
Voorjaar 1998 264

Bijlage 26
Generating Type 1 Fonts from

Metafont Sources

Taco Hoekwater
Kluwer Academic Publishers
Dordrecht
taco.hoekwater@wkap.nl

abstract
This article makes a comparison between bitmapped and

vector fonts, and presents some of the problems I
encountered when I tried to convert METAFONT sources into

PostScript Type 1 fonts

keywords
METAFONT , PostScript, fonts, Type 1, conversion, metafog.

The second part of this article will focus more closely on
some of the problems that I faced while trying to convert
METAFONTs into PostScript Type1 fonts, but first some
explanation is in order as to why one might want to do
this conversion, and precisely what this conversion entails.
These topics are the subjects of the first couple of para-
graphs.

What are METAFONT Fonts?

How characters are created
I’ll assume the reader knows the following: every TEX dis-
tribution has a program calledMETAFONT, that compiles
font sources more or less the same way that the TEX pro-
gram compiles text sources. A major difference between
the two programs is thatMETAFONT producesdevice--
dependantoutput (calledpk files), whereas TEX produces
device--independantoutput (also known asdvi files).

Let’s look into the font sources thatMETAFONT uses,
and see what kind of information they contain. These are
ordinaryASCII files just like TEX sources, so it was easy to
insert a listing of one of these files. The file that contains
theMETAFONT logo font (logo10.mf) suits our purpose
quite well, since it is a rather simple font that probably
everybody has available:

font_size:= 10pt# ;
ht# := 6pt# ;
xgap# := 0.6pt# ;
u# := 4/9pt# ;
s# := 0 ;

o# := 1/9pt# ;
px# := 2/3pt# ;
input logo
bye

What do we see here? First there are a bunch of as-
signments made (the lines that contain:=), then there is
aninput (this command functions the same way as TEXs
\input, so it will start reading the filelogo.mf next), and
finally the last command isbye.

The filelogo.mf contains the actual commands to create
the characters. It helps to runMETAFONT now to see what
is going on. Just type the following to a system command
prompt:

mf logo10

Probably, you didn’t have to worry about where the
logo10.mf file is on your harddisk, since mostMETAFONT
implementations can do recursive directory searches just
like TEX.

Figure 1 Metafont output window for modeless files

You should have seen a window popping up that shows
characters as they are being created (like the one in fig-

Bijlage 26 Taco Hoekwater

265 MAPS

ure 1, but it might look a little different on your system).
Also, there should have been some terminal output, like
this:

This is METAFONT, Version 2.718 (Web2c 7.2beta7)
(logo10.mf (logo.mf [77] [69] [84] [65] [70] [80]
[83] [79] [78]))
Output written on logo10.2602gf (9 characters, 98
80 bytes).
Transcript written on logo10.log.

The numbers you see are the positions of the characters
in the font. for theMETAFONT logo font, these are the
positions of the used characters in theASCII table: M, E, T,
A, F, P, S, O, N. As you can see, they can appear in any
order within the source files.

The file METAFONT has written is not precisely the
same as the output on your screen, instead it looks like
figure 2. Not really usable when it comes to typesetting
text, but it contains some pretty valuable information nev-
ertheless.

1

2

3

4

5

Figure 2 Metafont output file for modeless files

Have a look at thelogo.mf file if you are interested in the
nitty--gritty details. I will use only a small portion of that
file to make some remarks aboutMETAFONT. First, here is
the edited program text I will use to explain things. (This
is no longervalid METAFONT input, so don’t start keying
it in):

mode_setup;
define_pixels(s,u);

ygap#:= (ht#/13.5u#)*xgap#;
define_whole_pixels(xgap);
define_whole_vertical_pixels(ygap);

py#:= .9px#;
define_blacker_pixels(px,py);
pickup pencircle xscaled px yscaled py;
logo_pen:= savepen;

leftstemloc#:= 2.5u#+s#;
define_good_x_pixels(leftstemloc);

beginlogochar("M",18);
x1 = x2 = leftstemloc;
x4 = x5 = w - x1;
x3 = w - x3;
y1 = y5;
y2 = y4;
bot y1 = 0;
top y2 = h;
y3 = ygap;
draw z1--z2--z3--z4--z5;
labels(1,2,3,4,5);
endchar;

Let’s start at the line that begins withbeginlogochar, be-
cause this is where the real work is done. This portion
of the source defines the letter ‘M’ in the font. What we
see here is that characters are specified by first setting up a
bunch of equations (the lines that have equal signs in them),
followed by adraw command that connects those points,
actually drawing the character.

