
LATEX, HTML and PDF, or the entry of TEX into the

world of hypertext
1

Yannis Haralambous and Sebastian Rahtz

haralambous@univ-lille1.fr, s.rahtz@elsevier.co.uk

1 The relationship between hypertext and LATEX

Unlike hypermarket, hyper tension and hyperactivity, where the pre�x hyper expresses

high quantity, and excess, hyper text is not a giant text, but a text with an internal

structure that viewers can exploit to allow for arbitrary navigation through the document.

There is thus a relationship between the notion of hypertext and the markup system

of LATEX: both add structure to a document. For example, the LATEX notion of cross ref-

erencing corresponds to the notion of linking in hypertext. The main di�erence between

the two concepts is the lack of interest of TEX in screen interaction. TEX deals with

boxes that can contain characters, rules, images, etc. The task of replacing these boxes

with the actual characters falls to the screen or printer drivers. TEX being a tool for

typographical composition, does not use a screen other than for previewing, and screen

display is seldom considered the �nal aim of a TEX compilation.

This lack of interest in TEX of the screen is even more important when we recall that

many PostScript constructions, introduced into a DVI �le by \special commands, are

typically ignored by previewers.
2

We claim that, for e�ectively the �rst time in its existence, TEX is becoming seriously

useful for creating documents whose aim is to be read on the screen. In fact, LATEX is

totally adequate for the automatic production of hypertext links, and the methods that

will be presented in this article allow for an automatic conversion of almost every existing

LATEX document into an hypertext document. It is worth insisting that such a document

1. LATEXThis paper is based on one published by Yannis in Cahiers GUTenberg #19, January 1995. The

translation from French was undertaken by Leonor Barroca and Sebastian Rahtz, who apologize to Yannis for

the massacre of his elegant writing style. The article was revised and extended by Sebastian Rahtz.

2. Except for the lucky ones amongst us who can use operating systems with Display PostScript.

223

224 Yannis Haralambous and Sebastian Rahtz

keeps all the typographical quality of LATEX, and can be printed exactly in the same way

as before.

2 Overview

TEX and LATEX read a �le that contains the text of a document with structural and visual

labels, and create a second �le which describes the printed page with great precision.

This output �le is called DVI (DeVice Independent) because it only contains abstract

data: the position of each character on the page, the name of the font in which the

program will �nd the pixels for this character, its code in this font, etc.

The visualization or printing of a DVI �le presupposes the availability of a certain

number of fonts. This is usually easy in the case of large systems or network-connected

workstations, but it becomes problematic in the case of personal systems. The situation

is even more critical when one wants to distribute electronic documents: a document

that can be viewed and printed by a large number of people can hardly be distributed

in DVI format (since this is only of interest to the TEX community, and one would be

e�ectively limited to CM fonts, which are the only fonts (almost) guaranteed to be

present on all TEX systems). In practice it is almost impossible, for anything but very

simple documents, to keep on disk the document itself plus enough utilities to allow for

its immediate previewing and printing, without having to install a complete TEX system.

Finally, hypertext links are not catered for in the syntax of the DVI format;
3
every

attempt to develop an hypertext program to use the DVI format will lead to a new

`Hyper-DVI' format, with all the problems of compatibility with the TEX community

which is (rightly) proud of the stability of its tools. It seems then that the DVI format is

not the ideal candidate for a �le format which is easily usable and su�ciently interactive

to allow for the integration of hypertext links.

What then can we do? An obvious candidate for storing documents { at least,

today { is the PDF format (Portable Document Format) developed by Adobe Systems.

It is an extension of the PostScript language, closely resembling the syntax of �les

produced by Adobe's Illustrator program, with two important additions: support for

device independent screen viewing and printing, regardless of the fonts used in the

document, and the integration of hypertext functionality.

We shall return to the details of the PDF format in Section 7.1. For the moment, we

describe how the PDF format can be integrated into the process of document production

(electronic or printed). In Figure 1, input/output �les are represented by oblique boxes,

the software by rectangles, operations (visualization, printing, etc) by boxes with rounded

corners, while arrows indicate the basic transformations described in this article.

