Bijlage X How to handle compound and bounded words 24.1

How to handle compound and bounded words

just another hyphenation method

Hans Hagen

April 1 1996

One of EX’s strong points in building paragraphs is the way hyphenations are handled. Although for real good hyphen-
ation of non-english languages some extensions to the program are needed, fairly good results can be reached with the
standard mechanisms and an additional macro, at least in Dutch.

\unprotect

ConEXt originates in the wish to typeset educational materials, especially in a technical environment. In production
oriented environments, a lot of compound words are used. Because the Dutch language poses no limits on combining
words, we often favor putting dashes between those words, because it facilitates reading, at least for those who are not
that accustomed to it.

In TEX compound words, separated by a hyphen, are not hyphenated at all. In spite of the multiple pass paragraph type-
setting this can lead to parts of words sticking into the margin. The solution lays in sgyte@water| | terugwinunit

instead ofspoelwater-terugwinunit. By using a one character command likedelimited by the same character

we get ourselves both a decent visualization @{ddit and colored verbatim we color these commands yellow) and an
efficient way of combining words.

The sequencé| simply leads to two words connected by a hyphen. Because we want to distinguish such a hyphen from
the one inserted whergX hyphenates a word, we use a bit longer one.

spoelwater| |terugwinunit ter= tes rug: wind unit spoelwater—terugwinunit

As we already said, theis a command. This commands accepts an optional argument before it's delimiter, which is also
al.

polymeer|*|chemie poz ly-] meer* chet polymeer*chemie

Arguments likex are not interpreted and inserted directly, in contrary to arguments like:

polymeer|~|chemie pos ly] meer-chek polymeerchemie
| (|polymeer|) | chemie Iy chet (polymeer)chemie
polymeer| (|chemiel) | pos [y polymeer(chemie)

Although such situations seldom occur —we typeset thousands of pages before we encountered one that forced us to
enhance this mechanism— we also have to take care of comma’s.

opll, inl| en uitstellen ind uitd Stel} len op-, in— en uitstellen

The next special case (concerning quotes) was brought to my attention by Piet Tutelaers, one of the driving forces behind
rebuilding hyphenation patterns for the dutch langubyée’ll also take care of this case.

AOW|’ |er er AOW’er
cdl’ltje cdi fje cd'tje
ex|-|PTT|’ |er PTT} er ex-PTTer

rock|-|’nl-lroller Facki n koller rock-"n-roller

The mechanism described here is one of the older inner parts ofg&bnThe most recent extensions concerns some
special cases as well as the possibility to install other characters as delimiters. The prefered way of specifying compound
words is usingl |, which is installed by:

\installdiscretionaries || -

Some alternative definitions are:

1in 1996 the spelling of the dutch language has been slightly reformed which made this topic actual again.

24.2 How to handle compound and bounded words Bijlage X

\installdiscretionaries ** -
\installdiscretionaries ++ -
\installdiscretionaries // -

\installdiscretionaries -
after which we can say:

testx*test**xtest [est+ testr test test-test-test
test++test++test fest+ testr test test-test-test
test//test//test fest test fest test-test-test
test” "test”"test fest testr test test-test-test

Now let's go to the macros. First we define some variables. In the maingBoniodules these can be tuned by a setup
command. Watch the (maybe) better looking compound hyphen.

\def\compoundhyphen {{-F\kern-.25ex{-}}
\def\beginofsubsentence {---}
\def\endofsubsentence {---}

The last two variables are needed for subsentences —like this one— which we did not yet mention.

We want to enable breaking but at the same time don’t want compound characters like - or — to be separated from the
words. EX hackers will recognise the next two macro’s:

\def\prewordbreak {\penaltyl10000\hskipOpt\relax}
\def\postwordbreak {\penaltyO\prewordbreak}

We first show the original implementation, which only suppdrés command and delimiter. Before activatinge save
it's value:

\edef\domathmodediscretionary{\stringl|}
after which we're ready to define it's meaning to:

\catcode‘\ |=\@Qactive

\protected\def |7
{\ifmmode
\expandafter\domathmodediscretionary
\else
\expandafter\dotextmodediscretionary

\fi}

We need a two stagefuturelet because we want to look ahead for both the compound character definition and the
(optional) comma that follows it, and because we want to prevent thaptts this comma on the next line. We use
\next for easy and fast checking of the argument, we save this argument (which can consist of more tokens) and also
save the character following tHe&1 | in \nextnext.