We won’t go deeply intoMETAFONT syntax, but it is
vital to understand the following: a point is defined as a
pair of x andy coordinates. InMETAFONT syntax, points
are sequentially numbered per character, starting from1.
z1 is the notation for point1. Notations likex1 and y2
specify thex-component of point1 and they-component
of point2, respectively.
beginlogochar says that the ‘M’ is precisely18u (units)

wide, andlogo10.mf has set up oneu to be4/9pt, so the
actual character is4/9× 18pt= 8pt wide.

TEX and METAFONT have the same author, and it
shows:METAFONT can do macros just as easily as TEX
can. Macros can have arguments, define other macros and
assign values to things, just like in TEX. beginlogochar is
in fact one of those macros, and it assigns some pretty im-
portant values when it gets expanded byMETAFONT. For
one, it definesw to be the width we calculated above, and it
definesh to be the height of the character (calculated from
ht# in logo10.mf, which equals6pt).

From the values ofu and s, it now follows that
leftstemloc equals(2.5 × 4/9) + 0 = 10/9pt. The last
value we have left isygap = (ht/13.5u) * xgap. ht and
xgap have been given in the ‘driver’ filelogo10.mf, and
after some small calculationsygap becomes(6pt÷ (13.5×
4/9pt× 0.6pt)) = 0.6pt.

Generating Type 1 Fonts fromMetafont Sources Bijlage 26

Voorjaar 1998 266

It should now be easy to come to the conclusion that the
equations fix the precisex, y locations of the five points
that denote the character ‘M’, albeit in a slighly indirect
manner. If we fill in the values we derived above, we get
the following:

x1 = x2 = 10/9pt;
x4 = x5 = 8pt - x1;
x3 = 8pt - x3;
y1 = y5;
y2 = y4;
bot y1 = 0pt;
top y2 = 6pt;
y3 = 0.6pt;

After METAFONT has calculated these equalities for us,
and with some minor reshuffling of the input, we get the
following end-result:

x1 = 10/9pt ; bot y1 = 0pt ;
x2 = 10/9pt ; top y2 = 6pt ;
x3 = 4pt ; y3 = 0.6pt;
x4 = 62/9pt ; top y4 = 6pt ;
x5 = 62/9pt ; bot y5 = 0pt ;

1

2

3

4

5

Figure 3 Metafont output file for modeless files, hand--
calculated version

We could have typed this in right away, andMETAFONT
would have been just as happy. The end result would have
been the same, as can be seen in figure3.1 But why do the
calculus yourself if the machine can do it for you?
METAFONTs ability to do the needed calculations all by

itself is one of its most important strong points. Combined
with macros and separate input files, it becomes possible
to use various fonts with the same shared sources. In such
a ‘font’, the only file that is different between various ver-
sions of the font is the ‘driver’ file, that assigns different

values to the same parameters.METAFONTs calculations
will have different results, so the some of points will end
up in slightly different locations. The resulting font will be
similar in style but may still differ in lots of ways.

Creating a full font
Usually, fonts are not just a bunch of characters. There also
is some other metric information included in almost every
font. The final section of our example file (at the end, after
all the characters have been defined) contains the following
lines:

ligtable "T": "A" kern -.5u#;
ligtable "F": "O" kern -u#;
ligtable "P": "O" kern u#;

font_quad:= 18u#+2s#;
font_normal_space:= 6u#+2s#;
font_normal_stretch:= 3u#;
font_normal_shrink:= 2u#;
font_identifier:= "MFLOGO" ;
font_coding_scheme:= "AEFMNOPST only";

The first three lines belong to the ‘ligature table’. Usually it
will contain both real ligatures and the kerning information
for the font, but because this is a very simple font, there are
only three really simple kerning pairs.

