BijlageZz

Sorting in BLUe 149

Sorting in BLUe

Keesvan der Laan

Hunzeweg 57,
9893PB Garnwerd, The Netherlands
cgl @ug. nl

Abstract

Macros for number and |exicographic sorting are supplied. Data can originate from the copy, from
file, or generated automatically. Lexicographic sorting allows words with ligatures and diacritical
marks. Applicationstreated are: sorting with respect to report generation with TEX as adatabasetool,
sorting and compressing i ndex. t ex, Knuth’sindex reminders file, and sorting control sequences

separately.

Itisillustrated by various examples that a set can be sorted within TEX once the ordering of the set is
defined and encoded in a comparison macro, in compliance with the parameter macro\ cnp.

Keywords: Sorting, index preparation, database hand-
ling, multiple sorting keys, macro writing, education.

Introduction

Sorting isafundamental process. With respect to TeX,
sorting was needed by Amy Hendrickson for sorting
address labels [15], by Alan Jeffreys [16] and by Lin-
coln Durst[9] for sorting index items, to name but afew.
Donald Arseneau, lan Green, Ronald Kappert [19], and
myself [25], have used sorting within TEX for citation
lists. For aspects with respect to index generation see
[8] and [31]. Available is Makeindex [6], [27], to co-
operate with IATEX, and Salomon's plain TEX version
of it [33].

All the sorting with respect to index items are external,
outside of TEX.! Thisis practical, but sorting within
plainispossible? Anadvantage of TEX isthat it allows
for abstraction with respect to the kind of data.

Normally, number sorting and lexicographic sorting are
done by different routines. This is necessary because
the exchange and comparison are generally tied up with
the datatype. Within TEX the exchange is independent
of the type, and the relational operator can be used as
parameter by the sorting macro. Furthermore, second-
ary (and more) keys can be accounted for. The latter
facility is not dways available in the external sorters.

The efficiency of a sorting process depends upon the

However, citations lists are sorted within TEX.
2If not for the encoding challenge.

character of the data. A nearly sorted list, or a small
number of items, can be handled effectively by alinear
sorting routine. A non-increasing sorted list can better
be walked through in reverse order than sorted. In gen-
era sorters of complexity O(n logn) are efficient for
random data. Quick sort comes in handy when only
part of an array hasto be sorted.

For adiscussion of the wide area of sorting and search-
ing, see[20], and for programming templ ates, see[37] 3
For the Dutch speaking community thereisthenicein-
troduction [2].

The challenge is to encode O(nlogn) sorting al-
gorithmsin TeX in asimple but flexible way.* Issues
to address are
e adatastructure must be chosen
e macrosto fill the data structure
o abstracting from the sorting a gorithm—heap sort,
quick sort, . ..
e parameterizing the comparison and exchange oper-
ations,
e abstracting in lexicographic sorting from the
ASCII® ordering, and the
¢ handling of ligatures and diacritical marks.

In the first section the printing of sequencesis treated.
The storing of the data is considered in the second sec-
tion. Thesortingiselaborated oninthesections3and 4:
sorting of numbers, respectively |exicographic sorting

? Any sorting macro should implement the algorithm with the comparison and exchange operator as parameters.
* Compatibility of number and lexicographic sorting has been strived after, wherethe particular sorting variant can berealized

by appropriate\ | et -equals of the parameters.

SASCII is the abbreviation of American Standard Code for Information Interchange. An ASCII table—associating each

character with a number—is provided in the TEXbook, p. 367.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Reprint MAPS#10 (93.1); May 1993

150 Sorting in BLUe

in the presence of the Dutch ij-ligature and diacritica
marks.® In the fifth section the applications: sorting
address labels, sorting and compressing Knuth’sindex
reminders file, and sorting of control sequences sep-
arately, are dealt with. In the appendices | supplied
the listings of the files: heap. t ex, qui ck. t ex,
sort.tex and my testdriver sort .t st.

There are so many details in sorting and the TEX en-
coding of it, that | hope that the remainder is not too
concisefor thosewho areredly interested in the details
of the TEX encoding. Onthe other hand, | hopeitwon’t
contain too much for those who just like to get an idea
of the possibilities of TEX with respect to sorting.”

Approach. The three processes. initialization, sort-
ing and typesetting, are separately and independently
designed.

For filling the data structure | considered it handy to
have a few macros which storefrom
e copy (\ seq..\ ges),
o afile(\ storefrom,or
e aprocess, which (randomly) generate elements
(\ st or erandom, \ st or er andomn).

For sorting | provided

e theBen Lee User level macros
(\sortn,\sortaw)\ sortw),and

e the Dblue collar macros (\ heapsort,
\ qui cksort).

For typesetting the data structure | used the macros
\ prt n, respectively \ prt w?®

Files. The file sort.tex contains the macros
for storing (\seq...\ges, \storefrom and
\ st orerandomm, \ st or er andomn), for sorting
(\sortn, \'sortaw, \sortw), and for typeset-
ting \prtn, \prtw, and \ prti nd). Apat from
these, the file contains the common definitions of the
\ heapsort and \ qui cksort macros, as well as
variants for the parameter macros.

The files heap. t ex and qui ck. t ex contain the
\ heapsort, respectively \qui cksort, macro
along with specific auxiliaries.

My testdriver isthefilesort . t st .

Definitions and notations. A sequence is defined as
a row of numbers, respectively words, separated by

5 Adaptable to other ligatures and accents.

BijlageZ

spaces. The structure\ csname(k)\ endcsnane, is
associated with an array with index £ = 1,2,... n.
To denote in the documentation a value pointed by
the number (k), | made use of \val {{k)}, with
\ def \ val #1{\ csnane#1\ endcsnane} . Macro
names take suffix -n, -w, when specific for number, re-
spectively word data. For example\ sor t n stands for
sort numbers, \ prt w stands for print words. | have
typeset the in-lineresults of the examples in bold face.

For transferring valuesto amacro, | generally refrained
from the (optional) parameter mechanism, asit isused
in nowadays high-level programming languages. In-
stead | used Knuth’sparameter TEX nique, which comes
down to providing definitions and using these by in-
vokations, eventually after a\ | et -equal.

| have used the shorthand notation \ ea, \ nx, and
\ ag for\ expandaft er,\ noexpand, respectively
\ af t er gr oup. \ k isused as counter toloop through
the values 1,2, ..., n, the index domain. \ n con-
tains the maximum number of sequence e ements, n.
\'i f conti nue isused for controlling loops. The ar-
ray and the counter \ st at us had to be maintained
globally, because of the nesting of loops.

1 Typesetting elements

After sorting the typesetting must be done. In gen-
era this is dependent upon the application and will
demand Hi-TeXnique.” For simplicity and in order to
concentrateon the sorting aspects| typeset the sequence
element after element, via\ prtn,or\ prtw.

Example (Typesetting anumber sequence)!®

\def\ 1{314}\ def\ 2{ 1}\ def\ 3{ 27}\ n3 \prtn
yields: 314, 1, 27.

Example (Typesetting aword sequence)

\def\1{i k}\def\2{j\ij}\def\3{h\ij}\n3 \prtw

yieds: ik jij hij.

1.1 TgeX encoding

Design choice. The elements are typeset in the de-
fault font. The separator is parameterized into\ sep.
Number sequences are typeset in range notation.

Input. The array \ {(k}), ¥ = 1,2,...,n, and the
counter \ n with value (n),!! and optionaly a value
(kzero), > 0,in\ kzero.

"Ben Lee User, BLU for short, can always page through the provided headings and grasp ‘what it is all about’ from the

included examples.

8Thefilesort .t ex containsalso\ prti nd, totypeseti ndex. t ex.
°Think for example of Knuth’s typesetting of the index of the TeXbook, p. 261-263. It is in the chapter on OTR-s (Output
Routines) with aura ‘. . . the following material will take you all the way to the rank of Grandmaster, i.e., a person who can

design output routines’

1%1n the examples\ def -s are used to define a one digit as control symbol. \ csnane. . . \ endcsnarme must be used for

two or more digits.

1 The defaults for the parameter \ sep—\ sepn, respectively \ sepw—are provided inthefilesort . t ex.

Reprint MAPS#10 (93.1); May 1993

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

BijlageZz

Result. The array \(kzero + 1)
\ kzer o isdefault 0.

: \(n) is typeset.

The macros
\def\prts{{\k\kzero%print \1,...\n
\ def\sep{\ I et\sep\sepw} %
\l oop\i f num k<\ n\ advance\ k1l
\ sep\ csnane\ t he\ k\ endcsnane
\repeat}}\let\prtwprts
%
\def\prtn{{\k\kzero%rint ranges
\loop\i f num k<\ n\ advance\ k1
\ ea\ prc\ csnane\t he\ k\ endcsnane
\repeat\prtfl}}
%
\def\ prc#1{\init{#1}\def\ prc##1{ %
\i fnun##1=\1st\ el se\if num##1=\sl st
\Ist\slst\advance\slstl \el se
\prifl\sepn\init{##}\fi\fi}}
%
\def\prtfl{\the\frst\ifnumfrst<\Ist
\advance\frstl \ifnumfrst=\1st\sepn
\ el se\ nobr eak--\nobreak\fi\the\l st}
%
\def\init#1{\frst#1\| st #1\ sl st #1\ advance
\slst1{}}

Explanation. Abstraction of the lower index into
\ kzer o, default 0, makesit possibleto typeset parts of
the array. The elements are separated by the separator
given in, \ sepn, respectively \ sepw. The encoding
isTEX specific. Each first timetheloopistraversed the
invokationof \ sep redefinesitself with theactual sep-
arator. On subsequent traversalsthe provided separator
istypeset.

The replacement text of \ prt n and\ pr t wisagroup,
and therefore the loop’s \ body cannot redefine the
\ body of an outer loop.

In order to account for number ranges \ prt n uses
\ pr ¢, asimplified version of \ pr ocessc, borrowed
from [25].

2 Storingasequence

Asdatastructurethefoll owing TpX -specificencoding' 2
isused.

\ csnanme(k)\ endcsnanme, k=1,2,...n.

Writing to, respectively reading from, the k** eement
goesvia'?

\ ea\ def \ csnane(k)\ endcsnane{ (k' elem.)},

and \ csnane(k)\ endcsnane.

Sorting in BLUe 151

When acounter\ k, whichtakesthevalues1, 2, ..., n,
isused, then TEX requires\ t he\ k for theindex num-
ber (k).
To get the hang of it. The reader must be aware of
the differences between
o theindex number, (k)
o thecounter variable\ k, withthevalue (k) asindex
number
o the control sequences\ (k}, k = 1,2,...,n, with
as replacement texts the items to be sorted.

When we have
\ def\ 5{ 6} then

\ 3 yidds4,

\ csnane\ 3\ endcsnane yidds5, and

\ csnane\ csnane\ 3\ endcsnane\ endcsnane
yields 6.

Similarly, when we have

\ k3 \def\3{nane} \ def\ nanme{acti on} then

\t he\ k yields 3,

\ csnan®e\ t he\ k\ endcsnane yieddsname, and

\ csnane\ csnane\t he\ k\ endcsnane\ endcsnane
yidldsaction.'* To exercise shorthand notationthelast

can be denoted by \ val {\ val {\the\k}}.

Another\ csnane. . . will execute\ acti on,which
can be whatever you provided as replacement text.

\def\3{4} \def\4{5}

21 From copy

Elements available in the copy of an author are stored
via

\ seq(sequence)\ ges .t

Example (Storing numbers from copy)
\'seql 314 27\ ges storesthe elements. For veri-
fication\ prt nyields: 1, 314, 27.

Example (Storing wordsfrom copy)
\seq ik j{\ij} h\ij\ges storestheelements.
For verification\ pr t wyields: ik jij hij.

TeX encoding
Design choice. Thesequenceisstoredinan array via
the FIFO TeXnique [23]. The process is independent
of thetype. Numbers or words (text) can be stored by
the same macro.

Input. Data from the user copy preceded by \ seq
and followed by the separator \ ges. The eements
must be separated by a. ,, whichisnot gobbled by TEX's
mouth. (In practice this means that words ending with
acontrol sequence—\ i ,\j , or for Dutch\ i j —must
have braces around that control sequence.)

2Functionally equivalent to an array. Amy Hendrickson [15] used arrays in TeX although she did not call them as such.
Adrew Greene[13], while playing around in TEX’s mind, associated already the array concept with\ csnare. . . .