The .tex �le is our starting point (it is in the central circle). TEX will produce a

.dvi �le (it also uses macro �les, and font metrics). If the LATEX format is used, and

3. The description of the DVI format can be found on CTAN in the directory

dviware/driv-standard/level-0/dvistd0.tex.

LATEX, HTML and PDF, or the entry of TEX into the world of hypertext 225

Screen View

Visualisation
Navigation

Printing
non

PostScript

HTML to
LaTeX

File
HTML

Mosaic
File
*.tex

TeX
File
*.dvi

DVI(h)PS

File
*.ps

Acrobat
Distiller

File
*.pdf

Acrobat
Reader

Visualisation

Printing
PostScript

File
*.ps

File
*.rep

Repere

Figure 1: Flow diagram for processing hypertext LATEX �les

the hyperref package has been loaded, the cross reference commands, bibliographic

citations and indexing will produce hypertext links, included in the .dvi �le with the

help of \special commands.
4

Another possible starting point is an HTML �le (in the top left of the diagram). An

HTML �le can be easily converted to LATEX, and the hypertext links in the former can

be kept in the latter.

But let's get back to our .dvi �le. We can inspect it directly, using a previewer, or a

non-PostScript printer. But we can also convert it to PostScript with the dvips program.

An extended version of dvips by Mark Doyle, called dvihps (DVI to HyperPostScript),

keeps the hypertext links contained in the .dvi �le. Once the PostScript �le has been

created, we can print on a PostScript printer (or a non-PostScript printer with the help of

the GhostScript program), or convert it to PDF format using Adobe's Acrobat Distiller.

This program recognizes the hypertext links and includes them in the PDF document.

Finally, to visualize a PDF document we can use Adobe Acrobat Reader, which is

freely available for Mackintosh, Windows, DOS and Sun Unix. This program allows us

4. These commands have no e�ect on the typesetting of a page and their argument is written verbatim to

the DVI �le, so that they constitute excellent means to communicate information to post-processors.

226 Yannis Haralambous and Sebastian Rahtz

to browse and navigate the document and print it on any printer supported by the host

system.

It is easy to see that if the starting point is an HTML document, all the hypertext

functionality will be kept, but we have also gained the typographic presentation of LATEX.

A PDF document is a faithful copy of the printed document (it can even be photo-typeset

to produce a professional quality result with color images, graphics, etc.). On top of that

it o�ers hypertext navigation using links, which, with version 2 of Acrobat, refer not only

to points inside the document, but also to other documents on the network.

The structure of a LATEX document can be exploited by a wide application domain:

the most striking example is the vocal synthesizer ([3]) for the use of visually impaired

people, which can pronounce a mathematical formula, and indicate the structure of the

document by use of sound.

We will describe in this article another application: the creation of electronic books,

whose presentation is no worse than the traditional books (since they can be printed with

no loss of quality) but that o�er some interactivity: hypertext navigation between table

of contents, index, bibliography and text, on the same machine or across a network.

In the remainder of this article we will study each step of the process indicated by

the fat arrows in the diagram of Figure 1.

3 HTML to LATEX

The HTML markup system is de�ned according to the SGML standard. It contains

a limited number of tags, mainly for screen appearance; there are also various logical

text styles (emphasis, address, quotation,lists, etc.), and visual styles like italic, bold,

underline, etc, but there is no support for fundamental page objects like tables and

footnotes. It is obvious that LATEX is a much richer language than HTML, and so the

conversion from HTML to LATEX is essentially trivial.
5
The conversion has to do some

simple jobs:

1. convert certain tags straight to a LATEX environments, such as <CITE> and </CITE>

going to \begin{quotation} and \end{quotation};

2. convert other tags to LATEX commands with arguments, such as and

going to \emph{...};

3. replace a very few tags with simple LATEX commands, like \par for <P>;

4. deal with accented character entities, so that é becomes \'e and çla

becomes \c{c} and so on.

