130 Syntactic Sugar

BijlageZ

Syntactic Sugar

Keesvan der Laan

Hunzeweg 57,
9893 PB Garnwerd, The Netherlands
cgl @ug. nl

September 1992

Abstract

A pleaismadefor being honest with TEX and not imposing aien structuresupon it, otherwisethan via
compatible extensions, or via (non-TeX) user interfaces to suit the publisher, the author, or the typist.
Thiswill facilitate the process to get (complex) publications out effectively, and typographically of

high-quality.

Keywords: (nested) loop, switch, array addressing,
keyword and optiona parameters, linear search, sort-
ing, plain TEX, macro writing, education.

1 Introduction

TeX is a formatter and also a programming language.
TeX isdifferent from current high-level programming
languages, but very powerful. A class on its own, and
therefore unusud, and unfamiliar.

Because of TEX being different, macro writers propose
to harnass TeX into a more familiar system, by impos-
ing syntaxes borrowed from various successful high-
level programming languages. In doing so, injustice
to TEX's nature might result, and users might become
inti midated, because of thedifficult—at | east unusual—
encoding used to achieve the aim. The more so when
functional equivalents are already there, athough per-
haps hidden, and not tagged by familiar names. Thisis
demonstrated with exampl es about theloop, the switch,
array addressing, optiona and keyword parameters.
Furthermore, TEX encodings are sometimes peculiar,
different fromthefamiliar a gorithms, possibly because
macro writers are captivated by the mouth processing
capabilities of TeX. Users who don't care so much
about TEX's programming power, but who are attracted
by the typesetting quality, which can be obtained with
TeX as formatter, can be led astray when in search for
a particular functionality they stumble upon unusual
encodings. They might conclude that TEX is too diffi-
cult, too error-prone and more thingslike that and flee
towards Wordwhatever, or embrace Desk Top Pub-
lishing systems.

The way out is education, next to the provision of
compatible, well-documented and supported user in-
terfaces, which don’t act like syntactic sugar, by neg-

lecting, or hiding, the already avail ablefunctional equi-
vaents. Neither the publication of encodings, nor the
provision of encodings via file servers or archives—
although a nice supporting feature for the TEX-ies—is
enough. The quality, compatibility and the simplicity
of the (generic) macros should be warranted too.
Itisnot theaim of thispaper torevitalizeaprogramming
languages notationwar, but to stimul ate awareness, and
exchange ideas.

2 Loops
DeK’sloop, TEXbook p.219, implements the flow

pretst

<>

posttst

‘\el se’

with syntax*
\'l oop(pretst)\if... (posttst)\ repeat.

Special cases result when either (pretst), or {posttst)
isempty. Theformer isequivalent tofor example PAS-
CAL'swhile...do...,andthelattertorepeat. . . until.
With thisawareness, | consider thevariantsas proposed
by for example Pittman, [22], and Spivak, [26], as syn-
tactic sugar.

If\ifcase... isused, then we have for (posttst)
several pardlel paths, of which one—determined

'No (user) ‘\ el se’ isallowed in here, becauseit is already usedin‘\ i t er at e, TEXbook p219.

Reprint MAPS#9 (92.2); Nov 1992

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

BijlageZz

dynamically—will be traversed. Provide and choose
your path! What do you mean by traversingthe\ el se-
path?

2.1 Why another loop?

Kabelschacht, [12], and Spivak, [26], favour a loop
which alows the use of \ el se.? | have some objec-
tions to Kabelschacht’s claim that his loop is a gener-
alization of plain’sloop.

Firgt, itisnot ageneralization, just a clever, but variant,
implementation of the loop flow chart.

Second, it isnot compatible with plain’sloop. Hisexit
path isviathe\ t hen branch (or viaany of the\ or -
s, when \ i f case is used), and not via the\ el se
branch.

