
Bijlage B FIFO and LIFO sing the BLUes 139

FIFO and LIFO sing the BLUes�

Kees van der Laan

Hunzeweg 57,
9893 PB Garnwerd, The Netherlands

cgl@rug.nl

September 1992

Abstract

FIFO, First-In-First-Out, and LIFO, Last-In-First-Out, are well-known techniques for handling se-
quences. In TEX macro writing they are abundant but are not easily recognized as such. TEX templates
for FIFO and LIFO are given and their use illustrated. The relation with Knuth’s \dolist, answer
ex11.5, and \ctest, p.376, is given.

Keywords: FIFO, LIFO, list processing, plain TEX,
education, macro writing.

1 Introduction
It started with the programming of the Tower of Hanoi
in TEX, van der Laan (1992a). For printing each tower
the general FIFO—First-In-First-Out1—approach was
considered.2 In literature (and courseware) the pro-
gramming of these kind of things is done differently
by each author, inhibiting intelligibility. In pursuit of
Wirth (1976), TEX templates for the FIFO (and LIFO)
paradigm will hopefully improve the situation.

2 FIFO
In the sequel, I will restrict the meaning of FIFO to an
input stream which is processed argument-wise. FIFO
can be programmed in TEX as template

\def\fifo#1{\ifx\ofif#1\ofif\fi\process
#1\fifo} \def\ofif#1\fifo{\fi}

Printing of a tower can be done via

\def\process#1{\hbox to3ex{%
\hss\vrule width#1ex height1ex\hss}}
\vbox{\baselineskip1.1ex\fifo12\ofif}

For the termination of the tail recursion the same
TEXnique as given in the TEXbook, p.379, in the macro
\deleterightmost, is used. This is elaborated as
\break in Fine (1992), in relation to termination of the

loop. The idea is that when\ofif is encountered in the
input stream, all tokens in the macro up to and includ-
ing \fifo—the start for the next level of recursion—
are gobbled.3 Because the matching \fi is gobbled
too, this token is inserted via the replacement text of
\ofif. This TEXnique is better than Kabelschacht’s,
(1987), where the token preceding the\fi is expanded
after the \fi via the use of \expandafter. When
this is applied the exchange occurs at each level in
the recursion. It also better than the \let\nxt=...
TEXnique, which is used in the TEXbook, for example in
\iterate, p.219, because there are no assignments.

My first version had the two tokens after
\ifx reversed—a cow flew by—and made
me realize the non-commutativity of the first
level arguments of TEX’s conditionals. For
example, \ifx aa\empty... differs from
\ifx\empty aa..., and \if\ab\aa...
from \if\aa\ab..., with \def\aa{aa},
\def\ab{ab}. In math, and in programming
languages like PASCAL, the equality relation is
commutative,4 and no such thing as expansion comes
in between. When not alert with respect to expansion,
TEX’s \if-s can surprise you.

The \fifo macro is a basic one. It allows one to pro-
ceed along a list—at least conceptually—and to apply
a (user) specified process to each list element. By this
approach the programming of going through a list is
separated from the various processes to be applied to

�Earlier versions appeared in MAPS92.1 and proceedings EuroTEX ’92.
1See Knuth (1968), section 2.2.1.
2In the Tower of Hanoi article Knuth’s list datastructure was finally used—TEXbook Appendix D.2—with FIFO inherent.
3In contrast with usual programming of the recursion start with the infinite loop, and then insert the \if...\ofif\fi.
4So are TEX’s \if-s after expansion.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#9 (92.2); Nov 1992

140 FIFO and LIFO sing the BLUes Bijlage B

the elements.5 It adheres to the separation of concerns
principle, which I consider fundamental.

The input stream is processed argument-wise, with the
consequence that first level braces will be gobbled. Be-
ware! Furthermore, no outer control sequences are
allowed, nor \par-s. The latter can be permitted via
the use of \long\def.