There are two classes of tags which present more problems:

1. Those which have no direct equivalent in LATEX, such as ; the appropri-

ate action for these is to convert them to new LATEX environments, and provide

appropriate de�nitions in a style �le. Thus

Very important!

5. Going in the other direction is much harder (see [2])

LATEX, HTML and PDF, or the entry of TEX into the world of hypertext 227

would be converted to

\begin{strong}

Very important!

\end{strong}

and an appropriate de�nition might be:

\newenvironment{strong}{\bfseries\itshape}{}

2. Tags for hypertext functions. For these we can conveniently use the hyperref pack-

age described below, to place the complete functionality of the hypertext commands

into the dvi �le. There are four situations we need to deal with:

a. De�nition of a target (an \anchor" in HTML jargon) is achieved with . . . (where keyword) is a unique (to the document)

name chosen for the target; this is represented in LATEX by

\hyperdef{}{keyword}{}{. . . }, where . . . is the chosen text.

b. De�nition of a link to an anchor in the same document, represented in HTML

with . . . (where keyword is the name of the an-

chor to point to); in LATEX we would write

\hyperref{}{keyword}{}{. . . } where . . . would be the text which a user

selects to make the hypertext jump.

c. De�nition of a link to another document, which HTML marks as <A HREF=

"address"> . . . where address is a valid URL. The equivalent LATEX

markup would be \hyperref{address}{}{}{. . . }.

d. Linking to an image, which in HTML would be ; in

LATEX, we convert this into \hyperimage{address}

4 LATEX to DVI

Let us be clear from the start: any valid LATEX2" document can produce a electronic

equivalent, by the simple addition of

\usepackage{hyperref}

at the end of the document preamble. This loads Sebastian Rahtz' hyperref package,

which rede�nes the following LATEX macros to produce hypertext links:

� \label, \ref and \pageref (cross-referencing)

� \chapter, \section, \subsection etc (made into hypertext anchors)

� \cite (provides link to references; references can also be made to link back to their

place of citation)

� \index (index creation)

� \includegraphics (inclusion of pictures)

Nothing more needs to be done to the document source, unless speci�c links are needed

in a manner not supported by the generic LATEX markup, in which case the \raw"

commands \hypertarget and \hyperlink and \hyperimage can be used.

228 Yannis Haralambous and Sebastian Rahtz

4.1 The HyperTEX speci�cation and the hyperref package

The hyperref package derives from and builds on the work of the HyperTEX project,

described in the World Wide Web document http://xxx.lanl.gov/hypertex/. It aims

to extend the functionality of all the LATEX cross-referencing commands (including the

table of contents) to produce \special commands which are parsed by DVI processors

conforming to the HyperTEX guidelines (i.e. xhdvi and dvihps); it also provides general

hypertext links, including those to external documents.

The HyperTEX speci�cation
6
says that conformant viewers/translators must recog-

nize the following set of \special commands:

href: html:

name: html:

end: html:

image: html:

base name: html:<base href = "href_string">

The href, name and end commands are used to perform the basic hypertext op-

erations of establishing links between sections of documents. The image command is

intended (as with current HTML viewers) to place an image of arbitrary graphical format

on the page in the current location. The base name command is used to communicate

to the dvi viewer the full (URL) location of the current document so that �les speci�ed

by relative URL's may be retrieved correctly.

The href and name commands must be paired with an end command later in the TEX

�le { the TEX commands between the two ends of a pair form an anchor in the document.

In the case of an href command, the anchor is to be highlighted in the dvi viewer, and

when clicked on will cause the view to shift to the destination speci�ed by href string. The

anchor associated with a name command represents a possible location to which other

hypertext links may refer, either as local references (of the form href="#name string"

with the name string identical to the one in the name command) or as part of a URL

(of the form URL#name string). Here href string is a valid URL or local identi�er, while

name string could be any string at all: the only caveat is that `"' characters should be

escaped with a backslash (\), and if it looks like a URL name it may cause problems.

