
Bijlage Z Sorting in BLUe 149

Sorting in BLUe

Kees van der Laan

Hunzeweg 57,
9893PB Garnwerd, The Netherlands

cgl@rug.nl

Abstract

Macros for number and lexicographic sorting are supplied. Data can originate from the copy, from
file, or generated automatically. Lexicographic sorting allows words with ligatures and diacritical
marks. Applications treated are: sorting with respect to report generation with TEX as a database tool,
sorting and compressing index.tex, Knuth’s index reminders file, and sorting control sequences
separately.
It is illustrated by various examples that a set can be sorted within TEX once the ordering of the set is
defined and encoded in a comparison macro, in compliance with the parameter macro \cmp.

Keywords: Sorting, index preparation, database hand-
ling, multiple sorting keys, macro writing, education.

Introduction
Sorting is a fundamental process. With respect to TEX,
sorting was needed by Amy Hendrickson for sorting
address labels [15], by Alan Jeffreys [16] and by Lin-
coln Durst [9] for sorting index items, to name but a few.
Donald Arseneau, Ian Green, Ronald Kappert [19], and
myself [25], have used sorting within TEX for citation
lists. For aspects with respect to index generation see
[8] and [31]. Available is Makeindex [6], [27], to co-
operate with LATEX, and Salomon’s plain TEX version
of it [33].

All the sorting with respect to index items are external,
outside of TEX.1 This is practical, but sorting within
plain is possible.2 An advantage of TEX is that it allows
for abstraction with respect to the kind of data.

Normally, number sorting and lexicographic sorting are
done by different routines. This is necessary because
the exchange and comparison are generally tied up with
the data type. Within TEX the exchange is independent
of the type, and the relational operator can be used as
parameter by the sorting macro. Furthermore, second-
ary (and more) keys can be accounted for. The latter
facility is not always available in the external sorters.

The efficiency of a sorting process depends upon the

character of the data. A nearly sorted list, or a small
number of items, can be handled effectively by a linear
sorting routine. A non-increasing sorted list can better
be walked through in reverse order than sorted. In gen-
eral sorters of complexity O(n logn) are efficient for
random data. Quick sort comes in handy when only
part of an array has to be sorted.

For a discussion of the wide area of sorting and search-
ing, see [20], and for programming templates, see [37].3

For the Dutch speaking community there is the nice in-
troduction [2].

The challenge is to encode O(n logn) sorting al-
gorithms in TEX in a simple but flexible way.4 Issues
to address are
� a data structure must be chosen
� macros to fill the data structure
� abstracting from the sorting algorithm—heap sort,

quick sort, : : :
� parameterizing the comparison and exchange oper-

ations,
� abstracting in lexicographic sorting from the

ASCII5 ordering, and the
� handling of ligatures and diacritical marks.

In the first section the printing of sequences is treated.
The storing of the data is considered in the second sec-
tion. The sorting is elaborated on in the sections 3 and 4:
sorting of numbers, respectively lexicographic sorting

1However, citations lists are sorted within TEX.
2If not for the encoding challenge.
3Any sorting macro should implement the algorithm with the comparison and exchange operator as parameters.
4Compatibility of number and lexicographic sorting has been strived after, where the particular sorting variant can be realized

by appropriate \let-equals of the parameters.
5ASCII is the abbreviation of American Standard Code for Information Interchange. An ASCII table—associating each

character with a number—is provided in the TEXbook, p. 367.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#10 (93.1); May 1993

150 Sorting in BLUe Bijlage Z

in the presence of the Dutch ij-ligature and diacritical
marks.6 In the fifth section the applications: sorting
address labels, sorting and compressing Knuth’s index
reminders file, and sorting of control sequences sep-
arately, are dealt with. In the appendices I supplied
the listings of the files: heap.tex, quick.tex,
sort.tex and my testdriver sort.tst.

There are so many details in sorting and the TEX en-
coding of it, that I hope that the remainder is not too
concise for those who are really interested in the details
of the TEX encoding. On the other hand, I hope it won’t
contain too much for those who just like to get an idea
of the possibilities of TEX with respect to sorting.7

Approach. The three processes: initialization, sort-
ing and typesetting, are separately and independently
designed.

For filling the data structure I considered it handy to
have a few macros which store from
� copy (\seq...\qes),
� a file (\storefrom), or
� a process, which (randomly) generate elements

(\storerandomn, \storerandomw).

For sorting I provided
� the Ben Lee User level macros

(\sortn, \sortaw, \sortw), and
� the blue collar macros (\heapsort,
\quicksort).

For typesetting the data structure I used the macros
\prtn, respectively \prtw.8

Files. The file sort.tex contains the macros
for storing (\seq: : :\qes, \storefrom, and
\storerandomn, \storerandomw), for sorting
(\sortn, \sortaw, \sortw), and for typeset-
ting (\prtn, \prtw, and \prtind). Apart from
these, the file contains the common definitions of the
\heapsort and \quicksort macros, as well as
variants for the parameter macros.

The files heap.tex and quick.tex contain the
\heapsort, respectively \quicksort, macro
along with specific auxiliaries.

My testdriver is the file sort.tst.

Definitions and notations. A sequence is defined as
a row of numbers, respectively words, separated by

spaces. The structure \csnamehki\endcsname, is
associated with an array with index k = 1; 2; : : : ; n.
To denote in the documentation a value pointed by
the number hki, I made use of \valfhkig, with
\def\val#1{\csname#1\endcsname}. Macro
names take suffix -n, -w, when specific for number, re-
spectively word data. For example \sortn stands for
sort numbers, \prtw stands for print words. I have
typeset the in-line results of the examples in bold face.

For transferring values to a macro, I generally refrained
from the (optional) parameter mechanism, as it is used
in nowadays high-level programming languages. In-
stead I used Knuth’s parameter TEXnique, which comes
down to providing definitions and using these by in-
vokations, eventually after a \let-equal.

I have used the shorthand notation \ea, \nx, and
\ag for \expandafter, \noexpand, respectively
\aftergroup. \k is used as counter to loop through
the values 1; 2; : : : ; n, the index domain. \n con-
tains the maximum number of sequence elements, n.
\ifcontinue is used for controlling loops. The ar-
ray and the counter \status had to be maintained
globally, because of the nesting of loops.

1 Typesetting elements
After sorting the typesetting must be done. In gen-
eral this is dependent upon the application and will
demand Hi-TEXnique.9 For simplicity and in order to
concentrate on the sorting aspects I typeset the sequence
element after element, via \prtn, or \prtw.

Example (Typesetting a number sequence)10

\def\1{314}\def\2{1}\def\3{27}\n3 \prtn

yields: 314, 1, 27.

Example (Typesetting a word sequence)

\def\1{ik}\def\2{j\ij}\def\3{h\ij}\n3 \prtw

yields: ik jij hij.

1.1 TEX encoding
Design choice. The elements are typeset in the de-
fault font. The separator is parameterized into \sep.
Number sequences are typeset in range notation.

Input. The array \hki; k = 1; 2; : : : ; n; and the
counter \n with value hni,11 and optionally a value
hkzeroi;� 0, in \kzero.

6Adaptable to other ligatures and accents.
7Ben Lee User, BLU for short, can always page through the provided headings and grasp ‘what it is all about’ from the

included examples.
8The file sort.tex contains also \prtind, to typeset index.tex.
9Think for example of Knuth’s typesetting of the index of the TEXbook, p. 261–263. It is in the chapter on OTR-s (Output

Routines) with aura ‘: : : the following material will take you all the way to the rank of Grandmaster, i.e., a person who can
design output routines.’

10In the examples \def-s are used to define a one digit as control symbol. \csname...\endcsname must be used for
two or more digits.

11The defaults for the parameter \sep—\sepn, respectively \sepw—are provided in the file sort.tex.

Reprint MAPS#10 (93.1); May 1993 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage Z Sorting in BLUe 151

Result. The array nhkzero + 1i : nhni is typeset.
\kzero is default 0.

The macros
\def\prts{{\k\kzero%print \1,...\n
\def\sep{\let\sep\sepw}%
\loop\ifnum\k<\n\advance\k1

\sep\csname\the\k\endcsname
\repeat}}\let\prtw\prts

%
\def\prtn{{\k\kzero%Print ranges
\loop\ifnum\k<\n\advance\k1
\ea\prc\csname\the\k\endcsname
\repeat\prtfl}}

%
\def\prc#1{\init{#1}\def\prc##1{%
\ifnum##1=\lst\else\ifnum##1=\slst

\lst\slst\advance\slst1 \else
\prtfl\sepn\init{##}\fi\fi}}

%
\def\prtfl{\the\frst\ifnum\frst<\lst
\advance\frst1 \ifnum\frst=\lst\sepn
\else\nobreak--\nobreak\fi\the\lst}

%
\def\init#1{\frst#1\lst#1\slst#1\advance
\slst1{}}

Explanation. Abstraction of the lower index into
\kzero, default 0, makes it possible to typeset parts of
the array. The elements are separated by the separator
given in, \sepn, respectively \sepw. The encoding
is TEX specific. Each first time the loop is traversed the
invokation of \sep redefines itself with the actual sep-
arator. On subsequent traversals the provided separator
is typeset.

The replacement text of \prtn and \prtw is a group,
and therefore the loop’s \body cannot redefine the
\body of an outer loop.

In order to account for number ranges \prtn uses
\prc, a simplified version of \processc, borrowed
from [25].

2 Storing a sequence
As data structure the following TEX-specific encoding12

is used.

\csnamehki\endcsname; k = 1; 2; :::; n:

Writing to, respectively reading from, the kth element
goes via13

\ea\def\csnamehki\endcsnamefhkthelem:ig;

and
\csnamehki\endcsname:

When a counter \k, which takes the values 1; 2; : : : ; n,
is used, then TEX requires \the\k for the index num-
ber hki.

To get the hang of it. The reader must be aware of
the differences between
� the index number, hki
� the counter variable \k, with the value hki as index

number
� the control sequences \hki; k = 1; 2; : : : ; n, with

as replacement texts the items to be sorted.

When we have \def\3{4} \def\4{5}
\def\5{6} then
\3 yields 4,
\csname\3\endcsname yields 5, and
\csname\csname\3\endcsname\endcsname
yields 6.

Similarly, when we have
\k3 \def\3{name} \def\name{action} then
\the\k yields 3,
\csname\the\k\endcsname yields name, and
\csname\csname\the\k\endcsname\endcsname
yields action.14 To exercise shorthand notation the last
can be denoted by \val{\val{\the\k}}.

Another \csname...will execute \action, which
can be whatever you provided as replacement text.

2.1 From copy
Elements available in the copy of an author are stored
via

\seqhsequencei\qes.15

Example (Storing numbers from copy)
\seq1 314 27\qes stores the elements. For veri-
fication \prtn yields: 1, 314, 27.

Example (Storing words from copy)
\seq ik j{\ij} h\ij\qes stores the elements.
For verification \prtw yields: ik jij hij.

TEX encoding
Design choice. The sequence is stored in an array via
the FIFO TEXnique [23]. The process is independent
of the type. Numbers or words (text) can be stored by
the same macro.

Input. Data from the user copy preceded by \seq
and followed by the separator \qes. The elements
must be separated by a , which is not gobbled by TEX’s
mouth. (In practice this means that words ending with
a control sequence—\i, \j, or for Dutch \ij—must
have braces around that control sequence.)

12Functionally equivalent to an array. Amy Hendrickson [15] used arrays in TEX although she did not call them as such.
Adrew Greene [13], while playing around in TEX’s mind, associated already the array concept with \csname... .