A general approach—relieved from the restrictions
on the input stream: every token is processed un-
til \ofif—is given in the TEXbook answer ex11.5
(\dolist...) and on p.376 (\ctest...). After
adaptation to the \fifo notation and to the use of
macros instead of token variables, Knuth’s \dolist
comes down to

\def\fifo{\afterassignment\tap
\let\nxt= }
\def\tap{\ifx\nxt\ofif\ofif\fi\process
\nxt\fifo} \def\ofif#1\fifo{\fi}

This general approach is indispensable for macro
writers. My less general approach can do a lot already,
for particular applications, as will be shown below. But,
: : :beware of its limitations.

2.1 Variations
The above \fifo can be seen as a template for encod-
ing tail recursion in TEX, with arguments taken from the
input stream one after another. An extension is to take
two arguments from the input stream at a time, with the
second argument to look ahead, via

\def\fifo#1#2{\process#1\ifx\ofif#2
\ofif\fi\fifo#2}

\def\ofif#1\ofif{\fi}

Note the systematics in the use of the parameter separ-
ator in \ofif.

And what about recursion without parameters? A nice
example of that is a variant implementation of Knuth’s
\iterate of the \loop, TEXbook, p.219

\def\iterate{\body\else\etareti\fi%
\iterate} \def\etareti#1\iterate{\fi}

(This \iterate contains only 5 tokens in contrast
with Knuth’s 11. The efficiency and the needed
memory is determined by the number of tokens in
\body, and therefore this 5 vs. 11 is not relevant.)

2.2 Variable number of parameters
TEX macros can take at most 9 parameters. The above
\fifo macro can be seen as a macro which is re-
lieved from that restriction. Every group, or admissible

token, in the input stream after \fifo up to and in-
cluding\ofif, will become an argument to the macro.
When the \ofif token is reached, the recursion will
be terminated.6

2.3 Unknown number of arguments
Tutelaers (1992), as mentioned by Eijkhout (1991),
faced the problem of inputting a chess position. The
problem is characterized by an unspecified number of
positions of pieces, with for the pawn positions the
identification of the pawn generally omitted. Let us
denote the pieces by the capital letters K(ing), Q(ueen),
B(ishop), (k)N(ight), R(ook), and P(awn), with the lat-
ter symbol default. The position on the board is indic-
ated by a letter a, b, c, : : : , or h, followed by a number,
1, 2, : : : , or 8. Then, for example,

\position{Ke1, Qd1, Na1, e2, e4}

should entail the invocations

\piece{K}{e1}\piece{Q}{d1}\piece{N}{a1}
\piece{P}{e2}\piece{P}{e4}

This can be done by an appropriate definition of
\position, and an adaptation of the \fifo tem-
plate, via

\def\position#1{\fifo#1,\ofif,}
\def\fifo#1,{\ifx\ofif#1\ofif
\fi\process#1\relax\fifo}
\def\ofif#1\fifo{\fi}
\def\process#1#2#3{\ifx\relax#3
\piece{P}{#1#2}\else\piece#1{#2#3}\fi}

With the following definition (simplified in relation to
Tutelaers)

\def\piece#1#2{ #1-#2}

we get K-e1 Q-d1 N-a1 P-e2 P-e4.

For an unknown number of arguments at two levels see
the Nested FIFO section.

2.4 Length of string
An alternative to Knuth’s macro \getlength,
TEXbook p.219, is obtained via the use of \fifo with

\newcount\length
\def\process#1{\advance\length1 }

Then\fifo aap noot\ofif\number\length

yields the length 7.7

5If a list has to be created, Knuth’s list datastructure might be used, however, simplifying the execution of the list. See
TEXbook Appendix D.2.

6Another way to circumvent the 9 parameters limitation is to associate names to the quantities to be used as arguments, let us
say via def’s, and to use these quantities via their names in the macro. This is Knuth’s parameter mechanism and is functionally
related to the so-called keyword parameter mechanism of command languages, and for example ADA.

7Insert \obeyspaces when the spaces should be counted as well.