The next lines define TEXs \fontdimen values: how
wide a space will be and how much it can stretch and
shrink, and some other information that will appear in the
created font but is generally not used by programs.

Dealing with device dependence
Now let’s have a look at the device dependant calculations
thatMETAFONT does. Here is the relevant portion of the
example again:

mode_setup;
define_pixels(s,u);

ygap#:= (ht#/13.5u#)*xgap#;
define_whole_pixels(xgap);
define_whole_vertical_pixels(ygap);
py#:= .9px#;
define_blacker_pixels(px,py);

There are, in fact, two kinds of device dependence that
need to be dealt with. Themode_setup line takes care of the
first kind of device dependance: the effects that the actu-
al hardware of the printing engine can have on the printed

1 Actually, figure3 is not completely identical to figure2, because
in my example I cheated with the calculations a bit to keep the
explanation simple.

Bijlage 26 Taco Hoekwater

267 MAPS

font.
The most obvious difference between any two printing

devices is of course the resolution, but there are other prob-
lems as well. Since we prefer our output to look as close
to our intended font as possible, usually a certain amount
of correction is needed based on (i.e.) whether the device
is going to be an inkjet printer or a lasertypesetter.
mode_setup cannot do this all by itself, and this is why

you usually have to specify somewhere what printer you
are using. Programs likedvips will call METAFONT with
a command like:

mf \mode=ljfour; mag=1; input logo10

If we forget about that first backslash, we can see that there
are two assignments and oneinput command on this line.
The second assignment differs from1 when a font is called
within TEX using a command like

\font\logohuge = logo10 at 20pt

In that case, the assignment would bemag=2. The other as-
signment is far more interesting.METAFONT usually starts
with a ‘format’ file similar to thefmt files TEX uses, and
somewhere in the sources for those format files there are
some definitions like this:

mode_def cx =
mode_param (pixels_per_inch , 300);
mode_param (blacker, 0);
mode_param (fillin , .2);
mode_param (o_correction, .6);
mode_common_setup_;

enddef;

Figure 4 An example of two different imaging models.

All parameters besidespixels_per_inch are a little too
technical to explain in detail in a short article like this one,
but figure4 tries to explain that these values really do de-
pend on the printing engine. The drawing on the left shows
a more or less standard inkjet, that shoots dots of (black)
ink on the paper. The right drawing shows a (hypothet-
ical) printing device with a radically different approach.
This machine pours light on a photographic film through
a raster, creating a negative image. There are still round
dots, but they are inverted! It is easy to imagine that this
radically different technique can have quite an impact on

the resulting image.
One effect that is very easy to see from the (admittedly

very badly drawn) figure is that the inside corners in the
right drawing are a lot blacker than in the left one. This
sort of thing happens all the time with in real life printing,
but it often goes unnoticed because people tend to have
only one printer.

The second device dependancy is not really related to print-
ers at all, but is caused simply by the fact thatMETAFONT

outputs a pixel bitmap. AlthoughMETAFONT does it cal-
culations with a very high accuracy, this does not help at all
if there are simply not enough pixels to display the charac-
ter. The commands that look likedefine_xxx_pixels take
care of this kind of dependancy, whose effects can be seen
in figure5.

Figure 5 The character on the right has been created
with all the define xxx pixels commands removed from
the source.

The sub-optimal distribution of pixels in this example
is caused by the underlying pixel grid that can not be
changed.

What are Type 1 fonts?

How PostScript fonts are created
PostScript Type1 fonts are quite different fromMETAFONT
fonts. Usually, Type1 fonts are created in a wysiwyg en-
vironment with a drawing program that is only suited for
the creation of fonts. Figure6 shows the program I usually
use.

The graphical user interface nicely shields off the de-
signer from what is happening behind the scenes, so we
need to look into the generated files themselves if we want
to get more information. On Windows and Unix systems,
the actual fonts are saved in a binary file with the exten-
sionpfb (short for PostScript Font Binary), and the metric
information in an ascii file with extensionafm (short for
Adobe Font Metrics).