13Actually, I used \gdef-s, \xdef-s, and \the\k.
14Confusing, but powerful!
15Mnemonics: sequence. This abstracts from all the \def-s, casu quo \csname...\endcsname-s, as provided in the

examples.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#10 (93.1); May 1993

152 Sorting in BLUe Bijlage Z

Result. The array \hki; k = hkzero + 1i; 2; : : : ; n;
with the sequence elements as values. The counter \n
will contain the value hni. hkzeroi is a bias, with
default value 0.

The macros
\def\seq#1\qes{%

\k\kzero\fifow#1 \wofif{} }
%
%and auxiliaries
\def\fifow#1 {\ifx\wofif#1\n\k\wofif\fi
\processw{#1}\fifow}

\def\wofif#1\fifow{\fi}
%
\def\processw#1{\advance\k1
\ea\gdef\csname\the\k\endcsname{#1}}

Explanation. The idea is that the elements from the
copy enclosed by \seq and \qes—and appended in
the macro \seq by \wofif{} 16—are processed
as arguments of the macro \fifow. This macro has
a as endseparator. When \wofif is encountered
the number of elements is stored in \n and the recur-
sion is terminated by the invokation of \wofif. The
latter macro gobbles all the tokens—in this case \fi
\processw{#1}—up to and including the next in-
vokation of\fifow. Its replacement text inserts a new
\fi, to correct the disturbed \if...\fi balance.

The macro \processw maintains the (index) counter
and actually stores each element, globally.

2.2 From a file
In applications the words (and other information like
page numbers17 for index preparation) are gathered into
a file for later, usually external, processing.

Example (Storing from file)
If the file index.tex contains the records

word !3 314
word !1 27
tag !1 1
word !1 1

then

\storefrom{index.tex}

stores the elements from the file into the array.

For verification the array is printed by

\begin{quote}
\let\sepw\\\prtw\unskip.
\end{quote}

with result18

word !3 314
word !1 27
tag !1 1
word !1 1

TEX encoding
Specification. Records from a user specified file are
to be read into the array. On termination the counter
\n contains the number of stored elements.

Input. The file with the elements given per line.
\kzero is default 0.

Result. The array \hki; k = hkzeroi + 1; 2; : : : ; n;
with the elements as values. \n contains the upper
bound of the array, hni.

The macro
\def\storefrom#1{%#1 is file name
\openin\rec#1 \k\kzero \continuetrue
\loop\ifeof\rec\continuefalse\fi
\ifcontinue\advance\k1 \read\rec to\xyz
\ea\global\ea\let\csname\the\k\endcsname\xyz
\repeat\advance\k-1\n\k\closein\rec}

Explanation. The \newread\rec has been spe-
cified in the file sort.tex. TEX appends a \par to
the opened file, therefore I had to decrement the counter
\k by 1 at the end. After \rec#1 a is mandatory; an
empty group is not recognized as terminator. Because
of the lack of an \ifnoteof and of the way \loop
has been encoded—TEXbook, p. 219, an \else can-
not be used in the body of the loop as part of the
termination—I used the \newif\ifcontinue for
controlling the loop. The bias hkzeroi is handy for
merging index files.

2.3 From a generator
Although the automatic generation of data is only used
in the tests, it seemed worthwhile for me to include
these macros too, as an example of how data can be
created and stored.

Numbers
A random number generator—the macro \rnd—
has been encoded in TEX by Reid [30]. I added
\storerandomn to store the specified number of
random numbers in the array.

Example (Storing random generated numbers)

\rndnum5 \storerandomn5\prtn

yields:19 1, 88, 62, 27, 1.

16The empty group is needed because spaces after control sequences are gobbled. Beware!
17Known by the OTR—Output Routine—only. For writing the index reminders to the file index.tex see the TEXbook,

p. 424, the macro \writeit and auxiliaries. A simplified encoding will be provided in Manmac BLUes, see elsewhere in this
MAPS.

18Note that I had to add an \unskip. \\ is LATEX’s newline.
19More clearly, I could have provided \rndnum=5 and \storerandomnf5g, to emphasize the different syntactical roles

of the number 5.

Reprint MAPS#10 (93.1); May 1993 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage Z Sorting in BLUe 153

The macros. The encoding of my macro is straight-
forward, once I decided to use Reid’s random generator
macro, \rnd [30].

\def\storerandomn#1{%#1 number
%of r-numbers

\n#1\k0{\loop\ifnum\k<\n\advance\k1 %
\rnd\ea

\xdef\csname\the\k\endcsname{%
\the\rndval}%

\repeat}}
%
\def\rnd{\global\multiply\rndnum371
\global\advance\rndnum1
\ifnum\rndnum>99999
\rndtmp\rndnum \divide\rndtmp100000
\multiply\rndtmp100000
\global\advance\rndnum-\rndtmp
\fi\global\rndval\rndnum
\global\divide\rndval1000 }

Words
Reid [30] introduced his macros for generating random
paragraphs. I added \storerandomw to store the
specified number of random words in the array.

Example (Storing random generated words)

\rndnum5 \storerandomw5\prtw

yields: ajqjjhfn fyi uednas ahw zr.

The macros
\def\storerandomw#1{%#1 number of words
\n#1\nw\n{\loop\ifnum0<\nw
{\ag\defarr\ag{\randomword}}%

\advance\nw-1
\repeat}}%end s-r-w.

%
\def\defarr{\ea\gdef%

\csname\the\nw\endcsname}
%
\def\randomword{\rnd\nc\rndval
\divide\nc15\advance\nc2
\loop\ifnum0<\nc\randomchar%

\advance\nc-1
\repeat}%end r-word

%
%Random character is modified
\def\randomchar{\rnd
\multiply\rndval29\divide\rndval100
\ifnum\rndval=26\rndval0 \fi
\ifnum\rndval>26\rndval4 \fi

%Mod cgl: I \ag-ed the letter
\ea\ag\ifcase\rndval
a\or b\or c\or d\or e\or f\or g\or h\or
i\or j\or k\or l\or m\or n\or o\or p\or
q\or r\or s\or t\or u\or v\or w\or x\or
y\or z\fi}

Explanation. Although the same approach as for
storing random generated numbers has been followed,
I had to modify the code due to the need for intermedi-
ate storing of each random generated letter. A random

word consists essentially of random numbers, mapped
onto letters. The numbers are generated in an inner
loop, via Reid’s macro \randomchar. Because of
the nesting of loops I had to group the inner loop. Real-
izing this, prompted a TEX specific way for storing the
letters generated in the inner loop. The letters are placed
after the enclosing group via \aftergroup. When
the group is ended the word is stored as replacement
text of \hnwi. (The tokens for the definition are \ag-
ed before the inner loop; the closing brace is already
after the innerloop.)

3 Sorting of numbers
Example
\seq314 1 27\qes\sortn yields: 1, 27, 314.

3.1 Design choices
The backbone of my ‘sorting in an array’ is the data
structure

\csnamehki\endcsnamefhkthelm:ig; k = 1; 2; : : :; n;

with k the role of array index and n the number of items
to be sorted.

The encoding is parameterized by \cmp, the compar-
ison macro, which differs for numbers, strings, and in
general when more sorting keys have to be dealt with.20

The result of the comparison is stored globally in the
counter \status.

3.2 TEX encoding
Input. The elements are assumed to be stored in the
array \hki, k = 1; 2; : : :n: The counter \n must con-
tain the value hni.

Result. The sorted array \1, \2, : : :\hni, with
\val1 � \val2 � : : :� \valhni.

The macros
\def\sortn{\let\cmp\cmpn\sort\prtn}
%
\def\cmpn#1#2{%#1, #2 must expand into numbers
%Result: \status= 0, 1, 2 if
% \val{#1} =, >, < \val{#2}.
\ifnum#1=#2\global\status0 \else
\ifnum#1>#2\global\status1 \else

\global\status2 \fi\fi}
%
\def\sort{\heapsort}.

Explanation. The above shows the structure of each
of the Ben Lee User sorting macros.

Sorting: \sortn. A (pointer)\def\sortn{...}
is introduced which has as replacement text the setting
of the parameter \cmp, and the invokations of the
actual sorting macro and the macro for typsetting the
sorted sequence.

20For an example see the sorting of Knuth’s index reminders in section 5.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#10 (93.1); May 1993

154 Sorting in BLUe Bijlage Z

Comparison operation: \cmpn. The result of the
comparison is stored globally in the counter\status.
The values 0; 1; 2 denote =; >;<, respectively.

Exchange operation: \xch. The values can be ex-
changed via21

\def\xch#1#2{%#1, #2 counter variables
\edef\aux{\csname\the#1\endcsname}\ea
\xdef\csname\the#1\endcsname{\csname
\the#2\endcsname}\ea

\xdef\csname\the#2\endcsname{\aux}}.

3.3 Some testing
Apart from the examples as given above, \sortn has
been tested on sequences of random numbers. Some
idea of the efficiency was obtained and no reasonable
restrictions with respect to the number of items to be
sorted, other than the installation limitations, were en-
countered. For this purpose use has been made of Reid’s
random number generator in TEX, \rnd [30].

Timings. On my 8086 MS-DOS PC \sortn
(without time needed to create the array, but with the
time needed to write the sorted array to the dvi-file) had
the (near-linear) performance

No � Time
15 13 seconds
50 1 minute

200 5 minutes.

The University’s VAX865022 needed � 1:75 minutes
for sorting 500 numbers.23 The measurements were
done with \heapsort as sorting macro.

3.4 Variation
For short sequences algorithms of complexity O(n2)
are generally used.24

%O(N*N) sorting.
\def\sort{\bubblesort}
%
\def\bubblesort{%Data in \1, \2,...\<n>.
{\loop\ifnum1<\n{\k\n

\loop\ifnum1<\k\advance\k-1 \cmp\k\n
\ifnum1=\status\xch\k\n\fi
\repeat}\advance\n-1
\repeat}}%end \bubblesort

4 Lexicographic sorting
Given the blue collar workers \heapsort, respect-
ively \quicksort, we have to encode the compar-
ison macro in compliance with the parameter macro

\cmp. But, : : : lexicographic sorting is more complex
than number sorting. We lack a general comparison op-
erator for strings,25 and we have to account for ligatures
and diacritical marks.

In creating a comparison macro for words, flexibility
must be built in with respect to the ordering of the
alphabet, and the handling of ligatures and diacritical
marks.

Example (Sorting ASCII words)

\seq a b aa ab bc bb aaa\qes\sortw
yields: a aa aaa ab b bb bc.

Example (Sorting words with ij-ligature)

\seq{\ij}st{\ij}d {\ij} {\ij}s in tik
t\ij\qes\sortw

yields: in tik tij ij ijs ijstijd.

Example (Sorting accented words)

\seq b\’e b\‘e \’a\’a ge\"urm geur aa a
ge{\ij}kt be ge\"\i nd gar\c con\qes
\sortw

yields: a aa áá be bé bè garçon geı̈nd geur geürm
geijkt.

Reculer pour mieux sauter. Because of the com-
plexity and the many details involved I recede with
simplified cases as stepping stones. I’ll first guide you
through the encoding of the comparison macro for
� one-(ASCII)letter-words, and
� ASCII strings, of undetermined length,

after which we will come back to the main track of the
encoding of the general comparison macro.

One-(ASCII)letter-words. The issue is to encode the
comparison macro, in compliance with the parameter
macro \cmp. Let us call this macro \cmpolw.26 Its
task is to compare one-letter words and store the result
of each comparison globally in the counter \status.
As arguments we have \def-s with one letter as re-
placement text.

