
170 BLUe’s Format Databases BijlageR

BLUe’s Format Databases
Stay organized

Kees van der Laan
Hunzeweg 57,

9893 PB Garnwerd, The Netherlands
cgl@rc.service.rug.nl

Abstract

The backgrounds, use, and coding of BLUe’s Format Databases have been discussed. Two kinds of databases
have been introduced class I (data, such as addresses, references, and script parts for example pictures), and
class II (macros, such as variant formats and tools).
At the heart lies the selective loading TEXnique, which allows that only what is needed will be loaded on-the-
fly. The data structures and operations on them have been treated. The use within the context of typesetting
scripts have been elucidated via examples. At the end the coding is explained.

Keywords: Active list separators, addresses, comment
blocks, compatible extension, data integrity, databases,
education, fifo, lazy evaluation, list element tag, macro
writing, mail-merge, no-nonsense, number ranges, pattern
matching, pictures, plain TEX, references, reusable soft-
ware parts, search, selective loading, set macros, software
engineering, table of contents, variant document parts.

1 Introduction
Why couple the buzzword database to TEX? What has TEX
got to do with it? Vaguely the answer is that we like to store
addresses, references, copy parts, tools and formats outside
of TEX—or one of its flavours—and only borrow what we
need. Important is also the data integrity aspects which can
be achieved via databases. We only store the information
once for use in different contexts. At the heart is the pro-
cess of selective loading.

Let us go back to Knuth and survey how he coped with us-
ing macros (formats and tools), addresses, references, and
copy parts.

With respect to formats Knuth provided and discussed:
concert format, letter format, and The TEXbook format, i.e.,
the manmac collection of macros. How did he store those
macros? The answer is: simply in separate files. Is that
good enough? The answer is: no, IMHO, with all respect,
assumed we only need part of it. Similarly, he used gkp-
mac, as an independent collection.

How to handle macros has been treated in The TEXbook
Appendix D 4. Selective loading of macros. For references
he mentioned at the end of that section ‘: : : to prepare a bib-

liography for a paper, by reading a suitably arranged bib-
liography file; only the entries that correspond to defined
control sequences will be loaded.’ No further details did

he supply for how he coped with a database of addresses,
or (prefab) parts. However, in manmac Knuth elaborated
on how to handle the document parts
� answers, and
� index reminders, IRs for short.

Although the answers and IRs are very loosely connected
to the database idea I’ll survey Knuth’s approach neverthe-
less, because they give insight how to cope with copy parts,
especially how to create such files and how to process them
efficiently. This elucidates the use of Knuth’s\\, the what
I call list element tag.

1.1 Answer elements
in the file answers obey the syntax

<answerelement> is
\ansno <chapnumber>.<exnumber>
<answerproper>

Example (An answer, what is the question :-))

\ansno 3.16:
The Bible Illuminated

The file answers contains separator lines which begin with
\ansno—the list element tag—and contain the separators
period and colon. Very close to natural markup. Only
\ansno is extra. Apparently we can’t do without some-
thing like that.

In an abstract sense the collection of answers forms a list.
Lists in TEX are processed via some sort of active list sep-
arator, as explained in Appendix D of The TEXbook. How
did Knuth cope with the list of answers1? For this case he
used \ansno as active list ‘separator,’ i.e., \ansno pro-
cesses each answer. Perhaps we should call this tag the list
element tag, because it marks (the start of) a list element.

1Let us assume for simplicity that the answers are already stored in the file answers.

Reprint MAPS#14 (95.1); May 1995 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

BijlageR BLUe’s Format Databases 171

The name active list separator is not accurate enough, al-
though conceptually it comes close. It is just the first ele-
ment which is inconsistent, the element is preceded by the
tag. That tag separates partially, let us say.

1.2 Index reminders
in the file index obey the syntax <IR> is

<indexelement> !<classificationnumber>
<pagenumber>.