2 This section is loosely borrowed from Erik-Jan Vens’ article
“Incorporating PostScript fonts in TEX”, EuroTEX proceedings

Generating Type 1 Fonts fromMetafont Sources Bijlage 26

Voorjaar 1998 268

Figure 6 An interactive font editor: Fontlab version 3

What a Type 1 font looks like2

The binary representation of a Type1 font is just a com-
pressed version of the non-compressed ascii format, with
extensionpfa. So we need a program that will do the de-
compression for us. One of the programs that can do this
is T1ascii from theT1Utils package. But running this pro-
grams leaves us with a hexadecimal encrypted file. In the
early days, the encryption key was a trade secret of Adobe
Incorporated. This key is now freely available, but the file
format still reflects the past. Yet another program from
the T1Utils can convert this form to real human--readable
PostScript:T1disasm. Now we can look at the generat-
ed PostScript file to see how the ‘M’ is defined in Type1
format:

/M {
78 800 hsbw
611 -20 hstem
-11 21 hstem
0 66 vstem
578 66 vstem
581 595 rmoveto
-259 -450 rlineto
-259 450 rlineto
-6 9 -12 7 -12 0 rrcurveto
-16 -17 -12 -17 hvcurveto
-563 vlineto

-17 15 -13 18 vhcurveto
19 14 13 17 hvcurveto
439 vlineto
76 -131 75 -131 75 -131 rrcurveto
5 -10 12 -6 13 0 rrcurveto
14 0 8 8 8 8 rrcurveto
75 131 75 131 76 131 rrcurveto
-439 vlineto
-17 14 -13 19 vhcurveto
18 15 13 17 hvcurveto
562 vlineto
17 -17 13 -16 vhcurveto
-12 0 -12 -5 -6 -11 rrcurveto
closepath
endchar

} ND

The code looks enough like normal PostScript to recognize
it at first glance, but the commands themselves are not the
same you would use in everyday graphics. The PostScript
language uses reverse Polish notation for it’s commands,
so you should read backwards, starting at the end of the
line. 581 595 rmoveto means ‘move to the point with co-
ordinates(581, 595).

1992, pp. 173–181.

Bijlage 26 Taco Hoekwater

269 MAPS

All values are given in a coordinate system that maps
1000units to oneem. The nullpoint lies at the lower left
corner. When one uses a PostScript font in a PostScript
language program, the coordinate system is initially scaled
in a way such that1000 units equal precisely1 bp. The
values used to describe points and intermediate values can
be negative, but never partial. This need for discrete val-
ues can be a major problem when convertingMETAFONT

fonts, as we will see later on.
Now let’s have a short look at the used commands.

The commandhsbw sets up the width information for this
character (the first number is the left sidebearing distance,
the second number the advance width). The commands
that end instem are used by the hinting system. The
whole collection of commands that look likexlineto and
xxcurveto are shortcuts for the ordinary PostScript com-
mandslineto and curveto: these draw the actual out-
line. All of these drawing commands are always relative
to the ‘current point’. The last couple of commands end
the character:closepath to close the defined path (like
METAFONT’s cycle) andendchar to do the actual draw-
ing. ND functions asdef: it defines the command ‘M’ (from
the first line) to mean ‘do everything between the braces’
(remember this is reverse Polish notation).

Figure 7 How the character’s path is drawn.

At first sight it is a little surprising to see that the PostScript
representation is rather a lot longer than theMETAFONT

version. This is caused by another limitation of Type1
format: every characterhasto define an outlined path that
is filled by endchar. Thanks to this limitation, we cannot

use four stroked lines to draw the ‘M’ the way we did in
METAFONT, but instead are forced to trace the borders of
filled shape.