2 Actually, | used\ gdef -s, \ xdef -s, and\ t he\ k.
' Confusing, but powerful!

>Mnemonics: sequence. This abstracts from all the\ def -s, casu quo\ csname. . . \ endcsnane-s, as provided in the

examples.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Reprint MAPS#10 (93.1); May 1993

152 Sorting in BLUe

Result. Thearray\ (k), k = (kzero+1),2,...,n,
with the sequence elements as values. The counter \ n
will contain the value (n). (kzero) is a bias, with
default value O.

The macros

\ def \ seq#1\ ges{ %
\k\kzero\fifow#l \wofif{} }

%
%nd auxiliaries
\def\fifow#l {\ifx\wofif#I\n\k\wofif\fi

\ processw{#1}\fi f ow}

\def\wofi f#1\fifow{\fi}

%
\ def \ processw#1{\ advance\ k1

\ ea\ gdef\ csnane\t he\ k\ endcsname{#1}}

Explanation. The ideaisthat the elements from the
copy enclosed by \ seq and \ ges—and appended in
the macro \ seq by .\ wof i f {} '°—are processed
as arguments of the macro \ f i f ow. This macro has
a ., as endseparator. When \ wof i f is encountered
the number of elements is stored in\ n and the recur-
sion is terminated by the invokation of \ wof i f. The
latter macro gobbles all the tokens—in thiscase \ f i
\ processw{ #1} —up to and including the next in-
vokationof \ f i f ow. Itsreplacement text insertsanew
\ fi,tocorrect thedisturbed\i f...\fi baance

The macro\ pr ocesswmaintainsthe (index) counter
and actually stores each element, globally.

2.2 From afile

In applications the words (and other information like
page numbers'” for index preparation) aregathered into
afilefor later, usually external, processing.

Example (Storing from file)
If thefilei ndex. t ex contains the records

word !'3 314
word !'1 27
tag !'1 1
word !'1 1
then

\storefromindex.tex}
stores the elements from the file into the array.
For verification the array is printed by

\ begi n{ quot e}
\let\sepw\\ prtw unski p.
\ end{ quot e}

with result!®

BijlageZ

word 13 314
word !1 27
tag!l1
word!11

TeX encoding

Specification. Records from a user specified file are
to be read into the array. On termination the counter
\ n containsthe number of stored elements.

Input. The file with the elements given per line.
\ kzer o isdefault 0.

Result. Thearray\ (k), k = {(kzero) +1,2,...,n,
with the elements as values. \ n contains the upper
bound of the array, (n}.

The macro

\def\storefron#1{ %1 is file nane
\openi n\rec#1 \k\kzero \continuetrue
\loop\ifeof\rec\continuefal se\fi
\'i fcontinue\ advance\ k1l \read\rec to\xyz

\ ea\ gl obal \ ea\ | et\ csnane\t he\ k\ endcsnane\ xyz

\repeat \ advance\ k- 1\ n\ k\ cl osei n\rec}

Explanation. The \ newr ead\ r ec has been spe-
cified in thefilesort . t ex. TeX appends a\ par to
the opened file, thereforel had to decrement the counter
\ k by 1attheend. After\ r ec#1 a,,ismandatory; an
empty group is not recognized as terminator. Because
of thelack of an\'i f not eof and of theway \ | oop
has been encoded—TEXbook, p. 219, an \ el se can-
not be used in the body of the loop as part of the
termination—I used the \ newi f\i f conti nue for
controlling the loop. The bias (kzero) is handy for
merging index files.

2.3 From agenerator

Although the automatic generation of dataisonly used
in the tests, it seemed worthwhile for me to include
these macros too, as an example of how data can be
created and stored.

Numbers

A random number generator—the macro \r nd—
has been encoded in TEX by Reid [30]. | added
\ st or er andomm to store the specified number of
random numbersin the array.

Example (Storing random generated numbers)

\rndnund \storerandomb5\ prtn
yidds:'? 1, 88, 62, 27, 1.

1$The empty group is needed because spaces after control sequencesare gobbled. Beware!
17K nown by the OTR—Output Routine—only. For writing the index reminders to the filei ndex. t ex see the TeXbook,
p. 424, themacro\ wr i t ei t and auxiliaries. A simplified encodingwill be provided in Manmac BLUes, see elsawherein this

MAPS.

'8 Note that | had to add an\ unski p. \\ isATEX’s newline.

?Moreclearly, | could have provided\ r ndnun5,, and\ st or er andorm{5}, to emphasizethe different syntactical roles

of the number 5.

Reprint MAPS#10 (93.1); May 1993

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

BijlageZz

Themacros. The encoding of my macro is straight-
forward, once | decided to use Reid’ srandom generator
macro, \ r nd [30].

\ def\ st or erandom#1{ %#1 nunber
%f r-nunbers
\ n#1\ KO{\ | oop\i f num k<\ n\ advance\ k1l %
\rnd\ ea
\ xdef \ csnane\t he\ k\ endcsname{ %
\the\rndval } %
\repeat}}
%
\def\rnd{\gl obal \ mul ti ply\rndnunB871
\ gl obal \ advance\ r ndnuml
\'i f num r ndnun»99999
\ r ndt np\ r ndnum \ di vi de\ r ndt np100000
\'nul tiply\rndt np100000
\ gl obal \ advance\ r ndnum \ r ndt nmp
\fi\gl obal \rndval \rndnum
\ gl obal \ di vi de\ rndval 1000 }

Words

Reid [30] introduced his macrosfor generating random
paragraphs. | added \ st or er andonw to store the
specified number of random words in the array.

Example (Storing random generated words)
\rndnund \storerandomb\ prtw
yields: ajqjjhfn fyi uednas ahw zr.

The macros
\ def\ st or erandomm#1{ %#1 nunber
\ n#1\ nwA n{\ | oop\i f nunD<\ nw
{\ ag\ def arr\ ag{\ randomwor d} } %
\'advance\ nw 1

of words

\repeat}}%end s-r-w
%
\ def \ def arr {\ ea\ gdef %
\ csnane\t he\ nwA endcsnane}
%
\ def \ randomnor d{\ r nd\ nc\ r ndval
\ di vi de\ nc15\ advance\ nc2
\ I oop\i f nunD<\ nc\ randonthar %
\ advance\ nc-1
\repeat}%end r-word
%
%Random character is nodified
\ def\randonthar {\rnd
\'mul ti pl y\rndval 29\ di vi de\ r ndval 100
\'i fnum rndval =26\ rndval 0 \fi
\'i fnum rndval >26\ rndval 4 \fi

9%wbd cgl: | \ag-ed the letter
\ea\ag\ifcase\rndval

a\or b\or c\or d\or e\or flor g\or h\or
i‘or j\or klor I\Vor mor n\or o\or p\or
g\or r\or s\or t\or ulor vior wor x\or
y\or z\fi}

Explanation. Although the same approach as for

storing random generated numbers has been followed,
I had to modify the code dueto the need for intermedi-
ate storing of each random generated letter. A random

Sorting in BLUe 153

word consists essentially of random numbers, mapped
onto letters. The numbers are generated in an inner
loop, via Reid’'s macro \ r andonthar . Because of
the nesting of loops| had to group theinner loop. Real-
izing this, prompted a TEX specific way for storing the
lettersgenerated intheinner loop. Thelettersare placed
after the enclosing group via\ af t er gr oup. When
the group is ended the word is stored as replacement
text of \ {(nw). (Thetokensfor the definition are\ ag-
ed before the inner loop; the closing brace is already
after the innerloop.)

3 Sorting of numbers

Example
\'seq314 1 27\ ges\sortnyidds 1,27, 314.

3.1 Design choices

The backbone of my ‘sorting in an array’ is the data
structure

\ csnane(k)\ endcsname{(k"elm.)}, k=1,2,...

with k theroleof array index and » the number of items
to be sorted.

The encoding is parameterized by \ cnp, the compar-
ison macro, which differs for numbers, strings, and in
general when more sorting keys have to be dealt with.?°
The result of the comparison is stored globaly in the
counter \ st at us.

3.2 TeX encoding

Input. The elements are assumed to be stored in the
aray \ {k), k = 1,2,...n. The counter \ n must con-
tain thevalue (n).

Result. Thesortedarray \ 1,\ 2, ...\ (n), with
\val 1 <\val 2 <...<\val (n).

The macros
\def\sortn{\I et\cnp\cnpn\sort\prtn}
%
\ def \ cnpn#1#2{ %1, #2 must expand into nunbers
%Result: \status= 0, 1, 2 if
% \val {#1} =, >, < \val{#2}.
\'i f nun#1=#2\ gl obal \ st atusO \el se
\'i f nun#1>#2\ gl obal \ statusl \el se
\global\status2 \fi\fi}

%
\def\sort{\heapsort}.

Explanation. The above shows the structure of each
of the Ben Lee User sorting macros.

Sorting: \sortn. A(pointer)\ def\sortn{...}
is introduced which has as replacement text the setting

of the parameter \ cnp, and the invokations of the

actua sorting macro and the macro for typsetting the

sorted sequence.

20For an example see the sorting of Knuth’sindex reminders in section 5.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Reprint MAPS#10 (93.1); May 1993

154 Sorting in BLUe

Comparison operation: \ cnpn. The result of the
comparisonisstored globally inthecounter\ st at us.
Thevaues0, 1,2 denote =, >, <, respectively.

Exchangeoperation: \ xch. The values can be ex-
changed via’!
\ def \ xch#1#2{ %1, #2 counter vari abl es
\ edef \ aux{\ csnane\ t he#1\ endcsnane}\ ea
\ xdef \ csnane\t he#1\ endcsnane{\ csname
\'t he#2\ endcsnane}\ ea
\ xdef \ csnamne\ t he#2\ endcsname{\ aux}}.

3.3 Sometesting

Apart from the examples as given above, \ sor t n has
been tested on sequences of random numbers. Some
idea of the efficiency was obtained and no reasonable
restrictions with respect to the number of items to be
sorted, other than the installation limitations, were en-
countered. For thispurposeusehasbeen madeof Reid's
random number generator in TEX, \ r nd [30].

Timings. On my 8086 MSDOS PC \sortn
(without time needed to create the array, but with the
time needed to writethe sorted array to the dvi-file) had
the (near-linear) performance

No ‘ ~ Time

15 13 seconds

50 1 minute
200 5 minutes.

The University’s VAX8650%? needed ~ 1.75 minutes
for sorting 500 numbers.?3> The measurements were
donewith\ heapsort as sorting macro.

3.4 Variation

For short sequences agorithms of complexity O(n?)
are generally used.?*
Y(N*N) sorting.
\ def\sort{\ bubbl esort}
%
\ def\ bubbl esort{%Data in \1,
{\loop\i fnumL<\ n{\ k\ n
\l oop\i f numi<\ k\ advance\ k-1 \cnp\k\n
\'i f numl=\ st at us\ xch\ k\ n\ fi
\repeat }\ advance\ n-1
\repeat}}%end \bubbl esort

\2,...\<n>.

4 Lexicographic sorting
Given the blue collar workers\ heapsort , respect-

ively \ qui cksort, we have to encode the compar-
ison macro in compliance with the parameter macro

BijlageZ

\ cnp. But, . .. lexicographic sorting is more complex
than number sorting. We lack ageneral comparison op-
erator for strings,?® and we have to account for ligatures
and diacritical marks.

In creating a comparison macro for words, flexibility
must be built in with respect to the ordering of the
alphabet, and the handling of ligatures and diacritical
marks.

Example (Sorting ASCII words)

\seq a b aa ab bc bb aaa\qges\sortw
yields: aaaaaaab b bb bc.

Example (Sortingwordswithij-ligature)
\segf{\ij}st{\ij}d {\ij} {\ij}s in tik
t\ij\ges\sortw

yields: in tik tij ij ijsijstijd.

Example (Sorting accented words)

\seq b\'e b\‘e \"a\"a ge\"urm geur aa a
ge{\ij}kt be ge\"\i nd gar\c con\qges
\sortw

yields. a aa aa be bé be garcon geind geur gelirm
geijkt.

Reculer pour mieux sauter. Because of the com-
plexity and the many details involved | recede with
simplified cases as stepping stones. 1’1l first guide you
through the encoding of the comparison macro for

o one-(ASCIl)letter-words, and

o ASCII strings, of undetermined length,
after which wewill come back to the main track of the
encoding of the general comparison macro.

One-(ASCII)letter-words. Theissueistoencodethe
comparison macro, in compliance with the parameter
macro \ cnp. Let uscal this macro \ cnpol w.2° Its
task isto compare one-letter words and store the result
of each comparison globally in the counter \ st at us.
As arguments we have \ def -s with one letter as re-
placement text.