The reason, | can think of, for introducing another
loop, while the most general form has been imple-
mented aready, is the existence of commands like
\ifvoid,and\i f eof , and the absence of their neg-
atives \ i f nonvoi d, respectively \'i f noneof. In
those cases we like to continuetheloop viathe\ el se
branch. For the latter case this means to continue the
loop whenthefileisnot ended. Thiscan beattained via
modifying the loop, of course, but | consider it ssimpler
tousea\ newi f parameter, better known as ‘ boolean’

or ‘logical’ in other programming languages. With the
\ new f parameter,\ i f neof , thelooptest for an end
of file—functionally -\ i f eof —can be obtained via

\i feof\ neof fal se\el se\neoftrue\fi\ifneof

Syntactic Sugar 131

the requirement that the inner loop be
grouped’

If we take his (multiplication) table—I like to clas-
sify these as deterministic tables, because the data as
such are not typed in—to be representative, then be-
low a variant encoding is given, which does not need
Pittman’s doublelooping. The tableistypographically
atrifle, but it is all about how the deterministic data
are encoded. My approach isto consider it primarily
as atable, which it is after all. Within the table the
rows and columns are generated, viarecursion, and not
viathe\ | oop. Furthermore, | prefer to treat rules, a
frame, a header and row stubs as separate items to be
added to the table proper, [17]. The creation of loca
guantitiesis a general TeX aspect. | too like the idea
of a hidden counter, and the next best TeX solutionvia
the local counter. The local versus global creation of
counters is a matter of taste, although very conveni-
ent now and then. The creation of local quantitiesis
tacitly discouraged by DEK’s implementation, because
thereis no explicit garbage collector implemented and
therefore no memory savings can be gained. The only
thing that remains is protection against programming
mistakes, which isindeed important.

Pittman’stable, focused at the essential issue of gener-
ating the elements, can be obtained via

$$\ vbox{\ hal i gn{& \hfil# hfil\strut\cr
\rows}}$$

with

\ newcount\ rcnt\ newcount\ ccnt\ newcount \'t num

\ newcount \ nt ow\ newcount\ ncol \nrow2 \ntol 3

\ def\rows{\ gl obal \ advance\rcnt 1
\ gl obal\ccnt0 \col s\ifnumrcnt=\nrom swor
\fi\rs\rows}

\def\swor#1\rows{\fi\crcr}

For an example of use, see the Sort It Out subsection.
Related to the above encoding of thelogica —, are the
encodings of thelogical and, A, and or, Vv, via

Functional code TeX encoding \ def\ col s{\ gl obal \ advance\ccnt 1
=\if... \if...\notfal se\el se \tnumrent \nultiply\tnumccent \the\tnum
\nottrue\fi\lifnot \'i fnum ccnt=\nctol \sl oc\fi\cs\cols}
\Vif...AVif... |Vandtrue\if... \if... \ def\sl oc#1\col s{\fi}
\ el se\ andf al se \def\rs{\cr}\def\cs{&}
\el se\andfal se\fi\fi
\'i fand :
. . Theresultis
VifooowvVif. .. t_o;tru\el . - 123
if...\else\if...\else
\orfal se\fi\fi \ifor 246

The termination of therecursionisunusua. Itissimilar
to the mechanism used on p.379 of the TEXbook, inthe
macro\ del et eri ght nost . Thelatter TEXniqueis
elaborated in [6], and [19].

The above shows how to generatein TEX deterministic
tables, where the table entries in other programming
languages are generaly generated via nested loops.
One can apply thisto other deterministic math tables—
trigonometric tables for example— but then we need
more advanced arithmetic facilitiesin TEX (or inputting
the data calculated by other tools), not to mention the

withthe\ newi f-s;\i fnot,\ifand,and\i for.

2.2 Nesting of loops
Pittman, [22], argued that there isaneed for other loop
encodings.

‘Recently, | encountered an application
that required a set of nested loops and
local-only assignments and definitions.
TeX's \l oop. .. \repeat construc-
tion proved to be inadegquate because of

2Their loops are equivalent to the general form of the loop with the execution of an extra part after the loop.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#9 (92.2); Nov 1992

132 Syntactic Sugar

appropriate mapping of tables which extend the page
boundaries.

For a more complete encoding see Table Diversions,
[17]. Theideaisthat rules and aframe be commanded
via\ r ul ed, and\ f r amed. The header viaan appro-
priate definition of \ header, x, the indication that
we deal with a multiplication table, in\ first, and
the row stubs via definition of the row stub list. All
independent and separate from the table proper part.

2.3 Loopsand novices

Novice TEXiesfind DEK’sloop unusual, so they sugar it
into the more familiar while, repeat, or for constructs,
encouraged to do so by exercises as part of courseware.
From the functionality viewpoint, there is no need for
another loop notation.

