index-entry
in the index, and not in the text. Some symbols can be
given a special meaning, like Salomon did, for example
with ! (to denote a subentry).

Salomon’s Source Alternative

ˆ[abc] ˆ{abc}
ˆ[xyz]{abc} {{\p{xyz}ˆ{abc}}}
ˆ|\abc| ˆ{|\abc|}
ˆ{\abc} ˆ{\abc}
ˆ[|\abc|!xyz]{}{\p{|\abc|!xyz}ˆ{}}

In the above | denotes TUGboat’s verbatim delimiter.
The macro for ˆ has to be adapted accordingly. It is
beyond the scope of this paper to work that out in de-
tail. The point I like to make is, that the specification
can be done, equally-well, if not simpler, via Knuth’s
parameter mechanism.

6 Mouth vs. stomach
When one starts with macro writing in TEX one can’t
get around awareness of TEX’s digestive processing.
Mouth processing is unusual. For the moment, I con-
sider it as a special kind of built-in pre-processing, an
unusual but powerful generalization of the elimination
of ‘dead branches.’9

Now and then encoding is published in TUGboat, and
other sources as well, which looks difficult, and which

does not seem to reflect the familiar algorithms. Some-
times, it has become difficult, because of the strived
after processing in the mouth, see for example, [10],
[21].10 The latter author agrees more or less with what
is stated above ‘: : :although the macros are hard to
read: : : ’.

What puzzles me, are the following questions.

Why don’t authors provide the straight-
forward TEX encoding, not restricted to
mouth processing, as well?
Why don’t they make clear the need for
mouth processing, or should I say mouth
optimization?
If so, why don’t they start with the
straightforward encoding and explain the
adaptation steps?

Faced with the above questions myself, I would answer
that it is apparently too difficult to do so.11 Further-
more, I read and worked on the Math parts, the align-
ment parts, the macro chapter, and a substantial part
of the dirty tricks Appendix D of the TEXbook, and
did find until now only a comment about the capab-
ility of TEX’s mouth processing along with the macro
\deleterightmost. I know the argument that it is
needed within an \edef, a\write..., and the like.
I have heard of that, but from an application point of
view, my obvious answer is: Isn’t it possible to do the
things outside those constructs, equally-well, and pass
through the results?

If authors don’t help me out with the
above, I consider the encoding as l’art
pour l’art. Nothing wrong with that, on
the contrary.
The only thing against that is, that it will
spread a negative image about TEX en-
coding, certainly not under the theoretical
computer scientists, but under the day-to-
day BLUe-type programmers, if not the
authors who just use (La)TEX to get their
work out, beautifully.

Agreed, Maus referred to the TEXbook, but Jeffrey
could have provided a more intelligible solution, and
should have refrained from burying his method under
a sort of program correctness math. As it is at the mo-
ment, it is easier to start from scratch. I experienced that

9Knuth might forgive me my ignorance at this point. My brows are raised, when I see published code, restricted to mouth
processing, which looks so verbose and unintelligible. I definitely turn my back on it, when the straightforward alternative
encoding is familiar, compact, elegant and generic, despite rumour has it that TEX’s mouth has the programming power of the
Turing machine. As it is, that is something different from let us say literate programming, to indicate a broad stream of readable
programs, in my opinion.

10By the way, when do we know that something is completely processed in the mouth? Is there a check on it? Or, : : : is it
just an abstract part of the TEXnigma?

11And what about the efficiencies? From the viewpoint of the machine and with respect to human understanding? I have not
seen the common and mouth versions of an algorithm published simultaneously, let alone have them compared with respect to
timing.

Reprint MAPS#9 (92.2); Nov 1992 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage Z Syntactic Sugar 135

already with the encoding of: the Tower of Hanoi, type-
setting crosswords, generating n-copies, lexicographis
comparison, and sorting. The published encodings in-
spired me to develop alternatives, that is true, but that
should not be the aim, should it? Furthermore, I won-
der how many users have been discouraged by those
‘difficult to read’ codes, especially when the familiar
codes are straightforward?