\ def\ cnpol w#1#2{ %#1, #2 are def-s
%Result: \status= 0, 1, 2 if
% \val {#1} =, >, < \val{#2}.
\ ea\ chardef\ ea\ cone\ea' #1{} %
\ ea\ chardef\ ea\ctwo\ea' #2{} %
\ gl obal \ statusO \I ge\ cone\ ct wo}
%

\def\ | ge#1#2{ %1, #2 are letter val ues

2'For a better and more general macro, see section 4 about lexicographic sorting. Here the definitions are completely

expanded, which is not necessary and therefore inefficient.

22 Just to give the reader an idea because VMS is atime sharing system.

2% As expected with 0-99 as printed result. Neat!

24 A nice example of encoding nested loops. Should be part of courseware about macro writing in TeX.
%1t is not part of the language, nor provided in plain. Victor Eijkhout [10] supplied one. The (limited) predecessor of my
comparison macro has appearedin [23]. Thosemacros don’t abstract from the ASCII ordering or allow for accented words and

ligatures.
26 Mnemonics. compare one letter words.

Reprint MAPS#10 (93.1); May 1993

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

BijlageZz

%Result: \status= 0, 1, 2 if #1 =, >,
\'i f num#l>#2\ gl obal \ statusl \el se

\i fnum#l<#2\ gl obal\status2 \fi\fi}
%
\seq zy ABabdemnopzzuvcg
ghj 1l il kntursf Y\ges
\let\cnp=\cnpol wsort\prtw

Theaboveyieldss ABl Yabcdefghijklmnn
opqrstuuvyzzz

Explanation \ cnpol w.. In order to circumvent the
abundant use of \ expandaft er -s, | needed a two-
level approach: at thefirst level the lettersare ‘ derefer-
enced, and the numerical value of each replacement
text is provided as argument to the second level macro,
\l ge.?”

ASCIl words. The next level of complexity isto al-
low for strings, of undetermined length and composed
of ASCII letters. Again theissueisto encode the com-
parison macro, in compliance with\ cnp. Let us call
the macro \ cnpaw?®. Its task is to compare ASCI|
words and storethe result of each comparison globally
in the counter \ st at us.

The problem is how to compare strings letter by let-
ter. Empty strings are equal. This provides a natura
initializationfor the\ st at us counter. As arguments
we have\ def -swith wordsof undetermined length as
replacement text.

\ def \ cnpaw#1#2{ %1, #2 are def-s
%%Result: \status= 0, 1, 2 if
% \val {#1} =, >, < \val{#2}.
{\ I et\ nxt\ nxtaw cnpc#1#2}}
%
\def\ cnpc#1#2{ %1, #2 are def-s
%esult: \status= 0, 1, 2 if
% \val {#1} =, >, < \val {#2}.
\ gl obal \ statusO \conti nuetrue
{\ I oop\i fx#1\ enpt y\ cont i nuef al se\fi
\'i fx#2\ enpt y\ conti nuef al se\fi
\'i fcontinue\ nxt #1\ nxtt \nxt#2\nxtu
\Ige\nxtt\nxtu
\'i f nunD<\ st at us\ conti nuefal se\fi
\repeat}\i f nunD=\ st at us
\ifx#L\ enpty\if x#2\ enpty\ el se
\global\status2 \fi
\el se\i fx#2\ enpty\ gl obal \ statusl \fi
\fiVfi}
%
\ def \ nxt aw#1#2{\ def \ pop##1##2\ pop{\ gdef
#1{ ##2}\ char def #2* ##1}\ ea\ pop#1\ pop}
%
\seq a b aa ab bc bb aaa\qges

Sorting in BLUe 155

< #2. \let\cnp\cnpaw sort\ prtw

The above yields: aaa aaa ab b bb bc.

Explanation

Comparison: \ cnpaw. The macro is parameter-
ized over the macro\ nxt . The main part of \ cnpaw
has been encoded as\ cnpc. (That partisalso used in
the general case))

We have to compare the words | etter by letter. The let-
ter comparison is done by the aready available macro
\ I ge. The\l ge invokation occurs within a loop,
which terminates when either of the stringshas become
empty. | added to stop when the words considered so
far are unequal. At the end the status counter is correc-
ted if thewords considered are equal and one of the#-s
is not empty: into 1, if #1 is not empty, and into 2, if
#2 isnot empty.

Head and tail: \ nxt.. The parameter macro \ nxt

has the function to yield from the replacement text
of its first argument the ASCII value of the first let-
ter and deliver this value as replacement text of the
second argument.?? The actual macro \ nxt aw pops
up the first letter and delivers its ASCIl value—a
\ char def —as replacement text of the second argu-
ment. Notethat thefirst parameter isglobally redefined
for the emptiness-test after the loop.

4.1 Design choices

Sorting of words with ligatures and accents is done
viathe ordering defined in a so-called ordering table.3°
Thisentail sthat the comparison of lettershasto be gen-
eralized such that accents are recognized too. For the
(accented)l etter-to-number conversion the* isreplaced
by atable [ook-up.

Comparison operation. A specia situation arises
with diacritical marks. Within the context of sorting
thecommandsfor diacritical marks have been redefined
with the function to provide for the control symbol
together with the accompanying letter an appropriate
value from the ordering table.

Note that when the ASCII ordering is sufficient, no
ordering table is needed. For that case \ cnp can be
\'I et -equal to\ crpaw.

Ordering table. In Dutch the ij is peculiar. It is
mostly used as a ligature®® and in that role its lexico-
graphic position is between x and z.3? This character
is not accounted for in the ASCII table, therefore we

2"Mnemonics: letter greater or equal. A nice application of the use of \ ea, \ char def , and the conversion of a character
into anumber: ‘ . Note that the values of the upper case and lower case letters differ (by 32) in ASCII.

22Mnemonics. compare ASCII words.

22 gplitting up into ‘head and tail,’ is treated in the TeXbook, Appendix D.2, p. 378, the macro \ | op. There use has been

made of token variablesinstead of \ def -s.

%In the ordering table numbers are associated to letters, ligatures and accented letters.
31 Also as two characters. For examplein bi-jection (hyphen for emphasis) and the like.
2| was quite surprised to find out that my Dutch dictionary doesnot sort on the ij-ligature? ?

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Reprint MAPS#10 (93.1); May 1993

156 Sorting in BLUe

need an ordering table. In some other languages sim-
ilar situations exist, so the idea of abstraction from the
ASCII ordering is useful,® if not for the handling of
diacritical marks. For theinput | adopted the conven-
tiontosupply\ i j . Theordering tableisimplemented
viaalistof \ char def -s3* Numbers are not assigned
consecutively in the ordering table, leaving room for
accented letters.

| have provided the same values for upper and lower
case letters. The successor values are reserved for the
accents: acute, grave, umlaut, and hat. | also accounted
for the cedille.

4.2 TeX Encoding

Purpose. To sort words with (Dutch) accents and ij-
ligature.

Input. The elements are assumed to be stored in the
aray \ {(k), k = 1,2,...n. The counter \ n must con-
tain thevalue (n).

The default settings are done in the file sort . t ex.
The macro \ accdef contains the modified accent
definitions, and the macro \ accst r the string of ac-
cent control sequences.

Result. Thesortedarray\ 1,\ 2, ...\ (n), with
\val 1 <\val 2 <...<\val (n).

The macros

%vbdi fi cations/addenda to nunber
%Sorting and typesetting.
\def\sortw{{\accdef\let\cnp\cnpw sort}%

\prtw}

sorting

%
% Conpar e wor ds.
\def \ cnpw#1#2{ %1, #2 are def-s.
%esult: \status= 0, 1, 2 if
% \val {#1} =, >, < \val {#2}.
\ I et\ nxt\ nxt W cnpc#1#2}
%
%ri el d val ue of next (accented) letter.
\ def \ nxt w#1#2{\ def \ pop##1##2\ pop{ %
\ gdef #1{ ##2}\ def \ head{ ##1}} % ai |
\ ea\ pop#1\ pop
\ea\l oc\ head\ accstr% head in accentcs?
\'i ffound\I et\acs\head

\ ea\ pop#1\ pop%ext tail and head

\ ea\l et\ ea#2\ csnane ot\acs\ head\ endcsnane
\ el se\ ea\l et\ea#2\ csnane ot\head\ endcsnane

\fi}

%
\def\accstr{\‘\'\"\"\c}
%

\ def\ accdef {%

% As communicated by Wlodek Bzyl, with respect to Czech.

and head

BijlageZ

\def\’ ##1{##1g}\ def \ ' ##1{ ##1a}

%cute grave
\ def \ "##1{ ##1t }\ def \ c##1{ ##1c}

Y%rema cedille
\ def \ " ##1{ ##1h} ¥%hat
\def\i{i}\def\j{j}}%lotless i, j

\def\ | oc#1#2{\ def \ | ocat e##1#1##2\ end
{\ifx\ enpt y##2\ enpt y\ f oundf al se
\el se\foundtrue\fi}\ea\l ocat e#2. #1\ end}
%
% dering table
\ chardef\ota32 \chardef\ot A32
\ char def\ ot aa33 \ chardef\ ot ag33
\ char def\ ot at 34 \ char def\otah35
%t cetera, see Appendix C

Explanation

Sorting: \ sortw. A (pointer)\ def\sortw{...}
isintroduced, which has as replacement text the inser-
tion of the accent definitions via the invokation of
\ accdef , the setting of the parameter \ cnp, and the
invokations of the actual sorting macro and the macro
for typesetting. A group is used in order to keep the
temporary redefinitionsof theaccentslocal. \ accdef
yields the modified definitionsfor the accents and spe-
cia letters like\i, and \'j . The purpose of these
definitions is to get the right value from the ordering
table.

Comparison operation: \cnpw. The parameter
macro \ nxt is\ | et -equal to \ nxt w. The compar-
ison is done by the common \ cnpc,3® which stores
globally the result of the comparison in the counter
\ st at us.

Head and tail: \ nxt w. This macro peels a token3*
from the first argument, selects the associated value
form the ordering table and delivers the latter value in
the second argument, as a\ char def . The complica-
tion isthat when we have an accent we have to consider
the next token too, and select the associated numerical
value for the combination.?”

Theremainder of theword, thetail, isdelivered globally
in the first argument, for the afterloop emptiness-test.
The local macro\ pop yieldsthe head and thetail of a
word. \ | oc determines whether the token in\ head
is an accent control symbol .38

Exchange operation: \ xch. No expansion of the
accents must take place, therefore the aready stored
data are copied viathe\ | et -equal TEXnique.

\ def \ xch#1#2{ %1, #2 counter vari ables

3¢ Remember that a\ char def name can be used asa number.

% For an explanation see the subsection about ASCI| words.

%6 Or debraced group.

3TA neatuseof \ ea, \ | et, and\ csnane. . ., with asresult a\ char def !
®Thisisageneralization of the searchfor {char) € {string) [23]. On secondthoughts, | consider this aneat generalization.
The temporary redefinitions are parameterized into\ def \ accdef

Reprint MAPS#10 (93.1); May 1993

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

BijlageZz

\ ea\l et \ ea\ auxone\ csnane\t he#l\ endcsnane
\ ea\l et\ ea\ auxt wo\ csnane\t he#2\ endcsnane
\ ea\ gl obal \ ea\l et\ csnane\t he#2\ endcsnane
\ auxone

\ ea\ gl obal \ ea\ | et\ csnane\t he#1\ endcsnane
\ auxt wo}.

To verify your understanding, what isthe result3® of

\ nB\ n4\ def\ 3{first}\def\4{second}
\xch\mn
\the\m \the\n; \3, \4.

4.3 Sometesting

Apart from the exampl es as given above, |exicographic
sorting has been tested on sequences of random words.
For thispurpose use has been made of Reid’s[30] work
for generating random paragraphsin TeX.

Timings. Onmy 8086 MS-DOS PC the (word) sort-
ing, without the time needed to create the array but
with the time needed to write to the dvi-file, had the
performance

No ‘ ~ Time
15 30seconds
50 3minutes.

The University’s VAX8650%° needed ~ 5 minutes to
sort 500 random words. The measurements were done
with\ heapsor t as sorting macro, with each word of
random length.

5 Applications

5.1 Sorting addresslabels

Amy Hendrickson [15] used sorting of address|abelsto
illustrate various macro writing TEXniques. However,
she used external sorting routines. Here | will do the
sorting within TeX, and enrich her approach further by
separating the mark-up phase from the data base query
and the report generating phases. Because this paper
concentrates on sorting aspects, let us assume that each
address is supplied as a definition, with the definitions
of the name and address components as replacement
text. Furthermore, it is handy to create alist of al the
addresses: the names of the address definitions separ-
ated by \ as, the address separator.*! For the imagin-
ative toy adresses of the three composers: Schonberg,
Webern, Strawinsky, the structureslook likeasfollows.