\def\cmpolw#1#2{%#1, #2 are def-s
%Result: \status= 0, 1, 2 if
% \val{#1} =, >, < \val{#2}.
\ea\chardef\ea\cone\ea‘#1{}%
\ea\chardef\ea\ctwo\ea‘#2{}%
\global\status0 \lge\cone\ctwo}

%
\def\lge#1#2{%#1, #2 are letter values

21For a better and more general macro, see section 4 about lexicographic sorting. Here the definitions are completely
expanded, which is not necessary and therefore inefficient.

22Just to give the reader an idea because VMS is a time sharing system.
23As expected with 0–99 as printed result. Neat!
24A nice example of encoding nested loops. Should be part of courseware about macro writing in TEX.
25It is not part of the language, nor provided in plain. Victor Eijkhout [10] supplied one. The (limited) predecessor of my

comparison macro has appeared in [23]. Those macros don’t abstract from the ASCII ordering or allow for accented words and
ligatures.

26Mnemonics: compare one letter words.

Reprint MAPS#10 (93.1); May 1993 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage Z Sorting in BLUe 155

%Result: \status= 0, 1, 2 if #1 =, >, < #2.
\ifnum#1>#2\global\status1 \else
\ifnum#1<#2\global\status2 \fi\fi}

%
\seq z y A B a b d e m n o p z z u v c g
q h j I i l k n t u r s f Y\qes
\let\cmp=\cmpolw\sort\prtw

The above yields: A B I Y a b c d e f g h i j k l m n n
o p q r s t u u v y z z z.

Explanation \cmpolw.. In order to circumvent the
abundant use of \expandafter-s, I needed a two-
level approach: at the first level the letters are ‘derefer-
enced,’ and the numerical value of each replacement
text is provided as argument to the second level macro,
\lge.27

ASCII words. The next level of complexity is to al-
low for strings, of undetermined length and composed
of ASCII letters. Again the issue is to encode the com-
parison macro, in compliance with \cmp. Let us call
the macro \cmpaw28. Its task is to compare ASCII
words and store the result of each comparison globally
in the counter \status.

The problem is how to compare strings letter by let-
ter. Empty strings are equal. This provides a natural
initialization for the \status counter. As arguments
we have \def-s with words of undetermined length as
replacement text.

\def\cmpaw#1#2{%#1, #2 are def-s
%Result: \status= 0, 1, 2 if
% \val{#1} =, >, < \val{#2}.
{\let\nxt\nxtaw\cmpc#1#2}}

%
\def\cmpc#1#2{%#1, #2 are def-s
%Result: \status= 0, 1, 2 if
% \val{#1} =, >, < \val{#2}.
\global\status0 \continuetrue
{\loop\ifx#1\empty\continuefalse\fi

\ifx#2\empty\continuefalse\fi
\ifcontinue\nxt#1\nxtt \nxt#2\nxtu

\lge\nxtt\nxtu
\ifnum0<\status\continuefalse\fi

\repeat}\ifnum0=\status
\ifx#1\empty\ifx#2\empty\else

\global\status2 \fi
\else\ifx#2\empty\global\status1 \fi
\fi\fi}

%
\def\nxtaw#1#2{\def\pop##1##2\pop{\gdef
#1{##2}\chardef#2‘##1}\ea\pop#1\pop}

%
\seq a b aa ab bc bb aaa\qes

\let\cmp\cmpaw\sort\prtw.

The above yields: a aa aaa ab b bb bc.

Explanation
Comparison: \cmpaw.. The macro is parameter-
ized over the macro \nxt. The main part of \cmpaw
has been encoded as \cmpc. (That part is also used in
the general case.)

We have to compare the words letter by letter. The let-
ter comparison is done by the already available macro
\lge. The \lge invokation occurs within a loop,
which terminates when either of the strings has become
empty. I added to stop when the words considered so
far are unequal. At the end the status counter is correc-
ted if the words considered are equal and one of the #-s
is not empty: into 1, if #1 is not empty, and into 2, if
#2 is not empty.

Head and tail: \nxt.. The parameter macro \nxt
has the function to yield from the replacement text
of its first argument the ASCII value of the first let-
ter and deliver this value as replacement text of the
second argument.29 The actual macro \nxtaw pops
up the first letter and delivers its ASCII value—a
\chardef—as replacement text of the second argu-
ment. Note that the first parameter is globally redefined
for the emptiness-test after the loop.

4.1 Design choices
Sorting of words with ligatures and accents is done
via the ordering defined in a so-called ordering table.30

This entails that the comparison of letters has to be gen-
eralized such that accents are recognized too. For the
(accented)letter-to-number conversion the ‘ is replaced
by a table look-up.

Comparison operation. A special situation arises
with diacritical marks. Within the context of sorting
the commands for diacritical marks have been redefined
with the function to provide for the control symbol
together with the accompanying letter an appropriate
value from the ordering table.

Note that when the ASCII ordering is sufficient, no
ordering table is needed. For that case \cmp can be
\let-equal to \cmpaw.

Ordering table. In Dutch the ij is peculiar. It is
mostly used as a ligature31 and in that role its lexico-
graphic position is between x and z.32 This character
is not accounted for in the ASCII table, therefore we

27Mnemonics: letter greater or equal. A nice application of the use of \ea, \chardef, and the conversion of a character
into a number: ‘. Note that the values of the upper case and lower case letters differ (by 32) in ASCII.

28Mnemonics: compare ASCII words.
29Splitting up into ‘head and tail,’ is treated in the TEXbook, Appendix D.2, p. 378, the macro \lop. There use has been

made of token variables instead of \def-s.
30In the ordering table numbers are associated to letters, ligatures and accented letters.
31Also as two characters. For example in bi-jection (hyphen for emphasis) and the like.
32I was quite surprised to find out that my Dutch dictionary does not sort on the ij-ligature?!?

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#10 (93.1); May 1993

156 Sorting in BLUe Bijlage Z

need an ordering table. In some other languages sim-
ilar situations exist, so the idea of abstraction from the
ASCII ordering is useful,33 if not for the handling of
diacritical marks. For the input I adopted the conven-
tion to supply \ij. The ordering table is implemented
via a list of \chardef-s.34 Numbers are not assigned
consecutively in the ordering table, leaving room for
accented letters.

I have provided the same values for upper and lower
case letters. The successor values are reserved for the
accents: acute, grave, umlaut, and hat. I also accounted
for the cedille.

4.2 TEX Encoding
Purpose. To sort words with (Dutch) accents and ij-
ligature.

Input. The elements are assumed to be stored in the
array \hki, k = 1; 2; : : :n: The counter \n must con-
tain the value hni.

The default settings are done in the file sort.tex.
The macro \accdef contains the modified accent
definitions, and the macro \accstr the string of ac-
cent control sequences.

Result. The sorted array \1, \2, : : :\hni, with
\val1 � \val2 � : : :� \valhni.

The macros
%Modifications/addenda to number sorting
%Sorting and typesetting.
\def\sortw{{\accdef\let\cmp\cmpw\sort}%

\prtw}
%
%Compare words.
\def\cmpw#1#2{%#1, #2 are def-s.
%Result: \status= 0, 1, 2 if
% \val{#1} =, >, < \val{#2}.
\let\nxt\nxtw\cmpc#1#2}

%
%Yield value of next (accented) letter.
\def\nxtw#1#2{\def\pop##1##2\pop{%
\gdef#1{##2}\def\head{##1}}%tail and head
\ea\pop#1\pop
\ea\loc\head\accstr%\head in accentcs?
\iffound\let\acs\head
\ea\pop#1\pop%next tail and head
\ea\let\ea#2\csname ot\acs\head\endcsname
\else\ea\let\ea#2\csname ot\head\endcsname
\fi}

%
\def\accstr{\‘\’\"\ˆ\c}
%
\def\accdef{%

\def\’##1{##1g}\def\‘##1{##1a}
%acute grave

\def\"##1{##1t}\def\c##1{##1c}
%trema cedille

\def\ˆ##1{##1h}%hat
\def\i{i}\def\j{j}}%dotless i, j

\def\loc#1#2{\def\locate##1#1##2\end
{\ifx\empty##2\empty\foundfalse
\else\foundtrue\fi}\ea\locate#2.#1\end}

%
%Ordering table
\chardef\ota32 \chardef\otA32
\chardef\otaa33 \chardef\otag33
\chardef\otat34 \chardef\otah35

%et cetera, see Appendix C

Explanation
Sorting: \sortw. A (pointer)\def\sortw{...}
is introduced, which has as replacement text the inser-
tion of the accent definitions via the invokation of
\accdef, the setting of the parameter \cmp, and the
invokations of the actual sorting macro and the macro
for typesetting. A group is used in order to keep the
temporary redefinitions of the accents local. \accdef
yields the modified definitions for the accents and spe-
cial letters like \i, and \j. The purpose of these
definitions is to get the right value from the ordering
table.

Comparison operation: \cmpw. The parameter
macro \nxt is \let-equal to \nxtw. The compar-
ison is done by the common \cmpc,35 which stores
globally the result of the comparison in the counter
\status.

Head and tail: \nxtw. This macro peels a token36

from the first argument, selects the associated value
form the ordering table and delivers the latter value in
the second argument, as a \chardef. The complica-
tion is that when we have an accent we have to consider
the next token too, and select the associated numerical
value for the combination.37

The remainder of the word, the tail, is delivered globally
in the first argument, for the afterloop emptiness-test.
The local macro \pop yields the head and the tail of a
word. \loc determines whether the token in \head
is an accent control symbol.38

Exchange operation: \xch. No expansion of the
accents must take place, therefore the already stored
data are copied via the \let-equal TEXnique.

\def\xch#1#2{%#1, #2 counter variables

33As communicated by Wlodek Bzyl, with respect to Czech.
34Remember that a \chardef name can be used as a number.
35For an explanation see the subsection about ASCII words.
36Or debraced group.
37A neat use of \ea, \let, and \csname..., with as result a \chardef!
38This is a generalization of the search for hchari 2 hstringi [23]. On second thoughts, I consider this a neat generalization.

The temporary redefinitions are parameterized into \def\accdef... .

Reprint MAPS#10 (93.1); May 1993 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage Z Sorting in BLUe 157

\ea\let\ea\auxone\csname\the#1\endcsname
\ea\let\ea\auxtwo\csname\the#2\endcsname
\ea\global\ea\let\csname\the#2\endcsname
\auxone
\ea\global\ea\let\csname\the#1\endcsname
\auxtwo}.

To verify your understanding, what is the result39 of

\m3\n4\def\3{first}\def\4{second}
\xch\m\n
\the\m, \the\n; \3, \4.

4.3 Some testing
Apart from the examples as given above, lexicographic
sorting has been tested on sequences of random words.
For this purpose use has been made of Reid’s [30] work
for generating random paragraphs in TEX.

Timings. On my 8086 MS-DOS PC the (word) sort-
ing, without the time needed to create the array but
with the time needed to write to the dvi-file, had the
performance

No �Time
15 30 seconds
50 3 minutes.

The University’s VAX865040 needed � 5 minutes to
sort 500 random words. The measurements were done
with \heapsort as sorting macro, with each word of
random length.