6.1 n-copies
I needed Maus’ functionality—avant la lettre—in type-
setting a fill-in form, where a number of rows had to be
repeated. Of course, my editor can do it—statically—
and that served the purpose. It is easy for sure, but
it does not look elegant. A straightforward use of tail
recursion satisfied me better, because of the simplicity,
the compactness and the elegance, at the expense of a
negligible efficiency loss. See the example about the
birdge form in Table Diversions, [17].12 The tail recur-
sion determines the number of copies dynamically, as
do the other solutions given by DEK, for example the
nice solution via the use of \aftergroup, TEXbook,
p.374.

6.2 Sort it out
Jeffrey’s problem is: given an unsorted list of (posit-
ive) integers via symbolic names, typeset the ordered
list. In order to concentrate on the main issues, assume
that his list adheres to Knuth’s list structure, TEXbook,
p.378. As example consider the list13

\def\lst{\\\ia\\\ib\\\ic}
\def\ia{314}\def\ib{27}\def\ic{1}

The sorted numbers 1, 27, 314, are obtained
via

\def\\#1{\ifnum#1<\min\let\min=#1\fi}
\def\first#1{\def\lop\\##1##2\pol{%

\let\min=##1}\ea\lop#1\pol}
\newif\ifnoe
\loop\ifx\empty\lst\noefalse\else

\noetrue\fi
\ifnoe \first\lst \lst \min,

{\def\\##1{\ifx##1\min\else\noexpand\\
\noexpand##1\fi}\xdef\lst{\lst}}

\repeat

The encoding implements the looping of the basic
steps
� find minimum (via \lst, and suitable definition of

the active list separator \\)
� typeset minimum (via \min)

� delete minimum from the list (again via an(other)
appropriate definition of the active list separator).

For removing a typesetted element, I was inspired by
\remequivalent, TEXbook, p.380.14

The above is effective for short lists, as was the case in
Jeffrey’s application.15 For longer lists, techniques of
order O(n logn) are more appropriate. For plain TEX
encodings see [18].

6.3 Lexicographic comparison
Eijkhout, [5], provided macros—focused at mouth
processing—for lexicographic ordering.
His \ifallchars...\are...\before made
ample use of \expandafter, and is not easy access-
ible for somebody with say 2 years of TEX experience.
Hackers might go into ecstasy, but application oriented
users become discouraged. For a straightforward al-
ternative, not restricted to mouth processing, see [19].
The point I like to make is, that I would have welcomed
the familiar solution and the transformation steps as
well.

7 Acknowledgements
Włodek Bzyl and Nelson Beebe are kindly acknow-
ledged for their help in clearing up the contents and
correcting my use of English, respectively.

8 Conclusion
It is hoped that authors who can’t resist the challenge
to impose syntaxes from successful programming lan-
guages upon TEX, also encode the desired functionality
in TEX’s peculiar way, and contrast this with their pro-
posed improvements. The novice, the layman and his
peers will benefit from it.

The difficulties caused by TEX’s unusual encoding
mechanisms, can best be solved via education, and not
via imposing structures from other languages. The lat-
ter will entail confusion, because of all those varieties.
Furthermore, it is opposed to the Reduced Instruction
Set idea, which I like. For me it is similar to the axioms-
and-theorems structure in math, with a minimal number
of axions, all mutual orthogonal.

Publishing houses, user groups, and macro writers are
encouraged to develop and maintain ‘user interfaces,’
which do justice to TEX’s nature, and don’t increase the
complexity of TEX’s components. Good examples are:
TUGboat’s sty files, AMS-LATEX & AMS-TEX, and
LAMS-TEX. Macro-TEX and lxiii16 are promising.

12The complexity is of order O(n), instead of O(log n), which is not important, because of the small number of copies
involved.

13Equally-well, the comma could have been used as an active list separator, which looks more natural. I decided to adhere to
Knuth’s notation.