39 Answer: 3, 4; second, first.

Sorting in BLUe 157

\ def\ schonber ga{\def\initial {A}
\ def \ sname{ Ar nol d}\ def\ cname{Sch\ "onber g}
\ def\ street{Kai sersal | ee}\ def\ no{ 10}
\ def\ count y{}\ def\ pc{9716HM
\ def \ phone{ 050- 773984} \ def \ ermai | { as@ uw. au}
\def\city{Vi enna}\def\country{AU}}
%
\ def\straw nskyi {\def\initial {I}
\ def \ snanme{| gor}\ def\ cnane{ St r awi nsky}
\ def\street{Longwood Ave}\def\no{57}
\ def\ count y{ MA}\ def \ pc{ 02146}
\ def\ phone{617-31427}
\def\enuil {i gor@i . mt.edu}
\ def\ ci t y{Bost on}\ def\ count r y{ USA} }
%
\ def \ weber na{\def\initial {A}
\ def \ snane{ Ant on}\ def \ cnanme{ Wber n}
\ def\street { Arst el }\ def\ no{ 143}
\ def\ count y{ Noor d- Hol | and}\ def \ pc{ 9893PB}
\ def \ phone{020- 225143} \ def \ ermai | { aw@iva. nl }
\def\city{Amst erdant\ def\country{N.}}
%
%nd the |ist
\ def \ addresslist{\as\straw nskyi
\ as\ weber na\ as\ schonber ga}

For the typesetting | made use of the following simple
address label format*?

\def\tsa{%he current address info is set
\par\initials \cnanme \par

\no\ \street\ \city\par

\pc\ \county\ \country\par}

%

\def\initials{\ea\fifolinitial\ofif}
\def\fifo#1{\ifx\ofif#l\ofif\fi#l. \fifo}
\def\ofif#1\fifo{\fi}

Example (Databasequery: selection of addresses per
country)

Suppose we want to select (and just \ t sa them for
simplicity*3) the inhabitants from Holland from our
list. Thisgoesasfollows.

\ def \ sear ch{ NL}
\ def\as#1{#1\i f x\ country\ search\tsa\fi}
\ addressl i st

The above yieldsthe result
A. Webern

143 Amstel Amsterdam
9893PB Noord-Holland NL

%0 Just to get the flavor of it because VMS is atime sharing system.

*1By this set-up we can do a lot more than just sorting address|abels. What about mailmerge? What about * TEX asadatabase
report generator? Jurriens [18] coined the term, although most of the work there was done via UNIX scripts.

*2The encoding of printing special address labels has been worked out by for example Damrau & Wester [7]. It isleft asan
exercise to the reader to modify \ t sa such that address labels are typeset in an m-by-n grid, each label of size h-by-w with

parameters m, n (counters), and h, w (dimensions).

Inthisexample\i ni ti al s isnot used. It hasbeen added to allow for multiple initials of which all letters must end with a

period.

**We could also create a new addresslist for that country and apply another query, or just sort.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Reprint MAPS#10 (93.1); May 1993

158 Sorting in BLUe BijlageZ

Exar,nple (Sorting address |abels) o The reminders, one per line, are written to a file be-
Amy’s example can be done completely within TeX, 8 468 only the OTR knows the page numbers. Knuth

EOHOWS' . considered thisfile, i ndex. t ex,
%%r epare sorting) S)
\ def\ as#1{\ advance\ k1 \ea\ xdef\ csnane *...agood first approximation to an in-
\ 't he\ k\ endcsnanme{\ ea\ gobbl e\ stri ng#1}} dex.
% He also mentions the work of Winograd and Paxton
\ def\ gobbl e#1{} [36]*® for automatic preparation of an index. Here we

%
\kO{}\addresslist%reate array to be sorted
\n\k\ def\prtw{}¥%suppress default \prtw

will provideasecond approximation to anindex: thein-
dex reminders are sorted and compressed. The sorting

\sortweBort the |ist is done on the three keys
9dypeset addresses, al phabetically ordered primary key: (word)

\ kO secundary key: {digit), and
\loop\i f num k<\ n\ advance\ k1 tertiary key: <page number).

\ csnane\ csnane\ t he\ k\ endcsnane\ endcsnane

\vski plex\ tsa The compressing comes down to reducing the index

reminders with the same (word) (digit) part to one,

\'r epeat
P) with instead of one page number all the relevant page
The above yields the results numbers in non-decreasing order.
?O ichontg? Vi We assume that theindex reminders are aready stored
9716;1?7 AUee lenna in the array.*® Similarly, | didn’t bother about writing
the sorted and reduced array to afile. It is up to the
|. Strawinsky index preparator what to do with the array and how to
57 Longwood Ave Boston typeset it. Furthermore, it is not complete, because of
02146 MA USA subentries, subsubentries, or‘see. . . and‘seedso. . .,
A Webern which are not considered here.*”

143 Amstel Amsterdam

9893PB Noord-Holland NL Example (Sortingon primary, secundary and tertiary

keys)
Remarks. The automatic mark-up of address data \def\1{z !3 1}\def\2{a !1 2}\def\3{a !1 3}
supplied in a TeX independent way, is not the sub- \def\4{a !'1 1}\def\5{ab !'1 1}\def\6{b !0 1}
ject of this paper. The given set-up dlowsto add, in ~ \def\7{aa !1 1}\def\8{a !2 2}\def\9{aa !1 2}
any order, the address information to the database, un- ~ \ N9\ kO\ kkO
der the restriction that definitionswith thesame names ‘! et\cnp\cnpi risort\let\sepw\\ nul |

must be used for the address components** The lit 2; It le\r Vtszﬁ} :Z{ \Zfzgre':(]n\o:o:'?sv;t
must be modified too. \hfil\vtop{\hsize2. 5cm noi ndent

As can be seen from the above, and also in Amy’sfree after reduction\\[.5ex]\redrng\prtw
format, it is not easy to keep thefile ordered whileex- \hfil\vtop{\ hsi ze2cm noi ndent _
tending the database. Therefore sortingis needed, such typeset in\\index:\\[.5ex]\prtind.}\hfil
that the database can be extended in an arbitrary way. The above yields's

Database TEXniques have it that modifications to the after sorting: after reduction: typesetin

datraarein_depmo:mtfrom thereport generating, thanks alll all1-3 index:

to the sorting tools. all? al2?2 a1-3

5.2 Sorting Knuth'sindex reminders all3 aalll,?2 \az2
al22 ab!l1l aal,2

An index reminder, asintroduced by Knuth, consi sts of

| |
index material to befurther processed for typesettingan s S5 o
i _ all? z!31 bl
index. In the TEXbook, p. 424, Knuth gives the syntax ab!11 7)1
of an index reminder b'bl o
(word) M(digit),(page number)., 2131

4 Of course one can change the chosen names.

**Later Lamport provided makeindex and Salomon a plain version of it, to name but two persons who contributed to the
development. The Winograd Paxton Lisp program is also available in Pascal.

*6The process for storing the contents of i ndex. t ex inthearray\ 1,12,...\ (n), has been described in Storing from a
file, section 2, and will not be repeated here.

7 An approach to handle sub(sub)entriesis to allow for composite primary keys, for example separated by \ se, respectively
\'sse. In\decom and \typind we have to account for the various possibilities. | will come back to the issue of
typesetting Indexes within TEX, another time.

*2The unsorted input can be read from the verbatim listing.

Reprint MAPS#10 (93.1); May 1993 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

BijlageZz

Design
Given the sorting macros we just have to encode the
special comparison macro in compliance with\ crmpw:
compare two ‘values specified by \ def -s. Let uscall
thismacro \ cnpi r .*° Each valueiscomposed of

¢ aword (action: word comparison),

o adigit (action: number comparison), and

e a page number (action: (page) number compar-

ison).

The macros read as follows.

\ def\ cnpi r #1#2{ %1, #2 defs
%Result: \status= 0, 1, 2 if
% \val {#1} =, >, < \val{#2}
\ ea\ ea\ ea\ decom ea#l\ ea; #2. }
%
\def\deconm#l ! #2 #3;#4 |#5 #6.{%
\ def \ one{#1}\ def\ f our { #4} \ cnpaw\ one\ f our
\'i f nunD=\ st at us% onpare second key
\'i f nun#2<#5\ gl obal \ status2 \el se
\'i f nun#2>#5\ gl obal \ statusl \el se
%Conpare third key
\'i f nun#3<#6\ gl obal \ st at us2
\el se\i f num#3>#6\ gl obal \ st atus1 \fi
\fi
\fi
\fi
\fi}

Explanation. | needed a two-level approach. The
values are decomposed into their components by
providingthem as argumentsto\ decom®® Themacro
picks up the components

o theprimary keys, the (word),

¢ thesecundary keys, the (digit), and

o thetertiary keys, the (page number).

It compares thetwo primary keys, and if necessary suc-
cessively the two secondary and the two tertiary keys.
The word comparison is done viathe already available
macro \ cnpaw.

To let thiswork with\ sort , we haveto\ | et -equal
the\ cnp parameter to\ cnpi r .

Reducing duplicate wor d-digit entries
Theideaisthat the same index entries, except for their
page numbers, are compressed into one, thereby redu-
cing thenumber of elementsinthearray. Instead of one
page number all the rel evant page numbers are supplied
in non-descending order in the remaining reminder, in
range notation. The macro is caled \ r edr ng®! and
isgiven below

\def\redrng{%Reduction of \1,...,\n, with

%page nunbers in range representation

*?Mnemonics: compare index reminders

Sorting in BLUe

159

{\ k1\ kkO
\ea\l et\ea\record\csnane\t he\ k\ endcsnane
\ea\splitwn\record.\let\refer\word
\I et\ nrs\enpty\prcrng\num
\l oop\i f num k<\ n\ advance\ k1
\ea\l et\ ea\record\ csnane\t he\ k\ endcsnane
\ea\splitwn\record. %
\ifx\refer\word%xtend \nrs w th nunber
\ prcrng\ num
\else%wite record to \kk
\advance\ kk1l \strnrs \ea\xdef
\ csnane\t he\ kk\ endcsnane{\refer{} \nrs}
\let\nrs\enmpty\init\num prcrng\ num
\let\refer\word
\fi
\repeat\i f numl<\ n\advance\ kk1 \strnrs\ea
\ xdef \ csnane\ t he\ kk\ endcsnanme{\ wor d{}
\nrs}\global \n\kk\fi}}
Y%auxiliaries
\def\splitwn#l !#2 #3.{\def \word{#1 !#2}%
\ def\ nun{ #3} }
%
\def\prcrng#1{\init{#1}\def\prcrng##1{ %
\i fnum##l=\1st\el se\ifnum##l=\sl st
\Ist\slst\advance\slstl \else
\strors\ini t{##1}\fi\fi}}
%
\def\strnrs{\dif\lst\advance\dif-\frst
\edef\ nrs{\ifx\nrs\enpty\el se\nrs\sepn\fi
\the\frst\ifnunD<\dif
\'i fnunml=\dif\sepn\the\l st
\ el se\ nobr eak- -\ nobreak\the\l st
\fi

Vi)

Explanation. The encoding is complicated because
while looping over the index reminders either the re-
minder in total or just the page number has to handled.
The handling of the page numbers is done with mod-
ified versions of \ prc, \ prtfl, caled respectively
\ prcrngand\ st rnrs.>? | encoded to keep track of
thenumbersinthemacro\ nr s, inthecase of duplicate
word-digit-entries. Another approach iswhiletypeset-
ting the array element to process the page numbersvia
\ prc [25].

Typesetting index entries
Knuth has adopted the following conventions for cod-
ing index entries.

Mark up Typesetin copy* Ini ndex. t ex
R 10 (page no)
R ‘silent’ 10 (page no)
el | ... 'l (page no)
AT [V 12 (page no)
<> (- I3 (page no)
*1...| denotesmanmac’s, TUGboat's,. . . verbatim.

*®Mnemonics: decompose. In each comparison the def-s are ‘ dereferenced, that is their replacement texts are passed over.
Thisisastandard TEXnique: atriad of \ ea-s, and the hop-over-s to the second argument.
>!Mnemonics: reduce (in range notation). The macro \ r ed, which does not yield the page numbers in range notation is

suppliedin thefilesort . t ex too.