Knuth did not process this file within TEX. Ultimately, he
set the sorted and enriched index file via TEX, of course.2

1.3 And what about addresses?
A letter is provided with the address included, no use of
databases, see The TEXbook 404, 405.

1.4 Knuth’s \ifoption
This is about optional inclusion of macros, and in general
document parts, as mentioned in the infamous Appendix D
of The TEXbook. Assume that a file macs has been created
with as structure a sequence of \ifoptions.

\ifoption A <Apart>\fi
\ifoption B <Bpart>\fi
\ifoption C <Cpart>\fi
%et cetera

Knuth’s selective loading comes down to
� the user supplies for example \load{macs}{AC}
� create the list \options with for example as replace-

ment text \\A\\C, with\\ the function to process the
next token as argument (done by \fifo: : : \ofif be-
low)

� define \ifoption, and therein\\, such that the appro-
priate parts of the file, macs let us say, will be loaded.

This is achieved by the following from The TEXbook 384,
transcribed into my fifo notation

\def\load#1#2{%#1 file, #2 options
%Purpose: #2 elaborated into list of options
% as replacement text of \options.

\let\options\empty\let\\\relax\fifo#2\ofif
\input#1 }

\def\fifo#1{\ifx#1\ofif\ofif\fi
\process#1\fifo} \def\ofif#1\fifo{\fi}

\def\process#1{\edef\options{\options\\#1}}
%
\def\ifoption#1{%Purpose: to locate #1
%and to load the corresponding part.
\def\\##1{\if##1#1\resulttrue\fi}%
\resultfalse \options \ifresult}

%with driver, for example
\load{macs}{AC}
%and the file macs with for example
\ifoption A The A part\fi
\ifoption B The B part\fi
\ifoption C The C part\fi
\endinput

My approach differs in that I don’t have two list element
tags, such as \ifoption and \\, but only \lst, respec-
tively \tool. My A, B etc. are names, control sequences,
which can be initialized with an error message, with the ad-
vantage that this message will appear when the name does
not match the name of the document element to be loaded.
Furthermore, I used a token variable \namelst instead of
the definition \options, to store the list of options, but
that is not essential.

My begin and end of the optional part are braces to facili-
tate using it as a replacement text. (With tools and formats I
don’t have braces but terminate via \endinput.) Knuth’s
begin and end tags are \ifoption and \fi.

I won’t detail further but will explain the superior method
of Dı́az.

1.5 Dı́az fast selective loading
The Dı́az process, mentioned in The TEXbook 384 as a su-
perior method, reads essentially as follows.3

%The TeXbook, Appendix D 4.Selective loading.
%The Max Diaz fast selective loading process.
%(A little simplified, and combined with
% my list element tag, \lst.)
\def\lst#1{\catcode‘\˜=

\ifx#1\undefined14 %comment
\else9 \fi}%ignore char

%We want to load the cgl part.
\def\cgl{<anything>}

\lst\name
˜a
˜b
˜c
\lst\cgl
˜aa
˜bb
˜cc
\lst\erik
˜aaa
˜bbb
˜ccc
\catcode‘\˜13
%
<Commonpart>
\bye
%Explanation: the list element tag toggles the
%catcode for ˜ such that either the first
%character is ignored (and the rest of the line
%loaded) or the line is a comment line.

In the above one can replace \lst\name... by
\input <filetobeloadedfrom>.

I did not elaborate much on Max Dı́az approach via catcode
changes, because I don’t like as yet to insert alien first line
characters in the document parts stored in the file to be se-
lectively loaded from.4

2How to handle (modest) indexes completely within TEX has been treated in ‘BLUe’s Index.’
3Courtesy Erik van Eynde for posing the practical problem of variant document parts on the TEX-nl discussion list, which stimulated

me to look closer to Knuth’s and Diaz’ approach.
4I do realize the gains in efficiency though, and more importantly there are less restrictions. Perhaps I’ll use it in the next release of

BLUe’s Format System.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#14 (95.1); May 1995

172 BLUe’s Format Databases BijlageR

Loosely related to the above is the use of the so-called
block comments, to treat parts of documents as comments.
What I have seen and worked on myself so far is similar to
verbatims except that it is not set. I rate Diaz approach as
superior and won’t elaborate on block comment further.

