
Bijlage 25The NTS Team
Peter Breitenlohner
Max-Planck-Institut für
Physik, München The ε-TEX manual, Version 2,

February 1998

abstract
The preparation of this report was supported in part by DANTE, Deutschsprachige
Anwendervereinigung TEX e.V. ‘TEX’ is a trademark of the American Mathematical Society.

1 Introduction
TheNTS project intends to develop an ‘New Typesetting System’ (NTS) that will even-
tually replace today’s TEX3. TheNTS program will include many features missing in
TEX, but there will also exist a mode of operation that is100% compatible with TEX3. It
will, necessarily, require quite some time to developNTS to maturity and make it widely
available.

Meanwhileε-TEX intends to fill the gap between TEX3 and the futureNTS. It consists
of a series of features extending the capabilities of TEX3.1

Since compatibility betweenε-TEX and TEX3 has been a main concern,ε-TEX has two
modes of operation:

1. In TEX compatibility mode it fully deserves the name TEX and there are neither
extended features nor additional primitive commands. That means in particular that
ε-TEX passes theTRIP test [1] without any restriction. There are, however, a few
minor modifications that would be legitimate in any implementation of TEX.

2. In extended mode there are additional primitive commands and the extended
features ofε-TEX are available.

We have tried to makeε-TEX as compatible with TEX as possible even in extended mode.
In a few cases there are, however, some subtle differences described in detail later on.
Therefore theε-TEX features available in extended mode are grouped into two categor-
ies:

1. Most of them have no semantic effect as long as none of the additional primitives
are executed; these ‘extensions’ are permanently enabled.

2. The remaining optionalε-TEX features (‘enhancements’) can be individually
enabled and disabled; initially they are all disabled. For each enhancement there is
a state variable\...state; an enhancement is enabled or disabled by assigning a
positive or non-positive value respectively to that state variable.

For ε-TEX Versions1 and2 there is just one enhancement: mixed direction typesetting
(TEX--XET) with the state variable\TeXXeTstate.

Version1.1 of ε-TEX was released in November1996, Version2.0 in February1998.
It is expected that there will be about oneε-TEX version per year, where each later version
adds new features. It would be desirable if theseε-TEX versions were incorporated into
many of the existing implementations of TEX3 without much delay.

1. The TEX3 program; for the moment there are no plans to extend the software related to TEX.

248 MAPS

The ε-TEX manual, Version 2 Bijlage 25

With eachε-TEX version there will be ane-TRIP test [2] in order to help to verify that
a particular implementation deserves the nameε-TEX in the same way as theTRIP test [1]
helps to verify that an implementation deserves the name TEX.

2 Generating ε-TEX
2.1 Generating the ε-TEX Program An implementation of TEX consists of a WEB
change filetex.ch containing all system-dependent changes for a particular system. The
WEB system programTANGLE applies this change file to the system-independent file
tex.web defining the TEX program in order to generate a TEX Pascal file for that sys-
tem [3]. Similarly an implementation ofε-TEX consists of a system-dependent change
file etex.sys to be applied to the system-independent filee-tex.web defining theε-
TEX program. Sinceε-TEX differs from TEX by a relatively small fraction of its code
e-tex.web does, however, not exist as a physical file; it is instead defined in terms of a
system-independent change filee-tex.ch to be applied totex.web. Similarly it should
be possible to define the system-dependent change fileetex.sys for a particular system
in terms of its deviations from the corresponding filetex.ch [4].

2.2 Generating Format Files for ε-TEX When (the INITEX or VIRTEX version of)
the TEX program is started, it analyzes the first non-blank input line from the command
line or (with the** prompt) from the terminal: The first non-blank character of that input
line may be an& followed immediately by the name of the format to be loaded; otherwise
VIRTEX uses a default format whereas INITEX starts without loading a format file.

For eINITEX (the INITEX version ofε-TEX) there is an additional possibility: If the
first non-blank input character is an* (immediately followed what would be the first non-
blank input character for INITEX), the program starts in extended mode without loading a
format file. If the first non-blank character is neither& nor * then eINITEX starts without
loading a format but in compatibility mode. Whenever a format file is loaded by eINITEX
or eVIRTEX the mode (compatibility or extended) is inherited from the format.

It is recommended that the input fileetex.src be used instead ofplain.tex when
generating anε-TEX format in extended mode. That file will first readplain.tex (without
readinghyphen.tex) and will then supply macro definitions supportingε-TEX features.

3 ε-TEX Extensions
3.1 Compatibility and Extended Mode Onceε-TEX has entered compatibility mode
it behaves as any other implementation of TEX. All of ε-TEX’s additional commands
are absent; it is therefore impossible to access any of the extensions or enhancements.
The ability of eINITEX to initially choose between compatibility and extended mode is,
however, by itself a feature not present in any TEX implementation.

The remainder of this document is devoted to a detailed and mostly technical descrip-
tion of all aspects whereε-TEX (in extended mode) behaves differently from TEX. It will
be assumed that the reader is familiar withThe TEXbook [5] describing TEX’s behaviour
in quite some detail.

All of ε-TEX’s extensions and enhancements available in extended mode are activated
by either executing some new primitive command or by assigning a nonzero value to
some new integer parameter or state variable. Since all these new variables are initially
zero,2 ε-TEX behaves as TEX as long as none ofε-TEX’s new control sequences are used,
with the following exceptions which should, however, have no effect on the typesetting of
error-free TEX documents (produced with error-free formats):

2. To be precise all state variables are zero when eINITEX or eVIRTEX is started; integer parameters that
are not state variables are zero when eINITEX is started without loading a format file or inherited from the
format file otherwise.

