
Bijlage T SGML and LATEX 53

SGML and LATEX�

Horst Szillat

Sella-Hasse-Str. 31,
D–12687 Berlin, Germany

szillat@berlin.snafu.de

SGML — Standard Generalized Markup Language — is
a formal language to describe structured text documents.
It should be introduced here by comparison to TEX and
LATEX.

It is interesting to have a look at how Donald E. Knuth
introduces TEX in the TEXbook himself. The beginning is
to simply type in the text and TEX mainly does what one
expects it to do. Quite a lot of more or less complex rules
have been implemented to provide these results. An exam-
ple of this behaviour is the space factor code (\sfcode).
Using this code TEX is able to identify most of the ends
of sentences. Moreover TEX is realized in a way that one
can program almost all kinds of printing layouts. In this
way one can program a macro which influences the layout
in any place. So TEX is a layout oriented system which is
able to format texts for printing and to do a bit more.

Although LATEX simply is TEX, too, and has all these char-
acteristics, too, it introduces a new idea of representing the
text input. The basic idea is that a text is given in the form
of embedded environments. The layout of a text portion
depends on the environment it is embedded in. Moreover,
the layout of whole environments may depend on which
other environment they are embedded in. The user can
define new environments (\newenvironment) which re-
alize a user defined layout. But the main point is that the
author inputs his text on a less technical but a more abstract
level. This way LATEX enforces the idea of separating the
text structure from the printing layout. Changing the lay-
out in LATEX means to replace the existing style files, only.
One could do the same in plainTEX directly, of course.
One can do structured programming in assembler, too, but
assembler does not enforce it.

Now one can simply say SGML is LATEX without TEX to be
written in a slightly different manner. This means SGML
is a representation of the text in its hierarchical structure
without any idea of a layout. If one has lost the layout
there has to be an advantage on the side of the text struc-
turing. And so it is, indeed. LATEX’s environments are
called elements in SGML. Within a certain model one can
now define which way the elements are embedded in each
other and where text is to be allowed. Within that model

the amount and the order of embedded elements and text
is defined.

Such a definition of a text structure is called document type
definition (DTD). The ‘best-known’ example of a SGML
document type definition is HTML (Hypertext Markup
Language) used for the World Wide Web. While pro-
cessing the document an SGML-parser is able to validate
the structure of the document by the given document type
definition. A simple example should illustrate this:
<!ELEMENT section - - (paragraph?,subsection+)>
<!ELEMENT subsection - - (paragraph,paragraph+)>
<!ELEMENT paragraph - - (#PCDATA)>

These lines are to be read as follows: An environ-
ment/element called section consists of maximum one
paragraph and at least one subsection in this order.
Asubsection consists of exactly oneparagraph plus
at least one paragraph, e.g. at least two paragraphs.
And at last, a paragraph consists of letters. Here it is
not possible anymore — unlike in LATEX — to put the first
subsection before the first section. One could define the
LATEX environments with such control structures, too. But
again, LATEX is not designed for this goal and does not
enforce it, while such validating is the nature of SGML.

Another structural advantage over LATEX is the consequent
distinction between parameter and data. The lines
\label{Hallo!}
\section{Errors}
\unknown{whatever}

show that in LATEX one can never be sure what is human
readable text (data) and what is internal technical informa-
tion (parameter). On the other hand SGML has a strict idea
of this distinction. As long as the SGML structures are not
misused malevolently it is possible to make this distinction
without even understanding the content. This is an impor-
tant condition for any computer based data processing. An
example will be given later.

But even in the days of total computerizing the final goal
of text representing is to print the text onto paper. There
are two projects/tools specially designed for the printing
of SGML documents. FOSI (Formatted Output Specifi-
cation Instance) and DSSSL (Document Style Semantics
and Specification Language). But why not use LATEX?

�Reprint from the Annals of the UK TEX Users Group Baskerville, Volume 5.2, March 1995. Published with permission of both
Baskerville editor and author. Presented at the UK TEX Users Group conference ‘Portable Documents: Acrobat, SGML, and TEX’, on
19 January 1995, London, England.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#14 (95.1); May 1995

54 SGML and LATEX Bijlage T

LATEX has some characteristics which make it the first
choice.
� The structure of SGML and LATEX are very close, so

that the documents are easily to convert.
� LATEX is a programming language and therefore can

realize a wide range of unforeseen layouts.
� LATEX has been used for many years by a large number

of people. So there exists a widespread experience.

A principal scheme of the processing might look as shown
in Figure 1.