5 Applications
5.1 Sorting address labels
Amy Hendrickson [15] used sorting of address labels to
illustrate various macro writing TEXniques. However,
she used external sorting routines. Here I will do the
sorting within TEX, and enrich her approach further by
separating the mark-up phase from the data base query
and the report generating phases. Because this paper
concentrates on sorting aspects, let us assume that each
address is supplied as a definition, with the definitions
of the name and address components as replacement
text. Furthermore, it is handy to create a list of all the
addresses: the names of the address definitions separ-
ated by \as, the address separator.41 For the imagin-
ative toy adresses of the three composers: Schönberg,
Webern, Strawinsky, the structures look like as follows.

\def\schonberga{\def\initial{A}
\def\sname{Arnold}\def\cname{Sch\"onberg}
\def\street{Kaisersallee}\def\no{10}
\def\county{}\def\pc{9716HM}
\def\phone{050-773984}\def\email{as@tuw.au}
\def\city{Vienna}\def\country{AU}}

%
\def\strawinskyi{\def\initial{I}
\def\sname{Igor}\def\cname{Strawinsky}
\def\street{Longwood Ave}\def\no{57}
\def\county{MA}\def\pc{02146}
\def\phone{617-31427}
\def\email{igor@ai.mit.edu}
\def\city{Boston}\def\country{USA}}

%
\def\weberna{\def\initial{A}
\def\sname{Anton}\def\cname{Webern}
\def\street{Amstel}\def\no{143}
\def\county{Noord-Holland}\def\pc{9893PB}
\def\phone{020-225143}\def\email{aw@uva.nl}
\def\city{Amsterdam}\def\country{NL}}

%
%and the list
\def\addresslist{\as\strawinskyi
\as\weberna\as\schonberga}

For the typesetting I made use of the following simple
address label format42

\def\tsa{%The current address info is set
\par\initials \cname \par
\no\ \street\ \city\par
\pc\ \county\ \country\par}

%
\def\initials{\ea\fifo\initial\ofif}
\def\fifo#1{\ifx\ofif#1\ofif\fi#1. \fifo}
\def\ofif#1\fifo{\fi}

Example (Database query: selection of addresses per
country)
Suppose we want to select (and just \tsa them for
simplicity43) the inhabitants from Holland from our
list. This goes as follows.

\def\search{NL}
\def\as#1{#1\ifx\country\search\tsa\fi}
\addresslist

The above yields the result
A. Webern
143 Amstel Amsterdam
9893PB Noord-Holland NL

39Answer: 3, 4; second, first.
40Just to get the flavor of it because VMS is a time sharing system.
41By this set-up we can do a lot more than just sorting address labels. What about mailmerge? What about ‘TEX as a database

report generator?’ Jurriens [18] coined the term, although most of the work there was done via UNIX scripts.
42The encoding of printing special address labels has been worked out by for example Damrau & Wester [7]. It is left as an

exercise to the reader to modify \tsa such that address labels are typeset in an m-by-n grid, each label of size h-by-w with
parameters m, n (counters), and h, w (dimensions).

In this example \initials is not used. It has been added to allow for multiple initials of which all letters must end with a
period.

43We could also create a new address list for that country and apply another query, or just sort.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#10 (93.1); May 1993

158 Sorting in BLUe Bijlage Z

Example (Sorting address labels)
Amy’s example can be done completely within TEX, as
follows.
%Prepare sorting
\def\as#1{\advance\k1 \ea\xdef\csname
\the\k\endcsname{\ea\gobble\string#1}}

%
\def\gobble#1{}
%
\k0{}\addresslist%Create array to be sorted
\n\k\def\prtw{}%Suppress default \prtw
\sortw%Sort the list
%Typeset addresses, alphabetically ordered
\k0
\loop\ifnum\k<\n\advance\k1
\csname\csname\the\k\endcsname\endcsname
\vskip1ex\tsa

\repeat

The above yields the results

A. Schönberg
10 Kaisersallee Vienna
9716HM AU

I. Strawinsky
57 Longwood Ave Boston
02146 MA USA

A. Webern
143 Amstel Amsterdam
9893PB Noord-Holland NL

Remarks. The automatic mark-up of address data
supplied in a TEX independent way, is not the sub-
ject of this paper. The given set-up allows to add, in
any order, the address information to the database, un-
der the restriction that definitions with the same names
must be used for the address components.44 The list
must be modified too.

As can be seen from the above, and also in Amy’s free
format, it is not easy to keep the file ordered while ex-
tending the database. Therefore sorting is needed, such
that the database can be extended in an arbitrary way.
Database TEXniques have it that modifications to the
data are independent from the report generating, thanks
to the sorting tools.

5.2 Sorting Knuth’s index reminders
An index reminder, as introduced by Knuth, consists of
index material to be further processed for typesettingan
index. In the TEXbook, p. 424, Knuth gives the syntax
of an index reminder

hwordi !hdigiti hpage numberi.

The reminders, one per line, are written to a file be-
cause only the OTR knows the page numbers. Knuth
considered this file, index.tex,

‘: : :a good first approximation to an in-
dex.’

He also mentions the work of Winograd and Paxton
[36]45 for automatic preparation of an index. Here we
will provide a second approximation to an index: the in-
dex reminders are sorted and compressed. The sorting
is done on the three keys

primary key: hwordi
secundary key: hdigiti, and
tertiary key: hpage numberi.

The compressing comes down to reducing the index
reminders with the same hwordi hdigiti part to one,
with instead of one page number all the relevant page
numbers in non-decreasing order.

We assume that the index reminders are already stored
in the array.46 Similarly, I didn’t bother about writing
the sorted and reduced array to a file. It is up to the
index preparator what to do with the array and how to
typeset it. Furthermore, it is not complete, because of
subentries, subsubentries, or ‘see: : : ,’ and ‘see also: : : ,’
which are not considered here.47

Example (Sorting on primary, secundary and tertiary
keys)

\def\1{z !3 1}\def\2{a !1 2}\def\3{a !1 3}
\def\4{a !1 1}\def\5{ab !1 1}\def\6{b !0 1}
\def\7{aa !1 1}\def\8{a !2 2}\def\9{aa !1 2}
\n9\k0\kk0
\let\cmp\cmpir\sort\let\sepw\\\null
\hfil\vtop{\hsize2cm\noindent
after sorting\\[.5ex]\prtw}

\hfil\vtop{\hsize2.5cm\noindent
after reduction\\[.5ex]\redrng\prtw}

\hfil\vtop{\hsize2cm\noindent
typeset in\\index:\\[.5ex]\prtind.}\hfil

The above yields48

after sorting:

a !1 1
a !1 2
a !1 3
a !2 2
aa !1 1
aa !1 2
ab !1 1
b !0 1
z !3 1

after reduction:

a !1 1–3
a !2 2
aa !1 1, 2
ab !1 1
b !0 1
z !3 1

typeset in
index:

a 1–3
\a 2
aa 1, 2
ab 1
b 1
hzi 1.

44Of course one can change the chosen names.
45Later Lamport provided makeindex and Salomon a plain version of it, to name but two persons who contributed to the

development. The Winograd Paxton Lisp program is also available in Pascal.
46The process for storing the contents of index.tex in the array \1, \2,: : : ,\hni, has been described in Storing from a

file, section 2, and will not be repeated here.
47An approach to handle sub(sub)entries is to allow for composite primary keys, for example separated by \se, respectively

\sse. In \decom, and \typind we have to account for the various possibilities. I will come back to the issue of
typesetting Indexes within TEX, another time.

48The unsorted input can be read from the verbatim listing.

Reprint MAPS#10 (93.1); May 1993 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage Z Sorting in BLUe 159

Design
Given the sorting macros we just have to encode the
special comparison macro in compliance with \cmpw:
compare two ‘values’ specified by \def-s. Let us call
this macro \cmpir.49 Each value is composed of
� a word (action: word comparison),
� a digit (action: number comparison), and
� a page number (action: (page) number compar-

ison).

The macros read as follows.

\def\cmpir#1#2{%#1, #2 defs
%Result: \status= 0, 1, 2 if
% \val{#1} =, >, < \val{#2}
\ea\ea\ea\decom\ea#1\ea;#2.}

%
\def\decom#1 !#2 #3;#4 !#5 #6.{%
\def\one{#1}\def\four{#4}\cmpaw\one\four
\ifnum0=\status%Compare second key
\ifnum#2<#5\global\status2 \else

\ifnum#2>#5\global\status1 \else
%Compare third key
\ifnum#3<#6\global\status2
\else\ifnum#3>#6\global\status1 \fi
\fi

\fi
\fi

\fi}

Explanation. I needed a two-level approach. The
values are decomposed into their components by
providing them as arguments to\decom.50 The macro
picks up the components
� the primary keys, the hwordi,
� the secundary keys, the hdigiti, and
� the tertiary keys, the hpage numberi.

It compares the two primary keys, and if necessary suc-
cessively the two secondary and the two tertiary keys.
The word comparison is done via the already available
macro \cmpaw.

To let this work with \sort, we have to \let-equal
the \cmp parameter to \cmpir.

Reducing duplicate word-digit entries
The idea is that the same index entries, except for their
page numbers, are compressed into one, thereby redu-
cing the number of elements in the array. Instead of one
page number all the relevant page numbers are supplied
in non-descending order in the remaining reminder, in
range notation. The macro is called \redrng51 and
is given below

\def\redrng{%Reduction of \1,...,\n, with
%page numbers in range representation

{\k1\kk0
\ea\let\ea\record\csname\the\k\endcsname
\ea\splitwn\record.\let\refer\word
\let\nrs\empty\prcrng\num
\loop\ifnum\k<\n\advance\k1
\ea\let\ea\record\csname\the\k\endcsname
\ea\splitwn\record.%
\ifx\refer\word%extend \nrs with number
\prcrng\num

\else%write record to \kk
\advance\kk1 \strnrs \ea\xdef
\csname\the\kk\endcsname{\refer{} \nrs}
\let\nrs\empty\init\num\prcrng\num
\let\refer\word

\fi
\repeat\ifnum1<\n\advance\kk1 \strnrs\ea
\xdef\csname\the\kk\endcsname{\word{}
\nrs}\global\n\kk\fi}}

%auxiliaries
\def\splitwn#1 !#2 #3.{\def\word{#1 !#2}%
\def\num{#3}}

%
\def\prcrng#1{\init{#1}\def\prcrng##1{%
\ifnum##1=\lst\else\ifnum##1=\slst
\lst\slst\advance\slst1 \else
\strnrs\init{##1}\fi\fi}}

%
\def\strnrs{\dif\lst\advance\dif-\frst
\edef\nrs{\ifx\nrs\empty\else\nrs\sepn\fi
\the\frst\ifnum0<\dif
\ifnum1=\dif\sepn\the\lst
\else\nobreak--\nobreak\the\lst
\fi

\fi}}

Explanation. The encoding is complicated because
while looping over the index reminders either the re-
minder in total or just the page number has to handled.
The handling of the page numbers is done with mod-
ified versions of \prc, \prtfl, called respectively
\prcrng and \strnrs.52 I encoded to keep track of
the numbers in the macro \nrs, in the case of duplicate
word-digit-entries. Another approach is while typeset-
ting the array element to process the page numbers via
\prc [25].

Typesetting index entries
Knuth has adopted the following conventions for cod-
ing index entries.
Mark up Typeset in copy� In index.tex
ˆ{...} : : : ... !0 hpage noi

ˆˆ{...} ‘silent’ ... !0 hpage noi

ˆ|...| |...| ... !1 hpage noi

ˆ|\...| |\...| ... !2 hpage noi

ˆ|<...>| h: : :i ... !3 hpage noi

� |...| denotes manmac’s, TUGboat’s,: : : verbatim.