The hyperref package rede�nes or overloads a lot of LATEX macros to express all the

common constructs in terms of this generic functionality. It is hoped that the rede�nition

is robust, but some aspects of it are quite complex, and some other packages may con
ict

with it { it should always be loaded last! Anything which uses cross-referencing and the

internal \setref command should convert, but sophisticated packages like AMSLATEX

can cause problems.

The package supports the following options:

draft makes the low-level macros no-ops;

colorlinks colors the links and anchors (this needs the standard LATEX2" color package).

The colors can be changed by rede�ning two macros; the default setting is:

6. This description is derived from Arthur Smith's documentation.

LATEX, HTML and PDF, or the entry of TEX into the world of hypertext 229

\def\LinkColor{red}

\def\AnchorColor{blue}

nocolorlinks turns o� coloring, if it has been activated by default;

backref if the backref package is used, which lists citation points for each entry in

the bibliography, this option sets up back-referencing to be hyper links by section

number;

pagebackref sets up back-referencing by page number;

hyperindex makes index entries be links back to the relevant pages;

nohyperindex disables hypertext indexing;

plainpages in this package, every page is make a target for links; this option normalizes

all page numbers to be plain arabic, since typesetting commands like \textbf can

cause the main hyperref macros to break;

noplainpages turns o� the above behavior, so that sequences like roman numbering of

a preamble is respected;

hyper�gures makes included �gures (assuming they use the standard graphics package)

be hypertext links;

nohyper�gures turns o� the above behavior;

nonesting currently, dvihps doesn't allow anchors to be nested within targets, so this

option tries to stop that happening. Other processors may be able to cope;

nesting allows nesting to take place;

The following options are the default: nocolorlinks, noplainpages, nonesting, hyperindex

and nohyper�gures

4.2 Creating an enriched PDF �le with REPERE

As we can see in Figure 2, Acrobat gives us the possibility of displaying a hierarchical,

active, table of contents on the left-hand side of the window. The dvihps program does

not, in its current version, directly support this facility; to remedy this lack, Yannis

Haralambous developed a post-processor for the output of dvihps which creates the

necessary extra material. The program, repere, is written in Flex, and can be compiled

on most platforms with a Flex implementation and a C compiler.

The repere program works in conjunction with the hyperref package, whose macros

write all sectioning titles to an external �le with the su�x .rep. After processing the

�le with LATEX, and running dvihps, the .rep �le is prepended and appended to the

PostScript �le, and the result run through repere. For a �le foo.tex, the sequence

would be (for Unix, or other systems with pipes:
7
)

latex foo

latex foo

dvihps -z foo -o footemp.ps

cat foo.rep footemp.ps foo.rep | repere > foo.ps

7. DOS or VMS users will have to use copy/append commands to create a temporary �le

230 Yannis Haralambous and Sebastian Rahtz

This would result in a PostScript �le, foo.ps which can be given to Adobe Distiller

which will produce the table of contents. The repere program works by writing pdfmark

commands for Distiller.

The trickiest part of the operation is the conversion of the encoding of the LATEX

�le which is written to the .rep �le into the PDF Encoding (an combination of the

Windows, Mac and Adobe Standard encodings) needed for the table of contents. When

LATEX writes the .rep �le, it may expand accented characters and the like, depending on

the encoding used; command sequences like \TeX also get expanded to strange forms.

While repere tries to locate accented letters and replace them with the 8-bit equivalent

from the PDF Encoding, there remain considerable problems in getting a totally clean

table of contents without some manual editing. Luckily, this a�ects only the appearance

{ the hypertext links between the table of contents and the main document remain

intact regardless of how horrible the contents may look.

4.3 Problems at the TEX level

The fact that dvi �les were designed solely to produce printed pages means that we

have to take some precautions when preparing material which is to be converted to PDF.

The precautions have largely to do with the fonts used in the document. The biggest

problem for a program like Acrobat, which sets out to display and print any PostScript

�le whatsoever, is the range of PostScript fonts used in the document. 99% of the

existing PostScript fonts (and there are thousands of them. . .) are commercial, and

their usage is determined by the license agreement between the vendor and the user.