>2Mnemonics: processc with ranges, respectively store numbers.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Reprint MAPS#10 (93.1); May 1993

160 Sorting in BLUe

The typesetting as such can be done via the following
macro.

\def\typi nd#1{%#1 a def
\ea\splittot#1. %
\'i fcase\di gi t\ word\ or
{\tt\word}\or
{\tt\char 92\ wor d}\ or
$\ I angl e\ hbox{\wor d}\ rangl e$\fi {}
\ pagenr s}
%
\def\splittot#1 !#2 #3.{\def\word{#1}%
\ chardef\digit#2{}\def\pagenrs{#3}}
%
\def\prtind{{\def\\{\ hfil\break}\k\kzero
\def\sep{\ | et\sep\sepw} %
\l oop\i f num k<\ n\ advance\ k1l \sep
\ ea\ t ypi nd\ csnane\ t he\ k\ endcsnane
\repeat}}

The typesetting of the index ala TEXbook Appendix |
has been dealt with in the Grandmaster chapter of the
TeXbook, p. 261-263.

5.3 Morethan oneindex

Erik Frambach posed thefollowing question on the tex-
nl@hearn discussion list

How to prepare automatically two index

files: one for commands and one for the

rest?
A solution to this problem is to create the information
intwofiles, onefor the control sequences and the other
for therest. Thisworksindependently of the used tool.
Another solutionis splittingthe i ndex. t ex file, de-
pending upon the (digit) code’® Knuth associated
control sequences with code 2, when writing the index
entry toi ndex. t ex, TEXbook p. 423.

Example (Separate sorting of control sequences)

\def\1{wd !2 7}\def\2{wd !1 1}
\def\3{wd !2 2}\def\4{a !'1 1}
\def\5{wd !2 5}\def\6{wd !2 3}
\def\7{z 13 7}\def\8{wd !1 5}
\def\9{wd 2 1} \n9
\let\sepw\\null
\ hfil\vtop{\hsize=2cm noi ndent
data:\\[.5ex]\prtw
\hfil\vtop{\hsize=2.2cm sort cs\noi ndent
after splitting:\\[.5ex] {\n\pk\prtw}
\\[.5ex]\kzero\ pk\ prtw}
\hfil\vtop{\hsize2.5cmlet\cnp\cnpir
{\ I ond\ up\ pk\ qui cksort}
{\ I owk pkone\ up\ n\ qui cksort }\ noi ndent
after sorting\\both parts,\\
conpressing,\\and typesetting:\\[.5ex]
\redrng\n3 \prtind\\[.5ex]\typind\4.}

BijlageZ

yields™

data after splitting: ~ after sorting
wd!27 wrd!15 both parts,
wrd!11 wrd!11 compressing,
wd!22 z137 and typesetting:
alll alll al

wd!25 wd!25 wd1,5
wd!23 wd!23 27

z137 wd!22 \wd 1-3,5,7.
wrd!15 wd!27

wd!21 wd!121

Encoding

\def\getdi g#l !#2 #3.{\def\dig{#2}}
%
\ def\sortcs{\gl obal \ kO\ gl obal \ pk\ n
\ gl obal \ pkone\ pk\ gl obal \ advance\ pkonel
% nvariant: 1:k non-cs-s,
% and pk+l:n cs-s
\'I oop\ gl obal \ advance\ k1
\'i f num k<\ pkone
\ ea\ ea\ ea\ get di g\ csnane\t he\ k\ endcsnane. %
\if2\dig{\continuetrue% <--
cs<=>2!
\'l oop
\'i f num k=\ pk\ gl obal \ pkone\ pk
\ gl obal \ advance\ pk-1 \conti nuefal se
\ el se\ ea\ ea\ ea\ get di g\ csnane\t he\ pk
\ endcsnane. %
\'i f 2\ di g\ gl obal \ pkone\ pk
\ gl obal \ advance\ pk-1
\'i fnum k=\ pk\ conti nuef al se\fi
\ el se\ xch\ k\ pk\ gl obal \ pkone\ pk
\ gl obal \ advance\ pk- 1
\ conti nuef al se
\fi
\fi
\ifcontinue
\repeat } %
\fi

\repeat} %Resul t\ 1:\ pk non-cs, \pkone:\n cs

Explanation. Suppose that the file i ndex. t ex is
stored in the array. Loop through the array and com-
pare the (digit) with 2. In case of a control sequence
swap thisindex entry with an appropriate entry at the
end.

The invariant of theloopis: \ 1 : \ (k)*® contains no
control sequences, and\ {pk + 1) : \ {n) containscon-
trol sequences.

As result the array is partitioned with the control se-
guences at the end of the array, that is the replacement
textsof \ {(pk + 1) :\ {(n).

°2Conversely, merging two separate index files is easy, and can be done via \ st or ef r om{{1°"-file)} \ kzero\n

\ st or ef rom{ (2" file)}.

®*The sorting of the control sequencescan be done viaaslightly more efficient\ cnpi r , becauseof the same (digit).

**Not pk, but k!

Reprint MAPS#10 (93.1); May 1993

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

BijlageZz

6 Epilogue

A glossary or an index is usually processed outside of
TeX, that is via other tools. ‘How to encode in TeX,
was explored via the classic example of sorting. No
robustness was strived after. The encodings have been
kept as simple and flexible as possible.’® As a con-
sequence no attention has been paid to safeguarding
goodies like the prevention of name confusions with
those already in use by an author.

Silent redefinitions do occur when not alert. Beware!
Looking back. Much of the work has been done in
the spirit of

Abstraction is our only mental tool

to master complexity E.W. Dijkstra
A professiond starts
where an amateur ends G.E. Forsythe

7 TeXniquesused

The printing of a sequence parameterized by the separ-
ator.

FIFO and the active list separator to store asequencein
an array.

Parameter separators to select parts of an argument.
Pedling off characters one by one from a string.
Expanding the parameters before the invokation of the
macro (Use of triads of \ ea-s).

Using the ASCI I values of characters for comparison.
Transforming numbers into characters.

Generating random elements for testing.

\ ag to store random generated | etters as words.
Setting up an address database.

Selecting from a database via queries implemented via
the active list separator.

Maintaining a heap structure.

Initialization of loops and recursion: on first traversal
some actions are different from the rest.

Ending recursion via gobbling up the tokensincluding
theinvokation for the next level.

Parameterizing sorting with respect to the comparison
operation.

\ char def -sto parameterize the ordering table of the
a phabet.

Sorting (accented) words.

Sorting on keys, with composite values.

Compressing index reminders.

Nested \ csnane.

Not only exchanging expansion order but aso pro-
cessing order, via\ ag.

56But, alas, full of details.

Sorting in BLUe 161

Hard things. One can rhetorically question whether
the macros have been coded in a near optimal way?”
I’m convinced that the basic approach
to parameterize as much as possible

is a good thing. | aso believe that the modular ap-
proach to encode small pieces, with clear functional
tasks, is the way to build something of a reasonable
size, and to keep it readable and maintainable. Literate
programming avant lalettre?

Often | needed the\ xdef functionality, but partially
expanded. As atypical example thefollowing.
Instead of

\ xdef \ <name>{\ csnane\t he\ k\ endcsnane}
| had to use (also with\ gl obal)

\ ea\l et\ ea\ <nanme>\ csnane\t he\ k\ endcsnane

when | incorporated the handling of accents. Also for
the non-accent case thelatter is better, because it leaves
the contents of \ (name) untouched. It isnot clear to
me whether the use of token variables instead, would
have been better.

Exchanging the order of expansion is abundantly used
in the TEXbook. In generating random words | needed
todelay thestoring. Inthat particul ar case—reasonable
size of the wordlength—I could fruitfully made use of
\ ag. Fromthis| learned that the use of \ ag comesin
when ‘stomach’ processes have to be exchanged on the
fly.

A TeXfal isthat\ gl obal , so easily used with coun-
ters and definitions, does not extend to\ newi f -s. In
first instance | tried to keep track of the status of the
comparison of two strings by Booleans, a an inner
level. Because, | could not use them globally other-
wise than adapting the\ newi f macro, | have used a
counter—\ st at us—instead.

Another TEXfall isthat the\ body of aloop issilently
redefined when nesting loops without scope braces.
This occurs for example when in a loop a macro is
invoked which contains an (unbraced) inner loop in its
replacement text. This is different from the TeXfall
where the first (inner) \ r epeat is mistaken for the
outer one. Difficultieswith nesting of loops, especialy
to keep quantitieslocal, have been alluded to earlier by
Pittman [29].

In debugging | traced every comparison and exchange
via\i medi ate\witel6...-s

Inarticleslikethisitisdifficult to circumvent unwanted
spaces when in horizontal mode. My solutionisto do
the sorting in verticadl mode and when done typeset
in horizontal mode. | have taken notice of Eijkhout’s
suggestions [11].

57 ndeed, because of the many ways one can encodein TeX, it is very hard, if not impossible, to decide which codeis best.
Perhapswe have to get usedto it that programmingislike life. Polymorph! Knuth experienced similar things as can be distilled
from ‘Always remember, however, that there's usually a simpler and better way to do something than the first way that pops
into your head.” The TeXbook, p. 373. Apart from the set-up, much has been given an afterthought or two.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Reprint MAPS#10 (93.1); May 1993

162 Sorting in BLUe

On the other hand inthe encoding of \ seq | hadtoin-
sert an empty group after \ wof i f inorder toretainthe
separator . Thisinsertion of the empty group was a so
necessary in\ r edr ng when rewriting the array: not
\' but{} ! I asohadto compensate for Southal’s
‘buses and weirdness - TeX effect, about which he lec-
tured so vividly a the 1990 SGML-TEX meeting at
Groningen.

Conclusion

| believethat my macros can be of usefor preparingin-
dexes completely within TEX. In the discussion about
the NTS (New Typsetting System), in [28] and [35],
it is argued to think in pre- and post-processing out-
side of TEX. Sorting index items is neither a pre- nor
a post-process. Generdly it is done in between. A
file with index reminders is written while TeXing the
compuscript. Then external sortingand the likeisdone
outside of TEX, and finally the typesetting of the index
is done again by TeEX. Now dl can be done within
TeX, despite the good and abundant external sorters
available.

At the danger of being accused of misusing TEX as
“...another American screw driver’ 8
for situationsnot envisioned in the design, | found that
encoding a non-trivial example in TeX illustrates the
power of TEX'slanguage. But, . . . | also sadly endured
TEX'snegative side _ _
Encoding in TEX is error-prone! % osa: ™
This despite of its author being the initiator of literate
programming.®?
A discipline of TEX encoding? Absolut-
ively!

Acknowledgements

Ronad Kappert iskindly acknowledged for his sugges-
tions and remarks while proofing.

References
[1] Alexander, J.C (1986): Tib, a reference setting

package. TUGboat 8, no. (2), 102.
[2] Amstel, J.J van, J Bomhoff, G.J Schoenmakers

(1978): Inleiding tot het programmeren 1. Aca-

demic Service.
[3] Arseneau, D (1992): overcitesty, drftcitesty,

cite.sty. (from thefile server)

[4] Bentley, J(1986): Programming Pearls. Addison-
Wedley.

[5] Bechtolsheim, S von (1989): \ csname and
\'stri ng. TUGboat 10, no. (2), 203-206. (Apart
from the basics, SvB discusses the convenient
(read non-doubl e) loading of macro files, and the
cross-referencing. Common to both applications
istheuseof\ csnane and\ st ri ng. Nonesting
of \ csnane, and no mentioning of associating
\ csnane. .. witharrays.)

5870 paraphrase Perlis.

BijlageZ

[6] Chen, P, M Harrison (1987): Automaticindex pre-
paration. CSB-TR 87/347. UCB. (A nice survey
of issues relevant to preparing indexes automat-
ically. Existing indexing tools in use in various
systems are discussed. The paper emerged from
the experience gained in writing the makeindex C
program.)

[7] Damrau, J, M Wester (1991): Form letterswith 3-
across labels capability. TUG "91. TUGboat 12,
no. (4), 510-516.

[8] Durst, L (1989): Bibliographic citations, or vari-
ationsontheold shell game. TUGboat 10, no. (3),
390-394.

[9] Durst, L (1991): Some toolsfor making indexes.
TUGboat 12, no. (2), 248-252.

[10] Eijkhout, V (1992): TEX by Topic. Addison-
Wedley.

[11] Eijkhout, V (1993): The bag of tricks. TUG-
boat 13, no. (4), 494-495.

[12] Green, | (1992): citesort.sty. (from thefile server)

[13] Greene, A.M (1989): TeXreation—Playing
Games with TEX’s mind. TUGboat 10, no. (4),
691-705.