Voorjaar 1998 249

Bijlage 25 The NTS Team

1. When\tracingcommands has a value of3 or more, or
when\tracinglostchars has a value of2 or more,ε-TEX will display additional
information not available in TEX.

2. When using a count, dimen, skip, muskip, box, or token register number in the
range256–32767, ε-TEX will access one of its additional registers whereas TEX
will produce an error and use register number zero.

3.2 Optimization When a value is assigned to an〈internal quantity〉 within a save
group, the former value is restored when the group ends, provided the assignment was
not global. This is achieved by saving the former value on TEX’s ‘save stack’. ε-TEX
refrains from creating such save stack entries when the old and new value are the same
(‘reassignments’).

\aftergroup tokens are also kept on TEX’s save stack. When the current group ends,
TEX converts each\aftergroup token into a token list and inserts this list as new ‘input
level’ into the input stack.ε-TEX collects all\aftergroup tokens from one group into
one token list and thus conserves input levels.

When a completed page is written to the DVI file (shipped out), TEX multiplies the
relevant stretch or shrink components of glue nodes in a box by the glue expansion factor
of that box and converts the product to DVI units. In order to avoid overflow each resulting
valuex is artificially limited to the range|x| ≤ 109. Consider the example:

\shipout\vbox to100pt{
\hrule width10pt
\vskip 0pt plus1000fil
\vskip 0pt plus1000fil
\vskip 0pt plus-2000fil
\hrule
\vskip 0pt plus0.00005fil
}

Here the three glues between the two rules add up to zero; when TEX converts each stretch
component individually they will, however, add up to 109 DVI units due to the truncation
mentioned above.ε-TEX, however, accumulates the relevant stretch or shrink components
of consecutive glue nodes (possibly separated by insert, mark, adjust, kern, and penalty
nodes) before converting them to DVI units. During this process glue nodes may be
converted into equivalent kern nodes and some glue specifications may be recycled; this
may affect the memory usage statistics displayed after the page has been shipped out.

3.3 Tracing and Diagnostics When\tracingcommands has a value of3 or more, the
commands following a prefix (\global, etc.) are shown as well, e.g.:

\global\count0=0 => {\global}
{\count}

When\tracinglostchars has a value of2 or more, missing characters are displayed on
the terminal even if the value of\tracingonline is 0 or less.

When \tracingscantokens has a value of1 or more, the opening and closing of
pseudo-files (generated by\scantokens) is recorded as for any other file, with ‘’ as file-
name.

When the program is compiled with the code for collecting statistics and\tracingassigns
has a value of1 or more, all assignments subject to TEX’s grouping mechanism are traced,
e.g.:

\def\foo{\relax} => {changing \foo=undefined}

250 MAPS

The ε-TEX manual, Version 2 Bijlage 25

{into \foo=macro:->\relax }
\global\count17=7 => {globally changing \count17=0}

{into \count17=7}
\count17=7 => {reassigning \count17=7}

When\tracingifs has a value of1 or more, all conditionals (including\unless, \or,
\else, and\fi) are traced, together with the starting line and nesting level; the\showifs
command displays the state of all currently active conditionals. Thus the input

\unless\iffalse
\iffalse
\else

\showifs
\fi

\fi

might yield

{\unless\iffalse: (level 1) entered on line 1}
{\iffalse: (level 2) entered on line 2}
{\else: \iffalse (level 2) entered on line 2}
level 2: \iffalse\else entered on line 2
level 1: \unless\iffalse entered on line 1
{\fi: \iffalse (level 2) entered on line 2}
{\fi: \unless\iffalse (level 1) entered on line 1}

When\tracinggroups has a value of1 or more, the start and end of each save group
is traced, together with the starting line and grouping level; the\showgroups command
displays the state of all currently active save groups. Thus the input

\begingroup
{

\showgroups
}

\endgroup

might yield

{entering semi simple group (level 1) at line 1}
{entering simple group (level 2) at line 2}
simple group (level 2) entered at line 1 ({)
semi simple group (level 1) entered at line 1 (\begingroup)
bottom level
{leaving simple group (level 2) entered at line 2}
{leaving semi simple group (level 1) entered at line 1}

Occasionally conditionals and/or save groups are not properly nested with respect to\input
files. Although this might be perfectly legitimate, such anomalies are mostly unintentional
and may cause quite obscure errors. When\tracingnesting has a value of1 or more,
these anomalies are shown; when\tracingnesting has a value of2 or more, the current
context (traceback) is shown as well. Thus the input

\newlinechar=‘\ˆˆJ
\begingroup

\iftrue
\scantokens{%

Voorjaar 1998 251

Bijlage 25 The NTS Team

\endgroup
ˆˆJ\fi
ˆˆJ\bgroup

ˆˆ\tracingnesting=2
ˆˆJ\iffalse
ˆˆJ\else
}%

\egroup
\fi

might yield3

Warning: end of semi simple group (level 1) entered at line 2 of a diff
erent file

Warning: end of \iftrue entered on line 3 of a different file
Warning: end of file when simple group (level 1) entered at line