How do we arrange it so that an author can distribute a document using one of these

fonts, and be sure that the reader has a copy of the same font?

Adobe solved this problem with the Multiple Master technology; this is similar to

the principles of METAFONT
8
, by which fonts have certain meta-characteristics which

can be varied to produce di�erent looking glyphs (in terms of their weight, width, etc.

along up to four axes). Using the extended Adobe Type Manager (Super ATM, or ATM

version 3), and two Multiple Master fonts (one serif, and one sans-serif), Acrobat is able

to mimic the look of any PostScript font which is not present on the reader's system.

The Acrobat document simply contains the font name, and a set of metrics; if the font

can be found, it is used, but otherwise a Multiple Master instance is created to get (at

least) the weight, spacing and size right.

Can Multiple Masters mimic any font? Not quite. If the font has a non-standard set

of characters (i.e., it is not a Latin text font), such as mathematics, phonetic symbols or

Greek, simply substituting characters from a text font will obviously produce catastrophic

results. There are two solutions to this:

1. The `exotic' font can be fully imbedded in the PDF document, so that it is available

to the viewing system. This avoids the problem of inappropriate Multiple Master

substitution, but raises copyright issues { the author needs permission from the

8. Compared to METAFONT, Multiple Master fonts are in fact quite simplistic.

LATEX, HTML and PDF, or the entry of TEX into the world of hypertext 231

font vendor to distribute it in this way. In Version 2 of Acrobat, Adobe implemented

partial font downloading { for each font used, Distiller makes a subset containing just

those characters actually used. This makes for smaller �les, and goes a considerable

way toward alleviating the fears of font vendors, many of whom do now permit their

fonts be in distributed in this partial way.

2. In the case of TEX, fonts can be included in PK bitmap format. The copyright

problem does not arise, since only bitmap representations are included in the PDF

�le.
9
Unfortunately, Acrobat Reader does not display such bitmap fonts at all well,

since they need to be reduced for screen resolution, and the characters usually appear

very emaciated. Printing, by contrast, presents no problems, if the resolution of the

bitmap font corresponds to that of the printer, rather than the screen.

A third solution is to avoid the problem by using the standard fonts which you can

be almost certain are available for any PostScript device (Times, Helvetica, Symbol,

Courier, Palatino etc). Unfortunately, we cannot produce any mathematics or Greek of

more than trivial quality using the Symbol font, so this approach is of limited e�ectiveness

for traditional LATEX documents.

A practical approach for mathematics is to use the Computer Modern fonts for

symbols, and Times for alphanumeric characters (this can be done using Alan Je�rey's

mathptm package), and to use PostScript Type1 versions of the CM fonts. These can

be purchased from Blue Sky Research, and Y&Y Inc, or there are free versions in the

CTAN archives of almost equal quality. Prospective users of these latter fonts should

check the license conditions which only allow non-commercial use.

A �nal problem to consider is the possible ill-e�ect of virtual fonts which produce

accented characters by combining separate accents and characters (such as can be done

by Alan Je�rey's fontinst package). The reason for this is that Acrobat has a facility

to search for strings in documents; if accented characters are in fact represented in the

PostScript/PDF �le by two separate glyphs, searching will not be complete or accurate

(whereas genuine 8-bit characters can be searched for and found). For example, if the

word `d�eg�en�er�e' is represented as

de<acute accent>ge<acute accent>ne<acute accent>re<acute accent>

in the PDF document, then a search for d�eg�en�er�e, where �e is an 8-bit character, will

not be successful.

The solution to this problem is to use PostScript fonts encoded in the LATEX T1

(Cork) standard, and based on re-encoding at the PostScript level to allow access to

the full range of accented characters. How this is achieved is beyond the scope of this

article, but the CTAN archives contain sets of metrics for many common PostScript

fonts derived in this way, suitable for immediate use. Some characters like �z are simply

not present in most fonts, and so these will always have to be created by composite

characters, but most Western European languages will come out `correctly'. It is worth

9. However, if the bitmaps are derived from a commercial PostScript font, the user would be well advised

to check with the vendor that bitmaps can be distributed in this way.

