
126 Paradigms: Searching Bijlage T

Paradigms: Searching

Kees van der Laan

1 BLUe’s Design VIII
Hi folks. I started using LATEX for my hobby bridge, to
typeset bid sequences and plays. Important in these kind
of plays is data integrity, i.e. the system should remember
that a card has been played. In TEXnical terms it comes
down to update the computer memory. This is precisely
what makes computer-assisted formatting different from
previous formatting techniques. We can update memory.

This is a common phenomenon and the important building
block is the handling of sets, that is trace an element and
update the set, or extract from it, casu quo add to it.

The central macro in BLUe’s format searching is called
\loc , from locate.

Operations are to modify such as delete a card in bridge,
or to extract, to copy the searched for element. The latter
is applied abundantly in BLUe’s format selective loading.

Below I’ll discuss searching TEXniques, as used in The
TEXbook, David Salomon’s searching, and the various
search activities which have been applied in BLUe’s for-
mat.

2 Searching in TEX
Intrinsic in TEX is the searching for optimal linebreaks
within a paragraph and for good pagebreaks of the main
vertical list. Too complex material to be treated in this
note.

3 Searching in METAFONT
A very nice feature is its capability to solve equations es-
pecially to determine intersection points of curves, speci-
fied declaratively. Searching via METAFONT will not be
addressed in this paper.

4 Searching in The TEXbook
The examples of searching are about balancing columns.

On page 387 it is applied to adjusting the column widths
when we have the English text in column one and the same
text in another language in column two. With fixed column
widths the column lengths are different.

On page 417 the manmac macro\balancecolumns is
given to balance two columns on the last page of the in-

dex of The TEXbook. The latter TEXniques and macros
have been used—and customized a little—for typesetting
BLUe’s format indexes.1

5 Salomon’s procrusting
Salomon2 looks for the optimal font size in fitting text to a
box of prescribed size. The essence of the search process
is given below stripped from other aspects. I modified his
example into the following.

%Salomon’s fitting text to a box
%<TeX_Marker>

%Sept 95, cgl@rc.service.rug.nl
\begingroup
%Text
\toks0{Leentje leerde lotje lopen

langs de lange lindenlaan.}
%Restrictions
\hsize=3cm \dimen1=20pt%\vsize=20pt
\def\showresult{\rlap{\f

Fontsize=\the\dimen0\quad
ht, dp=\the\ht0, \the \dp0}
\copy0\smallbreak}

%Start: first estimate size of font
\dimen0=5pt
\loop\font\f=cmr10 at\dimen0

\setbox0=\vbox{\tolerance10000
\baselineskip\dimen0
\f \the\toks0 }

\showresult
\ifdim\ht0<\dimen1 %next, linear search

\advance\dimen0 by1pt
\repeat
%make the best fit
\advance\dimen0 by-1pt
\font\f=cmr10 at\dimen0

\setbox0=\vbox to\dimen1{\tolerance10000
\baselineskip\dimen0 plus 1pt minus1pt
\f \the\toks0 }

\showresult
\endgroup

%Remark: extension to adjust for total size
%of box is left to the reader, and the
%context
\bye

Remark. For more advanced applications see Arse-
nau’s macros ‘Typesetting paragraphs of a specific shape,’
MAPS 93.2.

6 Finding an element
The basic functionality is to locate an element in a set. The
result of the process—success or failure—is stored in the
‘Boolean’ \iffound .

1My contribution in this area is that I process indexes on-the-ly, in one-pass.
2Advanced TEX, Springer, 1995, page 189.
3Assumed is that the set does not contain a period.

Bijlage T Paradigms: Searching 127

BLUe’s format uses the following approach.3

\def\loc#1#2{%locate #1 in #2 a def
\def\locate##1#1##2\end{\ifx\empty##2\empty

\foundfalse\else\foundtrue\fi}%
\ea\locate#2.#1\end}

To append the searched for element at the end of the argu-
ments for\locate is related to the sentinel technique in
programming.

Example(Printing vowels in bold)

Schwarz 1987 coined the problem to print vowels in bold
face.4

The problem can be split into two parts. First, the general
part of going character by character through a string, and
second, decide whether the character at hand is a vowel or
not.

For the first part use\fifo .

For the second part, combine the vowels into a string,
aeiou , and the problem can be reduced to the question
〈char〉 ∈ aeiou ?

