


Integrating TEX, MetaPost, JavaScript and PDF

Hans Hagen

Spring 1998

Due to it’s open character, TEX can act as an authoring tool. This article demonstrates that by

integrating TEX, METAPOST, JavaScript and pdf, one can build pretty advanced documents. More

and more documents will get the characteristics of programs, and TEX will be our main tool for

producing them. The example described here can be produced with pdfTEX as well as traditional TEX.



PRAGMA
Advanced Document Engineering Ridderstraat 27 8061GH Hasselt NL

tel: +31 (0)38 477 53 69 e-mail: pragma@wxs.nl ConTEXt: www.pragma-ade.nl

This article was first published in the Minutes and Appendices of the ntg (Nederland-

stalige TEX Gebruikersgroep), Issue 98.1. It was presented as paper at the 1998 an-

nual meeting of the (international) TEX User Group that took place in Toruń (Poland).

c© PRAGMA ADE



Integrating TEX, MetaPost, JavaScript and PDF 1

Introduction

When Acrobat Forms were discussed at the pdfTEX

mailing list, Phillip Taylor confessed: “ . . . they’re one

of the nicest features of pdf”. Sebastian Ratz told us

that he was “ . . . convinced that people are waiting for

forms.”. A few mails later he reported: “I just found

I can embed JavaScript in forms, I can see the world

is my oyster” after which in a personal mail he chal-

lenged me to pick up the Acrobat Forms plugin and

wishing me “Happy JavaScripting”.

sin cos tan max exp ceil x2 x! xy rad

asin acos atan min ln floor sqrt round 1/x deg

7 8 9 / del

4 5 6 * E

1 2 3 – pop

0 . - + push

n

min

max

total

mean

sdev

new new +n –n

–x random pi e dup exit info

new +m –m mem grow

Figure 1 The calculator demo.

At the moment that these opinions were shared, I al-

ready had form support ready in ConTEXt, so pick-

ing up the challenge was a sort of natural behaviour.

In this article I’ll describe some of the experiences I

had when building a demo document that shows how

forms and JavaScript can be used from within TEX. I

also take the opportunity to introduce some of the po-

tentials of pdfTEX, so let’s start with introducing this

extension to TEX.

Where do we stand

While ε-TEX extends TEX’s programming and typo-

graphic capabilities, pdfTEX primarily acts at the back

end of the TEX processor. Traditionally, TEX was (and

is) used in the production chain:

ascii→ TEX→ dvi→ whatever

The most versatile process probably is:

ascii→ TEX→ dvi→ PostScript

or even:

ascii→ TEX→ dvi→ PostScript→ pdf

All functionality that TEX lacks, is to be taken care of

by the dvi postprocessing program, and that’s why TEX

can do color and graphic inclusion. Especially when

producing huge files or files with huge graphics, the

PostScript → pdf steps can become a nuisance, if

only in terms of time and disk space.

With pdf becoming more and more popular, it will

be no surprise that Hàn Thế Thành’s pdfTEX becomes

more and more popular too among the TEX users. With

pdfTEX we can reduce the chain to:

ascii→ TEX→ pdf

The lack of the postprocessing stage, forces pdfTEX

(i.e. TEX) to take care of font inclusion, graphic inserts,

color and more. One can imagine that this leads to live-

ly discussions on the pdfTEX mailing list and thereby

puts an extra burden on the developer(s). Take only

the fact that pdfTEX is already used in real life situa-

tions while pdf is not stable yet.

The Calculator

This calculator is stack based, which means that one enters values and invokes an action that acts on the value(s) last entered. Subtracting
10 from 20 using (–) for instance comes down to clicking:

10 in 20 –

while calculating a sinus (sin) results from entering:

.89 sin

The left column of fields (numbers) shows the Stack. One usespush to push a value on the stack andpop to remove a value. Clicking
new removes them all and thedel button can be used to undo the last entered digit. When a dyadic operation is applied, the top value is
used as y. Thegrow key toggles between two different visualizations of the stack.

The stack is considerably larger than the screen representation suggests. In the rare occasion that one encounters the messageexhausted,
the amount of stack entries already has totaled far beyond 50 and one probably already has forgotten what the values first entered represent.

The right column of fields reports the statistic calculations. By clicking on the tag, one pushes the value on the Stack. The lower buttons
are used to reset (new), enter (+) and remove (–) values to be taken into account when calculating those statistics.

This document is produced by CONTEXT, a macro package based on TEX. METAPOST graphics, PDF objects and form fields as well as
JavaScript code were generated and inserted at run time. I owe many thanks to Philip Taylor for his testing and suggestions.

Hans Hagen, PRAGMA ADE, CONTEXT 18/2/1998

pragma@pi.net

Figure 2 The help information screen.