49Mnemonics: compare index reminders
50Mnemonics: decompose. In each comparison the def-s are ‘dereferenced,’ that is their replacement texts are passed over.

This is a standard TEXnique: a triad of \ea-s, and the hop-over-s to the second argument.
51Mnemonics: reduce (in range notation). The macro \red, which does not yield the page numbers in range notation is

supplied in the file sort.tex too.
52Mnemonics: processc with ranges, respectively store numbers.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#10 (93.1); May 1993

160 Sorting in BLUe Bijlage Z

The typesetting as such can be done via the following
macro.

\def\typind#1{%#1 a def
\ea\splittot#1.%
\ifcase\digit\word\or

{\tt\word}\or
{\tt\char92\word}\or
$\langle\hbox{\word}\rangle$\fi{}
\pagenrs}

%
\def\splittot#1 !#2 #3.{\def\word{#1}%
\chardef\digit#2{}\def\pagenrs{#3}}

%
\def\prtind{{\def\\{\hfil\break}\k\kzero
\def\sep{\let\sep\sepw}%
\loop\ifnum\k<\n\advance\k1 \sep
\ea\typind\csname\the\k\endcsname
\repeat}}

The typesetting of the index à la TEXbook Appendix I
has been dealt with in the Grandmaster chapter of the
TEXbook, p. 261–263.

5.3 More than one index
Erik Frambach posed the following question on the tex-
nl@hearn discussion list

How to prepare automatically two index
files: one for commands and one for the
rest?

A solution to this problem is to create the information
in two files, one for the control sequences and the other
for the rest. This works independently of the used tool.
Another solution is splitting the index.tex file, de-
pending upon the hdigiti code.53 Knuth associated
control sequences with code 2, when writing the index
entry to index.tex, TEXbook p. 423.

Example (Separate sorting of control sequences)

\def\1{wd !2 7}\def\2{wrd !1 1}
\def\3{wd !2 2}\def\4{a !1 1}
\def\5{wd !2 5}\def\6{wd !2 3}
\def\7{z !3 7}\def\8{wrd !1 5}
\def\9{wd !2 1} \n9
\let\sepw\\\null
\hfil\vtop{\hsize=2cm\noindent
data:\\[.5ex]\prtw}

\hfil\vtop{\hsize=2.2cm\sortcs\noindent
after splitting:\\[.5ex] {\n\pk\prtw}
\\[.5ex]\kzero\pk\prtw}

\hfil\vtop{\hsize2.5cm\let\cmp\cmpir
{\low1\up\pk\quicksort}
{\low\pkone\up\n\quicksort}\noindent
after sorting\\both parts,\\
compressing,\\and typesetting:\\[.5ex]
\redrng\n3 \prtind\\[.5ex]\typind\4.}

yields54

data:

wd !2 7
wrd !1 1
wd !2 2
a !1 1
wd !2 5
wd !2 3
z !3 7
wrd !1 5
wd !2 1

after splitting:

wrd !1 5
wrd !1 1
z !3 7
a !1 1

wd !2 5
wd !2 3
wd !2 2
wd !2 7
wd !2 1

after sorting
both parts,
compressing,
and typesetting:

a 1
wrd 1, 5
hzi 7

\wd 1–3, 5, 7.

Encoding

\def\getdig#1 !#2 #3.{\def\dig{#2}}
%
\def\sortcs{\global\k0\global\pk\n
\global\pkone\pk\global\advance\pkone1
%Invariant: 1:k non-cs-s,
% and pk+1:n cs-s
\loop\global\advance\k1
\ifnum\k<\pkone
\ea\ea\ea\getdig\csname\the\k\endcsname.%
\if2\dig{\continuetrue% <--

cs<=>2!
\loop
\ifnum\k=\pk\global\pkone\pk
\global\advance\pk-1 \continuefalse
\else\ea\ea\ea\getdig\csname\the\pk
\endcsname.%
\if2\dig\global\pkone\pk
\global\advance\pk-1
\ifnum\k=\pk\continuefalse\fi

\else\xch\k\pk\global\pkone\pk
\global\advance\pk-1

\continuefalse
\fi
\fi

\ifcontinue
\repeat}%
\fi

\repeat}%Result\1:\pk non-cs, \pkone:\n cs

Explanation. Suppose that the file index.tex is
stored in the array. Loop through the array and com-
pare the hdigiti with 2. In case of a control sequence
swap this index entry with an appropriate entry at the
end.

The invariant of the loop is: \1 : \hki55 contains no
control sequences, and \hpk+ 1i : \hni contains con-
trol sequences.

As result the array is partitioned with the control se-
quences at the end of the array, that is the replacement
texts of \hpk + 1i : \hni.

53Conversely, merging two separate index files is easy, and can be done via \storefromfh1st-fileig \kzero\n
\storefromfh2nd-fileig.

54The sorting of the control sequences can be done via a slightly more efficient \cmpir, because of the same hdigiti.
55Not pk, but k!

Reprint MAPS#10 (93.1); May 1993 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage Z Sorting in BLUe 161

6 Epilogue
A glossary or an index is usually processed outside of
TEX, that is via other tools. ‘How to encode in TEX,’
was explored via the classic example of sorting. No
robustness was strived after. The encodings have been
kept as simple and flexible as possible.56 As a con-
sequence no attention has been paid to safeguarding
goodies like the prevention of name confusions with
those already in use by an author.

Silent redefinitions do occur when not alert. Beware!

Looking back. Much of the work has been done in
the spirit of

Abstraction is our only mental tool
to master complexity E.W. Dijkstra

A professional starts
where an amateur ends G.E. Forsythe

7 TEXniques used
The printing of a sequence parameterized by the separ-
ator.
FIFO and the active list separator to store a sequence in
an array.
Parameter separators to select parts of an argument.
Peeling off characters one by one from a string.
Expanding the parameters before the invokation of the
macro (Use of triads of \ea-s).
Using the ASCII values of characters for comparison.
Transforming numbers into characters.
Generating random elements for testing.
\ag to store random generated letters as words.
Setting up an address database.
Selecting from a database via queries implemented via
the active list separator.
Maintaining a heap structure.
Initialization of loops and recursion: on first traversal
some actions are different from the rest.
Ending recursion via gobbling up the tokens including
the invokation for the next level.
Parameterizing sorting with respect to the comparison
operation.
\chardef-s to parameterize the ordering table of the
alphabet.
Sorting (accented) words.
Sorting on keys, with composite values.
Compressing index reminders.
Nested \csname.
Not only exchanging expansion order but also pro-
cessing order, via \ag.

Hard things. One can rhetorically question whether
the macros have been coded in a near optimal way?57

I’m convinced that the basic approach
to parameterize as much as possible

is a good thing. I also believe that the modular ap-
proach to encode small pieces, with clear functional
tasks, is the way to build something of a reasonable
size, and to keep it readable and maintainable. Literate
programming avant la lettre?

Often I needed the \xdef functionality, but partially
expanded. As a typical example the following.
Instead of

\xdef\<name>{\csname\the\k\endcsname}

I had to use (also with \global)

\ea\let\ea\<name>\csname\the\k\endcsname

when I incorporated the handling of accents. Also for
the non-accent case the latter is better, because it leaves
the contents of \hnamei untouched. It is not clear to
me whether the use of token variables instead, would
have been better.

Exchanging the order of expansion is abundantly used
in the TEXbook. In generating random words I needed
to delay the storing. In that particular case—reasonable
size of the wordlength—I could fruitfully made use of
\ag. From this I learned that the use of \ag comes in
when ‘stomach’ processes have to be exchanged on the
fly.

A TEXfall is that \global, so easily used with coun-
ters and definitions, does not extend to \newif-s. In
first instance I tried to keep track of the status of the
comparison of two strings by Booleans, at an inner
level. Because, I could not use them globally other-
wise than adapting the \newif macro, I have used a
counter—\status—instead.

Another TEXfall is that the \body of a loop is silently
redefined when nesting loops without scope braces.
This occurs for example when in a loop a macro is
invoked which contains an (unbraced) inner loop in its
replacement text. This is different from the TEXfall
where the first (inner) \repeat is mistaken for the
outer one. Difficulties with nesting of loops, especially
to keep quantities local, have been alluded to earlier by
Pittman [29].

In debugging I traced every comparison and exchange
via \immediate\write16...-s.

In articles like this it is difficult to circumvent unwanted
spaces when in horizontal mode. My solution is to do
the sorting in vertical mode and when done typeset
in horizontal mode. I have taken notice of Eijkhout’s
suggestions [11].

56But, alas, full of details.
57Indeed, because of the many ways one can encode in TEX, it is very hard, if not impossible, to decide which code is best.

Perhaps we have to get used to it that programming is like life. Polymorph! Knuth experienced similar things as can be distilled
from ‘Always remember, however, that there’s usually a simpler and better way to do something than the first way that pops
into your head.’ The TEXbook, p. 373. Apart from the set-up, much has been given an afterthought or two.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#10 (93.1); May 1993

162 Sorting in BLUe Bijlage Z

On the other hand in the encoding of \seq I had to in-
sert an empty group after \wofif in order to retain the
separator . This insertion of the empty group was also
necessary in \redrng when rewriting the array: not
\ but {} ! I also had to compensate for Southall’s
‘buses and weirdness’-TEX effect, about which he lec-
tured so vividly at the 1990 SGML-TEX meeting at
Groningen.

Conclusion
I believe that my macros can be of use for preparing in-
dexes completely within TEX. In the discussion about
the NTS (New Typsetting System), in [28] and [35],
it is argued to think in pre- and post-processing out-
side of TEX. Sorting index items is neither a pre- nor
a post-process. Generally it is done in between. A
file with index reminders is written while TEXing the
compuscript. Then external sorting and the like is done
outside of TEX, and finally the typesetting of the index
is done again by TEX. Now all can be done within
TEX, despite the good and abundant external sorters
available.

At the danger of being accused of misusing TEX as
‘: : :another American screw driver’58

for situations not envisioned in the design, I found that
encoding a non-trivial example in TEX illustrates the
power of TEX’s language. But, : : : I also sadly endured
TEX’s negative side

Encoding in TEX is error-prone! if not for being
so unusual.

This despite of its author being the initiator of literate
programming.59

A discipline of TEX encoding? Absolut-
ively!

Acknowledgements
Ronald Kappert is kindly acknowledged for his sugges-
tions and remarks while proofing.

References
[1] Alexander, J.C (1986): Tib, a reference setting

package. TUGboat 8, no. (2), 102.
[2] Amstel, J.J van, J Bomhoff, G.J Schoenmakers

(1978): Inleiding tot het programmeren 1. Aca-
demic Service.

[3] Arseneau, D (1992): overcite.sty, drftcite.sty,
cite.sty. (from the file server)

[4] Bentley, J (1986): Programming Pearls. Addison-
Wesley.

[5] Bechtolsheim, S von (1989): \csname and
\string. TUGboat 10, no. (2), 203–206. (Apart
from the basics, SvB discusses the convenient
(read non-double) loading of macro files, and the
cross-referencing. Common to both applications
is the use of\csname and\string. No nesting
of \csname, and no mentioning of associating
\csname... with arrays.)

[6] Chen, P, M Harrison (1987): Automatic index pre-
paration. CSB-TR 87/347. UCB. (A nice survey
of issues relevant to preparing indexes automat-
ically. Existing indexing tools in use in various
systems are discussed. The paper emerged from
the experience gained in writing the makeindex C
program.)