1.6 Notations and definitions
gkpmac stands for the macros used by Graham, Knuth,
Patashnik to format Concrete Mathematics.

manmac denotes the macros used by Knuth to format The
TEXbook, and theMET A F O N T book.

Pascal denotes Wirth’s programming language.

When I load from a database file the extension is already
provided for and reads ‘.dat’.

2 Databases
With algorithms,5 and similar with databases, we have two
main aspects
� data structures, and
� operations on the data.

Up till now I have used the following two kinds of
databases to cooperate smoothly with TEX.
I data, such as, addresses, references, and script parts
II tools, such as, variant formats, and various macros.

I call these class I and class II databases. Samelson’s prin-
ciple has been obeyed

‘Don’t pay for what you don’t use,’

which comes down to selective loading.

The difference between class I and class II is that in class
II only one element has to be loaded per scan.

Each file consists of a list of <listelement>s. The file
names obey the syntax <subjectindicator>.dat. I
consider it useful to attach a name to each list element.

Below I’ll discuss the elements proper, deprived from the
useful extras such as author information, markup for selec-
tive line numbering, contents, and historyof changes, in or-
der to convey the main idea.

2.1 Class I data structure
At the moment this is used in the files
� address.dat, for addresses
� lit.dat, for references, and
� pic.dat, for pictures.

Each list element is a triple and reads as follows.
� list element tag, \lst
� name of list element
� the list element proper, as group. that is enclosed by

curly braces.

I chose \lst as the tag for list element tag. One could
equally well have chosen another control symbol or se-

quence as list element tag, for example Knuth’s\\. How-
ever, because \\ is so heavily used for e-o-l I refrained
from that.

Within the replacement text I adopted application specific
conventions. For example with addresses I used \\—
another lower level list element tag :-) —to facilitate for-
matting. I also used elements tagged by \email, and
\phone. When the entry is used for an address label the lat-
ter tags are \let-equal to \gobble, i.e., they are neglected
for the label.

For addresses the syntax of an entry reads

\lst\<name>{<salutename>
\\<fullname>
\\<affiliation>
\email{...}
\phone{...}
\fax{...}
}

Example (Entry for address.dat)

\lst\ntg{NTG
\\Nederlandstalige \TeX{} Gebruikersgroep
\\Postbus 394
\\1740 AJ Schagen
\\The Netherlands
\email{ntg@nic.surfnet.nl}
}

For references the replacement text starts with the name
of the author with as few punctuation marks as possi-
ble, followed by the date, title, and information about the
source. I also decided to include \annotation, which
can gobble its argument when not needed, or anything you
want. In the simplest case it can return ‘its argument’ via
\let\annotation\relax.

Example (Entry for references.dat)

\lst\knuthded{Knuth D.E (1984):
Computers and Typesetting.
\TB. Addison-Wesley.
ISBN 0-201-13447-0 (hard cover)
ISBN 0-201-13448-9 (soft cover).
\annotation{For the correct printing
look in the index for \cs{language}.
\TeX, is frozen in version π,
3.1415\dots}

}

For entries of the picture database see ‘BLUe’s Graphs,’
the ideas are similar.

The restrictions

are that as part of the replacement text tags are excluded
which are not allowed in an argument of a \def.

2.2 Class II data structure
At the moment this is used in the files
� fmt.dat, for variant formats, and

5Courtesy Niklaus Wirth ‘Algorithms = data + programs.’

Reprint MAPS#14 (95.1); May 1995 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

BijlageR BLUe’s Format Databases 173

� tools.dat, for tools, such as the index macros.