With \process appropriately defined—locate the argu-
ment in the string of vowels—\fifo Audacious\ofif
yieldsAudacious, with

\def\process#1{\uppercase{\loc#1}%
{AEIOU}\iffound{\bf#1}\else#1\fi}

Example(Searching a set of accent strings)

In sorting in TEX I determine whether a con-
trol symbol belongs to the set of accents—
\def\accstr{\‘\’\"\ˆ\c}} . In the macro\nxtw
the relevant invoke reads as follows.

\ea\loc\head\accstr

The same approach has been applied in my BLUe-2-
MAPS convertor assistant.

Example(Searching a set of Pascal reserved words)

In typesetting PASCAL fragments I determine whether a
word belongs to the set of reserved ‘words.’ The set of
reserved words reads

\reservedset{and array begin case const
div do downto else end. end; file for
function goto if in label mod nil not of
or packed procedure program record repeat
set then to type until var while with}

The relevant invoke in\processw reads

\loc{#1}{\the\reservedset}%

The Pascal environment scans the program fragment line-
by-line and each line word-by-word. Each word is tested
against the set of reserved words.

7 Deleting an element
The functionality is to delete an element from a set. It con-
sists of two steps: finding and deleting. It can be coded
as a variant of\loc , with as result not a Boolean but the
modified set. A template might read as follows.

\def\delete#1#2{%Delete #1 from #2 a def
\def\locate##1#1##2\end{\ifx\empty##2\empty

\else\def#2{##1##2}\fi}%
\ea\locate#2#1\end}

Addition of an element to a set can be done as follows.5

\def\add#1#2{%Add #1 to #2 a def
\ea\def\ea#2\ea{#2#1}}

%or when #2 consists of unexpandable tokens
\def\add#1#2{%Add #1 to #2 a def

\xdef#2{#2#1}}

Example(Updating a hand in bridge)

Bridge is an elimination play like most games. From the
start elements are removed. The deletion of a card is a
little special because we know that the card is there. The
macro is called\strip and has been adapted. The hand
is a definition instead of a token variable.

\def\strip#1#2{%Function:
% delete card value #1, is AKQJT9...2
% from #2, a def.

\def\wis##1#1##2\siw{\gdef#2{##1##2}%
\ifx#2\empty\gdef#2{--}\fi}%

\ea\wis#2\siw}

Remarks. In the above example the searching (and delet-
ing) is a side-effect of the printing. It is merely there to
guarantee data integrity. If only attention is paid to the
main issues, the searching would have been remained hid-
den, under a ‘pile of cards’. It is worth it to make some
kind of library macro out of it—at least a template—ready
for reuse.

Realize that the searched for element is supplied dynami-
cally.

Example(Modifying \dospecials)

Inspired upon the Babel macros the following alternatives
which also obey the locality character.

%Variant \bbl@add@specials
%No grouping, nor edef,
%assumed \dospecials, \sanitize are defined.
%
\let\sanitize\empty \let\dospecials\empty
%
\def\addspecials#1{\ea\def\ea

\dospecials\ea{\dospecials\do#1}%
\ea\def\ea

\sanitize\ea{\sanitize\makeother#1}
}
%
%Variant \bbl@remove@specials
%No grouping, nor edef,
%assumed \dodefault available
%
\let\dodefault\empty
%

4His solution mixes up the picking up of list elements and the process to be applied. Moreover, his nesting of\if -s in order to
determine whether a character is a vowel or not, is not elegant.

5This is not so much about searching but added for your convenience.

128 Paradigms: Searching Bijlage T

\def\removespecials#1{%
\def\do##1{\ifnum‘#1=‘##1

\else\nx\do\nx##1\fi}
\edef\dospecials{\dospecials}
\def\makeother##1{\ifnum‘#1=‘##1

\else\nx\makeother\nx##1\fi}
\edef\sanitize{\sanitize}

\let\do\dodefault
\let\makeother\makeotherdefault
}

8 Dek’s set macros
In The TEXbook the locating of an element—and delete
it—is done as follows.

Dek provides\remequivalent ,6 The TEXbook 380,
which uses a very general TEXnique. I’ll untangle and re-
cast the coding in the FIFO—First In First Out—notation.