With respect to the for loop, | personaly like the idea
of ahidden counter, [15], and [22]. The hidden counter
has been used inan additional way to plain’sloopinfor
example [15] (via\ pr el oop and\ post | oop), and
will not be repeated here. Thisway of doing isa matter
of taste, which does not harm, nor hinder, becauseiitis
a compatible extension.

And, . . .for the nesting of loops we need scope braces,
because of the parameter separator\ r epeat . If braces
areomitted, thefirst\ r epeat ismistakenfor theouter
one, with the result that the text of the outer 1oop will
not become thefirst\ body. Thegoodway is, to make
theinner\ r epeat invisibleat thefirst loop level, by
enclosing the inner loop in braces.

The point | like to get accross is, that there is no real
need for another loop encoding. Syntactic sugar, yes.

3 Switches, isthereaneed?

Apart fromthe\i f case. .. construct, TEX seemsto
lack amultiplebranching facility with symbolic names.
Fine, [6], introduced therefore

\def\fruit#1{\switch\if#l\is
a \apple
b \ banana
c \cherry

d \date \ end}

| have 2, or rather 3, remarks to the above.
First, the ‘ switch’-functionality is already there.
Second, Fin€'simplementation is based upon

‘Itisclear that\ swi t ch must gothrough
the aternatives one after another, repro-
ducingthetest. ..’

WEell, ...going through the aternatives one after an-
other is not necessary.
Third, hisexample, borrowed from Schwarz, [24], can

BijlageZ

be solved more elegantly without using a ‘switch’ or
nested\ i f -sat al, as shown below.

The first two aspects are related. Fine's functionality
can be obtained via

\def\fruit#1{\csnane fruit#1l\ endcsnane}
%t h
\def\fruitaf{\appl e}

\def\fruitb{\banana} %t cetera

With for example \ def \ appl e{{\ bf appl e}},
\fruit ayields apple

And what about the ‘else’ part? Thanks to
\ csnane, \rel ax will return when the control
sequence has not yet been defined. So, if noth-
ing has to happen we are fine. In the other situ-
ations one could define \ def\fruitel se{...},
and make the dse fruits refer to it
for example \def\fruity{\fruitelse},
\def\fruitz{\fruitel se}, etc. When the set
isreally uncountableweareintrouble, but | don’t know
of such situations. And, .. .the five letters ‘fruit’ are
there only to enhance uniqueness of the names.

AsexampleFinegivestheproblem, treated by Schwarz,
[24], to print vowelsin bold face3

The problem can be split into two parts. First, the
genera part of going character by character through a
string, and second, to decide whether the character at
hand isavowel or not.

For thefirst part use for example, \ dol i st , TEXbook
ex11.5,or\fifo,[19].

\def\fifo#l{\ifx\ofif#l\ofif\fi\process
#1\fi f o} \def\ofif#1\fifo{\fi}

For the second part, combine the vowels into a string,
aei ou, and the problem is reduced to the question
(char) € aei ou? Earlier, | used the latter approach
when searching for acard in abridge hand, [14].* That
was well-hidden under several piles of cards, | pre-
sume? Anyway, searching for a letter in a string can
be based upon\ at est , TEXbook, p.375, or one might
benefit from\ i smenber , p.379. | composed the fol -
lowing

\def\ | oc#1#2{ % ocate #1 in #2

\ def\ | ocat e##1#1##2\ end{\ i f x\ enpt y##2%
\ enpt y\ f oundf al se\ el se\foundtrue\fi}

\ | ocat e#2. #1\ end} \new f\iffound

Then\fifo Audaci ous\ofif
yields Audacious, with

\ def\ process#1{\ uppercase{\| oc#1} %
{AEI QU\ i f f ound{\ bf #1}\ el se#1\fi}

A bit misplaced example becausethe actionsin the branches don’t differ, except for the non-vowel part.

*The macro therewas called\ st ri p.

Reprint MAPS#9 (92.2); Nov 1992

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

BijlageZz

Note that en-passant we aso accounted for uppercase
vowels. By theway, didyou figure out why aperiod—a
free symbol—was inserted between the arguments for
\'l ocat e? It is not needed in this example® Due
to the period one can test for substrings: string; €
strings? Because, {string; € strings} A{strings €
string } = {string; = string,}, we aso have the
possibility to test for equality of strings, via\l oc.
Happily, there existsthefollowing strai ghtforward, and
TeX-specific, way of testing for equality of strings

\ def \ eq#1#2{\ def \ st { #1}\ def \ nd{#2}
\ifx\st\nd\eqtrue\el se\eqfal se\fi}

For lexicographic comparison, see[18], [19].