232 Yannis Haralambous and Sebastian Rahtz

pointing out that LATEX2" will automatically transform 7-bit markup like \'e into the

8-bit single character on output, if T1 encoding is used.

5 DVI to (hyper)PostScript

Like TEX, dvips is a good example of a very high-quality public domain program, available

for almost all operating environments and producing good quality PostScript output. In

order to get the most out of the translation to PDF, however, it is necessary to alter

the program a little. Mark Doyle undertook this task, and the result is the dvihps variant

of dvips, which also runs on all systems.
10

Why are changes necessary? To de�ne hypertext links, Acrobat Distiller needs (at

least) two bits of information: the active `button' area, and the document element

to be displayed. These areas are de�ned in terms of rectangular areas, whose page

coordinates are given in PostScript points (72 to the inch) in relation to the bottom left

corner of the page. In order to establish the coordinates of the target area, which may

occur pages after the point of departure, it is necessary to make an extra pass through

the output, after all the text has been positioned in PostScript coordinates. While it

would theoretically be possible to program all this at the LATEX level, the transformation

from DVI coordinates to PostScript coordinates is distinctly hair-raising, and it seems

sensible to leave this to the modi�ed dvips program. At all the points where links are

desired, \special commands are inserted into the output by LATEX macros, and these

are converted by dvihps if the new -z command line option is used.

We may note that the PostScript �le produced by dvihps contains code in the

preamble to deactive the hypertext commands if the �le is processed by an application

other than Acrobat Distiller. It also detects di�erent versions of Distiller, since version

2 has more advanced features than version 1, which are used if possible.

6 PostScript to PDF

This stage, which is certainly the longest in terms of elapsed time for the user, is entirely

under the control of the Acrobat Distiller program; anyone wishing to create serious

PDF documents needs to purchase a copy. It is, on the side, a very good debugger of

PostScript programs, and a good interpreter. It is a good way to preview any PostScript

�le, although the processing is rather slow.

7 Viewing, navigation, and printing of a PDF �le

These operations are achieved with the help of the Adobe Acrobat Reader software.

Search functions, zooming, navigation, text copy, etc, are available from menu options

10. It is to be expected that the functionality will be merged back into the `real' dvips by Tom Rokicki in

due course.

LATEX, HTML and PDF, or the entry of TEX into the world of hypertext 233

Figure 2: PDF �le being displayed with Acrobat Reader

or key combinations. To compare the screen presentation of a TEX �le, the reader will

see in Figure 2 a copy of an Acrobat Reader screen on a Macintosh, and in Figure 3

the printed version of the same document. The LATEX hyperref package allows the user

to choose the presentation of active areas of hypertext links (in red by default) as well

as the anchor areas (in green by default). The PDF format also allows us to frame the

active areas.

7.1 Some information on the PDF format

The PDF format is even more hermetic and incomprehensible to the average user than

the PostScript language. However, it is interesting to know a bit of its structure, to

perform, if needed, some minor modi�cations to the presentation �le (the PDF format

is still quite new and we desperately lack tools to modify PDF documents).

A PDF �le can be either a 7-bit ASCII �le or an 8-bit binary �le. It consists of four

parts: the header, the body, the cross reference table and the trailer. The header, for

the current version, is composed of a single line: %PDF-1.1. The body is composed of

objects: each page is an object; the links, the notes, the marks, the font codes, the

234 Yannis Haralambous and Sebastian Rahtz

Figure 1: Le vaisseau Entreprise survole la planète Latèque

1 Exemple d’utilisation des liens hypertexte

Ce mot-ci est un lien vers le titre ci-dessus, et ce mot-là un lien vers l’image ci-
dessous. Les deux se trouvent en page 1.