Reprint MAPS#9 (92.2); Nov 1992 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage B FIFO and LIFO sing the BLUes 141

2.5 Number of asterisks
An alternative to Knuth’s \atest, TEXbook, p.375,
for determining the number of asterisks, is obtained via
\fifo with

\def\process#1{\if*#1\advance\acnt by1
\fi}\newcount\acnt

Then \fifo abc*de*\ofif \number\acnt
yields the number of asterisks: 2.8

2.6 Vertical printing
David Salomon treats the problem of vertical printing
in his courseware. Via an appropriate definition of
\process and a suitable invocation of \fifo it is
easily obtained.

\def\process#1{\hbox{#1}}
xy\vbox{\offinterlineskip\fifo abc\ofif}yx

yields xy
a
bcyx.

2.7 Delete last character of argument
Again an example due to David Salomon. It is related to
\deleterightmost, TEXbook p.379. Effective is
the following, where a second parameter for \fifo is
introduced to look ahead, which is inserted back when
starting the next recursion level

\def\gobblelast#1{\fifo#1\ofif}
\def\fifo#1#2{\ifx\ofif#2\ofif

\fi#1\fifo#2}
\def\ofif#1\ofif{\fi}

Then \gobblelast{aap} will yield aa.

2.8 Vowels, voilà
Schwarz (1987) coined the problem to print vowels in
bold face.9 The problem can be split into two parts.
First, the general part of going character by character
through a string, and second, decide whether the char-
acter at hand is a vowel or not.

For the first part use \fifo (or Knuth’s \dolist).
For the second part, combine the vowels into a string,
aeiou, and the problem can be reduced to the ques-
tion hchari 2 aeiou? Earlier, I used this approach in
searching a card in a bridge hand, van der Laan (1990,
the macro \strip). That was well-hidden under sev-
eral piles of cards, I presume? The following encoding
is related to \ismember, TEXbook, p.379

\newif\iffound
\def\loc#1#2{%locate #1 in #2

\def\locate##1#1##2\end{\ifx\empty##2%
\empty\foundfalse\else\foundtrue\fi}%
\locate#2#1\end}

Then \fifo Audacious\ofif yields Audacious,
with

\def\process#1{\uppercase{\loc#1}%
{AEIOU}\iffound{\bf#1}\else#1\fi}

2.9 Variation
If in the invocation \locate#2#1 a free symbol
is inserted between #2 and #1, then \loc can be
used to locate substrings.10 And because fstring1 2
string2g ^ fstring2 2 string1g) string1 =
string2, the variant can be used for the equality test
for strings. See also the Multiple FIFO subsection, for
general and more effective alternatives for equality tests
of strings.

2.10 Processing lines
What about processing lines of text? In official, judi-
cial, documents it is a habit to fill out lines of text with
dots.11 This can be solved by making the end-of-line
character active, with the function to fill up the line. A
general approach where we can \process the line,
and not only append to it, can be based upon \fifo.

One can wonder, whether the purpose can’t be better
attained by filling up the last line of paragraphs by dots,
because TEX justifies with paragraphs as units.

2.11 Processing words
What about handling a list of words? This can be
achieved by modifying the \fifo template into a
version which picks up words, \fifow, and to give
\processw an appropriate function.

\def\fifow#1 {\ifx\ofifw#1\ofifw\fi
\processw{#1}\ \fifow}

\def\ofifw#1\fifow{\fi}

2.12 Underlining words
In print it is uncommon to emphasize words by un-
derlining. Generally another font is used, see discus-
sion of exercise 18.26 in the TEXbook. However, now
and then people ask for (poor man’s) underlining of
words. The following \processw definition under-
lines words picked up by \fifow

\def\processw#1{\vtop{\hbox{\strut#1}
\hrule}}

8As the reader should realize, this works correctly when there are first level asterisks only. For counting at all levels
automatically, a more general approach is needed, see Knuth’s \ctest, p.376.

9His solution mixes up the picking up of list elements and the process to be applied. Moreover, his nesting of\if-s in order
to determine whether a character is a vowel or not, is not elegant. Fine (1992)’s solution, via a switch, is not elegant either.