4 Array addressng

Related to the switch, or the old computed goto as it
was caled in FORTRAN, is array addressing. In TEX
this can be done via the use of \ csnane. An array
element, for example el ements identified among others
in PASCAL by a[1] or a[appl €], can be denoted
in TEX viathe control sequences

\csnane al\endcsnane
% espectivel y
\ csnane aappl e\ endcsnane

For practical purposes thisaccessing, or should we say
‘reading, hasto be augmented with macros for writing,
as given in [7], and [9]. Writing to an array element
can be donevia

\ def \ a#1#2{\ ea\ def \ csnanme a#1%
\ endcsnanme{#2}}\ a{ 1} { Cont ent s}

Typesetting (reading) via\ csnane al\ endcsnane
yields Cont ent s, after the above.

The point | like to make is, that ‘array addressing’'—
also caled table lookup by some authors—is already
there, although unusua and abit hidden, but, . . .weare
used to things like strong type-checking, isn't? Once
we can do array addressing we can encode al kind of
algorithms, which make use of the array data structure.
What about sorting? See the Sort It Out subsection,
for a glimpse, and the in depth treatment, [18], with
O(n log n) agorithms, and application to glossary and
index sorting.

5 Keyword parameters

In TEX literaturethe functionality of keyword paramet-
ers is heavily used. Some authors impose the syntax
known from command languages upon TgX, for ex-
amples see [2], or [25]. In my opinion this is syn-
tactic sugar, because of the following rhetorical ques-
tion. What is essentially the difference between

Syntactic Sugar 133
g

\ref
\key Wby A Wil
\ paper Sur ...

i.e.ndref
asdetailed in [25], and for example

{\def\key{W\def\by{A Weil}
\ def\ paper{Sur ...}...
\ endr ef } %

The typesetting is done in the cited case by
\ref...\endref, and in the dternative case by
\ endr ef . Thevaluesfor the keys are the background
defaults and those temporarily redefined. Note that in
both cases the order of the specificationsisfree and that
defaults (empty) are used, for not explicitly specified
values.

In my bordered table macro, [17], | could have in-
troduced keyword parameters obeying the command
languages syntax. Happily, | refrained from that. |
needed severa parameters. A parameter for framing,
withfunctionalitiesnonframed, framed, and dotframed.
A parameter for ruling, with functionalities nonruled,
ruled, hruled, vruled, and dotruled. And a parameter
for positioning of the elements, with functionalities
centered, flushed left, and flushed right. (Thefirst ele-
ment of each enumerated list of values, acting as the
default value.)

Furthermore, | decided to provide the user the possibil-
ity to optionally specify a caption, a header, arowstub
list, or a footer. If any of these is not explicitly spe-
cified, then the item will be absent in print too.® This
resembles optional parameter behaviour, but has been
realized by Knuth’'s parameter mechanism.

In following DeK’s approach, | succeeded in keeping
the encoding compact, and transparent. | experienced
it as simple, direct, and serving extremely-well the
purpose.”

5.1 Optional parameters

Among others, in IATEX, [20], the mechanism of op-
tional parameters is used. Optional parameters are a
special case of keyword parameters. Knuth used op-
tional/keyword parameters abundantly, and called them
just parameters, as opposed to arguments of macros.
(Think for example of his various parameters and his
\every...-s) Soitisalready there, althoughin an
unusua way.

Another example which illustrates the arbitrariness of
the syntax choice with respect to optional/keyword
parameters vs. Knuth's parameters is TUGboat's
\t wocol vs. IATEX'st wocol umm style option.®

°If omitted the find of ‘bb’ in ‘ab’ goeswrong: abbb vs. ab.bb, will be searched.
5 Another difficulty was to provide a default template, which can be overridden by the user. This was solved by the same

approach.
"Earlier, | had asimilar experience, van der Laan (1990).
8|ATEX also provides\ t wocol um.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Reprint MAPS#9 (92.2); Nov 1992

134 Syntactic Sugar

5.2 Salomon’s plain Makeindex

At NTG's 92 spring meeting David Salomon reported
about hiswork in progress about adapting Makel ndex
to work with plain. He used optional parameters, with
the function as given in the following table

Typeset
Source ;
document index
" [abc] abc abc
“[xyz] {abc} abc xyzabc
" | abc| abc abc
"] \abc]| \ abc \ abc
“{\abc} replacement same
text of \ abc
“[|\Vabc| !'xyz] {} nothing \ abc,

Xyz

and combinations thereof.