Example(A set is just a list of defs)

Suppose the set reads\def\set{\a\b\c} . Then

%Assume #2 not empty
\def\remequivalent#1\from#2{%

\def\process##1{\ifx#1##1\else\nx##1\fi}
\xdef#2{\ea\fifo#2\ofif}}

\def\fifo#1{\ifx\ofif#1\ofif\fi
\process{#1}\fifo}

\def\ofif#1\fifo{\fi}

Example(A set is a list of defs with list element tags)

Suppose the set reads\def\set{\\\a\\\b\\\c} .
Then

%Assume #2 not empty
\def\remequivalent#1\from#2{%

\def\\##1{\ifx#1##1\else\nx\\\nx##1\fi}%
\edef#2{#2}}

Once we use list element tags we can also have more gen-
eral elements, as Dek put it ‘control sequences which are
\ifx -equivalent to a given control sequence.’

Example(A set is a more general list of control sequences
)

Suppose the set reads\def\set{\\\a\\\b\\\c} .
Then

%Assume #2 not empty
\def\remequivalent#1\from#2{\let\given=#1%
\def\\##1{\ifx#1##1\else\nx\\\nx##1\fi}%

\edef#2{\ea\fifola#2\alofif}}
\def\fifola\\#1#2{\ifx#1\given\else\nx\\\nx#1\fi

\ifx#2\alofif\alofif\fi\fifola#2}
\def\alofif#1\alofif{\fi}

Finally, it can be extended by the test for the emptiness of
\set .

9 Database use
Databases are all about easy input, conveniently storing
and retrieving, and appropriately reporting.

While developing BLUe’s format system and using the
database idea for storing and retrieving other search
TEXniques have been coded. Needed are facilities for

browsing a database next to macros for selective loading
of addresses, a format, pictures, references, or tools.

The browse macros are based on\loc , and can be asso-
ciated with keyword pattern recognition.

The selective loading macros are based on the proper defi-
nition of the list element tag.

Below the searching aspects have been put together.
‘BLUe’s Databases’ treats the use and coding of BLUe’s
format databases in depth.

9.1 Pattern recognition
A nice application is mail-merge, merging addresses with
a letter.

Example(Match addresses for the pattern RUSSIA)

\input blue.tex \letter \searchfile{address}
\search{RUSSIA}
\bye

To send a letter to all those persons or to make all ad-
dress labels insert\makesearchletters , respectively
\makesearchlabels before\bye .

Example(Coding the search macro)

At the heart lies the earlier mentioned\loc macro. Be-
cause we need to do more with found entries than just
knowing that they are there, their names, preceded by the
list element tag for further action, are collected in the toks
variable\namelst . For convenience the names are also
written to the log file, in order that we can follow what is
going on.

\def\search#1{\def\loc##1##2{%
\def\locate####1##1####2\end
{\ifx\empty####2\empty\foundfalse
\else\foundtrue\fi}\ea\locate##2.##1\end}
\def\lst##1##2{\loc{#1}{##2}\iffound
\immediate\write16{\nx##1}%log file
\namelst\ea{\the\namelst\lst##1}
\def##1{##2}%define found element
\fi}\input\the\searchfile.dat\relax}

9.2 Selective loading
This is all about organizing collections and reusing parts of
it. More restricted it is about using memory space econom-
ically, just to load what is needed, trading time—selection
process and loading—for space.

Selective loading is also a search activity. The file is
scanned and when an entry is found it will be loaded. The
details of the selective loading process depend on the en-
tries of the database, how they are stored. I distinquish
class I and class II (TEX) databases. The first class consists
of formats and tools—which could have been loaded non-
selectively—and the second class consists of addresses,
pictures, and references, for which selective loading is es-
sential.

6As part of a suite of set macros.

Bijlage T Paradigms: Searching 129

9.2.1 Formats and tools

The idea is that for example\letter only loads the let-
ter macros fromfmt.dat . In the examples below use
is made of\tool , with the functionality that when the
tag after is known the control sequences which follow the
tag up to\endinput will be loaded, otherwise all in be-
tween the tag and\endinput will be gobbled.

\long\def\tool#1{\ifx#1\undefined
\bgroup\unouterdefs

\ea\gobbletool\fi}
\long\def\gobbletool#1\endinput{\egroup}

Example(Coding the loading of the letter macros)

%From blue.tex
\def\letter{\ifx\undefined\letterfmt

\let\letterfmt=x\fi
\loadformat
\let\letterfmt\undefined}

\def\loadformat{\input fmt.dat \relax}
%from fmt.dat
\tool\letterfmt
<lettermacros>
\endinput

Similarly, a tool can be loaded as follows.