Dealing with device--dependancies
Adobe’s Type1 format does not supply a means of deal-
ing with device differences directly, likeMETAFONT’s
define_good_pixels. But of course there has to be some
means of making sure that a font looks reasonable on low-
resolution devices, and this is handled by a system called
‘hints’. The responsible commands are separated into two
different levels: there are ‘font-level’ hints and ‘character--
level’ hints. Font-level hints take care of three things:

1. Alignment zones
2. Standard stem widths
3. Extra information to control the hinting

The relevant portion of the font-file looks like this:

/BlueValues [-12 0 600 611] ND
/BlueScale 0.04379 def
/BlueShift 7 def
/BlueFuzz 1 def
/MinFeature { 16 16 } ND
/StdHW [60] ND
/StdVW [66] ND
/ForceBold false def

Alignment zones First off, alignment zones are defined by
the array called/BlueValues. The values in the array de-
fine vertical zones by specifying twoy coordinates for each
zone. In this case, there are only the two areas between
[−12, 0] and [600, 611], but there may be more entries.

The first entry in the array defines an area in which they-
coordinates of points (that lie within this area) are changed
into the highest (second) number. For the following entry,
they-coordinate is changed into the lowest (first) number.
Together, these two areas allow characters like the ‘O’ to
be rendered at low resolution without sticking out unac-
ceptably below the baseline if compared to characters like
the ‘H’ (see figure8).

Standard stem widths Quite often, a vertical or horizon-
tal line in a font will be just a little bit to large for one
device pixel but not large enough for two pixels. Depend-
ing on the underlying pixel grid, the line may consequently
be rendered as either one or two pixels.

In these problematic characters, we want to make sure at
least that verticals and horizontals that are intended to have
the same width throughout the font use the same amount
of pixels. This is done by pre-defining the widths that are
supposed to be identical. The commands that pass this in-

Generating Type 1 Fonts fromMetafont Sources Bijlage 26

Voorjaar 1998 270

Figure 8 An example of how overshoot-suppression
works in PostScript: the top and bottom of the ‘O’ are
adjusted so that the character becomes just as high as the
‘H’. (figure borrowed from the Fontlab Manual)

formation to the renderer areStdVW andStdHW. The effect
that a correct setting of these values has on the rendering
of the font can be seen in figure9.3

Extra information to control the hinting There are some
extra commands in the example that we haven’t covered
yet: the threeBluexxxx commands define (amongst other
things) the pointsize below which overshoot suppression
is turned on, and a fuzzy correction on the values of the
alignment zones.ForceBold is used with bold fonts to
make sure that they will stay at least two pixels wide at
low resolutions (otherwise they would look identical to the
non-bold version at small sizes).

The character-level hints are handled by the commands
from the top of the listing given previously:

611 -20 hstem
-11 21 hstem
0 66 vstem
578 66 vstem

Figure 9 The desired result. (this figure is also borrowed
from the Fontlab Manual)

These define horizontal and vertical stem zones. The first
number says at which coordinate to start, the second num-
ber the width to use from there. In this case (remember
this is an ‘M’) there are two vertical stems, and two ‘ghost’
horizontal stems. Figure10 shows the graphical represen-
tation of this character in the font editor.

The ‘ghost’ stems are inserted because without them the
overshoot suppression wouldn’t work.

Figure 10 The character ‘M’ from the METAFONT logo
font, with PostScript hints added

3 Like all hinting information, these values are ignored if the stem
widths are larger than three device pixels (approximating1200
dpi for the average font). As a result, output at1200 dpi on a
new device sometimes looks inferior to the600 dpi version for
the trained eye.

Bijlage 26 Taco Hoekwater

271 MAPS

Why we want to convert to Type 1

Now that we have looked briefly into both formats, it is
obvious that conversion fromMETAFONT input syntax to
PostScript definitions is not going to be easy.METAFONT

is apparently a lot smarter than the Type1 interpreter, much
better suited to handle device dependancies, and more ac-
curate.

So, why bother at all? For practical reasons, of course.
The most important incentive is the on-screen display of
generatedPDFfiles. Adobe’s Reader is very bad at display-
ing bitmapped fonts, so files with only Type1 fonts look a
lot better. As it is, there are quite someMETAFONT fonts
that don’t (yet) have a Type1 counterpart, so necesarily
lots of TEX-generatedPDF files use bitmaps.