3 is incomplete
Warning: end of file when \iffalse\else entered on line 5 is inc

omplete
l.7 \else

l.11 }
%

The command\showtokens{〈token list〉} displays the token list, and allows the display
of quantities that cannot be displayed by\show or \showthe, e.g.:

\showtokens\expandafter{\jobname}
\showtokens\expandafter{\topmarks 27}

3.4 Status Enquiries A number of TEX’s internal quantities can be assigned values but
these values cannot be retrieved in TEX. ε-TEX introduces several new primitives that
allow the retrieval of information about its internal state.
\eTeXversion returnsε-TEX’s (major) version number;
\eTeXrevision expands into a list of character tokens representing the revision (minor
version) number. Thus

\message{\number\eTeXversion\eTeXrevision}

should write the complete version as shown whenε-TEX is started.
When used as number,\interactionmode returns one of the values0 (batchmode),
1 (nonstopmode),2 (scrollmode), or3 (errorstopmode). Assigning one of these values to
\interactionmode changes the current interaction mode accordingly; such assignments
are always global.
\currentgrouplevel returns the current save group level;
\currentgrouptype returns a number representing the type of the innermost group:

0: bottom level (no group) 9: math group
1: simple group 10: disc group
2: hbox group 11: insert group
3: adjusted hbox group 12: vcenter group
4: vbox group 13: math choice group
5: vtop group 14: semi simple group
6: align group 15: math shift group

3. The\scantokens command will be discussed later.

252 MAPS

The ε-TEX manual, Version 2 Bijlage 25

7: no align group 16: math left group
8: output group

\currentiflevel returns the number of currently active conditionals;
\currentifbranch indicates which branch of the innermost conditional is taken:1 ‘then
branch’,−1 ‘else branch’, or0 not yet decided;
\currentiftype returns0 if there are no active conditionals, a positive number indicating
the type of the innermost active conditional, or the negative of that number when the
conditional was prefixed by\unless:

1: \if 8: \ifmmode 15: \iftrue
2: \ifcat 9: \ifinner 16: \iffalse
3: \ifnum 10: \ifvoid 17: \ifcase
4: \ifdim 11: \ifhbox 18: \ifdefined
5: \ifodd 12: \ifvbox 19: \ifcsname
6: \ifvmode 13: \ifx 20: \iffontchar
7: \ifhmode 14: \ifeof

\lastnodetype returns a number indicating the type of the last node, if any, on the current
(vertical, horizontal, or math) list:

-1: none (empty list) 8: disc node
0: char node 9: whatsit node
1: hlist node 10: math node
2: vlist node 11: glue node
3: rule node 12: kern node
4: ins node 13: penalty node
5: mark node 14: unset node
6: adjust node 15: math mode nodes
7: ligature node

The commands\fontcharht, \fontcharwd, \fontchardp, and\fontcharic followed
by a font specification and a character code, return a dimension: the height, width, depth,
or italic correction of the character in the font, or0pt if no such character exists; the
conditional\iffontchar tests the existence of that character.
When used as number,\parshape returns the number of lines of the current parshape
specification (or zero).
ε-TEX’s \parshapeindent, \parshapelength, and\parshapedimen, followed by a num-
bern return the dimensions of the parshape specification:
0pt for n ≤ 0 or when no parshape is currently active, otherwise
\parshapeindentn and\parshapedimen2n − 1 both return the indentation of linen
(explicitly specified or implied by repeating the last specification),
\parshapelengthn and\parshapedimen2n both return the length of linen.

3.5 Expressions ε-TEX introduces the notion of expressions of type number, dimen,
glue, or muglue, that can be used whenever a quantity of that type is needed. Such ex-
pressions are evaluated byε-TEX’s scanning mechanism; they are initiated by one of the
commands\numexpr, \dimexpr, \glueexpr, or \muexpr (determining the typet) and
optionally terminated by one\relax (that will be absorbed by the scanning mechanism).
An expression consists of one or more terms of the same type to be added or subtracted; a
term of typet consists of a factor of that type, optionally multiplied and/or divided by nu-
meric factors; finally a factor of typet is either a parenthesized subexpression or a quantity
(number, etc.) of that type. Thus, the conditional

Voorjaar 1998 253

Bijlage 25 The NTS Team

\ifdim\dimexpr (2pt-5pt)*\numexpr 3-3*13/5\relax + 34pt/2<\wd20

is true if and only if the width of box20 exceeds32 pt . Note the use of\relax to
terminate the inner (numeric) expression, the outer (dimen) expression is terminated auto-
matically by the token<12 that does not fit into the expression syntax.

The arithmetic performed byε-TEX’s expressions does not do much that could not be
done by TEX’s arithmetic operations\advance, \multiply, and\divide, although there
are some notable differences: Each factor is checked to be in the allowed range, numbers
must be less than 231 in absolute value, dimensions or glue components must be less than
214pt , mu , fil , etc. respectively. The arithmetic operations are performed individu-
ally, except for ‘scaling’ operations (a multiplication immediately followed by a division)
which are performed as one combined operation with a64-bit product as intermediate
value. The result of each operation is again checked to be in the allowed range. Finally
the results of divisions and scalings are rounded, whereas TEX’s \divide truncates.