[7] Damrau, J, M Wester (1991): Form letters with 3-
across labels capability. TUG ’91. TUGboat 12,
no. (4), 510–516.

[8] Durst, L (1989): Bibliographic citations, or vari-
ations on the old shell game. TUGboat 10, no. (3),
390–394.

[9] Durst, L (1991): Some tools for making indexes.
TUGboat 12, no. (2), 248–252.

[10] Eijkhout, V (1992): TEX by Topic. Addison-
Wesley.

[11] Eijkhout, V (1993): The bag of tricks. TUG-
boat 13, no. (4), 494–495.

[12] Green, I (1992): citesort.sty. (from the file server)
[13] Greene, A.M (1989): TEXreation—Playing

Games with TEX’s mind. TUGboat 10, no. (4),
691–705.

[14] Hendrickson, A (1989): MacroTEX.
[15] Hendrickson, A (1990): Getting TEXnical: In-

sights into TEX macro writing techniques. TUG-
boat 11, no. (3), 359–370.

[16] Jeffreys, A (1990): Lists in TEX’s mouth. TUG-
boat 11, no. (2), 237–244.

[17] Jensen, K, N Wirth (1975): PASCAL user manual
and report. Springer-Verlag.

[18] Jurriens, T.A (1992): TEX as database.
MAPS92.2, 100–101.

[19] Kappert, R (1992): scite.sty. (A compilationof the
earlier versions of Arseneau and Green. From the
file server.)

[20] Knuth, D.E (1973): The Art of Computer Pro-
gramming 3. Sorting and searching. Addison-
Wesley.

[21] Knuth, D.E (1984): The TEXbook, Addison-
Wesley.

[22] Laan, C.G van der (1992a): Syntactic Sugar.
MAPS92.2, 130–136. (Submitted to TUG ’93.)

[23] Laan, C.G van der (1992b): FIFO & LIFO sing the
BLUes. MAPS92.2, 139–144. (To appear TUG-
boat 14.1. An earlier version has appeared in the
EuroTEX ’92 proceedings.)

[24] Laan, C.G van der (1992c): Tower of Hanoi,
revisited. TUGboat 13, no. (1), 91–94. Also:
MAPS92.1, 125–127.

[25] Laan, C.G van der (1993): Typesetting number se-
quences. MAPS93.1. (4 pages. Submitted TUG-
boat.)

[26] Lamport, L (1986): LATEX, user’s guide & refer-
ence manual. Addison-Wesley.

58To paraphrase Perlis.
59With the purpose to program like writing literature. Not only to be processed by computers, but also to be read by humans,

with pleasure!

Reprint MAPS#10 (93.1); May 1993 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage Z Sorting in BLUe 163

[27] Lamport, L (1987): Makeindex, an index pro-
cessor for LATEX. (A clear user’s guide for us-
ing makeindex—a C program—together with
LATEX.)

[28] Palais, R (1992): Moving a fixed-point. TUG-
boat 13, no. (4), 425–432.

[29] Pittman, J.E (1988): Loopy.TEX. TUGboat 9,
no. (3), 289–291.

[30] Reid, T.J (1987): Floating figures at the right —
and— Some random text for testing. TUGboat 8,
no. (3), 315–320.

[31] Salomon, D (1989): Macros for indexing
and table-of-contents preparation. TUGboat 10,
no. (3), 394–400.

[32] Salomon, D (1992a): NTG’s Advanced TEX
course: Insights & Hindsights. MAPS 92 Special.
252p.; revised � 500p.

[33] Salomon, D (1992b): Index preparation for TEX
related documents. MAPS92.2, 111–114. (The
adaptation of makeindex for plain is discussed.)

[34] Spivak, M.D (1989): LAMS-TEX. TEXplorators.
[35] Taylor, P (1992): The future of TEX. Proceed-

ings EuroTEX ’92. 235–254. (Reprinted in TUG-
boat 13, no. (4), 433–442.)

[36] Winograd, T, B Paxton (1980): An indexing facil-
ity for TEX. TUGboat 1, no. (x), A1–A12. (The
work uses TEX version 1.x and a Lisp program.
It does not contain such a clear user guide as
for makeindex [27]. It provides numbers in range
notation and allows for subentries, and cross-
references like see : : :and see also : : : . The pro-
gram can merge files. The program has been con-
verted into Pascal some years later. The latter ver-
sion is available on file servers.)

[37] Wirth, N (1976): Algorithms + Data Structures =
Programs. Prentice-Hall.

[38] Youngen, R.E (1992): TEX-based production at
AMS. MAPS92.2, 63–68.

Appendix A: Heap sort
The process consists of two main steps, [2], [20]
� creation of a heap
� sorting the heap

with a sift operation to be used in both.

In comparison with my earlier release of the code in
MAPS92.2, I adapted the notation with respect to sort-
ing in non-decreasing order.60

What is a heap? A sequence a1; a2; : : : ; an, is a heap
if ak � a2k ^ ak � a2k+1; k = 1; 2; : : : ; n � 2, and
because an+1 is undefined, the notation is simplified
by defining ak > an+1; k = 1; 2; : : :; n.
A tree and one of its heap representations of

2; 6; 7; 1; 3;4 read

l1 l3 l4

l6 l7
l2

�
�
A
A

�
�

�� HH

l2 l3 l1

l6 l4
l7

�
�
A
A

�
�

�� HH

The algorithm. In PASCAL-like notation the algor-
itm, for sorting the array a[1:n], reads

%heap creation
l := n div2 + 1;
while l 6= 1 do
l := l � 1; sift(a; l; n) od
%sorting
r := n;
while r 6= 1 do
(a[1]; a[r]) := (a[r]; a[1])%exchange

r := r � 1; sift(a; 1; r) od
%sift #1 through #2
j := #1
while 2j � #2^ (a[j] < a[2j]_ a[j] < a[2j + 1]) do
mi := 2j + ifa[2j] > a[2j + 1] then 0 else 1 fi
exchange(a[j]; a[mi]) j := mi od

Encoding
Purpose. Sorting values given in an array.

Input. The values are stored in the control sequences
\1, : : : , \hni. The counter \n must contain the
value hni. The parameter for comparison, \cmp,
must be \let-equal to \cmpn, for numerical com-
parison, to \cmpw, for word comparison, to \cmpaw,
for word comparison obeying the ASCII ordering, or
to a comparison macro of your own. (The latter macro
variants, and in general the common definitions for
\heapsort, and \quicksort, are supplied in the
file sort.tex.)

Output. The sorted array \1, \2, : : :\hni, with
\val1 � \val2 � : : :� \valhni.

Source
%heapsort.tex Jan, 93
\newcount\n\newcount\lc\newcount\r
\newcount\ic\newcount\uone
\newcount\jc\newcount\jj\newcount\jjone
\newif\ifgoon
%Non-descending sorting
\def\heapsort{%data in \1 to \n
\r\n\heap\ic1
{\loop\ifnum1<\r\xch\ic\r

\advance\r-1 \sift\ic\r
\repeat}}
%
\def\heap{%Transform \1..\n into heap
\lc\n\divide\lc2{}\advance\lc1
{\loop\ifnum1<\lc\advance\lc-1

60It is true that the reverse of the comparison operation would do, but it seemed more consistent to me to adapt the notation
of the heap concept with the smallest elements at the bottom.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#10 (93.1); May 1993

164 Sorting in BLUe Bijlage Z

\sift\lc\n\repeat}}
%
\def\sift#1#2{%#1, #2 counter variables
\jj#1\uone#2\advance\uone1 \goontrue
{\loop\jc\jj \advance\jj\jj
\ifnum\jj<\uone
\jjone\jj \advance\jjone1
\ifnum\jj<#2 \cmpval\jj\jjone

\ifnum2=\status\jj\jjone\fi\fi
\cmpval\jc\jj\ifnum2>\status%

\goonfalse\fi
\else\goonfalse\fi

\ifgoon\xch\jc\jj\repeat}}
%
\def\cmpval#1#2{%#1, #2 counter variables
%Result: \status= 0, 1, 2 if
%values pointed by
% #1 =, >, < #2
\ea\let\ea\aone\csname\the#1\endcsname
\ea\let\ea\atwo\csname\the#2\endcsname
\cmp\aone\atwo}

\endinput %cgl@rug.nl

Explanation
\heapsort. The values given in \1,...\hni, are sor-
ted in non-descending order.
\heap. The values given in \1,: : : ,\hni, are re-
arranged into a heap.
\sift. The first element denoted by the first (counter)
argument has disturbed the heap. Sift rearranges the
part of the array denoted by its two arguments, such
that the heap property holds again.
\cmpval. The values denoted by the counter values,
supplied as arguments, are compared.

Examples (Numbers, words)

\def\1{314}\def\2{1}\def\3{27}\n3
\let\cmp\cmpn\heapsort
\begin{quote}\prtn,\end{quote}
%
\def\1{ab}\def\2{c}\def\3{aa}\n3
\let\cmp\cmpaw\heapsort
\begin{quote}\prtw,\end{quote}
and
\def\1{j\ij}\def\2{ge\"urm}\def\3{gar\c con}
\def\4{\’el\‘eve}\n4
\let\cmp\cmpw {\accdef\heapsort}
\begin{quote}\prtw\end{quote}

yields
1, 27, 314,
aa ab c,

and
élève garçon geürm jij.

Appendix B: Quick sort
The quick sort algorithm has been discussed in many
places, for example [20]. Here the following code due
to Bentley [4], p. 112, has been transliterated.

procedure QSort(L,U)

if L<U then Swap(X[l], X[RandInt(L,U)])
T:=X[L] M:=L
for I:=L+1 to U do

if X[I]<T M:=M+1
Swap(X[M], X[I]) fi

od Swap(X[L], X[M])
QSort(L, M-1) QSort(M+1, U)

fi

Encoding
Purpose. Sorting of the values given in the array
\hlowi, : : : , \hupi.

Input. The values are stored in \hlowi, : : : , \hupi,
with 1 � low � up � n. The parameter for com-
parison, \cmp, must be \let-equal to \cmpn, for
number comparison, to \cmpw, for word comparison,
to \cmpaw, for word comparison obeying the ASCII
ordering, or to a comparison macro of your own. (The
latter macros, and in general the common definitions
for \heapsort, and \quicksort, are supplied in
the file sort.tex.)

Output. The sorted array \hlowi, : : :\hupi, with
\valhlowi � : : : � \valhupi.

Source
%quick.tex Jan 93
\newcount\low\newcount\up\newcount\m
\def\quicksort{%Values given in
%\low,...,\up are sorted, non-descending.
%Parameters: \cmp, comparison.
\ifnum\low<\up\else\brk\fi

%\refval, a reference value selected at random.
\m\up\advance\m-\low%Size-1 of ar-

ray part
\ifnum10<\m\rnd\multiply\m\rndval
\divide\m99 \advance\m\low \xch\low\m

\fi
\ea\let\ea\refval\csname\the\low\endcsname
\m\low\k\low\let\refvalcop\refval
{\loop\ifnum\k<\up\advance\k1
\ea\let\ea\oneqs\csname\the\k\endcsname
\cmp\refval\oneqs\ifnum1=\status

\global\advance\m1 \xch\m\k\fi
\let\refval\refvalcop

\repeat}\xch\low\m
{\up\m\advance\up-1 \quicksort}%
{\low\m\advance\low1 \quicksort}\krb}

%
\def\brk#1\krb{\fi}\def\krb{\relax}
\endinput %cgl@rug.nl

Explanation. At each level the array is partitioned
into two parts. After partitioning the left part contains
values less than the reference value and the right part
contains values greater than or equal to the reference
value. Each part is again partitioned via a recursive call
of the macro. The array is sorted when all parts are
partitioned.