10Think of finding ‘bb’ in ‘ab’ for example, which goes wrong without the extra symbol.
11The problem was posed at EuroTEX ’91 by Theo Jurriens.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#9 (92.2); Nov 1992

142 FIFO and LIFO sing the BLUes Bijlage B

Then

\leavevmode\fifow leentje leerde lotje
lopen langs de lange lindenlaan \ofifw
\unskip.

yields leentje leerde lotje lopen langs de lange
lindenlaan.

3 Nested FIFO
One can nest the FIFO paradigm. For processing lines
word by word, or words character by character.

3.1 Words character by character
Ex11.5, can be solved by processing words character
by character. A solution to a slightly simplified version
of the exercise reads

\fifow Though exercise \ofifw \unskip.
%with
\def\processw#1{\fifo#1\ofif}
\def\process#1{\boxit#1}
\def\boxit#1{\setbox0=\hbox{#1}\hbox
{\lower\dp0\vbox{\offinterlineskip\hrule
\hbox{\vrule\phantom#1\vrule}\hrule}}}

yields .

In the spirit of \dolist..., ex11.5, is

%variant neglecting word structure
\def\fifo{\afterassignment\tap
\let\nxt= }
\def\tap{\ifx\nxt\ofif\ofif

\fi\process\nxt\fifo}
\def\ofif#1\fifo{\fi}
\def\process#1{\if\space\nxt\
\else\boxit#1\fi}
\fifo Though exercise\ofif.

with the same result .

3.2 Mark up natural data
Data for \h(v)align needs & and \cr marks. We
can get plain TEX to append a \cr at each (natural)
input line, TEXbook p.249. An extension of this is to
get plain TEX to insert \cs-s, column separators, and
\rs-s, row separators, and eventually to add \lr, last
row, at the end, in natural data. For example prior to an
invocation of \halign, one wants to get plain TEX to
do the transformation

P*ON

DEK*
) P\cs*\csO\csN\rsD\csE\csK\cs*\lr

This can be done via

$$\vcenter{\hbox{P*ON}\kern.5ex
\hbox{DEK*}} \,\Rightarrow\,

%And now right, mark up part
\bdata P*ON
DEK*
\edata\markup\data
\vcenter{\hbox{\data}}$$

with

\def\bdata{\bgroup\obeylines\store}
\def\store#1\edata{\egroup\def\data{#1}}
\def\markup#1{\ea\xdef\ea#1\ea{\ea

\fifol#1\ofifl}}

and auxiliaries

\let\nx=\noexpand
{\catcode‘\ˆˆM=13
\gdef\fifol#1ˆˆM#2{\fifo#1\ofif%

\ifx\ofifl#2\nx\lr\ofifl
\fi\nx\rs\fifol#2}}

\def\ofifl#1\ofifl{\fi}
\def\fifo#1#2{#1\ifx\ofif#2\ofif

\fi\nx\cs\fifo#2}
\def\ofif#1\ofif{\fi}
%with for this example
\def\cs{{\sevenrm{\tt\char92}cs}}
\def\rs{{\sevenrm{\tt\char92}rs}}
\def\lr{{\sevenrm{\tt\char92}lr}}

The above came to mind when typesetting
crosswords,12 van der Laan (1992b), while striving
after the possibility to allow natural input, independ-
ent of \halign processing.

4 Multiple FIFO
What about FIFO for more than one stream? (For sim-
plicity the streams are stored in def-s, because \read
inputs lines.) For example comparing strings, either
for equality or with respect to lexicographic ordering?
Eijkhout (1992, p.137, 138) provided for these applic-
ations the macros

\ifAllChars...\Are...\TheSame,

and

\ifallchars...\are...\bfore.

The encodings are focused at mouth processing. The
latter contains many \expandafter-s.

A basic approach is: loop through the strings character
by character, and compare the characters until either
the assumed condition is no longer true, or the end of
either one of the strings, has been reached.

12With *, or t, given an appropriate function.