To those who know pdf, it will be no surprise that

pdfTEX also supports all kind of hyper referencing.

The version1 I used when writing this article supports:

1. link annotations

2. screen handling

3. arbitrary annotations

Currently I’m using β--version 1.12g.1



2 PRAGMA ADE

where especially the last one is accompanied by:

4. form objects

5. direct objects

and of course there is also:

6. extensive font support

Be prepared: pdfTEX’s font support probably goes (and

certainly will go) beyond everything dvi drivers as well

as Acrobat supports!

TEX stands in the typographic tradition and there-

fore has unsurpassed qualities. For many thousands

of years people have trusted their ideas to paper and

used glyphs for communication. The last decades

however there has been a shift towards media like

video, animations and interactive programs and cur-

rently these means of communication meet in hyper

documents.

Calculate the sine of the topmost stack entry.

Figure 3 The sin(x) screen.

Now what has this to do with pdfTEX. Recently this

program started to support the pdf annotations other

than the familiar hyperlink ones. As we will see lat-

er on, this enables users of TEX to enhance their doc-

uments with features that until now had to be pro-

grammed with dedicated tools, which could not even

touch TEX’s typographic quality. This means that cur-

rently TEX has become a tool for producing rather ad-

vanced documents within the typographic and (largely

paper based) communication traditions. Even better,

by using pdf as medium, one can produce very sophis-

ticated interactive documents that are not bound to

ill documented standards and programs and thereby

stand a better chance to be accessible for future gen-

erations.

The calculator demo

The document described here is produced with ConTEXt.

This document represents a full featured calcula-

tor which took me about two weeks to design and

build. Most of the time was spend on defining META

POST graphics that could explain the functionality

of the buttons.2 Extending ConTEXt for supporting

JavaScript took me a few days and the rest of the

time was spend on learning JavaScript itself.

Push the standard deviation to the stack.

Figure 4 The standard deviation screen.

The calculator demo was first developed using dvip-

sone and Acrobat. At that moment, pdfTEX did not

yet provide the hooks needed, and the demo thereby

served as a source of inspiration of what additional

functionality was needed to let pdfTEX produce simi-

lar documents.

Throughout this article I show some of the screens

that make up the calculator demo. These graphics are

no screen dumps but just PostScript inclusions. Just

keep in mind that when using TEX, one does not need

bitmap screen dumps, but can use snapshots from

the real document. A screen, although looking as one

graphic, consist of a background with frame, a cen-

tered graphic, some additional text and an invisible

active area the size of the gray center.

The demo implements a stack based calculator.

The stack can optionally grow in two directions, de-

This included writing some auxiliary general purpose METAPOST
2

macros.



Integrating TEX, MetaPost, JavaScript and PDF 3

pending on the taste of the user. Only the topmost

entries of about 50 are visible.

The calculator demo, called calculator.pdf, itself

can be fetched from the pdfTEX related site:

http://www.tug.org/applications/pdftex

or from the ConTEXt repository at:

http://www.ntg.nl/context

The calculator is defined in one document source file,

which not only holds the TEX code, but also con-

tains the definitions of the METAPOST graphics and

the JavaScript’s. I considered including a movie

(video) showing an animation of our company logo

programmed in METAPOST and prepared in Adobe Pre-

miere, but the mere fact that movies are (still) stored

outside the pdf file made me remove this feature.

Now keep in mind that, when viewing the calcula-

tor pdf file, you’re actually working with a document,

not a program. A rather intelligent document for that

matter, but still a document.

Forms and annotations

Before I go into details, I’ll spend some words on forms

and annotations in pdf. To start with the latter, anno-

tations are elements in a pdf file that are not related

to (typo)graphic issues, like movies and sound, hyper

things, navigation and fill--in--forms. Formally annota-

tions are dealt with by drivers plugged into the graphic

engine, but in practice some annotations are handled

by the viewer itself.

Forms in pdf are more or less the same as in html

and once filled in can be send over the net to be pro-

cessed. When filling in form fields, run time error

checking on the input can prevent problems later on.

Instead of building all kind of validation options into

the form editor, such validations are handled by either

a dedicated plugin, or better: by means of JavaScript.

Therefore, one can attach such scripts to all kind of

events related to form editing and one can launch

scripts by associating them to active, that is clickable,

areas on the screen.

So we’ve got fields, which can be used to let

users provide input other than mere clicks on hyper

Take the minumum of the two topmost stack entries.

Figure 5 The min(x,y) screen.

links, we’ve got run time access to those fields using

JavaScript, and we can let users launch such scripts

by mouse events or keystrokes, either when entering

data or by explicit request.