14I was not able to apply the parameter separator technique to locate the element to be removed.
15Remember, that sorting based on linear search has complexity O(n2).
16The LATEX3 project.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#9 (92.2); Nov 1992

136 Syntactic Sugar Bijlage Z

File servers and archives are welcomed, but the compat-
ibility, the simplicity and in general the quality, must be
warranted too. Not to mention pleasant documentation
and up-to-date-ness.
My wishful thinking is to have intelligent local archives,
which have in store what is locally generally needed,
and know about what is available elsewhere. The de-
livery should be transparent, and independent whether
it comes from elsewhere or was in store.

References
[1] Appelt, W (1987): Macros with keyword para-

meters. TUGboat 8, no. (2), 182–184.
[2] Appelt, W (1988): TEX für Fortgeschrittene, Pro-

grammiertechniken und Makropakete. Addison-
Wesley.

[3] Beebe, N.H.F (1991): The TUGlib server. MAPS
91.2, 117–123.

[4] Beeton, B.N, R. Whitney (1989): TUGboat 10,
no. (3), 378–385.

[5] Eijkhout, V (1991): TEX by Topic. Addison-
Wesley.

[6] Fine, J (1992): Some basic control macros for
TEX. TUGboat 13, no. (1), 75–83.

[7] Greene, A. M (1989): TEXreation—Playing
games with TEX’s mind. TUG89. TUGboat 10,
no. (4), 691–705.

[8] Hendrickson, A (1989): MacroTEX.
[9] Hendrickson, A (1990): Getting TEXnical: In-

sights into TEX macro writing techniques. TUG-
boat 11, no. (3), 359–370.

[10] Jeffreys, A (1990): Lists in TEX’s mouth. TUG-
boat 11, no. (2), 237–244.

[11] Jensen, K, N. Wirth (1975): PASCAL user manual
and report. Springer-Verlag. TUGboat 11, no. (2),
237–244.

[12] Kabelschacht, A (1987): \expandafter vs.
\let and \def in conditionals and a general-

ization of plain’s \loop. TUGboat 8, no. (2),
184–185.

[13] Knuth, D.E (1984): The TEXbook, Addison-
Wesley.

[14] Laan, C.G van der (1990): Typesetting Bridge via
TEX. TUGboat 11, no. (2), 265–276.

[15] Laan, C.G van der (1992a): Tower of Hanoi, re-
visited. TUGboat 13, no. (1), 91–94.

[16] Laan, C.G van der (1992b): FIFO & LIFO in-
cognito. EuroTEX ’92, 225–234. Also MAPS92.1.
An elaborated version is FIFO & LIFO sing the
BLUes.

[17] Laan, C.G van der (1992c): Table Diversions.
EuroTEX ’92, 191–211. A little adapted in
MAPS92.2.

[18] Laan, C.G van der (in progress): Sorting in BLUe.
MAPS93.1. Heap sort encoding is released in
MAPS92.2.

[19] Laan, C.G van der (1992d): FIFO & LIFO sing
the BLUes. MAPS92.2.

[20] Lamport, L (1986): LATEX, user’s guide & refer-
ence manual. Addison-Wesley.

[21] Maus, S (1991): An expansion power lemma.
TUGboat 12, no. (2), 277.

[22] Pittman, J.E (1988): Loopy.TEX. TUGboat 9,
no. (3), 289–291.

[23] Salomon, D (1992): NTG’s Advanced TEX
course: Insights & Hindsights. MAPS 92 Special.
254p.

[24] Schwarz, N (1987): Einführung in TEX, Addison-
Wesley.

[25] Siebenmann, L (1992): Elementary Text Pro-
cessing and Parsing in TEX. TUGboat 13, no. (1),
62–73.

[26] Spivak, M.D (1987): LAMS-TEX. TEXplorators.
[27] Youngen, R.E (1992): TEX-based production at

AMS. MAPS92.2. 7p.

Reprint MAPS#9 (92.2); Nov 1992 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