\def\dotextmodediscretionary¥
{\bgroup
\futurelet\next\dodotextmodediscretionary}

\def\dodotextmodediscretionary#l|
{\def\betweendiscretionaries{#1}}
\futurelet\nextnext\dododotextmodediscretionary}

The main macro consists of quite soMefx tests while\checkafterdiscretionary handles the commas. We show
the simplified version here:

\def\dododotextmodediscretionary?,

{\let\nextnextnext=\egroup

\ifx [\next
\checkafterdiscretionary
\prewordbreak\hbox{\compoundhyphen\nextnext}\postwordbreak

\else\ifx=\next
\prewordbreak\compoundhyphen

\else\ifx™\next

Bijlage X How to handle compound and bounded words 24.3

\discretionary{-}{}{\thinspace}\postwordbreak
\else\ifx(\next

\prewordbreak\discretionary{}{ (-}{(}\prewordbreak
\else\ifx) \next

\prewordbreak\discretionary{-)}{}{) }\postwordbreak
\else\ifx’\next

\prewordbreak\discretionary{-}{}{’}\postwordbreak
\else

\checkafterdiscretionary

\prewordbreak\hbox{\betweendiscretionaries\nextnext}\postwordbreak
\EINFINEINFINfi\fi
\nextnextnext}

\def\checkafterdiscretionary/
{\ifx, \nextnext
\def\nextnextnext{\afterassignment\egroup\let\next=1}%
\else
\let\nextnext=\relax
\fi}
The most recent implementation is more advanced. As demonstrated we can install delimiters, like:
\installdiscretionaries || \compoundhyphen

This time we have to use a bit more clever way of saving the math mode specification of the character we're going to
make active. We also save the user supplied compound hyphen. We show the a bit more traditional implementation first.

\def\installdiscretionaries#1/,
{\catcode ‘#1\@@other
\expandafter\doinstalldiscretionaries\string#1}

\def\doinstalldiscretionaries#1Y,
{\setvalue{mathmodediscretionary#1}{#1}/
\catcode‘#1\@Gactive
\dodoinstalldiscretionaries}

\def\dodoinstalldiscretionaries#1#2J
{\setvalue{textmodediscretionary\string#1}{#2}/
\protected\def#1{\discretionarycommand#13}}

A bit more (catcodé and character trickery enables us to discard the two intermediate steps. This trick originates on
page 394 of the gXbook, in the appendix full of dirty tricks. The second argument has now become redundant, but |
decided to reserve it for future use. At least it remembers us of the symmetry.

\def\installdiscretionaries#1#2#3Y,
{\setvalue{mathmodediscretionary\string#i}{\char‘#11}7
\setvalue{textmodediscretionary\string#1}{#31}7%
\catcode ‘#1=\@@active
\scratchcounter=\the\uccode ‘"~
\uccode‘ "= #1
\uppercase{\protected\def~“{\discretionarycommand~}}%
\uccode‘ “=\scratchcounter}

\def\dohandlemathmodebar#1,
{\getvalue{mathmodediscretionary\string#1}}

\def\discretionarycommandy,
{\ifmmode
\expandafter\dohandlemathmodebar
\else
\expandafter\dotextmodediscretionary
\fi}
Although adapting character codes and making characters active can interfere with other features of macropackages,
normally there should be no problems with things like:

24.4 How to handle compound and bounded words Bijlage X

\installdiscretionary || +
\installdiscretionary ++ =

The real work is done by the next set of macros. We have to use a daiibierelet because we have to take following
characters into account.

7 \def\dotextmodediscretionary#1
{\bgroup
\def\dodotextmodediscretionary##1#1
{\def\betweendiscretionary{##11}7
\futurelet\nextnext\dododotextmodediscretionary}y
\let\discretionarycommand=#17
\def\textmodediscretionary{\getvalue{textmodediscretionary\string#1}1}/
\futurelet\next\dodotextmodediscretionary}

8 \def\dododotextmodediscretionary?,
{\let\nextnextnext=\egroup
\ifx\discretionarycommand\next
\checkafterdiscretionary
\prewordbreak\hbox{\textmodediscretionary\nextnext}\postwordbreak
\else\ifx=\next
\prewordbreak\textmodediscretionary
\else\ifx™\next
\prewordbreak\discretionary{-}{}{\thinspacel}\postwordbreak
\else\ifx(\next
\ifdim\lastskip>\!!zeropoint\relax
(\prewordbreak
\else
\prewordbreak\discretionary{}{ (-}{(}\prewordbreak
\fi
\else\ifx)\next
\ifx\nextnext\blankspace
\prewordbreak) \relax
\else
\prewordbreak\discretionary{-) }H{}{) }\postwordbreak
\fi
\else\ifx’\next
\prewordbreak\discretionary{-}{}{’}\postwordbreak
\else\ifx<\next
\hbox{\beginofsubsentence}\prewordbreak
\else\ifx>\next
\prewordbreak\endofsubsentence
\else
\checkafterdiscretionary
\prewordbreak\hbox{\betweendiscretionary\nextnext}\postwordbreak
\FINFINFINFINFINFI\Fi\fi
\nextnextnext}