Unfortunately it is not sufficient to convert the elements
into environments and to write the needed style files. As
already mentioned SGML and LATEX have different ideas
of what is data and parameters. So it is especially neces-
sary to transform SGML-data to LATEX-parameter so that
LATEX can handle it more flexibly. A typical example is
the following:

<section label="main-section">
<title>section title</title>
section content
</section>

What one would like to get is something like this:

\section{section title}\label{main-section}
section content

One should note that main-section is a parameter be-
fore as well as after conversion while section title
moves from being data to being a parameter. The easiest
way to solve this problem is to introduce additional braces
within the LATEX environment. Depending on the number
of parameters defined in the definition of the environment
the data is treated as a parameter or the last parameter is
treated as data:

<name parameter="value">data</name>

converts to

\Bsgml{name}{value}{%
data%
}\Esgml{name}

With some (yet still to be defined) command

\NewSgmlEnv{name}[n]{...}

one gets:
� both value and data being a parameter for n = 2.
� value being a parameter and data being data within

the environment for n = 1.
� both value and data being data within the environ-

ment for n = 0.

Note that this conversion can be done without any conver-
sion parameters. All programming, e.g. replacements are
done in LATEX. This is a major difference to the widely
used SGML-to-whatever converter format which works
with replacement tables.

But the real reason for why I started to develop my own
SGML to LATEX converter is that I felt the necessity to
manipulate the data within the conversion process.

The main questions are what information about the used
words are needed for typesetting and where this informa-
tion comes from. Again this seems to be a typical non-
English problem. In German there are two similar prob-
lems: hyphenation and (wrong) ligatures.

Basically German hyphenation rules are easily to be
adapted for pattern matching and ligatures can be applied.
(Hyphenation is allowed before the last consonant out of
a group of consonants. There is no hyphenation within
a group of consonants at the very beginning or end of a
word. Certain combinations of consonants count as one
single consonant. Easy, isn’t it?) At the present there is
a problem with the umlauts. But this problem should dis-
appear with the dc–fonts. The real problem raises with
complex words, e.g. words which are composed of several
words but look like one. These words have to be hyphen-
ated between the elements of the compound. This fools
every pattern matching. Moreover, there should not be any
ligature in these places. The reason is that one does not
want to have less space ‘between words’.

An example of a rather unsuspicious word is aufflam-
men. One would guess the hypenationauff\-lam\-men,
which is wrong, of course. The english translation gives a
hint: flame up. Within terms of german.sty one should
write auf"|flam\-men, where "| means: hyphenation is
allowed but no ligature is allowed. The printing result is
‘aufflammen’ instead of ‘aufflammen’.

Unfortunately TEX is unable to store this information nei-
ther in the hyphenation table nor in the document preamble
by \hyphenation. Maybe a successor of TEX will be able
to do so. So far an author writing in LATEX has to input
this information directly into the document, well — if he
cares: : :

Using a conversion from SGML to LATEX the converter
would be the right place to insert the additional hyphen-
ation and ligature information. The converter has to use
two dictionaries — a standard dictionary and a special dic-
tionary. It is not unusual that special matters need special
terms and consequently special dictionaries. But in Ger-
man the problem is that one can create new complex words
ad hoc. These new compounds may be specific to a par-
ticular document. So it would be a nice idea to ship this
special dictionary as a structural part of the document!

In this way the author does not have to care about every
single hyphenation and ligature exception, but additionally
has a spell checker.

But unfortunately there is even a worse case which needs
special treatment. It is the word Baumast, which can be
Bau\-mast (mast used in building)Baum\-ast (bough of
a tree), both made of wood, of course. This is a really rare
case that a word must be tagged with an additional informa-
tion where it occurs within the document. This information
should explain which word is to be meant. One could do
that in the form of an explicit hyphenation information. In
SGML it could look like

<word which="Baum\-ast">Baumast</word>

Reprint MAPS#14 (95.1); May 1995 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage T SGML and LATEX 55

concept of a
document

)
SGML-

document
)

LATEX-
document

)
printed

document

DTD
(structure)

?

styles
(layout)

?

Figure 1: Processing of a SGML document

(This example is simplified. It would be more correct to use
a SDATA-Entity so that the LATEX-specifics are hidden.)

Note that the hyphenation information on the words auf-
flammen and Baumast are totally different things. The
first one is part of the layout information (how to print out?),
while the second one is a structural part of the document
(which word?).

Summarizing one can state that SGML and LATEX are a
good pair. Using the specifics of both systems one can do
a lot of things correctly in an easier way.

Further reading
� H. Szillat: SGML — Eine praktische Einführung ISBN

3-929821-75-3, Int. Thomson Publ.
� ftp-server: ftp.ifi.uio.no
� news groups: comp.text.sgml, sgml-l

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#14 (95.1); May 1995