Currently entering data by using the keyboard is

prohibited in the calculator. The main reason for this

is that field allocation and access are yet sort of asyn-

chronic and therefore lead to confusion.3

So, what actually happens in the calculator, is that

a user clicks on a visualized key, thereby launching a

JavaScript that in turn does something to field data

(like adding a digit or calculating a sine), after which

the field data is updated.

JAVASCRIPT

Writing this demo at least learned me that in fact sup-

port for JavaScript is just another sort of referenc-

ing and therefore needed incorporation in the gener-

al cross referencing scheme. The main reason is that

for instance navigational tools like menus and buttons

must have access to all cross reference mechanisms.

Consider for instance buttons . We already sup-

ported:

\button{...}[the chapter on whatever]

\button{...}[otherdoc::some topic]

\button{...}[previouspage]

\button{...}[PreviousJump]

Initializing a field from within JavaScript is not possible unless the3

viewer has (at some dubious moment) decided that the field indeed

exists.



4 PRAGMA ADE

Generate a random number in the range 0–1.

Figure 6 The random number screen.

Here the first reference is an internal one, often a chap-

ter, a table or figure or a bibliography. The second

one extends this class of references across documents.

The third reference is a predefined internal one and the

last reference gives access to viewer controls. As we

can see: one scheme serves different purposes.

Calculate the recursive multiplication of n, n–1, n–2, etc.

Figure 7 The period (.) screen.

Launching applications and following threads can

quite easily be included in this scheme, but JavaScript

support is different. In the calculator there are for in-

stance 10 digit buttons that all do the same action and

only differ in the digit involved. Here we want just

one JavaScript to be reused 10 times. So instead of

saying:

\button{0}[javascript 0]

\button{0}[javascript 1]

we want to express something like:

\def\SomeDigit#1%

{\button{0}[javascript #1]}

\SomeDigit{4}

This means that in practice we need a referencing

mechanism that:

• is able to recognize JavaScript

• is able to pass arguments to these scripts

So finally we end up with something:

\button{7}[JS(digit{7})]

This call tells the reference mechanism to access the

JavaScript called digit and pass the value 7 to it.

Actually defining the script comes down to just saying:

\startJScode{digit}

Stack[Level] += String(JS_S_1);

do_refresh(Level);

\stopJScode

One can pass as much arguments as needed. Here

JS_S_1 is the first string argument passed. Pass-

ing cross reference arguments is also possible. This

enables us to let users jump to locations depend-

ing on their input. Such arguments are passed as

R{destination} and can be accessed by JS_R_1.

Add a digit 7 to the current stack entry.

Figure 8 The digit 7 screen.

In practice one will separate functions and calls by us-

ing preambles. Such preambles are document wide

pieces of JavaScript, to be used whenever applicable.



Integrating TEX, MetaPost, JavaScript and PDF 5

\startJSpreamble{functions}

// begin of common functions

function do_digit(d)

{ Stack[Level] += String(d);

do_refresh(Level) }

// end of common functions

\stopJSpreamble

and:

\startJScode{digit}

do_digit(JS_S_1);

\stopJScode

From these examples one can deduce that indeed the

actual JavaScript code is included in the document

source. It’s up to TEX to pass this information to the

pdf file, which in itself is not that trivial given the fact

that one (1) has to strip comments, (2) has to convert

some characters into legal pdf ones and (3) must pass

arguments from TEX to JavaScript.

Simple cases like the digit code fragment, can al-

so be passed as reference: JS(digit{1}). By de-

fault ConTEXt converts all functions present in the

preambles into such references. One can organize

JavaScripts into collections as well as postpone in-

clusion of preambles until they are actually used.

Erase the memory buffer.

Figure 9 The memory erase screen.

Currently the only problem with including preambles

lays in the mere fact that Acrobat pdfmarks4 not yet

offer a mechanism to enter the JavaScript entries in

the appropriate place in the document catalog, with-

out spoiling the collected list of named destinations.

Because ConTEXt can be instructed to use page desti-

nations when possible, I could work around this (tem-

porary) Acrobat pdfmark and pdfTEX limitation. At

the time this article is published, pdfTEX probably han-

dles this conceptual weak part of pdf in an adequate

way.

METAPOST graphics

All graphics are generated at run time using META

POST. Like the previous mentioned script, METAPOST

code is included in the source of the document. For

instance, the graphic representing π is defined as:

\startuseMPgraphic{pi}

pickup pencircle scaled 10;

draw fullcircle

scaled 150

withcolor .4white;

linecap := butt;

ahlength := 25;

drawarrow halfcircle

scaled 150

withcolor \MPcolor{action};

\stopuseMPgraphic

and called

\useMPgraphic{pi}

Push 3.14159265358979 onto the stack.