1.1 Autour de la planète Latèque

Figure 3: Result of printing the PDF �le

font descriptors, and the systems for color description, are all objects. The advantage of

using objects is that one can change the order, insert or remove pages, without breaking

the existing hypertext links: the order of the pages is kept in the cross reference table,

deleted pages are kept in the document and are only virtually removed. Each change will

lead to a change in the cross reference table and in the trailer. A PDF display application

starts by reading the end of the document, and retrieves the cross reference table of

pointers to the objects in the document.

Most of the objects are compressed and then coded in 7 bits; four methods of

compression can be used: Lempel-Ziv, run length, CCITT Fax group 3 or 4, and JPEG;

then two methods can be used for the conversion to 7 bits: hexadecimal or \ASCII base

85" notation.

LATEX, HTML and PDF, or the entry of TEX into the world of hypertext 235

Adobe Acrobat Distiller allows for compression to be turned o�, although this is

not very interesting, since no tool is provided to allow for a posteriori compression of

modi�ed PDF objects.

We will describe here only some of the non-compressed objects, which can be freely

modi�ed by the user. However, it should be noted that each modi�cation of a PDF �le

(except one that will be mentioned below) needs an update of the cross reference table:

this table contains, for each PDF object, its o�set relative to the start of the document.

Each object has a number, which is the �rst item data for the object. The objects are

not necessarily ordered by number in the PDF �le. The cross reference table contains

one line for each object; this line contains the o�set of the object to the start of the

�le (a number of 10 digits), followed by a blank, a 5 digit number which is the number

of times this object has been modi�ed, another blank, and the letter `n'. If the object is

deleted, the number of the object will be available and the syntax of this line will change:

the 10 digit number indicates the number of the next free object in the table (it is nil if

it is the last free object) and the letter `f' at the end of the line.

Every time an object is modi�ed, it is necessary to change the o�set of all the

objects which physically follow it in the �le; we must also change a number at the end

of the �le which indicates the o�set of the table of cross-references relative to the start

of the �le.

As an example, the following is an extract from a PDF �le, showing the start, the

�rst object (a color descriptor), the last few objects, part of the cross-reference table,

and the trailer.

%PDF-1.1

1 0 obj

[/CalRGB

<<

/WhitePoint [0.9505 1 1.089]

/Gamma [1.8 1.8 1.8]

/Matrix [0.4497 0.2446 0.02518 0.3163 0.672 0.1412 0.1845 0.08334 0.9227]

>>

]

endobj

.........

9 0 obj

<<

/Type /Pages

/Kids [2 0 R 10 0 R 14 0 R 20 0 R]

/Count 4

/MediaBox [0 0 612 792]

>>

endobj

41 0 obj

<<

/Type /Catalog

/Pages 9 0 R

>>

endobj

42 0 obj

236 Yannis Haralambous and Sebastian Rahtz

<<

/CreationDate (D:19950420210508)

/Producer (Acrobat Distiller 2.0 for Windows)

>>

endobj

xref

0 43

0000000000 65535 f

0000000017 00000 n

0000251348 00000 n

0000000182 00000 n

0000021336 00000 n

......

0000211955 00000 n

0000220508 00000 n

0000251821 00000 n

0000251877 00000 n

trailer

<<

/Size 43

/Root 41 0 R

/Info 42 0 R

/ID [<a7b776d0fb5478b29f5739c089a2c83f><a7b776d0fb5478b29f5739c089a2c83f>]

>>

startxref

251984

%%EOF

The number 251984 is the o�set from the start of the �le of the beginning of the

cross-reference table. An extract from an object in the main part of the �le shows the

uncompressed version of some text being displayed:

3 0 obj

<<

/Length 21095

>>

stream

BT

/F4 1 Tf

7 0 0 7 72 759.67 Tm

0 Tr

0 g

0.014 Tc

[(T)108(e)7(s)19(t)-363(of)-352(c)7(m)25(r)14(1)0(0)-343(o)

0(n)-349(A)0(p)27(r)14(i)27(l)-383(20,)-349(1995)-308(at)-363(1712)]TJ

ET

129.36 719.59 0.48 -16.08 re

...