The important new feature is, however, that the evaluation of expressions does not
involve assignments and can therefore be performed in circumstances where assignments
are not allowed, e.g., inside an\edef or \write. This also allows the definition of purely
expandable loop constructions:

\def\foo#1#2{\number#1
\ifnum#1<#2,

\expandafter\foo
\expandafter{\number\numexpr#1+1\expandafter}%
\expandafter{\number#2\expandafter}%

\fi}

such that, e.g., ‘\foo{7}{13}’ expands into ‘7, 8, 9, 10, 11, 12, 13’.
The commands\gluestretch and\glueshrink are to be followed by a glue specific-

ation and return the stretch or shrink component of that glue as dimensions (withfil etc.
replaced bypt), the commands\gluestretchorder and\glueshrinkorder return the
order of infinity: 0 for pt , 1 for fil , 2 for fill , and3 for filll .

The commands\gluetomu and\mutoglue convert glue into muglue and vice versa by
simply equating1 pt with 1 mu , precisely what TEX does (in addition to an error message)
when the wrong kind of glue is used.

3.6 Additional Registers and Marks ε-TEX increases the number of TEX’s count,
dimen, skip, muskip, box, and token registers from256 to 32768. The additional registers,
numbered256–32767, can be used exactly as the first256, except that they can not be
used for insertion classes.

As in TEX, the first 256 registers of each kind are realized as static arrays that are
part of the ‘table of equivalents’; values to be restored when a save group ends are kept
on the save stack. The additional registers are realized as sparse arrays built from TEX’s
main memory and are therefore less efficient. They use a four-level index structure and
individual registers are present only when needed. Values to be restored when a particular
save group ends are kept in a linked list (again built from main memory) with one save
stack entry pointing to that list.4

ε-TEX generalizes TEX’s mark concept to mark classes0–32767, with mark class0
used for TEX’s marks.
The command\marks followed by a mark classn and a mark text appends a mark node
to the current list;\marks0 is synonymous with\mark. The page builder and the\vsplit
command record information about the mark nodes found on the page or box produced,
separately for each mark class. The information for mark class0 is kept in a small static

4. With the effect that the order of restoring (or discarding) saved values may be somewhat surprising.

254 MAPS

The ε-TEX manual, Version 2 Bijlage 25

array as in TEX, the information for the additional mark classes is again kept in a sparse
array with entries present only when needed.
The command\firstmarksn expands to the mark text for mark classn first encountered
on the most recent page, etc., and again\firstmarks0 is synonymous with\firstmark.

3.7 Input Handling The command\readline〈number〉 to 〈control sequence〉 defines
the control sequence as parameterless macro whose replacement text is the contents of the
next line read from the designated file, as for\read. The difference is that the current
category codes are ignored and all characters on that line (including an endline character)
are converted to character tokens with category12 (‘other’), except that the character
code32 gets category10 (‘space’).

The command\scantokens{...} absorbs a list of unexpanded tokens, converts it into
a character string that is treated as if it were an external file, and starts to read from this
‘pseudo-file’. A rather similar effect can be achieved by the commands

\toks0={...}
\immediate\openout0=file
\immediate\write0{\the\toks0}
\immediate\closeout0
\input file

In particular every occurrence of the current newline character is interpreted as start of a
new line, and input characters will be converted into tokens as usual. The\scantokens
command is, however, expandable and does not use token registers, write streams, or
external files. Furthermore the conversion from TEX’s internal ASCII codes to external
characters and back to ASCII codes is skipped. Finally the current context (traceback)
shown, e.g., as part of an error message continues beyond an input line from a pseudo-file
until an input line from a real file (or the terminal) is found.

When ε-TEX’s input mechanism attempts to read beyond the end of an\input file
or \scantokens pseudo-file, and before checking for ‘runaway’ conditions and clos-
ing the file, it will first read a list of tokens that has been predefined by the command
\everyeof={〈token list〉}.

3.8 Breaking Paragraphs into Lines Traditional typesetting with lead type used to
adjust (stretch or shrink) the interword spaces in the last line of a paragraph by the same
amount as those in the preceding line. With TEX the last line is, however, usually typeset
at its natural width due to infinitely stretchable parfillskip glue.ε-TEX allows interpolation
between these two extremes by specifying a suitable value for\lastlinefit. For a value
of 0 or less,ε-TEX behaves as TEX, values from1 to 1000 indicate a glue adjustment
fractionf times1000, values above1000 are interpreted asf = 1.

The new algorithm is used only if

1. \lastlinefit is positive;
2. \parfillskip has infinite stretchability; and
3. the stretchability of\leftskip plus\rightskip is finite.5

Thus the last line of a paragraph would normally be typeset at its natural width and the
stretchability of parfillskip glue would be used to achieve the desired line width. The
algorithm proceeds as usual, considering all possible sequences of feasible break points
and accumulating demerits for the stretching or shrinking of lines as well as for visually
incompatible lines. When a candidate for the last line has been reached, the following
conditions are tested:

5. As usual for parameters influencing TEX’s line-breaking algorithm, the values current at the end of the
(partial) paragraph are used.

Voorjaar 1998 255

Bijlage 25 The NTS Team

4. the previous line was not ‘infinitely bad’ and was stretched with positive finite stretch-
ability or was shrunk with positive shrinkability;
5. the last line has infinite stretchability entirely due to parfillskip glue;
6. if the previous line was stretched or shrunk the last line has positive finite stretchability
or shrinkability respectively.

If all three conditions are satisfied, a glue adjustment factor off times that of the pre-
ceding line will be applied to the relevant stretch or shrink components of all glue nodes
in the last line, and the corresponding demerits are computed. (The last line will, however,
not be stretched beyond the desired line width.)