To facilitate handling I consider it useful to close each el-
ement by \endinput. As a result each list element is a
quadruple
� list element tag, \tool
� name of list element
� the list element proper
� \endinput.

I chose \tool as the tag for list element tag. One could
equally well have chosen another control symbol or se-
quence as list element tag, for example Knuth’s \\. How-
ever, because \\ is so heavily used for e-o-l I refrained
from that.

The list element tag name ends either with tool or fmt.
Within the replacemenet text no conventions are pre-
scribed. The syntax for an entry reads \tool\<name>tool

\tool\<name>fmt
<toolmacros> or <formatmacros>

\endinput \endinput

Example (Entry for tools.dat)

\tool\englishtool
\message{ ---English , Jan 95, cgl--- }
\abstractname{Abstract}
\acknowledgementsname{Acknowledgements}
\contentsname{Contents}
\indexname{Index}
\examplename{Example}
\keywordsname{Keywords}
\referencesname{References}
\endinput

The restrictions

are that as part of the replacement text tags are excluded
which are not allowed in an argument of a \def.

2.3 Operations
What operations do we need? With databases we have the
structure definitions of the fields, to fill these in via a fill-in
screen, the various queries—read operations—next to the
reporting features. I defined already the structures of the
elements. My operations are
� adding to the database goes without fill-in screens but

just by extending the file6

� as queries I provided: selective loading,7 and making a
list of names

� the reporting is the printing of the database, in general,
a part of the typesetting task.

Adding to the database

comes down to extending the file with the list element.8

Selective loading

The loading is namelist driven, that is, the names of the en-
tries to be loaded have to be specified.

For class I databases the markup for the loading reads

\hkindofdatabaseifnhname1i: : :\hnamenig

with <kindofdatabase> either addresses, pictures, or
references.9

For class II databases the markup for the loading reads for
example

letter or
report or
transparencies

for formats. For tools it is tool dependent, for example for
typesetting Pascal it comes down to

\beginpascal
<pascaltext>
\endpascal

with the details of loading hidden from the user.

Listing of all the names

can be obtained after, for example

\contentsdatabase{address}
%or
\contentstoolsorfmt{fmt}

Listing of names selected via pattern matching

In order to browse the class I databases, especially ad-
dress.dat and lit.dat, the macro \search has been provided
in blue.tex. The idea is that as input we specify a pattern—
without periods, alas—and as result a list of names will be
obtained, of which the replacement text contains the pat-
tern. Those names and associated replacement texts are
stored as definitions, i.e., the name will become the control
sequence of the definition.10

Example (Search for addresses from RUSSIA)

Below the input has been given for the search of the pattern
RUSSIA in the database file address.dat.

\input blue.tex
\searchfile{address}
\search{RUSSIA}
\bye

This is handy for making address labels grouped per coun-
try.
\input blue.tex \letter

6Perhaps someone can provide the screen fill-in facility on top some day?
7To load all the items is trivial, but generally too much. The gains in storage which can be obtained by selective loading have been

reported in ‘BLUe’s References, revisited.’ It is convenient to specify the elements by name.
8A white lie, more has to be done.
9Specifying by pattern will be treated a little later.
10This is precisely the reason to supply curly braces in the database entry.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#14 (95.1); May 1995

174 BLUe’s Format Databases BijlageR

\searchfile{address}
\search{RUSSIA}
\makesearchlabels
\bye

A search pattern should not contain a period.

Listing of contents

There are various kinds of listings, such as
� verbatim (format and tools, total or selective), and
� typeset (address labels, total bibliography).

Verbatim listing of a tool.

This problem is induced by my multi-file approach. Of
course one can extract the tool by an editor et cetera as al-
ternative.

Example (Verbatim listing of macros of pascaltool)

In order to do these kinds of things I have added tags as
comments to the file. For example %!cgl;newcol, with
the intention to use ;newcol for a new column in a pfile
listing and as an end separator with\cgl to terminate read-
ing. Quite confusing but once understood it is handy to
have those hooks.