Reprint MAPS#9 (92.2); Nov 1992 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage B FIFO and LIFO sing the BLUes 143

4.1 Equality of strings
The TEX-specific encoding, where use has been made
of the property of \ifx for control sequences, reads

\def\eq#1#2{\def\st{#1}\def\nd{#2}
\ifx\st\nd\eqtrue\else\eqfalse\fi}

with auxiliary \newif\ifeq.

As a stepping stone for lexicographic comparison, con-
sider the general encoding

\def\eq#1#2{\continuetrue\eqtrue
\loop\ifx#1\empty\continuefalse\fi

\ifx#2\empty\continuefalse\fi
\ifcontinue \nxte#1\nxtt \nxte#2\nxtu

\ifx\nxtt\nxtu
\else\eqfalse\continuefalse\fi

\repeat
\ifx\empty#1\ifx\empty#2
\else\eqfalse\fi\else\eqfalse\fi}

with auxiliaries

\newif\ifcontinue\newif\ifeq
\def\nxte#1#2{\def\pop##1##2\pop{%
\gdef#1{##2}\gdef#2{##1}}\ea\pop#1\pop}

Then

\def\t{abc}\def\u{ab}
\eq\t\u\ifeq$abc=ab$\else$abc\not=ab$\fi

yields abc 6= ab.

4.2 Lexicographic comparison
Assume that we deal with lower case and upper case
letters only. The encoding of \sle—String Less or
Equal—follows the same flow as the equality test, \eq,
but differs in the test,because of TEX’s expansion mech-
anisms

\def\sle#1#2{%#1, #2 are def’s
\global\sletrue {\continuetrue
\loop\ifx#1\empty\continuefalse\fi

\ifx#2\empty\continuefalse\fi
\ifcontinue\nxte#1\nxtt\nxte#2\nxtu

\ea\ea\ea\lle\ea\nxtt\nxtu
\repeat}
\ifsle\ifx\empty#2\ifx\empty#1

\else\global\sltfalse\fi\fi
\fi}

with auxiliaries (lle=Letter Less or Equal)

\newif\ifcontinue\global\newif\ifsle
\def\nxte#1#2{\def\pop##1##2\pop{%
\xdef#1{##2}\xdef#2{##1}}\ea\pop#1\pop}
\def\lle#1#2{\uppercase{\ifnum‘#1=‘#2}
\else\continuefalse

\uppercase{\ifnum‘#1>‘#2}{}\global
\slefalse\fi

\fi}

For example

\def\t{ABC}\def\u{ab}\sle\t\u
\ifsle$ABC<ab$\else$ABC>ab$\fi

yields ABC > ab,
and

\def\t{noo}\def\u{apen}\sle\t\u
\ifsle$noo<apen$\else$noo>apen$\fi

yields noo > apen.

The above can be elaborated with respect to\read for
strings each on a separate file, to strings with accented
letters, to the inclusion of an ordering table, and in gen-
eral to sorting. Some of the mentioned items will be
treated in Sorting in BLUe.

5 LIFO
A modification of the \fifo macro—
\process{#1} invoked at the end instead of at the
beginning—will yield the Last-In-First-Out template.
Of course LIFO can be applied to reversion ‘on the fly,’
without explicitly allocating auxiliary storage.13

\def\lifo#1#2\ofil{\ifx\empty#2
\empty\ofil\fi\lifo#2\ofil\process#1}

\def\ofil#1\ofil{\fi}

With the identity—\def\process#1{#1}, or the
invoke \process#1 replaced by #114—the template
can be used for reversion on the fly For example
\lifo aap\ofil yields paa.

5.1 Change of radix
In the TEXbook a LIFO exercise is provided at p.219:
print the digits of a number in radix 16 representation.
The encoding is based upon the property

(N � rk) mod r = dk; k = 0; 1; : : : ; n;

with radix r, coefficients dk, and the number represent-
ation

N =

nX

k=0

dk r
k:

13Johannes Braams drew my attention to Knuth and MacKay (1987), which contained among others
\reflect...\tcelfer. They compare #1 with \empty, which is nice. The invocation needs an extra token,\empty—a
so-called sentinel, see Wirth (1976)—to be included before \tcelfer, however. (Knuth and Mackay hide this by another
macro which invokes\reflect...\empty\tcelfer). My approach requires at least one argument, with the consequence
that the empty case must be treated separately, or a sentinel must be appended after all.