When all possible candidates for the last line of the paragraph have been examined,
the one having fewest accumulated demerits is chosen. Ifε-TEX’s modified algorithm was
applied to that last line, the actual stretching or shrinking is achieved by suitably modifying
the parfillskip glue node.

All computations described so far are performed with machine-independent integer
arithmetic. Note, however, that the actual stretching requires machine-dependent floating
point arithmetic. Therefore, when a paragraph is interrupted by a displayed equation and
the line preceding the display is subject to the adjustment just described, the display will
in general be preceded by abovedisplayskip and not by abovedisplayshortskip glue.

After breaking a paragraph into lines, TEX computes the interline penalties by adding
the values of:

\interlinepenalty between any two lines,
\clubpenalty after the first line of a (partial) paragraph,
\widowpenalty before the last line of the paragraph,
\displaywidowpenalty before the line immediately preceding a displayed equation, and
\brokenpenalty after lines ending with a discretionary break.

ε-TEX generalizes the concept of interline, club, widow, and display widow penalty by
allowing their replacement by arrays of penalty values with the commands

\interlinepenalties,
\clubpenalties,
\widowpenalties, and
\displaywidowpenalties.

Each of these commands is to be followed by an optional equal sign and a numbern.
If n ≤ 0 the respective array is reset and TEX’s corresponding single value is used as
usual; a positive valuen declares an array of lengthn and must be followed byn penalty
values. When one of these arrays has been set, its values are used instead of TEX’s corres-
ponding single values as follows (repeating the last value when necessary):

theith interline penalty value is used after linei of the paragraph;
theith club penalty value is used after linei of a partial paragraph;
theith widow penalty value is used after linem− i of a paragraph without displayed equa-
tions or the last partial paragraph of lengthm;
theith display widow penalty value is used after linem− i of a partial paragraph of length
m that is followed by a displayed equation.

When used after\the or in situations where TEX expects to see a number, the
same four commands serve to retrieve the arrays of penalties. Specifying, e.g.,

256 MAPS

The ε-TEX manual, Version 2 Bijlage 25

\clubpenalties〈number〉 with a numbern, returns0 for n < 0 or when the club penalty
array has been reset, the length of the declared club penalty array forn = 0, or thenth club
penalty value forn > 0 (again repeating the last value when necessary).

3.9 Math Formulas TEX’s \left〈delimiter〉...\right〈delimiter〉 produces two de-
limiters with a common size adjusted to the height and depth of the enclosed material. In
ε-TEX this can be generalized by occurrences of\middle〈delimiter〉 dividing the enclosed
material into segments resulting in a sequence of delimiters with a common size adjusted
to the maximal height and depth of all enclosed segments. The spacing between a segment
and the delimiter to its left or right is as for TEX’s left or right delimiter respectively.

3.10 Hyphenation TEX uses the\lccode values for two quite unrelated purposes:

1. when\lowercase converts character tokens to their lower-case equivalents (in the
same way as\uppercase uses the\uccode values); and

2. when hyphenation patterns or exceptions are read, and when words are hyphenated
during the line-breaking algorithm.

ε-TEX introduces the concept of (language-dependent) hyphenation codes that are used
instead of the\lccode values for hyphenation purposes. In order to explain the details
of ε-TEX’s behaviour, we need some technical aspects of hyphenation patterns. When
INITEX starts without reading a format file, the (initially empty) hyphenation patterns are
in a form suitable for inserting new patterns specified by\patterns commands; when
INITEX attemps hyphenation or prepares to write a format file, they are compressed into
a more compact form suitable for finding hyphens. Only these compressed patterns can be
read from a format file (by INITEX or VIRTEX).

In ε-TEX the hyphenation patterns are supplemented by hyphenation codes. When
eINITEX starts without reading a format file both are initially empty; when a\patterns
command is executed and\savinghyphcodes has a positive value, the current\lccode
values are saved as hyphenation codes for the current language. These saved hyphenation
codes are later compressed together with the patterns and written to or read from a format
file. When the patterns have been compressed (always true for eVIRTEX) and hyphenation
codes have been saved for the current language, they are used instead of the\lccode val-
ues for hyphenation purposes (reading hyphenation exceptions and hyphenating words).

3.11 Discarded Items When TEX’s page builder transfers (vertical mode) material from
the ‘recent contributions’ to the ‘page so far’, it discards glue, kern, and penalty nodes (dis-
cardable items) preceding the first box or rule on the page under construction and inserts
a topskip glue node immediately before that box or rule. Note, however, that this topskip
glue need not be the first node on the page, it may be preceded by insertion, mark, and
whatsit nodes. Similarly when the\vsplit command has split the first part off a vbox,
discardable items are discarded from the top of the remaining vbox and a splittopskip glue
node is inserted immediately before the first box or rule.

When ε-TEX’s parameter\savingvdiscards has been assigned a positive value,
these ‘discarded items’ are saved in two lists and can be recovered by the commands
\pagediscards and\splitdiscards that act like ‘unvboxing’ hypothetical box registers
containing a vbox with the discarded items.

The list of items discarded by the page builder is emptied at the end of the output
routine and by the\pagediscards command; new items may be added as long as the new
‘page so far’ contains no box or rule.