[14] Hendrickson, A (1989): MacroTEX.

[15] Hendrickson, A (1990): Getting TeXnical: In-
sights into TEX macro writing techniques. TUG-
boat 11, no. (3), 359-370.

[16] Jeffreys, A (1990): Listsin TEX's mouth. TUG-
boat 11, no. (2), 237-244.

[17] Jensen, K, N Wirth (1975): PASCAL user manua
and report. Springer-Verlag.

[18] Jurriens, T.A (1992):
MAPS92.2, 100-101.

[19] Kappert, R (1992): scite.sty. (A compilationof the
earlier versions of Arseneau and Green. From the
file server.)

[20] Knuth, D.E (1973): The Art of Computer Pro-
gramming 3. Sorting and searching. Addison-
Wedley.

[21] Knuth, D.E (1984): The TeXbook, Addison-
Wedley.

[22] Laan, C.G van der (1992a): Syntactic Sugar.
MAPS92.2, 130-136. (Submitted to TUG '93.)

[23] Laan, C.Gvander (1992b): FIFO & LIFOsingthe
BLUes. MAPS92.2, 139-144. (To appear TUG-
boat 14.1. An earlier version has appeared in the
EuroTeX 92 proceedings.)

[24] Laan, C.G van der (1992c): Tower of Hanoi,
revisited. TUGboat 13, no. (1), 91-94. Also:
MAPS92.1, 125-127.

[25] Laan, C.Gvan der (1993): Typesetting number se-
guences. MAPS93.1. (4 pages. Submitted TUG-
boat.)

[26] Lamport, L (1986): IATEX, user’s guide & refer-
ence manual. Addison-Wesley.

TeX as database.

>?With the purposeto program like writing literature. Not only to be processed by computers, but also to be read by humans,

with pleasure!

Reprint MAPS#10 (93.1); May 1993

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

BijlageZz

[27] Lamport, L (1987): Makeindex, an index pro-
cessor for IATEX. (A clear user’s guide for us-
ing makeindex—a C program—together with
IATEX.)

[28] Pdlais, R (1992): Moving a fixed-point. TUG-
boat 13, no. (4), 425-432.

[29] Pittman, J.E (1988): Loopy.TEX. TUGboat 9,
no. (3), 289-291.

[30] Reid, T.J (1987): Floating figures at the right —
and— Some random text for testing. TUGboat 8,
no. (3), 315-320.

[31] Sdlomon, D (1989): Macros for indexing
and table-of -contents preparation. TUGboat 10,
no. (3), 394-400.

[32] Salomon, D (1992a): NTG's Advanced TeX
course: Insights& Hindsights. MAPS 92 Special.
252p.; revised = 500p.

[33] Salomon, D (1992b): Index preparation for TEX
related documents. MAPS92.2, 111-114. (The
adaptation of makeindex for plainisdiscussed.)

[34] Spivak, M.D (1989): LAxS-TEX. TEXplorators.

[35] Taylor, P (1992): The future of TEX. Proceed-
ings EuroTeX '92. 235-254. (Reprinted in TUG-
boat 13, no. (4), 433-442.)

[36] Winograd, T, B Paxton (1980): Anindexing facil-
ity for TEX. TUGboat 1, no. (x), A1-A12. (The
work uses TEX version 1.x and a Lisp program.
It does not contain such a clear user guide as
for makeindex [27]. It provides numbersin range
notation and allows for subentries, and cross-
references likesee .. .and see dso The pro-
gram can merge files. The program has been con-
verted into Pascal someyearslater. Thelatter ver-
sion isavailable on file servers.)

[37] Wirth, N (1976): Algorithms+ Data Structures =
Programs. Prentice-Hall.

[38] Youngen, R.E (1992): TeX-based production at
AMS. MAPS92.2, 63-68.

Appendix A: Heap sort
The process consists of two main steps, [2], [20]

o creation of aheap
¢ sorting the heap

with a sift operation to be used in both.

In comparison with my earlier release of the code in
MAPS92.2, | adapted the notation with respect to sort-
ing in non-decreasing order.5°

What is aheap? A sequence ai, as, ..., a,, iSaheap
if ap > asp Aap > aspy1, k= 1,2,...,n+2, and
because a, 41 is undefined, the notation is simplified
by defining ar > any1,k=1,2,... n.

A tree and one of its heap representations of

Sorting in BLUe 163

2,6,7,1,3,4read

@ @
o o o o

The algorithm. In PASCAL-like notation the algor-
itm, for sorting the array g 1:n], reads

%heap creation

l:=ndiv2 + 1;

while! # 1do

l:=1-1;sift(a,l,n)od

%sorting

7= n;

whiler # 1do

(a[1], a[r]) := (a[r], a[1])%exchange
r:=r—1;sift(a,1,r)o0d

%sift #1 through #2

j = H#1

while2j > #2 A (a[j] < a[24] V a[j] < a[2j + 1]) do
mi = 2§ + ifa[24] > a[2j + 1] then 0 elsel fi
exchange(alj], a[mi]) j := miod

Encoding
Purpose. Sorting values given in an array.

Input. Thevalues are stored in the control sequences
\1, ..., \(n). The counter \ n must contain the
value (n). The parameter for comparison, \ cnp,

must be \ | et -equal to \ cnpn, for numerica com-
parison, to\ cnpw, for word comparison, to\ crpaw,
for word comparison obeying the ASCII ordering, or
to a comparison macro of your own. (Thelatter macro
variants, and in general the common definitions for
\ heapsort,and\ qui cksort, are supplied in the
filesort.tex.)

Output. Thesortedarray \ 1,\ 2, ...\ (n), with
\val 1 <\val 2 <...<\val (n).

Source

Yheapsort.tex Jan, 93

\ newcount \ n\ newcount \ | c\ newcount\r

\ newcount\ i c\ newcount\ uone

\ newcount\ j c\ newcount\jj\ newcount\jjone

\new f\ifgoon

%\on- descendi ng sorting

\ def\ heapsort{%ata in \1 to \n

\r\n\heap\icl

{\loop\i fnunl<\r\xch\ic\r

\advance\r-1 \sift\ic\r

\repeat}}

%

\def\ heap{%ransform\1..\n into heap
\lc\n\divide\l c2{}\advance\l cl
{\loop\ifnuml<\| c\advance\lc-1

59|t is true that the reverse of the comparison operation would do, but it seemed more consistent to me to adapt the notation

of the heap concept with the smallest elements at the bottom.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Reprint MAPS#10 (93.1); May 1993

164 Sorting in BLUe

\sift\lc\n\repeat}}

%

\def\sift#1#2{ %1, #2 counter variables
\'j j #1\ uone#2\ advance\ uonel \goontrue
{\loop\jc\jj \advance\jj\jj

\ifnumjj <\uone
\jjone\jj \advance\jjonel
\ifnumjj<#2 \cnpval\jj\jjone
\ifnunR=\status\jj\jjone\fi\fi
\cnmpval \jc\jj\ifnunk>\status%
\ goonfal se\fi
\ el se\ goonf al se\fi

\ifgoon\xch\jc\jj\repeat}}

%

\ def\ cnpval #1#2{ %1, #2 counter variables

%Result: \status= 0, 1, 2 if

%al ues pointed by

% #1 =, > < #2
\ea\l et\ ea\ aone\ csnane\t he#1\ endcsnane
\ea\l et\ ea\ at wo\ csnane\ t he#2\ endcsnane
\ cnp\ aone\ at wo}

\ endi nput %9l @ug. nl
Explanation
\ heapsort. Thevaluesgivenin\ 1, ...\ {(n), are sor-

ted in non-descending order.

\heap. The values given in\1,...\ (n), ae re
arranged into a heap.

\ sift. The first element denoted by the first (counter)
argument has disturbed the heap. Sift rearranges the
part of the array denoted by its two arguments, such
that the heap property holds again.

\ cmpval. The values denoted by the counter values,
supplied as arguments, are compared.

Examples (Numbers, words)

\ def\ 1{314}\ def\ 2{1}\ def\ 3{27}\ n3
\ I et\ cnp\ cnpn\ heapsort

\ begi n{ quot e} \ prtn, \ end{ quot e}

%

\def\ 1{ab}\ def\2{c}\ def\3{aa}\n3
\'| et\ cnp\ cnpaw\ heapsort

\ begi n{ quot e}\ prtw, \ end{ quot e}
and

\def\1{j\ij}\def\2{ge\"urn}\def\3{gar\c con}

\def\4{\"el*eve}\n4d
\let\cnp\cnpw {\accdef\ heapsort}
\ begi n{ quot e} \ prt w\ end{ quot e}
yields

1,27, 314,

aaab c,
and

éeve gargon gelirm jij.

Appendix B: Quick sort

The quick sort algorithm has been discussed in many
places, for example [20]. Here the following code due
to Bentley [4], p. 112, has been trandliterated.

procedure @ort (L, U)

BijlageZ

if L<U then Swap(XI],
T:=X[L] M=L
for I:=L+1 to U do
if X[1]<T M=M1
Swap(X[M, X1]) fi
od Swap(X[L], X[M)
@ort (L, M1) Qort(M1, U

X[Randi nt (L, U])

fi

Encoding

Purpose. Sorting of the values given in the array
\ (low), ..., \ {up).

Input. The values are stored in\ {(low), ..., \ (up),
with 1 < low < up < n. The parameter for com-
parison, \ cnp, must be \ | et -equal to \ cnpn, for
number comparison, to \ cnpw, for word comparison,
to \ cnpaw, for word comparison obeying the ASCII
ordering, or to a comparison macro of your own. (The
latter macros, and in general the common definitions
for \ heapsort, and\ qui cksort, are supplied in
thefilesort .t ex.)

Output. Thesorted array \ {low), ...\ {(up), with
\val {low) < ...< \val {up).

Source

%gui ck. t ex Jan 93

\ newcount\ | om\ newcount \ up\ newcount \ m
\ def\ qui cksort{%W/al ues given in
%low, ...,\up are sorted, non-descending.
% ar aneters: \cnp, conparison.
\i fnum I ow<\ up\ el se\ brk\fi
%refval, a reference value selected at
\ m up\ advance\ m\| ow¥Si ze-1 of ar-
ray part
\'i f nunlO<\ M rnd\ nul ti pl y\ m r ndval
\ di vi de\ n@9 \advance\m | ow \xch\| om m
\fi
\ea\l et\ea\refval\csnane\t he\l ow endcsnane
\mlowk\Ilowl et\refval cop\refval
{\loop\if num k<\ up\ advance\ k1
\ea\l et\ ea\ oneqgs\ csnane\ t he\ k\ endcsnane
\cnmp\refval \ onegs\i f nunil=\ st at us
\ gl obal \ advance\ mL \ xch\m k\fi
\let\refval\refval cop
\repeat}\ xch\l o m
{\Vup\ M advance\ up-1 \qui cksort}%
{\1 owm M advance\l owl \quicksort}\krb}
%
\ def\ br k#1\ kr b{\ fi}\ def\ krb{\rel ax}
\ endi nput %9l @ug. nl

Explanation. At each level the array is partitioned
into two parts. After partitioning the left part contains
values less than the reference value and the right part
contains values greater than or equa to the reference
value. Each partisagain partitioned viaarecursive call
of the macro. The array is sorted when all parts are
partitioned.

511f the array is big enough. | choserather arbitrarily 10 asthreshold.

Reprint MAPS#10 (93.1); May 1993

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

random

BijlageZz

In the TEX encoding the reference value as estimate
for the mean value is determined via a random se-
lection of one of the elements.®! Reid’s [30] \ r nd
has been used. The random number is mapped into
the range [low : up], via the linear transformation
\low+ (\up —\I ow) «\ r ndval /99.52

The termination of the recursion is encoded in a TeEX
peculiar way. First, | encoded the infiniteloop. Then |
inserted the condition for termination with the\ f i on
the same line, and not enclosing the main part of the
macro. Ontermination theinvokation\ br k gobblesup
all thetokensat that level up toitsseparator \ kr b, and
insertsitsreplacement text: anew\ f i , to compensate
for thegobbled\ f i .