The same functionality can be obtained viaDgK’spara-
meter mechanism. Only one parameter is needed. Let
us call thisthe token variable\ p. The ideais that the
contentsof \ p hasto beinserted before theindex-entry
in the index, and not in the text. Some symbols can be
given aspecial meaning, like Salomon did, for example
with! (to denote a subentry).

Salomon’'sSource Alternative

" [abc] “{abc}

“[xyz] {abc} {{\p{xyz}"{abc}}}
"] \abc]| “{|\abc]|}

“{\abc} “{\abc}

“[I\Vabe| txyz] {}{\p{|\abc|!xyz}"{}}

In the above | denotes TUGDoat’s verbatim delimiter.
The macro for © has to be adapted accordingly. It is
beyond the scope of this paper to work that out in de-
tail. The point | like to make is, that the specification
can be done, equaly-well, if not simpler, via Knuth’'s
parameter mechanism.

6 Mouth vs. ssomach

When one starts with macro writing in TEX one can’t
get around awareness of TEX's digestive processing.
Mouth processing is unusual. For the moment, | con-
sider it as a specia kind of built-in pre-processing, an
unusua but powerful generalization of the elimination
of ‘ dead branches.®

Now and then encoding is published in TUGboat, and
other sources as well, which looks difficult, and which

BijlageZ

does not seem to reflect the familiar algorithms. Some-
times, it has become difficult, because of the strived
after processing in the mouth, see for example, [10],
[21].1° The latter author agrees more or less with what
is stated above ‘. . .dthough the macros are hard to
read. ..’.

What puzzles me, are the following questions.

Why don’t authors provide the straight-
forward TEX encoding, not restricted to
mouth processing, as well?

Why don't they make clear the need for
mouth processing, or should | say mouth
optimization?

If so, why don't they start with the
straightforward encoding and explain the
adaptation steps?

Faced with the above questionsmyself, | would answer
that it is apparently too difficult to do so.'' Further-
more, | read and worked on the Math parts, the aign-
ment parts, the macro chapter, and a substantia part
of the dirty tricks Appendix D of the TEXbook, and
did find until now only a comment about the capab-
ility of TEX's mouth processing along with the macro
\ del et eri ght nost . | know the argument that itis
needed withinan\ edef , a\wite. .., andthelike
| have heard of that, but from an application point of
view, my obviousanswer is; Isn't it possible to do the
things outside those constructs, equally-well, and pass
through the results?

If authors don't help me out with the
above, | consider the encoding as I'art
pour I'art. Nothing wrong with that, on
the contrary.

The only thing against that is, that it will
spread a negative image about TEX en-
coding, certainly not under thetheoretical
computer scientists, but under the day-to-
day BLUe-type programmers, if not the
authorswho just use (La)TEX to get their
work out, beautifully.

Agreed, Maus referred to the TeXbook, but Jeffrey
could have provided a more intelligible solution, and
should have refrained from burying his method under
a sort of program correctness math. Asitisat the mo-
ment, itiseasier tostart fromscratch. | experienced that

?Knuth might forgive me my ignorance at this point. My brows are raised, when | see published code, restricted to mouth
processing, which looks so verbose and unintelligible. | definitely turn my back on it, when the straightforward alternative
encoding is familiar, compact, elegant and generic, despite rumour hasit that TEX's mouth has the programming power of the
Turing machine. Asit is, that is something different from let us say literate programming, to indicate a broad stream of readable
programs, in my opinion.

198y the way, when do we know that something is completely processed in the mouth? Is there a check on it? Or, .. .isit
just an abstract part of the TEXnigma?

11 And what about the efficiencies? From the viewpoint of the machine and with respect to human understanding? | have not
seen the common and mouth versions of an algorithm published simultaneously, let alone have them compared with respect to
timing.