14Remember the stack size limitations.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#9 (92.2); Nov 1992

144 FIFO and LIFO sing the BLUes Bijlage B

There are two ways of generating the numbersdk: start-
ing withdn, or the simpler one starting withd0, with the
disadvantage that the numbers are generated in reverse
order with respect to printing. The latter approach is
given in TEXbook p.219. Adaptation of the LIFO tem-
plate does not provide a solution much different from
Knuth’s, because the numbers to be typeset are gen-
erated in the recursion and not available in the input
stream.

6 Acknowledgements
Włodek Bzyl and Nelson Beebe are kindly acknow-
ledged for their help in clearing up the contents and
correcting my use of English, respectively.

7 Conclusion
In looking for a fundamental approach to process ele-
ments sequentially—not to confuse with list processing
where the list is also built up, see TEXbook Appendix
D.2, or with processing of every token in the input
stream, see ex11.5 or p.376—TEX templates for FIFO
and LIFO, emerged.

The templates can be used for processing lines, words
or characters. Also processing of words line by line,
or characters word by word, can be handled via nested
use of the FIFO principle.

The FIFO principle along with the look ahead mechan-
ism is applied to molding natural data into representa-
tions required by subsequent TEX processing.

Courseware might benefit from the FIFO approach to
unify answers of the exercises of the macro chapter.

TEX’s \ifx... and \if... conditionals are non-
commutative with respect to their first level operands,
while the similar mathematical operations are, as are
the operations in current high-level programming lan-
guages.

Multiple FIFO, by comparing strings lexicographically,
has been touched upon.

References
[1] Eijkhout, V (1991): TEX by Topic. Addison-

Wesley.
[2] Fine, J (1992): Some basic control macros for

TEX, TUGboat 13, no. (1), 75–83.
[3] Hendrickson, A (priv. comm.)
[4] Kabelschacht, A (1987): \expandafter vs.

\let and \def in conditionals and a general-
ization of plain’s \loop. TUGboat 8, no. (2),
184–185.

[5] Knuth, D.E (1968): The Art of Computer Pro-
gramming. 1. Fundamental Algorithms. Addison-
Wesley.

[6] Knuth, D.E (1984): The TEXbook. Addison-
Wesley.

[7] Knuth, D.E, P. Mackay (1987): Mixing right-
to-left texts with left-to-right texts. TUGboat 7,
no. (1), 14–25.

[8] Laan, C.G van der (1990): Typesetting Bridge via
TEX, TUGboat 11, no. (2), 91–94.

[9] Laan, C.G van der (1992a): Tower of Hanoi, re-
visited. TUGboat 13, no. (1), 91–94.

[10] Laan, C.G van der (1992b): Typesetting Cross-
words via TEX. EuroTEX ’92, 217–224. Also
MAPS92.1.

[11] Laan, C.G van der (1992c): Table Diversions.
EuroTEX ’92, 191–211. Also a little adapted in
MAPS92.2.

[12] Laan, C.G van der (in progress): Sorting in BLUe.
MAPS93.1. (For heap sort encoding in plain TEX,
see MAPS92.2)

[13] Salomon, D (1992): Advanced TEX course: In-
sights & Hindsights, MAPS 92 Special. 254p.

[14] Schwarz, N (1987): Einführung in TEX, Addison-
Wesley.

[15] Tutelaers, P (1992): A font and a style for type-
setting chess using LATEX or TEX. TUGboat 13,
no. (1), 85–90.

[16] Wirth, N (1976): Algorithms + Data Structures
= Programs. Prentice-Hall.

Reprint MAPS#9 (92.2); Nov 1992 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