The list of items discarded by the\vsplit command is emptied at the start of a vsplit
operation and by the\splitdiscards command; new items are added at the end of a
vsplit operation.

Voorjaar 1998 257

Bijlage 25 The NTS Team

3.12 Expandable Commands Chapter20 of The TEXbook gives complete lists of all
expandable TEX commands and of all cases where expandable tokens are not expanded.
For ε-TEX there are these additional conditionals:

\ifdefined〈token〉 (test if token is defined)

True if 〈token〉 is defined; creates no new hash table entry.

\ifcsname...\endcsname (test if control sequence is defined)

True if the control sequence\csname...\endcsname would be defined; creates no new
hash table entry.

\iffontchar〈font〉〈8-bit number〉 (test if char exists)

True if \char〈8-bit number〉 in \font〈font〉 exists.

These areε-TEX’s additional expandable commands:

\unless.
The next (unexpanded) token must be a boolean conditional (i.e., not\ifcase);
the truth value of that conditional is reversed.

\eTeXrevision.
The expansion is a list of character tokens of category12 (‘other’) representing
ε-TEX’s revision (minor version) number, e.g., ‘.0’ or ‘. 1’.

\topmarks〈15-bit number〉, \firstmarks〈15-bit number〉,
\botmarks〈15-bit number〉, \splitfirstmarks〈15-bit number〉, and
\splitbotmarks〈15-bit number〉.
These commands generalize TEX’s \topmark etc. to32768 distinct mark classes;
the special case\topmarks0 is synonymous with\topmark etc.

\unexpanded〈general text〉.
The expansion is the token list〈balanced text〉.
\detokenize〈general text〉.
The expansion is a list of character tokens representing the token list
〈balanced text〉. As with the lists of character tokens produced by TEX’s
\the andε-TEX’s \readline, these tokens have category12 (‘other’), except that
the character code32 gets category10 (‘space’).

\scantokens〈general text〉.
The expansion is null; butε-TEX creates a pseudo-file containing the characters
representing the token list〈balanced text〉 and prepares to read from this pseudo-file
before looking at any more tokens from its current source.

These are the additionalε-TEX cases when expandable tokens are not expanded:

Whenε-TEX is reading the argument token for\ifdefined.

When ε-TEX is absorbing the token list for\unexpanded, \detokenize,
\scantokens, or \showtokens.

Protected macros (defined with the\protected prefix) are not expanded when
building an expanded token list (for\edef, \xdef, \message,
\errmessage, \special, \mark, \marks or when writing the token list for\write
to a file) or when looking ahead in an alignment for\noalign or \omit.6

6. Whereas protected macros were introduced withε-TEX Version 1, suppression of their expansion in
alignments was introduced with Version2.

258 MAPS

The ε-TEX manual, Version 2 Bijlage 25

When building an expanded token list, the tokens resulting from the expansion of
\unexpanded are not expanded further (this is the same behaviour as is exhibited
by the tokens resulting from the expansion of\the〈token variable〉 in both TEX and
ε-TEX).

4 ε-TEX Enhancements
The execution of most new primitives related to enhancements is disallowed when the
corresponding enhancement is currently disabled and will lead to an ‘Improper...’ error
message. The offending command may nevertheless already have had some effect such
as, e.g., bringingε-TEX into horizontal mode.

4.1 Mixed-Direction Typesetting This feature supports mixed left-to-right and right-
to-left typesetting and introduces the four text-direction primitives\beginL, \endL, \beginR,
and\endR. The code is inspired by but different from TEX-XET [6].

In order to avoid confusion with TEX-XET the present implementation of mixed-
direction typesetting is called TEX--XET. It uses the same text-direction primitives, but
differs from TEX-XET in several important aspects:

1. Right-to-left text is reversed explicitly byε-TEX and is written to a normal DVI file
without anybegin_reflect or end_reflect commands;

2. a math node is (ab)used instead of a whatsit node to record the text-direction
primitives in order to minimize the influence on the line-breaking algorithm for
pure left-to-right text;

3. right-to-left text interrupted by a displayed equation is automatically resumed after
that equation;

4. display math material is always printed left-to-right, even in constructions such as:

\hbox{\beginR\vbox{\noindent$$abc\eqno(123)$$}\endR}

TEX--XET is enabled or disabled by assigning a positive or non-positive value respect-
ively to the\TeXXeTstate state variable. As long as TEX--XET is disabled,ε-TEX and
TEX3 build horizontal lists and paragraphs in exactly the same way. Even TEX--XET will,
in general, produce the same results as TEX3 for pure left-to-right text. There are, however,
circumstances where some differences may arise. This is best illustrated by an example:

\vbox{\noindent
$\hfil\break
\null\hfil\break
\null$\par

Here TEX will produce three lines containing the following nodes:

1. mathon, hfil glue, break penalty, and rightskip glue;
2. empty hbox, hfil glue, break penalty, and rightskip glue;
3. empty hbox, mathoff, nobreak penalty, parfillskip glue, and rightskip glue.

These lines can be retrieved via:

\setbox3=\lastbox
\unskip\unpenalty
\setbox2=\lastbox
\unskip\unpenalty
\setbox1=\lastbox

Voorjaar 1998 259

Bijlage 25 The NTS Team

Later on these lines can be ‘unhboxed’ as part of a new paragraph and possibly their
contents analyzed. As a consequence in TEX (andε-TEX in compatibility mode) there may
be horizontal lists where mathon and mathoff nodes are not properly paired. Therefore TEX
might attempt hyphenation of ‘words’ originating from math mode or prevent hyphenation
of words originating from horizontal mode.