Example(Coding the loading of the smiley macros)

%From blue.tex
\newbox\smileybox
\newcount\smileysloadcount
\def\smiley{\loadsmileys\raise.5ex

\hbox{\unitlength.01pt
\copy\smileybox
\eyes\mouth
\kern1000\unitlength} }

\def\winksmiley{<similar>}
\def\sadsmiley{<similar>}
\def\loadsmileys{\ifx\undefined\smileystool

\let\smileystool=x\fi
\ifnum\smileysloadcount=0 \ea\loadtool
\else\message{--- smileys already

loaded---}\fi
\advance\smileysloadcount1
\let\smileystool\undefined}

%from tools.dat
\tool\smileystool
<smileymacros>
\endinput

Remark. Whenever suited a load counter is maintained
such that double loading is inhibited.

9.2.2 Addresses, pictures and references

The entries of these database obey the syntax

\lst\<name>{<entryproper>}

The selective loading comes down to a proper definition of
\lst . Moreover, the names of the entries to be selected
must be defined with whatever you wish as replacement
text.7

\def\loadselectivefrom#1{%#1 lit etc.
\def\lst##1{\ifx##1\undefined\ea\gobble

\else \ea\gdef\ea##1\fi}
\input #1.dat \relax%e.g. lit.dat
}

\def\gobble#1{}

Because of the scanning\outer defs are not allowed,
nor are\par -s. The selective loading macro is embedded
in the user macros\references and its ilks. In detail
the meaning of ‘loading’ is adapted to the application. For
references this means that the specified entries are set in
a box and their names redefined by numbers. The names
can be used for cross-referencing purposes while the box
can be pasted up at your place of choice. However, the un-
derlying searching methodology is the same for addresses,
references and pictures.

Example(Coding the handling of references)

\def\references#1{\beginreferences#1%
\endreferences}

\def\bluereferences#1\par
{\beginreferences#1\endreferences}

\def\loadreferences{\loadselectivefrom
{\the\referencesfile}}

\def\beginreferences#1\endreferences{%
\bgroup\def\process##1{\ifx\undefined##1

\global\let##1\referenceserror\else
\message{***\tt\string##1

already loaded.***}
\fi\namelst\ea{\the\namelst\lst##1}}%
\fifo#1\ofif
\if]#1]\else\ea\loadreferences\fi
%formatting
\ifstore\global\setbox\referencesbox=

\vbox\bgroup\fi\prenum{}\postnum{}
\lsams%Default ls
\the\thisreferences
\def\lst##1{\ls{##1}

\xdef##1{\the\itemno}}
\the\namelst\endreferences}

Remark. BLUe’s format style of coding is centred along
two-part macros with a one-part macro on top, enriched
by a convenient alias such as\bluereferences , for
the user interface.

9.2.3 Max D́ıaz’ TEXnique

The TEXbook 382–384 mentions the fast loading TEXnique
of Max Dı́az, which requires that every line is preceded by
a special character. The process comes down to the fol-
lowing.

%The TeXbook, Appendix D 4.Selective loading.
%The Max Diaz fast selective loading process.
%(A little simplified, and combined with
% my list element tag, \lst.)
\def\lst#1{\catcode‘\ =%tilde

\ifx#1\undefined14 %comment
\else9 \fi}%ignore char

%We want to load the cgl part.
\def\cgl{<anything>}

\lst\name
˜\ a
˜\ b
˜\ c
\lst\cgl
˜\ aa
˜\ bb
˜\ cc
\lst\erik

7This approach is the opposite of preventing reloading. We tacitly want to redefine the fancy entries by the meaningful ones. My
fancy replacement text is an error message.

130 Paradigms: Searching Bijlage T

˜\ aaa
˜\ bbb
˜\ ccc
\catcode‘\˜=13
%
<Commonpart>
\bye
%Explanation: the list element tag toggles
%the catcode for ˜ such that either the
%first character is ignored (and the rest
%of the line loaded) or the line is a
%comment line.

In the above one can replace\lst\name... by
\input <filetobeloadedfrom> .

9.2.4 Variant document parts

The idea is that a script is marked up also with markup tags
which have a selection/omission function. For example an
abridged version is interspersed within the script. The idea
is that the owner can either ask for an abridged or a full
version. Another example is documentation with details
for various computer operating systems. Given a customer
with a specific operating system only the relevant parts will
be printed.8

With the new hype HTML this functionality may enjoy a
second youth.

10 Tree search
When I implemented trees in TEX especially the
Pythagorean trees—to illustrate turtle graphics—I played
a little longer with it and could use TEX in ‘dialogue mode’
to search for a name by answering questions.