Examples (Numbers, words)

\def\ 1{314}\ def\ 2{1}\ def\ 3{27}\ n3

\ I owl\ up\ n\ | et\ cnp\ cnpn

\ qui cksort

\ begi n{ quot e} \ prtn, \ end{ quot e}

%

\def\ 1{ab}\ def\ 2{c}\ def\3{aa}
\def\4{\ij}\def\5{ik}\def\6{z}\def\7{a}\n7
\ | owl\ up\ n\ | et\ cnp\ cnmpw

\ qui cksort
\ begi n{ quot e} \ prtw, \ end{ quot e}
and

Sorting in BLUe

\ newcount \ r ndnun¥Seed random gener at or
\ newcount \ r ndt np%enporary val ue
\ newcount \ st at us¥%st at us conpari son
9Newi f - s
\new f\ifcontinue%ontrols | oops
\new f\iffound% ocating accent cs
\new f\ifproof\prooftrue
%
%St oring: from copy
\ def\ seq#1\ ges{\ k\ kzero\fi fow#l \wofif{} }
%Auxiliaries: FlIFO
\def\fifow#l {\ifx\wofif#1\n\k\wofif\fi
\ processw{#1}\fi f ow}
\def\wofi f#1\fifow{\fi}
\ def\ processw#1{\ advance\ k1l \ ea
\ gdef \ csnane\ t he\ k\ endcsnane{#1}}
%
Ystoring: fromfile
\ new ead\rec
\def\storefron#1{%tl is file nane
\openi n\rec#1 \k\kzero \continuetrue
\l oop\i feof\rec\continuefal se\fi
\'i fcontinue\advance\kl \read\rec to\xyz
\ ea\l et\ csnane\t he\ k\ endcshane\ xyz
\repeat\ advance\ k- 1\ n\ k\ cl osei n\rec}
%
%St ori ng: random nunbers
\ def\ st or erandom#1{ %1 nunber of nunbers
\ n#1\ kO
\loop\i fnum k<\ n\ advance\ k1 \rnd\ ea
\ xdef \ csnane\ t he\ k\ endcsnane{\t he\rndval }
\repeat}
%

\def\1{j\ij}\def\2{ge\"urn}\def\3{gar\c con}?¥Wth, due to Reid 1987

\def\4{\"el*eve}\nd
\ I owd\ up\ n\ I et \ cnp\ crmpw
{\accdef\ qui cksort}
\ begi n{ quot e} \ prtw. \ end{ quot e}
yields

1,27,314,

aaaabcikijz,
and

éeve gargon gelirm jij.

Appendix C: Thefilesort.tex

This file contains the common definitions of
\ heapsort and\ qui cksor t, the macros for stor-
ing, the macros for sorting, the macros for typesetting,
some variants for the parameter macros, and the order-
ing table.

Ysort.tex

%shor t hands
\let\ag=\aftergroup
\ I et\ ea=\ expandafter\l et\ nx=\ noexpand

% ount er s

\ newcount \ n\ newcount \ k\ newcount \ kk\ n=0

\ newcount\ kzero%start value in prt k-Iloops
\ newcount \ pk\ newcount \ pkone%Jsed i n sortcs
\ newcount\frst%-irst val ue of range

\ newcount\ | st %ast val ue of range

\ newcount \ sl st %Successor \I st
\newcount\dif % fference \Ilst-\frst

\ newcount\ nw %\unber of words

\ newcount\nc 9%\unber of characters/conp

\ newcount \ nunex %\unber of exchanges

\ newcount \ r ndval %Random nunber

Jan 93

52Note that the number is guaranteed within the range.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

\ def\rnd{\ gl obal \'mul ti pl y\rndnun871
\ gl obal \ advance\ r ndnuni
\'i f num r ndnun»99999
\ rndt mp\ r ndnum \ di vi de\ r ndt np100000
\'mul ti pl y\ rndt np100000
\ gl obal \ advance\ r ndnum\ r ndt np
\fi\gl obal \rndval \ rndnum
\ gl obal \ di vi de\ r ndval 1000 }
%
%St oring: random wor ds
\ def \ st or erandomm#1{ %#1 nunber of words
\ n#1\ nwA n\ def \ def arr {\ ea\ gdef
\ csnane\t he\ nwh endcsnane}
{\loop\ifnunmd<\ nw{\ ag\ def arr\ ag{ %
\randomwor d} }\ advance\ nw 1
\repeat}}%end s-r-w.
%
\ def\ randomwor d{\ rnd \ nc\rndval
\ di vi de\ nc15 \ advance\ nc2
\'l oop\i f nunmD<\ nc\ r andoncthar
\'advance\ nc-1
\repeat} % end r-word
%
%andom character is nodified
\ def\ randoncthar {\ rnd
\'nmul tiply\rndval 29 \di vi de\rndval 100
\'i fnun26=\rndval \rndval O \fi
\'i fnunR6<\rndval \rndval 4 \fi
%wd cgl: | \ag-ed the letter
\ea\ag\i fcase\rndval
a\or b\or c\or d\or e\or f\lor
i‘or jlor klor I\or mor n\or
g\or r\or s\or t\or u\or vior
y\or z\fi}%end r-char
%
%dypeset
%Par anet er s:
\ def\ sepn{,

g\or h\or
o\or p\or
whor x\or

Separators
} Y%unber separ at or

Reprint MAPS#10 (93.1); May 1993

166 Sorting in BLUe

\def\sepw{ } %Wrd separator
\l et\sep\sepw
%
\def\ prc#1{\ini t {#1}\ def\ prc##1{ %
\Vifnum I st=##1{}\el se\ifnum sl st=##1{}%
\Ist\sl st\advance\sl st 1{}\ el se
\prtfl\sepn\init{##1}\fi\fi}}
%
\def\init#1{\frst#1\Ist\frst \slst\frst
\advance\sl st1l }
%
9%rint range: \frst-\lst (or \lst).
\def\prtfl{\the\frst\ifnumfrst<\Ist
\advance\frstl \ifnumfrst=\Ist\sepn
\ el se\ nobreak--\nobreak\fi\the\lst\fi}
%
%rinting sequences
\def\prts{{\k\kzero%print \1,...\n
\ def\sep{\I et\sep\sepw} %
\ I oop\i f num k<\ n\ advance\ k1
\ sep\ csnane\ t he\ k\ endcsnane
\repeat}}% end \prts
%
\let\prtw prts
%
\def\prtn{{\ k\ kzero%rint nunber sequence
\ I oop\i f num k<\ n\ advance\ k1
\ ea\ prc\ csnane\t he\ k\ endcshane
\repeat\prtfl}}% end \prtn
%
\ def\typi nd#1{ %1 a def
\ea\splittot#l. %
\'i fcase\digit\word\or
{\tt\word}\or
{\tt\char92\word}\or
$\ | angl e\ hbox{\word}\rangl e$\fi {}
\ pagenr s}
%
\def\splittot#1 !#2 #3.{\def\word{#1}%
\ chardef\di gi t#2{}\ def\ pagenr s{#3}}
%
\def\prtind{{\def\\{\hfil\break}\k\kzero
\ def\sep{\ I et\sep\sepw} %
\ I oop\i f num k<\ n\ advance\ k1
\ sep\ ea\t ypi nd\ csnane\t he\ k\ endcsnane
\repeat}}
%
YSorting in Q(nlog n)
\def\sortn{\Ilet\cnp\cnpn\sort\prtn}
%
\def\sortaw{\ I et\ cnp\ cnpawA sort\ prtw}
%
\def\sortw{\ Il et\cnp\cnpw{\accdef\sort}\prtw
%
\ def\sort{\heapsort}
%
%aramaters: ij and accent string
\def\accstr{\‘\'\"\"\c}
%
\def\accdef {\def\i{i}\def\j{j}%
\ def \ " ##1{ ##1a}\ def \ * ##1{ ##1g} %
\ def \ "##1{ ##1t }\ def \ " ##1{ ##1h} %
\ def \ c##1{ ##1c}}
%
\def\ij{ij}
%
%Sorting paraneters: exchange macro
\ def \ xch#1#2{ %1, #2 counter vari abl es
\ ea\ | et\ ea\ auxone\ csnane\ t he#1\ endcsnane
\ ea\ | et\ ea\ auxt wo\ csnane\ t he#2\ endcsnane
\ ea\ gl obal \ ea\l et\ csnane\ t he#2\ endcsnane
\ auxone
\ ea\ gl obal \ ea\l et\ csnane\ t he#1\ endcsnane
\ auxt wo}

Reprint MAPS#10 (93.1); May 1993

BijlageZ

%
USorting parameters: nunber conparison
\ def\ cnpn#1#2{ %t1, #2 are def-s
%esult: \status=0, 1, 2, if
% \val {#1} =, >, < \val {#2}
\'i f num#l=#2\ gl obal \ statusO \el se
\'i f num#l>#2\ gl obal \ statusl \el se
\global\status2 \fi\fi}
%
%Par anet ers: conpari son of words
\ def \ cnpw#1#2{ %t1, #2 are def-s
%esult: \status=0, 1, 2, if
% \val {#1} =, >, < \val {#2}
\ I et\ nxt\ nxt w cnpc#1#2}
%
\ def \ cnpaw#1#2{ %1, #2 are defs with as
% epl acenent text the words.
%esult: \status=0, 1, 2, if
% \val {#1} =, >, < \val {#2}
\ I et\ nxt\ nxt awh cnpc#1#2}
%
\ def\ cnpc#1#2{ %1, #2 are def-s
%esult: \status=0, 1, 2, if
% \val {#1} =, >, < \val {#2}
\'i f proof\ gl obal \ advance\ ncl
\let\aa#l\ | et \ bb#2\ fi
\ gl obal \ stat usO \ conti nuetrue
{\1 oop\ifx\enpty#1\conti nuefal se\fi
\'i fx\ enpt y#2\ conti nuefal se\fi
\'i f conti nue\ nxt #1\ nxt t \ nxt #2\ nxt u
\Ige\nxtt\nxtu
\repeat}\ifnunD=\st at us
\i fx\enpty#1\i fx\ enpt y#2\ el se
\ gl obal \ status2 \fi
\el se\i fx\enpty#2\ gl obal \ statusl \fi
\FiVFi
\'i fproof\imredi ate\witel6{\aa
\'i f nunD=\ st at us=\ el se
\'i f numl=\ st at us>\ el se
A fi\filbb.}
\fi%end ifproof
}
%
\ def\ | ge#1#2{ %1 and #2 | etter val ues
%esult: \status=0, 1, 2, if
% #1 =, >, < #2.
%nd \continuefal se if #1=/#2.
\i fnum#l=#2{}\el se\ conti nuefal se
\'i f num#l<#2\ gl obal \ status2 \el se
\ gl obal \statusl \fi
\fi}
%
\ def \ nxt w#1#2{\ def \ pop##1##2\ pop{ %
\ gdef #1{ ##2}\ def \ head{ ##1} } Y%head and tail
\ ea\ pop#1\ pop¥%split in head and tail
\ea\l oc\ head\accstr% head i s an accent cs?
\'i ffound\I et\acs\ head
\ ea\ pop#1\ pop%mext head and tail
\ea\l et\ ea#2\ csnane ot\acs\ head\ endcsnane
\ el se\ea\l et\ ea#2\ csnane ot\head\ endcsnane
\fi}
%
\ def\ | oc#1#2{\ def\ | ocat e##1#1##2\ end
{\i fx\ enpt y##2\ enpt y\ f oundf al se
\el se\foundtrue\fi}\ea\l ocate#2. #1\ end}
%
%ar ameters: for ASCI| words
\ def \ nxt aw#1#2{ %Resul t: val ue of first
%etter of string supplied in #1 is delivered
% n #2. (To be used as a nunber (\chardef)).
%tl, #2 are control sequences.
\ def \ pop##1##2\ pop{\ gdef #1{ ##2} %
\ char def #2*' ##1{}}\ ea\ pop#1\ pop}
%

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

BijlageZz

\ def\ cnpi r #1#2{ %1, #2 defs
%esult: \status=0, 1, 2 if

% \val {#1} =, >, < \val {#2}
\ ea\ ea\ ea\ decom ea#l\ ea; #2. }

%

\def\decom#l ! #2 #3;#4 | #5 #6.{%

\ def\ one{#1}\ def\ f our { #4} \ cnpaw\ one\ f our
\'i f nunD=\ st at us% onpar e secondary keys
\i fnum#2<#5{}\ gl obal \ status2 \el se

\i fnum#2>#5{}\ gl obal \ statusl \el se
% Conpare tertiary keys
\'i f num#3<#6{}\ gl obal \status2 \el se
\'i f num#3>#6{}\ gl obal\statusl \fi
\fi
\fi
\fi
\fi}
%
\ def\red{%eduction of \1,...,\n
\ kO\ kkO\ I et\refer\enpty
\ I oop\i f num k<\ n\ advance\ k1
\ea\l et\ ea\record\ csnane\t he\ k\ endcsnane
\ea\splitwn\record. %
\ifx\refer\word%extend with nunber
\ ea\ xdef \ csnane\t he\ kk\ endcsnanme{ %
\ csnane\t he\ kk\ endcsnane, \nun} %
\else%wite record to \kk
\ advance\ kk1\ | et\ r ef er\ wor d\ ea\ gl obal
\ea\l et\ csnane\t he\ kk\ endcsnane\record
\fi
\repeat \ n\ kk}
%