There also is another interesting motive: designing high
quality fonts inMETAFONT syntax is a lot easier than creat-
ing Type1 fonts of the same quality in an interactive editor
(not to mention the fact that interactive programs usually
crash at every second mouse click).

Tasks to be handled by the conversion
process

Various things need to be taken care of by the conversion,
but the three major parts are:

1. Resolving the equations in theMETAFONT sources.
2. Converting stroked paths into outlined paths.
3. Insertion of Type1 style hinting information.

Resolving the equations in the METAFONT sources.
The first item is easy to do with an already existing pro-
gram: METAPOST. METAPOST is a program by John Hob-
by (co-author ofMETAFONT) that acceptsMETAPOSTinput
syntax and outputs an Encapsulated PostScript picture. For
example, runningMETAPOST on the logo fonts (using pre-
cisely the same syntax as forMETAFONT) gives the fol-
lowing output:

%!PS
%%BoundingBox: 0 -1 8 7
%%Creator: MetaPost
%%CreationDate: 1998.05.10:1535
%%Pages: 1
%%EndProlog
%%Page: 1 1
0.66418 0 dtransform exch truncate

exch idtransform pop setlinewidth
[] 0 setdash
1 setlinecap
1 setlinejoin
10 setmiterlimit

gsave
newpath
1.10696 0.18819 moveto
1.10696 5.78938 lineto
3.98503 0.78595 lineto
6.8631 5.78938 lineto
6.8631 0.18819 lineto
1 0.9 scale
stroke
grestore
showpage
%%EOF

The PostScript code contained in this file is not that hard.
The first few lines are just comments. The two lines that
end withsetlinewidth do nothing except setting the line
width for strokes. It looks complex, but the code is always
the same, the only things in these two lines that ever change
are the two numbers.

The next lines set up some values of the PostScript
graphics state that do not always have a predefined value
(this is just a security measure). These lines also never
change.newpath is the first command that is interesting:
starting from here the character is defined. Indeed, there is
only onemoveto, followed by four straight lines, and final-
ly a stroke.

It would be a little bit easier if the calculated values were
given in units of a thousand perem, and this can be done
by inserting a differentmode_def. Basically, we askMETA-

POSTto generate a normal font file, but at a magnification
of 100.375. This gives us an end result in PostScript big
points, and the generated character will now look like this
(some comments and irrelevant lines stripped):

%!PS
%%BoundingBox: 77 -12 723 612
66.66722 0 dtransform exch truncate
exch idtransform pop setlinewidth
gsave newpath 111.1115 18.88889 moveto
111.1115 581.11142 lineto
399.99867 78.88953 lineto
688.88585 581.11142 lineto
688.88585 18.88889 lineto
1 0.90001 scale stroke grestore
showpage
%%EOF

Good. This is starting to look like something we could use.
Ideally, we would prefer a output in rounded numbers, but
that is not possible.

Converting stroked paths into outlined paths.
Mr. Kinch (author of TrueTEX) has written a program
calledmetafog that convertsMETAPOSToutput as in the ex-

Generating Type 1 Fonts fromMetafont Sources Bijlage 26

Voorjaar 1998 272

ample above into the format required by the Type1 speci-
fications. At the moment, the program is only available as
an optional extra with TrueTEX, but correspondence with
Mr. Kinch indicate that it is very likely that this program
will soon be available separately.

Metafog reads theMETAPOST EPSfile, and converts this
into anotherEPSfile. It also displays some debugging in-
formation about the character on the terminal:

Page 1--Initial Input Contour

cl

cm

cn

co

cl

ia
ib

ic
idie

if

ig
ih ia

sc
sdse

sf

sg

sh

si
sj sk

sl

sm

sn

sc

Figure 11 Metafog output file, page 1

interp: "scale" implies elliptical pen, 66.7 x 6\
0.0

o: scaffolded TRUE
reduce: reducing shape 1 of 2
reduce: reducing shape 2 of 2
duplicate: scaffolded
try_point: 0.01 value scaffold
reduce: reducing shape 3 of 2
.....
reduce: reducing shape 5 of 4
Plotting page 1 (Initial Input Contour) ... done\

plotting.
reduce: reducing shape 1 of 1

reduce: reducing shape 2 of 1
Plotting page 2 (Final Result Contour) ... done \

plotting.
Total knots used: 598 (a--wz), ˜ 29% indexable c\

apacity

Page 2--Final Result Contour

wg

wh
wiwj

wk

wm

wn

wo

wp

wq

wr

ws

wt

wu
wv ww

wx

wy

wz

wg

Figure 12 Metafog output file, page 2

The created files are pretty large, too large to include lit-
erally. This is because the file serves two purposes: it is
the input format for another program (makefont, also by
Kinch) andit also shows the work that has been done by
metafog. The first page shows the result, the second page
the initial input as metafog saw it. (the output of one of
these files is shown in figure11 and figure12).

All we have to do is run metafog on all characters in
the font. If everything went correctly, the next step in the
process is running themakefont program. But this is not
always the case. Metafog has its flaws, and it is especially
bad at handling complex characters. One of those trickier
characters is given in figure13.

In order to handle cases like this gracefully, metafog has
a special startup option that gives a half-way result: it cuts

Bijlage 26 Taco Hoekwater

273 MAPS

Figure 13 The character ‘X’ from Ralph Smith’s Formal
Script

the supplied shape in pieces, but it does not try to remove
parts that are not needed. There is yet another program in
the metafog suite that helps for the problematic characters.

This program is called the ‘weeder’ (figure14). It is an
interactive program that reads the half-way result metafog
created. The human operator now has to select the par-
tial lines that are supposed to belong to the shape, and the
weeder will write a finished file for use by makefont (just
like metafog itself would have done if things had gone right
the first time).

For some fonts, one has to do almost every character
‘by hand’, for other fonts none at all. The point of view
the machine has on what precisely denotes a complicated
character can be rather unexpected: sometimes a character
can look very simple to you but be almost impossible to
process by metafog (usually characters that usedraw and
fill commands that intersect somewhere). And the oth-
er way around also happens: large portions of thenash14
(arabic) font looked exceedingly complex to me, but were
in fact handled by metafog without any problems.

Either way, eventually there will beEPS files available
for all characters in the font. Makefont combines all of the
separate files into one PostScript file, and the last step of
the actual conversion process is running theT1Utils to get
a binary representation that can be fed into a commercial
font editor.

Insertion of Type 1 style hinting information.
Thepfb file created at the end of step two still has a couple
of major flaws that need to be fixed. First and foremost
among these: there are absolutelyno Type1 hints includ-
ed. Therewerehints in the originalMETAFONT sources,
but these are ignored byMETAPOST, and subsequent por-
tions of the conversion do not have access to them. This is
the major reason for the need of a commercial font editor.

Figure 14 Screendump of the weeder’s window

Type1 hinting is too complicated a process to rely on any
non--interactive program to make the right choices.

Another thing that must be checked, especially for sym-
bolic fonts, is the turning direction of the subpaths. In
PostScript, whether a path will be black or white depends
on how the path turns: clockwise or counterclockwise.
Metafog sometimes gets confused, and outputs a charac-
ter in which two concentric circles both turn leftward (like
in an ‘O’ or the diameter symbol from the Waldi Sym-
bol font). In those cases, the character will be completely
filled, which is of course wrong.

The absolutely final step (so far I’ve needed to do this
for every commercial font program I could find) is dis-
assembling thepfb file, running a perl script to fix some
incompatibilies/bugs in the used font editor and to insert a
couple of workarounds for bugs in software that uses the
font, and reassembling.

What I have done already and future plans.

So far, I have converted fourMETAFONT fonts that I need-
ed myself. The files that are now avialable from CTAN
are:

logo8 wasy5 stmary5 rsfs5
logo9 wasy7 stmary7 rsfs7
logo10 wasy10 stmary10 rsfs10
logosl10 wasyb10
logobf10

All of these files reside in a subdirectories of the
METAFONT sources, namedps-type1/hoekwater. The lo-
go font is located undercm/utilityfonts due to a weird
directory structure on CTAN. Note that I have not always

Generating Type 1 Fonts fromMetafont Sources Bijlage 26

Voorjaar 1998 274

Figure 15 Paths that turn the wrong way

converted all of theMETAFONT source files (for instance,
from the Waldi2 setwasy6, wasy8 andwasy9 are missing),
so LATEX users probably need a changed Font Definition
File.