\input blue.tex \let\pascaltool=x
\long\def\tool#1{\ifx#1\undefined

\bgroup\unouterdefs\ea\gobbletool
\else\ea\toolverbatim\fi}

\def\cgl;newcol{\endverbatim\endinput}
\input tools.dat
\bye

Remark. For a convenient verbatim listing of fmt.dat
or tools.dat use pgfile.tex, which is a generalization of
pfile.tex to print verbatim blue.tex.11

%pgfile.tex cgl, March 1995
\input blue.tex \hfuzz=25pt
\lineskip1pt plus2pt minus1pt
\baselineskip12pt plus 2pt minus1pt
\message{Type name for file:}
\read16 to\namefile
\title{File: \namefile}
\issue{Version 1.0}
\beginscript
\thisverbatim={\catcode‘\;=0
\catcode‘\!=12
\catcode‘\|=12
\input \namefile}
\beginverbatim
;endverbatim

\endscript

A convenient ‘listing’ of the address database is a list of ad-
dress labels.

Example (All address labels)

\input blue.tex \letter
\makealllabels
\bye

3 Use
The use has been treated by example and is part of the larger
typesetting task. For class I databases the use after specifi-
cation reads as follows.

\pasteupreferences references
\<picturename> a picture
\letterto{...} address(es) & letter.tex

More details about the use of \letter and pictures are
provided in the user guide ‘Publishing with TEX,’ or more
specifically in ‘BLUe’s Letters’ and ‘BLUe’s Graphs.’

Example (Typesetting letter(s))

I assume that the letter proper has been stored in
letter.tex.12

\input blue.tex \letter
\subject{\TeX{} for BLU}
\ourreference{22 1 95}
\yourreference{\TB}
\letterto{\knuthde\ntg}

Example (Typesetting references)

...
\references{\knuthdea\laancgc}
\beginscript
...
\pasteupreferences
\endscript

4 Miscellaneous
4.1 Testing for integrity after extension
Because of the restrictions it is advisable to test a database
for use when it has been extended. The simplest test I could
think of is to provide the ‘table of contents,’ that is a list of
all the names. The test job for lit.dat reads as follows.

\input blue.tex
\contentsdatabase{lit}
\bye

No pages of output will be produced (that is OK!). The
file contentslit will contain the list of all names. When this
job is successful we know that TEX will not complain while
scanning.

Note that in blue.tex I provided \newwrite \toclit and
the like.

4.2 Extension with a format or tool
With tools and formats we have to work a little harder. In
order to extend the database of class II, the following must
be done.
� provide for user-interface macros as part of the kernel
� guard against multiple loading

11Within the context of verbatim printing I use the semi-colon as escape character.
12It is also possible to supply the letter in the job, but that is not so relevant for the database aspects.

Reprint MAPS#14 (95.1); May 1995 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

BijlageR BLUe’s Format Databases 175

� allocate storage in the kernel, blue.tex, i.e., only
once.13

Note that outer definitions can’t be used as such.14

Example (Addition of the report format to format.dat)

In order to achieve the use of \report we have to add to
blue.tex the following overhead, and to include in fmt.dat
the macros proper, preceded by \tool\reportfmt and
ended by \endinput.
%User interface in blue.tex
\def\report{\ifx\undefined\reportfmt

\let\reportfmt=x\fi
\ifnum\reportloadcnt=0 \ea\loadformat\fi
\advance\reportloadcnt1
\let\reportfmt\undefined}

%with auxiliaries
\def\loadformat{\input fmt.dat\relax}
%Storage allocation
\newtoks\chapternumbering
%et cetera
%And in fmt.dat the blue collar workers
\tool\reportfmt
<reportmacros>
\endinput

I did not supply a message when \report was already de-
fined, on purpose.15

Note that I did not talk about the design of \report. The
redesign and coding of\beginscript, for example, is an-
other issue, and beyond the scope of this paper.