9 \def\checkafterdiscretionary
{\ifx,\nextnext
\def\nextnextnext{\afterassignment\egroup\let\next=1}%
\else
\let\nextnext=\relax

\fi}
Before we show some more tricky alternative, we first install the mechanism:
10 \installdiscretionaries || \compoundhyphen

One of the drawbacks of this mechanism is that characters can be made active afterwards. The next alternative can be
used in such situations. This time we don’t compare the arguments directly but 0aethele’s instead. EX initializes

these codes of the alphabetics glyphs to their uppercase counterparts. Normally the other characters remain zero. If so,
we can use th&uccode as a signal.

Bijlage X How to handle compound and bounded words

The more advanced mechanism is activated by calling:
\enableactivediscretionaries
which is defined as:

11 \def\enableactivediscretionariesY

{\uccode‘ (= (\relax \uccode‘)=‘)\relax \uccode‘==‘=\relax
\uccode‘<=‘<\relax \uccode‘>=‘>\relax

\uccode‘’=‘’\relax \uccode‘"=‘"\relax
\let\dotextmodediscretionary = \activedotextmodediscretionary

\let\dododotextmodediscretionary = \activedododotextmodediscretionary}

24.5

We only have to redefine two macros. While saving thecode in a macro we have to take care of empty arguments,

likein ||.

12 \def\activedotextmodediscretionary#1,
{\bgroup
\def\dodotextmodediscretionary##1#1%
{\def\betweendiscretionary{##11}7
\def\nextuccode####1####2\relaxy,
{\ifcat\noexpand####1\noexpand\relax
\edef\nextuccode{0}},
\else
\edef\nextuccode{\the\uccode ‘####1},
\fil}%
\nextuccode##10@\relax
\futurelet\nextnext\dododotextmodediscretionary}y,
\let\discretionarycommand=#17
\def\textmodediscretionary{\getvalue{textmodediscretionary\string#1}1}/
\futurelet\next\dodotextmodediscretionary}

This time we usé&ifnum:

13 \def\activedododotextmodediscretionary
{\let\nextnextnext=\egroup
\ifx\discretionarycommand\next
\checkafterdiscretionary
\prewordbreak\hbox{\textmodediscretionary\nextnext}\postwordbreak
\else\ifnum\uccode ‘==\nextuccode
\prewordbreak\textmodediscretionary
\else\ifnum\uccode‘~“=\nextuccode
\prewordbreak\discretionary{-}{}{\thinspace}\postwordbreak
\else\ifnum\uccode‘ (=\nextuccode
\ifdim\lastskip>\!!zeropoint\relax
(\prewordbreak
\else
\prewordbreak\discretionary{}{ (-}{ (}\prewordbreak
\fi
\else\ifnum\uccode‘)=\nextuccode
\ifx\nextnext\blankspace
\prewordbreak) \relax
\else
\prewordbreak\discretionary{-) }{}{) }\postwordbreak
\fi
\else\ifnum\uccode‘’=\nextuccode
\prewordbreak\discretionary{-}{}{’}\postwordbreak
\else\ifnum\uccode‘<=\nextuccode
\hbox{\beginofsubsentence}\prewordbreak
\else\ifnum\uccode‘>=\nextuccode
\prewordbreak\endofsubsentence
\else
\checkafterdiscretionary

14

24.6 How to handle compound and bounded words Bijlage X

\prewordbreak\hbox{\betweendiscretionary\nextnext}\postwordbreak
\EFINFINFINFINFINFINFi\fi
\nextnextnext}

Now we can safely do things like:

\catcode‘<=\@Gactive \def<{hello there}
\catcode‘>=\@@active \def>{hello there}
\catcode‘ (=\@Qactive \def({hello there}
\catcode‘)=\@Cactive \def){hello there}

In normal day-to-day production of texts this kind of activation is seldom édédo, we have to take care of the math
mode explicitly, just like we did when makinigactive. It can be confusing too, especially when we load macropackages
afterwards that make use oin \ifnum or \ifdim statements.

\protect

2|n the ConEXt manual thes and> are made active and used for some cross-reference trickery.