\ def\redrng{%eduction of \1,...,\n, with
% ange representation of page nunbers
{\ k1\ kkO

\ea\l et\ ea\record\ csnane\t he\ k\ endcsnane

\ea\splitwn\record.\let\refer\word

\ I et\ nrs\enpty\prcrng\ num

\ I oop\i f num k<\ n\ advance\ k1
\ea\l et\ ea\record\ csnane\t he\ k\ endcsnane
\ea\splitwn\record. %
\Vifx\refer\word%extend \nrs with nunmber

\ prcrng\ num
\el se%wite record to \kk
\advance\ kk1l \strnrs
\ ea\ xdef\ csnane\t he\ kk\ endcsname{\refer{}
\nrs}\let\nrs\enmpty\init\num prcrng\ num
\let\refer\word
\fi

\repeat\ifnunl<\n
\advance\ kk1 \strnrs
\ ea\ xdef\ csnane\t he\ kk\ endcsnanme{\ wor d{}

\ nrs}
\ gl obal \ n\ kk\fi}}
%
\ def\ prcrng#1{\i ni t {#1}\ def\ prcr ng##1{ %

\i fnum##l=\1st\el se\ifnum##l=\sl st
\Ist\slst\advance\slstl \el se
\strnrs\init{##1}\fi\fi}}

%
\def\strnrs{\dif\lst\advance\dif-\frst
\edef\ nrs{\ifx\nrs\enpty\el se\nrs\sepn\fi
\the\frst\ifnunD<\dif
\'i fnuml=\di f\sepn\the\l st
\ el se\ nobr eak- -\ nobr eak\ t he\l st
\fi
\fi}}
%
\def\splitwn#l ! #2 #3.{\def\word{#1 ! #2} %
\ def\ nun{ #3}}
%
\def\ getdig#l !#2 #3.{\def\dig{#2}}
%
\ def\sortcs{\gl obal \ kO\ gl obal \ pk\ n

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Sorting in BLUe 167

\ gl obal \ pkone\ pk\ gl obal \ advance\ pkonel
% nvariant: 1:k non-cs; pk+1l:n control seg-s
\'I oop\ gl obal \ advance\ k1
\'i f num k<\ pkone
\ ea\ ea\ ea\ get di g\ csnane\t he\ k\ endcsnane. %
\i f2\dig{\continuetrue
\'l oop
\'i f num k=\ pk\ conti nuefal se
\ el se\ ea\ ea\ ea\ get di g\ csnane\t he\ pk
\ endcshane. %
\'i f 2\ di g\ el se\ xch\ k\ pk\ conti nuef al se\fi
\ fi\gl obal \ pkone\ pk\ gl obal \ advance\ pk- 1
\'i fcontinue
\repeat} %
\fi
\repeat } %Resul t\ 1:\ pk non-cs, \pkone:\n cs
%
%Paraneters: Ordering table
\ char def\ ot a32 \ chardef\ ot A32
\ char def\ ot aa33 \ char def\ ot ag33
\ char def\ ot at 34 \ char def\ ot ah35
\ char def\ ot b39 \ char def\ ot B39
\ char def\ ot c46 \chardef\ ot C46
\ chardef\otcc47 \chardef\otcc47
\ char def\ ot d53 \ char def\ ot D53
\ char def\ ot e60 \ char def\ ot E6O
\ char def\ ot ea6l \ chardef\oteg62
\ char def\ ot et 63 \ chardef\ ot eh64
\chardef\otf67 \chardef\otF67
\ char def\ ot g74 \chardef\ot G74
\ char def\ ot h81 \ chardef\ ot H81
\chardef\oti 88 \chardef\otl 88
\chardef\otit91l \chardef\otih92
\ chardef\otj 95 \chardef\otJ95
\chardef\otjt98
\ char def\ ot k102 \ char def\ ot K102
\ chardef\otl 109 \chardef\otL109
\chardef\otm16 \chardef\ot ML16
\ char def\otn123 \ chardef\ ot N123
\ char def\ ot 0130 \ chardef\ ot O1L30
\ char def\ ot 0oal31 \ chardef\ ot 0ogl132
\ char def\ ot ot 133 \ char def\ ot oh134
\ char def\ ot p137 \ chardef\ ot P137
\ char def\ ot q143 \ chardef\ ot Q143
\ chardef\otr150 \chardef\ ot RL50
\ char def\ ot s157 \ chardef\ ot S157
\chardef\ott 164 \chardef\ot T164
\ chardef\otul71 \chardef\otUL71
\ chardef\otut 174 \ chardef\otuhl75
\ chardef\otv178 \chardef\ot V178
\ char def\ ot w185 \ char def\ ot W85
\ char def\ ot x192 \ char def\ ot X192
\chardef\otij 199 \chardef\otlJ199
\ char def\ ot y200 \ char def\ ot Y200
\ char def\ ot z206 \ char def\ ot Z206
\ endi nput % gl @ ug. nl

Appendix D: Thefilesort.tst

Writing macros is one thing and testing another. | find
testing software as difficult as writing a variant from
scratch. For convenience | have provided my (plain)
testdriver below.

The test path—Which sorting worker? Tracing on/off?
How many random data?—is determined in adialogue
with TEX. Rudimentary, but useful.

Ysort.tst Jan 93
%Separately needed is index.tex, as data.
\input sort.tex
\'i nput heap. t ex

Reprint MAPS#10 (93.1); May 1993

168

\'i nput qui ck.tex
\imedi ate\witel6{Heap sort as sorter? (y/n):}
\readl6 to\yesorno
\if y\yesorno Heap sort.
\ def\sort{\heapsort}
\el se Quick sort.
\ def\sort{\Il owl\ up\ n\ qui cksort}
\fi (\nunber\day/\ nunber\ nont h/\ nunber\year)
\'i medi ate\witel6{Proofing/Tracing? (y/n):}
\readl6 to\yesorno
\if y\yesorno\prooftrue
\ nopagenunber s\t raci ngmacr os2
\ el se\ prooffal se
\fi

\'smal | ski p Nunbers. \ par

\'seq314 1 27\ qges

Input: \prtn.\par

Resul t:\sortn.

\imediate\witel6{Result: \1, \2, \3,
...\ csnane\t he\ n\ endcsnane. }

\smal | skip Words (ASCI 1) .\ par
\seq a b aa ab bc bb aaa\qges

Input: \prtw\par

Result: \sortaw.
\imediate\witel6{Result: \1, \2, \3,
\4, \5, \6,...\csnane\the\n\endcsnane.}

\'smal | ski p Words. \ par

\seq a b aa ab bc bb aaa\qges

Input: \prtw\par

Result: \sortw.
\imediate\witel6{Result: \1, \2, \3,
\4, \5, \6 ...\csnane\the\n\endcsnane.}

\'smal | ski p Accent ed words. \ par
\def\1{z}\def\2{c}\def\3{\"a\" a}\def\4{\"ab}
\ def\5{ge\"urn}\def\6{ge\"{\i}nd}
\def\ 7{gar\c{c}on}\def\8{a}\def\9{ge{\ij}kt}
\ n=9
Input: \prtw\par
Result: \sortw.
\imediate\witel6{Result: \1, \2, \3,

...\ csnane\t he\ n\ endcsnane. }

% est and timing: random generated el enents
\smal | ski p Sort nunbers.\ par
\imedi ate\witel6{G ve seed for r-generator:}
\readl6 to\seed
\imedi ate\witel6{G ve nmaxi mum of num
bers to be
generated: }
\readl6 to\total \n\total
Seed=\ seed. \rndnum seed
\ st orerandom\ n \ par
Input: \prtn.\par
Result: \sortn.
\imediate\witel6{Result: \1, \2, \3,
...\ csnane\t he\ n\ endcsnane. }

\smal | skip Sort words. \par
\imedi ate\witel6{G ve seed for r-generator:}
\readl6 to\seed
\imedi ate\witel6{G ve naxi mum of words to be
generated: }
\readl6 to\total \n\total
Seed=\ seed. \rndnum seed
\ st orerandomM n \ par
Input: \prtw\par
Result: \sortw.
\imediate\witel6{Result: \1, \2, \3,
...\ csnane\t he\ n\ endcsnane. }

Reprint MAPS#10 (93.1); May 1993

Sorting in BLUe

\smal | skip Sort index rem nders.\par

\ st orefron{i ndex. t ex}

{\def\\{\ hfil\break}\Ilet\sepw\

\ I et\ cnp\ cnpi r\ kO\ kkO \ nul |

\ hfil\vtop{\hsize2.25cm noi ndent
Dat a: \ sepw prtw}

\hfil\vtop{\hsize2.5cm sort\noi ndent
After sorting:\sepw prtw

\hfil\vtop{\hsize3.5cm redrng\noi ndent
After reduction:\sepw prtw}

\ hfil\vtop{\hsi ze3cm noi ndent
Typeset:\sepw prtind.}

\imedi ate\witel6{Index rem \1, \2, \3,

...\ csnane\t he\ n\ endcsnane. }

\smal | ski p Franbach’s exanpl e.\ par
\def\1{wd !2 7}\def\2{wd !'1 1}
\def\3{wd !2 2}\def\4{a !1 1}
\def\5{wd !2 5}\def\6{wd !2 3}
\def\7{z !'3 7}\def\8{wd !1 5}
\def\9{wd !2 1} \n9
\let\sepwA\\null
\hfil\vtop{\hsi ze2cm noi ndent
Dat a: \ sepw prtw}
\hfil\vtop{\hsize2.5cm sort cs\noi ndent
After splitting:\sepw{\n\pk\prtw}
\ sepw\ kzer o\ pk\ prtw}
\hfil\vtop{\hsize3cm | et\cnp\cnpir
{\ I owd\ up\ pk\ qui cksort}
{\I owh pkone\ up\ n\ qui cksort}\ noi ndent
After sorting\sepw both parts,\sepw
and conpressing:\sepw redrng\nd \prtw
\ hfil\vtop{\hsize3cm noi ndent\ n4
Typeset:\sepw prtind.}

}
\imediate\witel6{EF s exam \1, \2, \3,

...\ csnane\t he\ n\ endcsnane. }

\ bye cgl @ug. nl

Appendix E: Contents

Abstract
Introduction
— Approach
—Files
— Definitions and notations
Typesetting elements
Examples
— TeX encoding
Design choice
Input
Result
The macros
Explanation
Storing a sequence
To get the hang of it
— From copy
Examples
TEX encoding
Design choice
Input
Result
The macros
Explanation
—Fromafile
Examples
TEX encoding

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

BijlageZ

BijlageZz

Specification
Input
Result
The macros
Explanation

— From a generator
Numbers
Examples
The macros
Words
Examples
The macros
Explanation

Sorting of nhumbers
Examples

— Design choices

— TeX encoding
Input
Result
The macros
Explanation
Sorting: \ sortn
Comparison operation
Exchange operation

— Some testing
Timings

— Variation

L exicographic sorting
Examples
Reculer pour mieux sauter
One-(ASCII)-letter-words
Explanation
ASCII words
Explanation
Comparison: \ cnpaw
Head and tail: \ next

— Design choices
Comparison operation
Ordering table

— TeX Encoding
Purpose
Input
Result
The macros
Explanation
Sorting: \ sortw
Comparison: \ cnpw

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Sorting in BLUe

Head and tail: \ nxt w
Exchange operation: \ xch

— Some testing
Timings

Applications

— Sorting address labels

Examples
Remarks

— Sorting Knuth’sindex reminders

Examples
Design
Explanation

Reducing duplicate word-digit entries

Explanation
Typesetting index entries
—Morethan oneindex
Examples
Encoding
Explanation
Epilogue
— Looking back
— TEXniques used
—Hard things
Conclusion
Acknowledgements
References
Appendix A. Heap sort
— The agorithm
— Encoding
— Purpose
— Input
— Output
— Source
— Explanation
— Examples
Appendix B. Quick sort
— The agorithm
— Encoding
— Purpose
— Input
— Output
— Source
— Explanation
— Examples
Appendix C. Thefile sort.tex
Appendix D. Thefile sort.tst
Appendix E. Contents

169

Reprint MAPS#10 (93.1); May 1993