Conventions for entries of fmt.dat

come down to
� update the contents at the beginning of the file fmt.dat
� include in the beginning of the format \message{
---<...> format, <date>, <owner>--- }

� adhere to visual layout of the code for the printout
� insert additional comments which contain markup for

the line numbering
� provide of table of contents with line numbers
� add a history of changes log.

The layout is aimed at printing in two columns, with a
new contribution starting a new column. The selective line
numbering is controlled by the control sequences
� \numvrb, to start the line numbering
� \vrblin = <number>, to adjust the line counter, and
� \nonum, to switch off the line numbering.

Do remember that within the context of a printout the es-
cape character is the semi-colon.

Example (Template for an entry in fmt.dat)

%end%<lastlinepreviousformat> %;newcol
%
%
%begin%%%%%%%%%%%%%%%%%%%%%%%<...>%;numvrb
\tool\<...>fmt
\message{ ---<...> format, <date>,

<(cr)owner>--- }
%<authorinformation>
<theformatproper>
\endinput %;nonum
%Contents
%<item>....................<pagenumber(s)>
%etc
%History of changes
%<date> <change>
%etc
%end%%%%%%%%%%%%%%%%%%%%%%%%%<...>%;newcol

A similar template holds for tools.dat. See ‘Publishingwith
TEX,’ for the details.

5 Coding
In BLUe’s format two-part macros are the starting point. A
one-part macro is provided on top of it. That is one of the
conventions I adopted, relevant for the coding of the han-
dling of databases.

The two classes of databases have a different user interface,
and therefore the coding proper is class-specific.

5.1 Addresses, references, and pictures
For specification of the addresses, the references or the pic-
tures, assign the names to a toks variable.16 The loading
from the database is for all three applications the same.
However, what we do with it further depends on the appli-
cation. Just to give you a break I’ll digress a little on the
latter.

Pictures are special, because we also need to load the com-
mon macros for use within any picture, assumed we use
pictures at all.

Addresses have as extra that they have to be merged with
one or more letters, and with the background material such
as logo, sender affiliation and the like.

With references the extra work comes from the need for
cross-referencing, and to paste them up at a place at will.

In this note I’ll restrict myself to the loading of list ele-
ments and leave open what to do with these elements in the
script. The latter is treated in the specific articles ‘BLUe’s
Graphs,’ ‘BLUe’s Letters,’ and ‘BLUe’s References.’

The coding for loading elements from a database contains
the two major steps17

13Remember that TEX lacks a garbage collector.
14Replace the definition by a non-outer one, or use \csname. One can also add the def or symbol to the set of \unouterdefs.
15I usually start separate chapters with \report and then I don’t like to have to remove the \report tags in the chapters, when

the total will be processed. Nor do I like to get messages, because I know already that the tag is at the start of each chapter. Of course
reloading is prevented.

16Well, : : : a white lie, it looks like it.
17Because of the freedom to give it any meaning it is handy to let the names stand for the error message at first. In case of a typo in

the name it already contains its error message. Neat!

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#14 (95.1); May 1995

176 BLUe’s Format Databases BijlageR

� define the specified names
� load the definitions associated with those names.

In other words, in contrast with the usual procedure — if
something is already known don’t load it again—the oppo-
site has been applied here. When a name is known it will be
overloaded, i.e., replaced by what we really want. As extra
I created a \namelst with the specified names each pre-
ceded by \lst.18 As abstraction I used in the coding be-
low the root name ‘kind of database, KoD for short’ which
could equally well have been addresses, pictures, or refer-
ences, in principle.