61If the array is big enough. I chose rather arbitrarily 10 as threshold.

Reprint MAPS#10 (93.1); May 1993 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage Z Sorting in BLUe 165

In the TEX encoding the reference value as estimate
for the mean value is determined via a random se-
lection of one of the elements.61 Reid’s [30] \rnd
has been used. The random number is mapped into
the range [low : up], via the linear transformation
\low+ (\up� \low) � \rndval=99.62

The termination of the recursion is encoded in a TEX
peculiar way. First, I encoded the infinite loop. Then I
inserted the condition for termination with the \fi on
the same line, and not enclosing the main part of the
macro. On termination the invokation\brkgobbles up
all the tokens at that level up to its separator \krb, and
inserts its replacement text: a new \fi, to compensate
for the gobbled \fi.

Examples (Numbers, words)
\def\1{314}\def\2{1}\def\3{27}\n3
\low1\up\n\let\cmp\cmpn
\quicksort
\begin{quote}\prtn,\end{quote}
%
\def\1{ab}\def\2{c}\def\3{aa}
\def\4{\ij}\def\5{ik}\def\6{z}\def\7{a}\n7
\low1\up\n\let\cmp\cmpw
\quicksort
\begin{quote}\prtw,\end{quote}
and
\def\1{j\ij}\def\2{ge\"urm}\def\3{gar\c con}
\def\4{\’el\‘eve}\n4
\low1\up\n\let\cmp\cmpw
{\accdef\quicksort}
\begin{quote}\prtw.\end{quote}

yields
1, 27, 314,
a aa ab c ik ij z,

and
élève garçon geürm jij.

Appendix C: The file sort.tex
This file contains the common definitions of
\heapsort and \quicksort, the macros for stor-
ing, the macros for sorting, the macros for typesetting,
some variants for the parameter macros, and the order-
ing table.

%sort.tex Jan 93
%Shorthands
\let\ag=\aftergroup
\let\ea=\expandafter\let\nx=\noexpand
%Counters
\newcount\n\newcount\k\newcount\kk\n=0
\newcount\kzero%Start value in prt k-loops
\newcount\pk\newcount\pkone%Used in sortcs
\newcount\frst%First value of range
\newcount\lst %Last value of range
\newcount\slst%Successor \lst
\newcount\dif %Difference \lst-\frst
\newcount\nw %Number of words
\newcount\nc %Number of characters/comp
\newcount\numex %Number of exchanges
\newcount\rndval%Random number

\newcount\rndnum%Seed random generator
\newcount\rndtmp%Temporary value
\newcount\status%Status comparison
%Newif-s
\newif\ifcontinue%controls loops
\newif\iffound%locating accent cs
\newif\ifproof\prooftrue
%
%Storing: from copy
\def\seq#1\qes{\k\kzero\fifow#1 \wofif{} }
%Auxiliaries: FIFO
\def\fifow#1 {\ifx\wofif#1\n\k\wofif\fi
\processw{#1}\fifow}
\def\wofif#1\fifow{\fi}
\def\processw#1{\advance\k1 \ea
\gdef\csname\the\k\endcsname{#1}}
%
%Storing: from file
\newread\rec
\def\storefrom#1{%#1 is file name
\openin\rec#1 \k\kzero \continuetrue
\loop\ifeof\rec\continuefalse\fi
\ifcontinue\advance\k1 \read\rec to\xyz
\ea\let\csname\the\k\endcsname\xyz
\repeat\advance\k-1\n\k\closein\rec}
%
%Storing: random numbers
\def\storerandomn#1{%#1 number of numbers
\n#1\k0
\loop\ifnum\k<\n\advance\k1 \rnd\ea
\xdef\csname\the\k\endcsname{\the\rndval}
\repeat}
%
%With, due to Reid, 1987
\def\rnd{\global\multiply\rndnum371
\global\advance\rndnum1
\ifnum\rndnum>99999
\rndtmp\rndnum \divide\rndtmp100000
\multiply\rndtmp100000
\global\advance\rndnum-\rndtmp
\fi\global\rndval\rndnum
\global\divide\rndval1000 }
%
%Storing: random words
\def\storerandomw#1{%#1 number of words
\n#1\nw\n\def\defarr{\ea\gdef
\csname\the\nw\endcsname}
{\loop\ifnum0<\nw{\ag\defarr\ag{%

\randomword}}\advance\nw-1
\repeat}}%end s-r-w.
%
\def\randomword{\rnd \nc\rndval
\divide\nc15 \advance\nc2
\loop\ifnum0<\nc\randomchar

\advance\nc-1
\repeat}%end r-word
%
%Random character is modified
\def\randomchar{\rnd
\multiply\rndval29 \divide\rndval100
\ifnum26=\rndval\rndval0 \fi
\ifnum26<\rndval\rndval4 \fi
%Mod cgl: I \ag-ed the letter
\ea\ag\ifcase\rndval
a\or b\or c\or d\or e\or f\or g\or h\or
i\or j\or k\or l\or m\or n\or o\or p\or
q\or r\or s\or t\or u\or v\or w\or x\or
y\or z\fi}%end r-char
%
%Typeset
%Parameters: Separators
\def\sepn{, }%Number separator

62Note that the number is guaranteed within the range.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#10 (93.1); May 1993

166 Sorting in BLUe Bijlage Z

\def\sepw{ } %Word separator
\let\sep\sepw
%
\def\prc#1{\init{#1}\def\prc##1{%
\ifnum\lst=##1{}\else\ifnum\slst=##1{}%
\lst\slst\advance\slst1{}\else
\prtfl\sepn\init{##1}\fi\fi}}

%
\def\init#1{\frst#1\lst\frst \slst\frst

\advance\slst1 }
%
%Print range: \frst-\lst (or \lst).
\def\prtfl{\the\frst\ifnum\frst<\lst
\advance\frst1 \ifnum\frst=\lst\sepn
\else\nobreak--\nobreak\fi\the\lst\fi}

%
%Printing sequences
\def\prts{{\k\kzero%print \1,...\n
\def\sep{\let\sep\sepw}%
\loop\ifnum\k<\n\advance\k1
\sep\csname\the\k\endcsname

\repeat}}%end \prts
%
\let\prtw\prts
%
\def\prtn{{\k\kzero%Print number sequence
\loop\ifnum\k<\n\advance\k1
\ea\prc\csname\the\k\endcsname

\repeat\prtfl}}%end \prtn
%
\def\typind#1{%#1 a def
\ea\splittot#1.%
\ifcase\digit\word\or

{\tt\word}\or
{\tt\char92\word}\or
$\langle\hbox{\word}\rangle$\fi{}
\pagenrs}

%
\def\splittot#1 !#2 #3.{\def\word{#1}%
\chardef\digit#2{}\def\pagenrs{#3}}

%
\def\prtind{{\def\\{\hfil\break}\k\kzero
\def\sep{\let\sep\sepw}%
\loop\ifnum\k<\n\advance\k1
\sep\ea\typind\csname\the\k\endcsname

\repeat}}
%
%Sorting in O(nlog n)
\def\sortn{\let\cmp\cmpn\sort\prtn}
%
\def\sortaw{\let\cmp\cmpaw\sort\prtw}
%
\def\sortw{\let\cmp\cmpw{\accdef\sort}\prtw}
%
\def\sort{\heapsort}
%
%Paramaters: ij and accent string
\def\accstr{\‘\’\"\ˆ\c}
%
\def\accdef{\def\i{i}\def\j{j}%
\def\’##1{##1a}\def\‘##1{##1g}%
\def\"##1{##1t}\def\ˆ##1{##1h}%
\def\c##1{##1c}}

%
\def\ij{ij}
%
%Sorting parameters: exchange macro
\def\xch#1#2{%#1, #2 counter variables
\ea\let\ea\auxone\csname\the#1\endcsname
\ea\let\ea\auxtwo\csname\the#2\endcsname
\ea\global\ea\let\csname\the#2\endcsname
\auxone
\ea\global\ea\let\csname\the#1\endcsname
\auxtwo}

%
%Sorting parameters: number comparison
\def\cmpn#1#2{%#1, #2 are def-s
%Result: \status= 0, 1, 2, if
% \val{#1} =, >, < \val{#2}
\ifnum#1=#2\global\status0 \else

\ifnum#1>#2\global\status1 \else
\global\status2 \fi\fi}

%
%Parameters: comparison of words
\def\cmpw#1#2{%#1, #2 are def-s
%Result: \status= 0, 1, 2, if
% \val{#1} =, >, < \val{#2}
\let\nxt\nxtw\cmpc#1#2}
%
\def\cmpaw#1#2{%#1, #2 are defs with as
%replacement text the words.
%Result: \status= 0, 1, 2, if
% \val{#1} =, >, < \val{#2}
\let\nxt\nxtaw\cmpc#1#2}
%
\def\cmpc#1#2{%#1, #2 are def-s
%Result: \status= 0, 1, 2, if
% \val{#1} =, >, < \val{#2}
\ifproof\global\advance\nc1

\let\aa#1\let\bb#2\fi
\global\status0 \continuetrue
{\loop\ifx\empty#1\continuefalse\fi

\ifx\empty#2\continuefalse\fi
\ifcontinue\nxt#1\nxtt\nxt#2\nxtu

\lge\nxtt\nxtu
\repeat}\ifnum0=\status
\ifx\empty#1\ifx\empty#2\else

\global\status2 \fi
\else\ifx\empty#2\global\status1 \fi
\fi\fi
\ifproof\immediate\write16{\aa
\ifnum0=\status=\else
\ifnum1=\status>\else

<\fi\fi\bb.}
\fi%end ifproof
}
%
\def\lge#1#2{%#1 and #2 letter values
%Result: \status= 0, 1, 2, if
% #1 =, >, < #2.
%and \continuefalse if #1=/#2.
\ifnum#1=#2{}\else\continuefalse
\ifnum#1<#2\global\status2 \else

\global\status1 \fi
\fi}
%
\def\nxtw#1#2{\def\pop##1##2\pop{%
\gdef#1{##2}\def\head{##1}}%head and tail
\ea\pop#1\pop%split in head and tail
\ea\loc\head\accstr%\head is an accent cs?
\iffound\let\acs\head
\ea\pop#1\pop%next head and tail
\ea\let\ea#2\csname ot\acs\head\endcsname
\else\ea\let\ea#2\csname ot\head\endcsname
\fi}
%
\def\loc#1#2{\def\locate##1#1##2\end
{\ifx\empty##2\empty\foundfalse
\else\foundtrue\fi}\ea\locate#2.#1\end}
%
%Parameters: for ASCII words
\def\nxtaw#1#2{%Result: value of first
%letter of string supplied in #1 is delivered
%in #2. (To be used as a number (\chardef)).
%#1, #2 are control sequences.
\def\pop##1##2\pop{\gdef#1{##2}%
\chardef#2‘##1{}}\ea\pop#1\pop}

%

Reprint MAPS#10 (93.1); May 1993 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage Z Sorting in BLUe 167

\def\cmpir#1#2{%#1, #2 defs
%Result: \status= 0, 1, 2 if
% \val{#1} =, >, < \val{#2}
\ea\ea\ea\decom\ea#1\ea;#2.}

%
\def\decom#1 !#2 #3;#4 !#5 #6.{%
\def\one{#1}\def\four{#4}\cmpaw\one\four
\ifnum0=\status%Compare secondary keys
\ifnum#2<#5{}\global\status2 \else
\ifnum#2>#5{}\global\status1 \else