10.1 Interactive path through a binary tree
The following is inspired upon Greene’s ‘Playing in TEX’s
mind.’9

%Guess what? August 1995, cgl@rc.service.rug.nl
%Idea biased by A.M.Greene’s
%Playing in TeX’s mind, TUG 89.
%Interactive binary tree traversal.
%Interactive TeX ing,
%TeX as an engine to play with.
\input blue.tex
\def\bintree{\message{\csname\node\endcsname}

\ea\ifx\csname\node0\endcsname\relax\eertnib\fi
\read0to\yorn
\edef\node{\node\if n\yorn1\else0\fi}
\bintree}

\def\eertnib#1\bintree{\fi\def\node{1}
\immediate\write0{Hope this is the one

you are looking for :-) }
\immediate\write0{}
\message{Another play?}
\read0to\yorn
\if y\yorn\ea\bintree\fi
\immediate\write0{Thank you, bye}}

%Rules of the game
\immediate\write0{Guess game.

The system asks questions to be answered}
\immediate\write0{by *** y or n ***}
\immediate\write0{The following play

guesses an NTG member}
\immediate\write0{}
%

%Data (a tree structure)
\begingroup\obeylines
\def\lst#1 #2

{\ea\def\csname#1\endcsname{#2}}
\lst 1 NTG member?
\lst 10 Plain TeX ie?
\lst 100 Honoured?
\lst 1000 Kees
\lst 1001 HH
\lst 101 On board?
\lst 1010 Chair?
\lst 10100 Erik
\lst 10101 Secretary?
\lst 101010 Gerard
\lst 101011 Treasurer?
\lst 1010110 Wietse
\lst 1010111 Dark?
\lst 10101110 Johannes
\lst 10101111 Frans
\lst 1011 Anonymous
\lst 11 Just a friend
%
%Start the play
\endlinechar-1 %TB20.18
\def\node{1}\bintree
\endgroup
%
%Typesetting the data
\onecol
Pretext
\thisbt{\xoffset{-400}}
{\obeylines
\beginbt1 NTG member?
10 Plain TeX ie?
100 Honoured?
1000 cgl
1001 HH
101 On board?
1010 Chair?
10100 Erik
10101 Secretary?
101010 Gerard
101011 Treasurer?
1010110 Wietse
1010111 Dark?
10101110 JLB
10101111 FG
1011 Anonymous
11 Just a friend
8 \endbt
}Posttext
\bye

A typical log file looks as follows.

Guess game. The system asks questions to
be answered by *** y or n ***
The following play guesses an NTG member

NTG member?
\yorn=y

Plain TeX ie?
\yorn=y

Honoured?
\yorn=y

Kees
Hope this is the one you are looking for :-)

Another play?
\yorn=y

NTG member?
\yorn=n

Just a friend
Hope this is the one you are looking for :-)

8In real-life this is hardly done. When I buy a TV the operation booklet contains the information in several languages.
9Courtesy Bernd Raichle for node representation.

Bijlage T Paradigms: Searching 131

Another play?
\yorn=y

NTG member?
\yorn=y

Plain TeX ie?
\yorn=n

On board?
\yorn=y

Chair?
\yorn=y

Erik
Hope this is the one you are looking for :-)

Another play?
\yorn=y

NTG member?
\yorn=y

Plain TeX ie?
\yorn=n

On board?
\yorn=y

Chair?
\yorn=n

Secretary?
\yorn=y

Gerard
Hope this is the one you are looking for :-)

Another play?
\yorn=y

NTG member?
\yorn=y

Plain TeX ie?
\yorn=n

On board?
\yorn=n

Anonymous
Hope this is the one you are looking for :-)

Another play?
\yorn=n

Remarks. The first version used a counter to represent the
nodes with the restriction of 216.

Robustness with respect to mistypes of the user after the
prompt—the user does not supply ‘y’ or ‘n’—has been
treated in Paradigms: Loops.

10.2 The tree
The typesetting of the binary tree visualizes the data for
your convenience. Within BLUe’s format this goes as fol-
lows

\thisbt{\xoffset{-400}}
\beginbt 1 NTG member?
10 Plain \TeX ie?
...
11 Just a friend
8 \endbt

NTG member?

Plain TEXie?

Honoured?

cgl HH

On board?

Chair?

Erik Secretary?

Gerard Treasurer?

Wietse Dark?

JLB FG

Anonymous

Just a friend

Have fun, and all the best