\def\<KoD>#1{\begin<KoD>#1\end<KoD>}

\def\begin<KoD>#1\end<KoD>{%
\let\process\processnames\fifo#1\ofif
\loadselectivefrom{\the\<KoD>file}}

\def\processnames#1{\ifx\undefined#1
\let#1\<KoD>error

\else\message{\Dash\string#1
already loaded.\Dash}%

\fi\namelst\ea{\the\namelst\lst#1}}

\def\loadselectivefrom#1{%#1 <name>
\def\lst##1{\ifx##1\undefined\ea\gobble

\else \ea\gdef\ea##1\fi}
\input #1.dat \relax}%e.g. lit.dat

\def\<KoD>error{listelement not
in database, (Sorry.)
\loaderror{<KoD>}}

\def\loaderror#1{\message{#1 not in
database}}

Explanation. Remember that the file consists of triples:
\lst, \<name>, and a group, ‘the replacement text.’ Are
you ready? There we go. All the specified names are de-
fined and obtain first their error message as replacement
text. This is done via the use of the fifo paradigm. The
loading overrides each (error message) replacement text
with what we want. This is done via looking at \lst as
the list element tag with as argument \<name> with the
purpose to store or to gobble the third element of the triple.

As extra the names are stored in \namelst, each preceded
by \lst to facilitate later processing, i.e., without recur-
sion, just execute the \namelst, with an appropriately de-
fined \lst.

The one-part macro for this simple case is trivial and added
for consistency. The argument does not need processing on
the fly.19

5.2 Formats and tools
For the loading it comes all down to what we assign as
meaning to the list element tag, that is, what meaning
we assign to \tool. In the same spirit as with refer-
ences and the like, it comes down to gobble the third ele-
ment of the quadruple if the \<name>tool, respectively

\<name>fmt, is unknown. Otherwise all the stuff up to
\endinput will be loaded, and that is it.

The entries from format.dat are not mentioned below, be-
cause that is not relevant any longer. They just have to obey
the earlier given syntax.

General macros and basic tools for selective loading of for-
mats are the following, borrowed form blue.tex.

\def\gobbletool#1\endinput{\egroup}
%
%Define the list element tag ‘\tool’
\long\def\tool#1{\ifx#1\undefined

\bgroup\unouterdefs\ea\gobbletool\fi}
%
\def\unouterdefs{%List of defs which

%have to be neglected
\ea\let\csname+\endcsname\relax
\catcode‘\ˆ12

}
%
\def\toolverbatim{\thisverbatim{%

\baselineskip12pt plus2pt minus1pt
\lineskip1pt plus1pt minus1pt}%
\beginverbatim}

%
\def\loadformat{\input fmt.dat\relax}

Note that \unouterdefs have been kept local.

The user-interface macro for \letter, as provided in
blue.tex, reads as follows.

\def\letter{\ifx\undefined\letterfmt
\let\letterfmt=x\fi
\loadformat
\let\letterfmt\undefined}

Multiple loading has been safe-guarded in \report, via
the use of the counter \reportloadcnt, as follows.

\newcount\reportloadcnt
%Prevent double loading.
\def\report{\ifx\undefined\reportfmt

\let\reportfmt=x\fi
\ifnum\reportloadcnt=0 \ea\loadformat\fi
\advance\reportloadcnt1
\let\reportfmt\undefined}

5.3 List of names in the database
The following macro does the job for the class I databases.
It creates a file contentsaddress, contentslit, or contentspic,
with the list of all the names.

\def\contentsdatabase#1{%#1 address lit pic
\ea\let\ea\name\csname toc#1\endcsname
\immediate\openout\name=contents#1
\def\lst##1##2{\immediate\write\name{\nx##1}}
\input #1.dat\relax}
%with auxiliaries
\newwrite\tocpic
\newwrite\toclit
\newwrite\tocaddress
%test example
\contentsdatabase{address}
\bye

18I did not want to bother the user with preceding each name by \lst. I chose for alleviating the task for the user.
19Because I chose to typeset \listelementerror when not overwritten, it must obey the syntax of the typesetting macro.

Reprint MAPS#14 (95.1); May 1995 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

BijlageR BLUe’s Format Databases 177

Note that in order to write the (undefined) names no expan-
sion must take place.