Each directory now also contains a readme:

Hi there,

This directory contains a Type1 version of (some of)
the Metafont sources from the directory above. The
pfb files are intended to be used with the original TFM
files, don’t run finst or afmtotfm on the afm files!

The afm and pfm files are provided just in case
you want to install the files on your windowing sys-
tem. I’m sorry for the Macintosh users amongst you,
but I don’t know how to create the MacType1 files.

The fonts should give exactly the same out-
put results as the .mf originals, up to the point
of sillyness. All bugs in the metafont sources
have been kept (and there might be new ones).

Files are herewith donated to the public domain,
and provided as is. Note that I feel that the copyright
from the metafont sources still applies, my only state-
ment here is that I do not impose extra restrictions.

Conversion process:

.mf→ metapost (c) Hobby→ .eps

.eps→ metafog (c) Kinch→ .pfb

.pfb→ hinted & touched up with FontLab v3.0c

More fonts should follow in the next few months. I can
be reached for propositions/bugs at:
taco.hoekwater@wkap.nl

Greetings,

Taco Hoekwater

Please take a note of the fact that Ionlywant to give support
for problems that areintrinsically related to the.pfb files
themselves. I don’t have enough spare time to help people
with problems related to the integration of the fonts into
their TEX distributions. If somebody wants to volunteer
for this job, please let me know and I will add you to the
readme.

I plan to add quite a couple of fonts in the near future
(some of which may have been uploaded already by the
time you read this). The announcement of the availabili-
ty of the files that are now on CTAN almost immediately
resulted in a doubling of the length of my wish list.

The following fonts areTODO and will definately be
done before the summer:

The rest of theMETAFONT logo fonts belonging to
the mflogo package (on a request by Ulrik Vieth).
At least the most important fonts that are
needed by thewsuipa package:tipaxx and
xipaxx (I already started on those, but the
MAPS takes precedence, sorry Sebastian!).
The Nash font that is used by ArabTEX (but Klaus
Lagally says that he needs to fix and update the
METAFONT sources first).
The Blackboard Bold font (actually, everything
that is needed for the new math font encod-
ing will be finished before the end of the year).
At least one each of the Greek, Cyrillic and He-
brew text font families (could someone please point
me to the ‘best’ font of those that are available?).
The manfnt (requested by Phil Taylor).

Every font (presuming256 characters) takes about one day
to complete. This does not sound like too much time, but
unfortunately I also have other work to do :-(

I am still open for requests, but you may have to wait a
couple of months.

Bijlage 26 Taco Hoekwater

275 MAPS

For further reading

On METAFONTs language:
Donald E. Knuth, “TheMETAFONT Book”. Addison–
Wesley Publishing Company, June1986, 361 pages.

On using METAFONT to design real life fonts:
Donald E. Knuth, “Computer Modern Typefaces (Com-
puters and Typesetting, volume E)”. Addison–Wesley
Publishing Company, June1986, 588 pages.

On the PostScript Language:
Adobe Systems Inc, “The PostScript Language Refer-
ence Manual”. Addison–Wesley Publishing Company,
December1990, 764 pages.

On METAPOST:
John Hobby, “A User’s manual forMETAPOST”, AT&T
Bell Laboratories Computing Science Technical Report
162, 1992. Comes as part of theMETAPOSTdistribution.

On Type 1 fonts:
Adobe Systems Inc, “Adobe Type1 Font Format”.
Addison–Wesley Publishing Company, June1995.

On the Metafog program:
Richard J. Kinch, “ConvertingMETAFONT Shapes to
Outlines”. Paper presented at the1995 TUG Confer-
ence in St Petersburg, Florida, USA. Appeared in print
in Tugboat16.3