Reprint MAPS#9 (92.2); Nov 1992 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

BijlageZz

already withthe encoding of : the Tower of Hanoi, type-
setting crosswords, generating n-copies, lexicographis
comparison, and sorting. The published encodingsin-
spired me to develop dternatives, that is true, but that
should not be the aim, should it? Furthermore, | won-
der how many users have been discouraged by those
‘difficult to read’ codes, especialy when the familiar
codes are straightforward?

6.1 n-copies

| needed Maus' functionality—avant lalettre—intype-
setting afill-inform, where anumber of rows had to be
repeated. Of course, my editor can do it—statically—
and that served the purpose. It is easy for sure, but
it does not look elegant. A straightforward use of tail
recursion satisfied me better, because of the simplicity,
the compactness and the elegance, at the expense of a
negligible efficiency loss. See the example about the
birdgeformin Table Diversions, [17].!? Thetail recur-
sion determines the number of copies dynamicaly, as
do the other solutions given by DgK, for example the
nice solutionviatheuse of \ af t er gr oup, TeXbook,
p.374.

6.2 Sort it out

Jeffrey’s problem is: given an unsorted list of (posit-
ive) integers via symbolic names, typeset the ordered
list. In order to concentrate on the main issues, assume
that hislist adheresto Knuth’slist structure, TeXbook,
p.378. Asexample consider thelist!?

Vdef\I'st{\\\ia\\\ib\\\ic}
\def\ia{314}\ def\i b{27}\ def\ i c{1}

The sorted numbers
via

1, 27, 314, areobtained

\def \W#L{\i f num#l<\mi n\l et\ m n=#1\fi}
\def\first#1{\def\ | op\\ ##1##2\ pol { %
\ I et\ mi n=##1}\ ea\ | op#1\ pol }
\new f\ifnoe
\l oop\ifx\enpty\lst\noefal se\el se
\ noetrue\fi

\ifnoe \first\lst \lst \mn,

{\def\\ ##1{\i f x##1\ m n\ el se\ noexpand\\

\ noexpand##1\ fi }\ xdef\ I st {\Ist}}
\r epeat

The encoding implements the looping of the basic

steps

o findminimum (via\ | st , and suitable definition of
the active list separator \ \)

o typeset minimum (via\ i n)

Syntactic Sugar 135
g

o delete minimum from the list (again via an(other)
appropriate definition of the active list separator).

For removing a typesetted element, | was inspired by
\ r emequi val ent , TeXbook, p.380.14

The above is effective for short lists, as wasthe case in
Jeffrey’s application.!® For longer lists, techniques of
order O(n log n) are more appropriate. For plain TEX
encodings see [18].

6.3 Lexicographic comparison

Eijkhout, [5], provided macros—focused a mouth
processing—for lexicographic ordering.

His \ifallchars...\are...\before made
ampleuseof \ expandaf t er, andisnot easy access-
ible for somebody with say 2 years of TEX experience.
Hackers might go into ecstasy, but application oriented
users become discouraged. For a straightforward al-
ternative, not restricted to mouth processing, see [19].
The point 1 liketo makeis, that | would have wel comed
the familiar solution and the transformation steps as
well.

7 Acknowledgements

Wiodek Bzyl and Nelson Beebe are kindly acknow-
ledged for their help in clearing up the contents and
correcting my use of English, respectively.

8 Conclusion

It is hoped that authors who can't resist the chalenge
to impose syntaxes from successful programming lan-
guages upon TeX, a so encode thedesired functionality
in TEX's peculiar way, and contrast this with their pro-
posed improvements. The novice, the layman and his
peers will benefit from it.

The difficulties caused by TeX's unusua encoding
mechanisms, can best be solved via education, and not
viaimposing structures from other languages. The lat-
ter will entail confusion, because of all those varieties.
Furthermore, it is opposed to the Reduced Instruction
Setidea, which | like. For meitissimilar totheaxioms-
and-theorems structurein math, with aminimal number
of axions, all mutual orthogonal.

Publishing houses, user groups, and macro writers are
encouraged to develop and maintain ‘user interfaces,
which do justiceto TEX'snature, and don’t increase the
complexity of TEX's components. Good examples are:
TUGboat’s sty files, AMSIATEX & ApS-TEX, and
LAAS-TEX. Macro-TeX and Ixiiil® are promising.