For databases of class II—with list element tag \tool and
end separator \endinput—the following does the job. It
creates a filecontentsfmt, or contentstools, with
the list of all the names.
\def\contentstoolsorfmt#1{{%#1 tools fmt
\ea\let\ea\name\csname toc#1\endcsname
\immediate\openout\name=contents#1
%Define list element tag ‘\tool’
\long\def\tool##1##2\endinput{%

\immediate\write\name{\nx##1}}
\unouterdefs
\input #1.dat\relax}}
%with auxiliaries
\newwrite\tocfmt
\newwrite\toctools
%test example
\contentstoolsorfmt{fmt}
\bye

Note that in order to write the (undefined) names to a file
no expansion must take place.

5.4 Search by pattern
Searching a database for a pattern with the aim to yield a list
of names—each name preceded by \lst in the toks vari-
able \namelst—has been coded as follows.
%Searching the database
\def\search#1{\def\loc##1##2{%

\def\locate####1##1####2\end
{\ifx\empty####2\empty\foundfalse
\else\foundtrue\fi}%end locate

\ea\locate##2.##1\end}%end loc
\def\lst##1##2{\loc{#1}{##2}\iffound
\immediate\write16{\nx##1}%log file
\namelst\ea{\the\namelst\lst##1}\fi}

\input \the\searchfile.dat\relax}
%with auxiliaries
\newtoks\searchfile
\newtoks\namelst

Explanation. The argument of \search is matched with
the replacement text of each list element. When found
the name of the list element is added to the token variable
\namelst. For the time being the name is also written to
the log file, for the purpose to verify what has been added
to the token variable.20

For a pedagogical stepping stone see ‘Syntactic Sugar’
where I used the \loc macro to locate a letter in a string,
and applied it to Appelt’s problem of doing something spe-
cial to capital characters.

6 Looking back
It all started with my surprise when studying AMS styles
and formats that references have to be marked up over and
over. The use of databases was badly needed. So I started
to think about why it has been overlooked. I realized that
from a database only a few references will be included in an
article or so. On the other hand, the idea struck me that an
author should not bother about formatting references at all.
He should supply only names to entries already available,
and appropriately marked up, in the publisher’s database.

The overhead of other tools in use by the community was
clear to me, so I started to work on ‘BLUe’s References.’
During that work I found how to load selectively from a
TEX database. That was a gem, a paradigm, and bound
to be used elsewhere. Since then, especially while work-
ing on ‘BLUe’s Format,’ I have used the mechanism for
addresses—to be merged with letters—for pictures—to be
stored scaling invariant, and to be invoked with a particular
\unitlength.

When I faced the problem of how to store elegantly formats
and tools in general, I combined my21 selective loading ap-
proach with Knuth’s lists. Et voilà.

7 Looking forward
I don’t know as yet to what extent the above is useful for
databases which are an order of magnitude larger, i.e., with
thousands or tenthousands of entries.

8 Acknowledgements
Thank you Jos Winnink for your interest in the database ap-
proach with TEX, and for stimulating me a bit for writing
this separate article on the issue.

9 Conclusion
It is so nice to watch the TEX log file scroll by slowly, wit-
nessing the searched databases, smoothly and on-the-fly.

References
The TEXbook and LATEX user’s guide are omni-present and
not explicitly listed. For my works consult lit.dat, via the
use of \search for example.

20The searching for a pattern within TEX has been used by me on several occasions already. To start with typesetting bridge, where
the purpose was to locate a card in a hand, and if so to delete the card, that is, update the hand. This was a special case of determining
whether an element belongs to a set. The latter occurred further in determining whether a token belongs to the set of accents, whether
a token belongs to the set of reserved words of Pascal, and the like. Sooner or later it had to pop up in pattern matching.

21Well, : : : it has been essentially in The TEXbook 384 all the time. I’m only wondering how much there is still left unnoticed.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#14 (95.1); May 1995