%Compare tertiary keys
\ifnum#3<#6{}\global\status2 \else
\ifnum#3>#6{}\global\status1 \fi

\fi
\fi

\fi
\fi}

%
\def\red{%Reduction of \1,...,\n
\k0\kk0\let\refer\empty
\loop\ifnum\k<\n\advance\k1
\ea\let\ea\record\csname\the\k\endcsname
\ea\splitwn\record.%
\ifx\refer\word%extend with number
\ea\xdef\csname\the\kk\endcsname{%

\csname\the\kk\endcsname, \num}%
\else%write record to \kk
\advance\kk1\let\refer\word\ea\global
\ea\let\csname\the\kk\endcsname\record

\fi
\repeat\n\kk}

%
\def\redrng{%Reduction of \1,...,\n, with
%range representation of page numbers
{\k1\kk0
\ea\let\ea\record\csname\the\k\endcsname
\ea\splitwn\record.\let\refer\word
\let\nrs\empty\prcrng\num
\loop\ifnum\k<\n\advance\k1
\ea\let\ea\record\csname\the\k\endcsname
\ea\splitwn\record.%
\ifx\refer\word%extend \nrs with number
\prcrng\num

\else%write record to \kk
\advance\kk1 \strnrs
\ea\xdef\csname\the\kk\endcsname{\refer{}
\nrs}\let\nrs\empty\init\num\prcrng\num

\let\refer\word
\fi

\repeat\ifnum1<\n
\advance\kk1 \strnrs
\ea\xdef\csname\the\kk\endcsname{\word{}
\nrs}

\global\n\kk\fi}}
%
\def\prcrng#1{\init{#1}\def\prcrng##1{%
\ifnum##1=\lst\else\ifnum##1=\slst
\lst\slst\advance\slst1 \else
\strnrs\init{##1}\fi\fi}}

%
\def\strnrs{\dif\lst\advance\dif-\frst
\edef\nrs{\ifx\nrs\empty\else\nrs\sepn\fi
\the\frst\ifnum0<\dif
\ifnum1=\dif\sepn\the\lst
\else\nobreak--\nobreak\the\lst
\fi

\fi}}
%
\def\splitwn#1 !#2 #3.{\def\word{#1 !#2}%
\def\num{#3}}

%
\def\getdig#1 !#2 #3.{\def\dig{#2}}
%
\def\sortcs{\global\k0\global\pk\n

\global\pkone\pk\global\advance\pkone1
%Invariant: 1:k non-cs; pk+1:n control seq-s
\loop\global\advance\k1
\ifnum\k<\pkone
\ea\ea\ea\getdig\csname\the\k\endcsname.%
\if2\dig{\continuetrue
\loop
\ifnum\k=\pk\continuefalse
\else\ea\ea\ea\getdig\csname\the\pk

\endcsname.%
\if2\dig\else\xch\k\pk\continuefalse\fi
\fi\global\pkone\pk\global\advance\pk-1
\ifcontinue
\repeat}%
\fi
\repeat}%Result\1:\pk non-cs, \pkone:\n cs
%
%Parameters: Ordering table
\chardef\ota32 \chardef\otA32
\chardef\otaa33 \chardef\otag33
\chardef\otat34 \chardef\otah35
\chardef\otb39 \chardef\otB39
\chardef\otc46 \chardef\otC46
\chardef\otcc47 \chardef\otcc47
\chardef\otd53 \chardef\otD53
\chardef\ote60 \chardef\otE60
\chardef\otea61 \chardef\oteg62
\chardef\otet63 \chardef\oteh64
\chardef\otf67 \chardef\otF67
\chardef\otg74 \chardef\otG74
\chardef\oth81 \chardef\otH81
\chardef\oti88 \chardef\otI88
\chardef\otit91 \chardef\otih92
\chardef\otj95 \chardef\otJ95
\chardef\otjt98
\chardef\otk102 \chardef\otK102
\chardef\otl109 \chardef\otL109
\chardef\otm116 \chardef\otM116
\chardef\otn123 \chardef\otN123
\chardef\oto130 \chardef\otO130
\chardef\otoa131 \chardef\otog132
\chardef\otot133 \chardef\otoh134
\chardef\otp137 \chardef\otP137
\chardef\otq143 \chardef\otQ143
\chardef\otr150 \chardef\otR150
\chardef\ots157 \chardef\otS157
\chardef\ott164 \chardef\otT164
\chardef\otu171 \chardef\otU171
\chardef\otut174 \chardef\otuh175
\chardef\otv178 \chardef\otV178
\chardef\otw185 \chardef\otW185
\chardef\otx192 \chardef\otX192
\chardef\otij199 \chardef\otIJ199
\chardef\oty200 \chardef\otY200
\chardef\otz206 \chardef\otZ206
\endinput %cgl@rug.nl

Appendix D: The file sort.tst
Writing macros is one thing and testing another. I find
testing software as difficult as writing a variant from
scratch. For convenience I have provided my (plain)
testdriver below.

The test path—Which sorting worker? Tracing on/off?
How many random data?—is determined in a dialogue
with TEX. Rudimentary, but useful.
%sort.tst Jan 93
%Separately needed is index.tex, as data.
\input sort.tex
\input heap.tex

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#10 (93.1); May 1993

168 Sorting in BLUe Bijlage Z

\input quick.tex
\immediate\write16{Heap sort as sorter? (y/n):}
\read16 to\yesorno
\if y\yesorno Heap sort.

\def\sort{\heapsort}
\else Quick sort.

\def\sort{\low1\up\n\quicksort}
\fi (\number\day/\number\month/\number\year)
\immediate\write16{Proofing/Tracing? (y/n):}
\read16 to\yesorno
\if y\yesorno\prooftrue
\nopagenumbers\tracingmacros2

\else\prooffalse
\fi

\smallskip Numbers.\par
\seq314 1 27\qes
Input: \prtn.\par
Result:\sortn.
\immediate\write16{Result: \1, \2, \3,

...\csname\the\n\endcsname.}

\smallskip Words (ASCII).\par
\seq a b aa ab bc bb aaa\qes
Input: \prtw.\par
Result: \sortaw.
\immediate\write16{Result: \1, \2, \3,
\4, \5, \6,...\csname\the\n\endcsname.}

\smallskip Words.\par
\seq a b aa ab bc bb aaa\qes
Input: \prtw.\par
Result: \sortw.
\immediate\write16{Result: \1, \2, \3,
\4, \5, \6 ...\csname\the\n\endcsname.}

\smallskip Accented words.\par
\def\1{z}\def\2{c}\def\3{\’a\’a}\def\4{\"ab}
\def\5{ge\"urm}\def\6{ge\"{\i}nd}
\def\7{gar\c{c}on}\def\8{a}\def\9{ge{\ij}kt}
\n=9
Input: \prtw.\par
Result: \sortw.
\immediate\write16{Result: \1, \2, \3,

...\csname\the\n\endcsname.}

%Test and timing: random generated elements
\smallskip Sort numbers.\par
\immediate\write16{Give seed for r-generator:}
\read16 to\seed
\immediate\write16{Give maximum of num-
bers to be

generated:}
\read16 to\total \n\total
Seed=\seed. \rndnum\seed
\storerandomn\n \par
Input: \prtn.\par
Result: \sortn.
\immediate\write16{Result: \1, \2, \3,

...\csname\the\n\endcsname.}

\smallskip Sort words. \par
\immediate\write16{Give seed for r-generator:}
\read16 to\seed
\immediate\write16{Give maximum of words to be

generated:}
\read16 to\total \n\total
Seed=\seed. \rndnum\seed
\storerandomw\n \par
Input: \prtw.\par
Result: \sortw.
\immediate\write16{Result: \1, \2, \3,

...\csname\the\n\endcsname.}

\smallskip Sort index reminders.\par
\storefrom{index.tex}
{\def\\{\hfil\break}\let\sepw\\
\let\cmp\cmpir\k0\kk0 \null
\hfil\vtop{\hsize2.25cm\noindent

Data:\sepw\prtw}
\hfil\vtop{\hsize2.5cm\sort\noindent

After sorting:\sepw\prtw}
\hfil\vtop{\hsize3.5cm\redrng\noindent

After reduction:\sepw\prtw}
\hfil\vtop{\hsize3cm\noindent

Typeset:\sepw\prtind.}
\immediate\write16{Index rem: \1, \2, \3,

...\csname\the\n\endcsname.}

\smallskip Frambach’s example.\par
\def\1{wd !2 7}\def\2{wrd !1 1}
\def\3{wd !2 2}\def\4{a !1 1}
\def\5{wd !2 5}\def\6{wd !2 3}
\def\7{z !3 7}\def\8{wrd !1 5}
\def\9{wd !2 1} \n9
\let\sepw\\\null
\hfil\vtop{\hsize2cm\noindent
Data:\sepw\prtw}
\hfil\vtop{\hsize2.5cm\sortcs\noindent
After splitting:\sepw{\n\pk\prtw}
\sepw\kzero\pk\prtw}

\hfil\vtop{\hsize3cm\let\cmp\cmpir
{\low1\up\pk\quicksort}
{\low\pkone\up\n\quicksort}\noindent
After sorting\sepw both parts,\sepw
and compressing:\sepw\redrng\n4 \prtw}
\hfil\vtop{\hsize3cm\noindent\n4

Typeset:\sepw\prtind.}
}
\immediate\write16{EF’s exam: \1, \2, \3,

...\csname\the\n\endcsname.}
\bye cgl@rug.nl

Appendix E: Contents
Abstract
Introduction
– Approach
– Files
– Definitions and notations

Typesetting elements
Examples

– TEX encoding
Design choice
Input
Result
The macros
Explanation

Storing a sequence
To get the hang of it

– From copy
Examples
TEX encoding
Design choice
Input
Result
The macros
Explanation

– From a file
Examples
TEX encoding

Reprint MAPS#10 (93.1); May 1993 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage Z Sorting in BLUe 169

Specification
Input
Result
The macros
Explanation

– From a generator
Numbers
Examples
The macros
Words
Examples
The macros
Explanation

Sorting of numbers
Examples

– Design choices
– TEX encoding

Input
Result
The macros
Explanation
Sorting: \sortn
Comparison operation
Exchange operation

– Some testing
Timings

– Variation
Lexicographic sorting

Examples
Reculer pour mieux sauter
One-(ASCII)-letter-words
Explanation
ASCII words
Explanation
Comparison: \cmpaw
Head and tail: \next

– Design choices
Comparison operation
Ordering table

– TEX Encoding
Purpose
Input
Result
The macros
Explanation
Sorting: \sortw
Comparison: \cmpw

Head and tail: \nxtw
Exchange operation: \xch

– Some testing
Timings

Applications
– Sorting address labels

Examples
Remarks

– Sorting Knuth’s index reminders
Examples
Design
Explanation
Reducing duplicate word-digit entries
Explanation
Typesetting index entries

– More than one index
Examples
Encoding
Explanation

Epilogue
– Looking back
– TEXniques used
– Hard things

Conclusion
Acknowledgements
References
Appendix A. Heap sort
– The algorithm
– Encoding
– Purpose
– Input
– Output
– Source
– Explanation
– Examples

Appendix B. Quick sort
– The algorithm
– Encoding
– Purpose
– Input
– Output
– Source
– Explanation
– Examples

Appendix C. The file sort.tex
Appendix D. The file sort.tst
Appendix E. Contents

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#10 (93.1); May 1993