Math-mode material is always typeset left-to-right by TEX--XET, even when it is
contained inside right-to-left text. Therefore TEX--XET will insert additionalbeginM
andendM math nodes such that material originating from math mode is always enclosed
between properly paired math nodes. Consequently TEX--XETwill never attempt hyphen-
ation of ‘words’ originating from math mode nor prevent hyphenation of words originating
from horizontal mode.

The additional math nodes introduced by TEX--XET are, however, transparent to op-
erations such as\lastpenalty that inspect or remove the last node of a horizontal list.7

When TEX--XET is enabled or disabled during the construction of a box, that box may
contain text-direction directives or math nodes that are not properly paired. Such unpaired
nodes may cause warning messages when the box is shipped out. It is, therefore, advisable
that TEX--XET be enabled or disabled only in vertical mode.

5 Syntax Extensions for ε-TEX
5.1 Mode-Independent Commands The syntax for TEX’s mode-independent com-
mands, as described in the first part of Chapter24 of The TEXbook, is extended by modi-
fications of existing commands as well as by new commands.

First, ε-TEX has32768 \count, \dimen, \skip, \muskip, \box, and\toks registers
instead of TEX’s 256. Thus it allows a〈15-bit number〉 instead of an〈8-bit number〉 in
almost all syntax constructions referring to these registers; the only exception to this is the
\insert command: insertion classes are restricted to the range0–254 in ε-TEX as they
are in TEX.
Next,ε-TEX extends the list of TEX’s internal quantities:

〈internal integer〉 −→ whateverThe TEXbook defines| \eTeXversion
| \interactionmode | 〈penalties〉〈number〉
| \lastnodetype | \currentgrouplevel | \currentgrouptype
| \currentiflevel | \currentiftype | \currentifbranch
| \gluestretchorder〈glue〉 | \glueshrinkorder〈glue〉
| \numexpr〈integer expr〉〈optional spaces and\relax〉

〈penalties〉 −→ \interlinepenalties | \clubpenalties
| \widowpenalties | \displaywidowpenalties

〈internal dimen〉 −→ whateverThe TEXbook defines
| \parshapeindent〈number〉 | \parshapelength〈number〉
| \parshapedimen〈number〉
| \gluestretch〈glue〉 | \glueshrink〈glue〉
| \fontcharht〈font〉〈8-bit number〉 | \fontcharwd〈font〉〈8-bit number〉
| \fontchardp〈font〉〈8-bit number〉 | \fontcharic〈font〉〈8-bit number〉
| \dimexpr〈dimen expr〉〈optional spaces and\relax〉

〈internal glue〉 −→ whateverThe TEXbook defines| \mutoglue〈muglue〉
| \glueexpr〈glue expr〉〈optional spaces and\relax〉

〈internal muglue〉 −→ whateverThe TEXbook defines| \gluetomu〈glue〉
| \muexpr〈muglue expr〉〈optional spaces and\relax〉

The additional possibilities for〈integer parameter〉 are:

7. This was not the case for some earlier TEX--XET implementations.

260 MAPS

The ε-TEX manual, Version 2 Bijlage 25

\TeXXeTstate (positive if mixed-direction typesetting is enabled)
\tracingassigns (positive if showing assignments)
\tracinggroups (positive if showing save groups)
\tracingifs (positive if showing conditionals)
\tracingscantokens (positive if showing the opening and closing of\scantokens

pseudo-files)
\tracingnesting (positive if showing improper nesting of groups and conditionals

within files)
\predisplaydirection (text direction preceding a display)
\lastlinefit (adjustment ratio for last line of paragraph, times1000)
\savingvdiscards (positive if saving items discarded from vertical lists)
\savinghyphcodes (positive if \patterns saves\lccode values as hyphenation

codes)

Note that theε-TEX state variable\TeXXeTstate (the only one so far) is an〈integer parameter〉.
That need not be the case for all future state variables; it might turn out that some future
enhancements can be enabled and disabled only globally, not subject to grouping.
The additional possibilities for〈token parameter〉 are:

\everyeof (tokens to insert when an\input file ends)

Here is the syntax forε-TEX’s expressions:

〈integer expr〉 −→ 〈integer term〉
| 〈integer expr〉〈add or sub〉〈integer term〉

〈integer term〉 −→ 〈integer factor〉
| 〈integer term〉〈mul or div〉〈integer factor〉

〈integer factor〉 −→ 〈number〉
| 〈left paren〉〈integer expr〉〈right paren〉

〈dimen expr〉 −→ 〈dimen term〉
| 〈dimen expr〉〈add or sub〉〈dimen term〉

〈dimen term〉 −→ 〈dimen factor〉
| 〈dimen term〉〈mul or div〉〈integer factor〉

〈dimen factor〉 −→ 〈dimen〉
| 〈left paren〉〈dimen expr〉〈right paren〉

〈glue expr〉 −→ 〈glue term〉
| 〈glue expr〉〈add or sub〉〈glue term〉

〈glue term〉 −→ 〈glue factor〉
| 〈glue term〉〈mul or div〉〈integer factor〉

〈glue factor〉 −→ 〈glue〉
| 〈left paren〉〈glue expr〉〈right paren〉

〈muglue expr〉 −→ 〈muglue term〉
| 〈muglue expr〉〈add or sub〉〈muglue term〉

〈muglue term〉 −→ 〈muglue factor〉
| 〈muglue term〉〈mul or div〉〈integer factor〉

〈muglue factor〉 −→ 〈muglue〉
| 〈left paren〉〈muglue expr〉〈right paren〉

〈optional spaces and\relax〉 −→ 〈optional spaces〉
| 〈optional spaces〉\relax

〈add or sub〉 −→ 〈optional spaces〉+12 | 〈optional spaces〉-12
〈div or mul〉 −→ 〈optional spaces〉*12 | 〈optional spaces〉/12
〈left paren〉 −→ 〈optional spaces〉(12