\end{verbatim}

A hypertext link is an object of type `Annot'; an example is

\begin{verbatim}

17 0 obj

<<

/Type /Annot

/Subtype /Link

/Rect [107 565 171 577]

/Dest [16 0 R /FitH 842]

LATEX, HTML and PDF, or the entry of TEX into the world of hypertext 237

/T (page.5)

/C [0 0 1]

/Border [0 0 1 [3 3]

]

>>

endobj

While the /Rect key simply gives the coordinates of a rectangle around a link area, the

/Dest area is more interesting. In this example, it points to a page number, and says

that the page is to sized to �t a certain height, but it can also (in Version 2) point to

an external �le, or `named' destination. This allows us to have the same functionality as

HTML, opening another �le at a named point, rather than having to know the actual

page number and position in the other �le.

The /Border key describes the appearance of the link; in Version 1, this was either

a frame or nothing, but Version 2 allows for colored frames, and di�erent line types. The

values in this example indicate that the `active' area which is to be clicked on is outlined

with a blue dashed line (the color is given by the /C key, an abbreviation for /Color).

How can we modify this �le? At the end of the example above, we see the key

/Producer (Acrobat Distiller 2.0 for Windows); we may want to change this

object, and use some of the other available keys, to produce:

/Author (Mr Kipling)

/Title (My favorite PDF sample)

/Creator (LaTeX, of course)

It is easy to simply edit this in, but we would also have to go through and change the

cross-reference table for all the objects that follow it, a tedious and error-prone proce-

dure. Yannis Haralambous has written another Flex program, recticrt, which performs

this task for you, reading a PDF �le and writing a new version with a checked and

updated cross-reference table.

Full documentation of the PDF format can be found in [1], and in the PDF

documents distributed with Acrobat Distiller.

8 Conclusions

We have tried to show in this paper that a complete, viable, electronic publishing system

can be built with LATEX as its base, and the Portable Document Format as its delivery

medium. While the tools we describe, and those we have developed ourselves, are func-

tional, we believe that only a small part of the potential has been realized. We hope that

others will develop more tools to make richer and richer electronic documents, using

TEX typography as a solid foundation.

Obtaining the programs

The hyperref package can be obtained from any of the CTAN (Comprehensive TEX

Archive Network) archives, from the directory

238 Yannis Haralambous and Sebastian Rahtz

macros/latex/contrib/supported/hyperref. The repere and recticrt programs are

supplied in source form (Flex code) and as compiled MSDOS binaries. The source of

dvihps is available in dviware/dvihps in the CTAN archives, and an MSDOS binary is

also stored in the hyperref directory.

The HyperTEX project, whose standards form the basis of the work described in this

article, should be visited on the World Wide Web at

http://xxx.lanl.gov/hypertex/.

Michael Mehlich has written another LATEX2" package for encapsulating hypertext

functionality in LATEX output, to the same HyperTEX standards as hyperref, with com-

parable functionality. This is available on CTAN in

macros/latex/contrib/supported/hyper.

The PostScript Type1 versions of the Computer Modern fonts by Basil Malyshev

(the BaKoMa collection) can be obtained from CTAN, in the directory

fonts/cm/ps-type1/bakoma.

The free Acrobat Reader for Windows, Macintosh and Sun Unix can be obtained

from Adobe (Internet FTP site ftp.adobe.com, for instance) or from many other col-

lections. In order to create good quality PDF �les from PostScript, it is necessary

to purchase the more expensive Acrobat Pro package (the PDF Writer included with

Acrobat Exchange does not translate all the pdfmark information) from Adobe Systems.

References

[1] T. Bientz and R. Cohn. Portable Document Format Reference Manual. Addison

Wesley, 1993.

[2] M. Goossens and J Saarela. From LATEX to html and back. to be published in

TUGboat, 1995.

[3] T.V. Raman. An audio view of TEX documents. TUGboat, 13.4, 1992.