12The complexity is of order O(r), instead of O(log »), which is not important, because of the small number of copies

involved.

12 Equally-well, the comma could have been used as an active list separator, which looks more natural. | decided to adhereto

Knuth's notation.

4] was not able to apply the parameter separator techniqueto locate the element to be removed.
15 Remember, that sorting based on linear search has complexity O(r?).

1$The LATEX 3 project.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Reprint MAPS#9 (92.2); Nov 1992

136

Syntactic Sugar

Fileserversand archives are wel comed, but the compat-
ibility, thesimplicity and in generd the quality, must be
warranted too. Not to mention pleasant documentation
and up-to-date-ness.

My wishful thinking isto haveintelligent local archives,
which have in store what is locally generally needed,
and know about what is available elsewhere. The de-
livery should be transparent, and independent whether
it comes from elsawhere or was in store.

References

(1]
(2]

(3]
[4]
(5]
(6]
[7]
(8]
[9]
[10]

[11]

[12]

Reprint MAPS#9 (92.2); Nov 1992

Appelt, W (1987): Macros with keyword para-
meters. TUGboat 8, no. (2), 182-184.

Appelt, W (1988): TeX fur Fortgeschrittene, Pro-
grammiertechniken und Makropakete. Addison-
Wedley.

Beebe, N.H.F (1991): The TUGIib server. MAPS
91.2,117-123.

Beeton, B.N, R. Whitney (1989): TUGboat 10,
no. (3), 378-385.

Eijkhout, V (1991): TEX by Topic. Addison-
Wedley.

Fine, J (1992): Some basic control macros for
TeX. TUGboat 13, no. (1), 75-83.

Greene, A. M (1989): TeXreation—Playing
games with TeX’s mind. TUG89. TUGboat 10,
no. (4), 691-705.

Hendrickson, A (1989): MacroTEX.
Hendrickson, A (1990): Getting TEXnica: In-
sightsinto TEX macro writing techniques. TUG-
boat 11, no. (3), 359-370.

Jeffreys, A (1990): Lists in TEX's mouth. TUG-
boat 11, no. (2), 237-244.

Jensen, K, N. Wirth (1975): PASCAL user manua
and report. Springer-Verlag. TUGboat 11, no. (2),
237244,

Kabelschacht, A (1987): \ expandafter vs.
\l et and \ def in conditionals and a genera-

[13]
[14]
[15]

[16]

[17]

[18]

[19]
[20]
[21]
[22]

[23]

[24]

[25]

[26]
[27]

BijlageZ

ization of plain's\ | oop. TUGhoat 8, no. (2),
184-185.

Knuth, D.E (1984): The TexXbook, Addison-
Wedley.

Laan, C.G van der (1990): Typesetting Bridgevia
TeX. TUGboat 11, no. (2), 265-276.

Laan, C.G van der (1992a): Tower of Hanoi, re-
visited. TUGboat 13, no. (1), 91-94.

Laan, C.G van der (1992b): FIFO & LIFO in-
cognito. EuroTeX ' 92, 225-234. Also MAPS92.1.
An eaborated version is FIFO & LIFO sing the
BLUes.

Laan, C.G van der (1992c): Table Diversions.
EuroTEX '92, 191-211. A little adapted in
MAPS92.2.

Laan, C.Gvander (inprogress): Sortingin BLUe.
MAPS93.1. Heap sort encoding is released in
MAPS92.2.

Laan, C.G van der (1992d): FIFO & LIFO sing
the BLUes. MAPS92.2.

Lamport, L (1986): IATEX, user’s guide & refer-
ence manual. Addison-Wesley.

Maus, S (1991): An expansion power lemma
TUGboat 12, no. (2), 277.

Pittman, JE (1988): Loopy.TeX. TUGboat 9,
no. (3), 289-291.

Salomon, D (1992): NTG's Advanced TeX
course: Insights & Hindsights. MAPS 92 Special.
254p.

Schwarz, N (1987): Einfuhrung in TeX, Addison-
Wedley.

Siebenmann, L (1992): Elementary Text Pro-
cessing and Parsing in TeX. TUGboat 13, no. (1),
62—73.

Spivak, M.D (1987): LAS-TEX. TEXplorators.
Youngen, R.E (1992): TeX-based production at
AMS. MAPSQ2.2. 7p.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