Voorjaar 1998 261

Bijlage 25 The NTS Team

〈right paren〉 −→ 〈optional spaces〉)12

Next,ε-TEX extends the syntax for assignments:

〈prefix〉 −→ whateverThe TEXbook defines| \protected
〈simple assignment〉 −→ whateverThe TEXbook defines

| 〈penalties assignment〉
| \readline〈number〉 to 〈control sequence〉

〈penalties assignment〉 −→ 〈penalties〉〈equals〉〈number〉〈penalty values〉
〈interaction mode assignment〉 −→ whateverThe TEXbook defines

| \interactionmode〈equals〉〈2-bit number〉
In a 〈penalties assignment〉 for which the〈number〉 is n, the〈penalty values〉 are〈empty〉
if n ≤ 0, otherwise they consist ofn consecutive occurrences of〈number〉.
Finally, the remaining mode-independentε-TEX commands:

\showgroups, \showifs, \showtokens〈general text〉. These commands are
intended to help you figure out whatε-TEX thinks it is doing. The\showtokens
command displays the token list〈balanced text〉.
\marks〈15-bit number〉〈general text〉. This command generalizes TEX’s \mark
command to32768 distinct mark classes; the special case\marks0 is synonymous
with \mark.

5.2 Vertical-Mode Commands The syntax for TEX’s vertical-mode commands, as de-
scribed in the second part of Chapter24 of The TEXbook, is extended byε-TEX as follows:

\pagediscards, \splitdiscards. These two commands are similar to\unvbox.
When\savingvdiscards is positive, items discarded by the page builder and by
the\vsplit command are collected in two special lists. One of these special lists
is appended to the current vertical list (in the same way as\unvbox appends the
vertical list inside a vbox) and becomes empty.

Here are the additional possibilities for〈horizontal command〉:
〈horizontal command〉 −→ whateverThe TEXbook defines

| \beginL | \endL | \beginR | \endR

5.3 Horizontal-Mode Commands The syntax for TEX’s horizontal-mode commands,
as described in Chapter25 of The TEXbook, is extended byε-TEX as follows:

Here are the additional possibilities for〈vertical command〉:
〈vertical command〉 −→ whateverThe TEXbook defines

| \pagediscards | \splitdiscards

\beginL, \endL, \beginR, \endR (text-direction commands).
The use of these commands is illegal when the TEX--XET enhancement is currently
disabled; otherwise abeginL, etc. text-direction node (a new kind of math node)
is appended to the current horizontal list. These nodes delimit the beginning and
end of hlist segments containing left-to-right (L) or right-to-left (R) text. Before
a paragraph is broken into lines,endL andendR nodes are added to terminate any
unfinished L or R segments; when a paragraph is continued after display math
mode, any such unfinished segments are automatically resumed, starting the new
hlist with beginL andbeginR nodes as necessary.

\marks〈15-bit number〉〈general text〉. This command generalizes TEX’s \mark
command to32768 distinct mark classes; the special case\marks0 is synonymous

262 MAPS

The ε-TEX manual, Version 2 Bijlage 25

with \mark.

5.4 Math-Mode Commands The syntax for TEX’s math-mode commands, as described
in Chapter26 of The TEXbook, is extended byε-TEX as follows:

\left〈delim〉〈math mode material〉
\middle〈delim〉〈math mode material〉...\right〈delim〉
(generalizing TEX’s \left〈delim〉〈math mode material〉\right〈delim〉).
For each〈math mode material〉 ε-TEX begins a new group, starting out with a new
math list (always in the same style) that begins with a left boundary item containing
everything processed so far. This group must be terminated with either ‘\middle’
or ‘right’, at which time the internal math list is completed with a new boundary
item containing the new delimiter. In the case of ‘\middle’, a new group is started
again, in the case of ‘\right’, ε-TEX appends an Inner atom to the current list; the
nucleus of this atom contains the internal math list just completed.

References
[1] A torture test for TEX , by Donald E. Knuth, Stanford Computer Science Report1027.

[2] A torture test forε-TEX , by TheNTS Team (Peter Breitenlohner and Bernd Raichle).
Version2, January1998.

[3] The WEB system of structured documentation, by Donald E. Knuth,
Stanford Computer Science Report980.

[4] How to generateε-TEX , by TheNTS Team (Peter Breitenlohner and Phil Taylor).
Version2, January1998.

[5] The TEXbook (Computers and Typesetting, Vol. A), by Donald E. Knuth, Addison
Wesley, Reading, Massachusetts,1986.

[6] Mixing right-to-left texts with left-to-right texts, by Donald E. Knuth and Pierre
MacKay,TUGboat8, 14–25, 1987.

Voorjaar 1998 263