Figure 10 The π screen.

Just like the JavaScript preamble we can separate

common METAPOST functions by defining inclusions.

The next one automatically loads a module with some

These are extensions to the PostScript language.4



6 PRAGMA ADE

auxiliary macros.

\startMPinclusions

input mp-tool;

\stopMPinclusions

The mechanism for including METAPOST graphics is

also able to deal with reusing graphics and running

METAPOST itself from within TEX. In ConTEXt all pro-

cessed METAPOST graphics are automatically translat-

ed into pdf by TEX itself, colors are converted to the

current color space, and text is dealt with accordingly.

Of course one needs to take care of proper tagging, but

the next macro does this well:

\def\SomeShape#1#2%

{\startreuseMPgraphic{shape:#1#2}

draw fullcircle

xscaled #1

yscaled #2

\stopreuseMPgraphic

\reuseMPgraphic{shape:#1#2}}

Now we can say:

\SomeShape{100pt}{200pt}

\SomeShape{150pt}{180pt}

\SomeShape{120pt}{110pt}

Which just inserts three graphics with different sizes

but similar line widths.

Remove the topmost entry from the stack.

Figure 11 The pop stack screen.

Backgrounds

Now how do we attach such shapes to the buttons?

Here we introduce a feature common to all framed

things in ConTEXt, called overlays. Such an overlay

is defined as:

\defineoverlay

[shape]

[\MPshape

{\overlaywidth}

{\overlayheight}

{\overlaycolor}]

The shape called \MPshape is defined as:

\def\MPshape#1#2#3%

{\startreusableMPgraphic{fs:#1#2#3}

path p ;

p := unitsquare

xscaled #1

yscaled #2;

color c ;

c := #3 ;

fill p

withcolor c ;

draw p

withpen pencircle scaled 1.5

withcolor .8c ;

\stopreusableMPgraphic

\reuseMPgraphic{fs:#1#2#3}}

Such an overlay is bound to a particular framed thing

by saying:

\setupbuttons[background=shape]

Here the right dimensions are automatically passed on

to the overlay mechanism which in turn invokes META

POST.

The calculator demo proved me that it is rather use-

ful to have stacked backgrounds. Therefore the but-

tons, which have both a background (the METAPOST

drawn shape) and behind that a sort of help button

that is activated by clicking on the surroundings of the

button, have their backgrounds defined as:

\setupbuttons

[background={infobutton,shape}]

Actually we’re stacking from back to top: an info but-

ton, the key bound button, the background graph-

ic and the text. One rather tricky side effect is that

stacked buttons interfere with the way active areas are



Integrating TEX, MetaPost, JavaScript and PDF 7

Add the two topmost stack entries.

Figure 12 The addition (+) screen.

output. In this particular case we have to revert the or-

der of the active areas by saying \reversegototrue.

Object reuse

The button and background graphics are generated

once and used more than once. We already mentioned

that METAPOST graphics can be reused. In practice this

comes down to producing the graphic once and includ-

ing it many times. In pdf however, one can also include

the graphic once and refer to it many times. In pdf

such reused objects are called forms, a rather unfor-

tunate naming. So, in the calculator demo, all buttons

with common shapes as well as the backgrounds are

included only once. One can imagine that extending

TEX with such features leads to interesting discussions

on the pdfTEX discussion list.

Forms

Although still under construction, ConTEXt supports

pdf fill--in--forms. The calculator demo demonstrates

that such forms can be used as a (two way) commu-

nication channel to the user. Stack values, statistics

and memory content are stored and presented in form

fields, defined by saying something like:

\definefield[Stack.1][line][Results]

followed by

\field[Stack.1]

The characteristics of this line field are set by:

\setupfield

[Results]

[horizontal,frame]

[width=fit,

height=.5\ButtonWidth,

background=shape,

backgroundcolor=\MPcolor{stack},

frame=off]

[width=3.5\ButtonWidth,

frame=off]

[width=3.5\ButtonWidth,

frame=off]

The reader needs some fantasy to grab the meaning of

this rather overloaded setup. The first argument tags

the characteristics, and can be considered something

like a class in object oriented languages. The second

argument tells ConTEXt how to typeset the field when

labels are used, while the last three arguments specify

the way fields, their labels and the envelop that holds

them both together are typeset. In the calculator, the

labels are suppressed.

Toggle grow mode, another way of stacking.

Figure 13 The grow mode screen.

One reason for decoupling definition and setup, that is,

not attaching characteristics to individual fields, lays

in the fact that I have applications in mind with thou-

sands of fields and saving characteristics at the field

level that would definitely overload TEX.

Where do we go

The previous examples show us quite clearly that, al-

though being of old age in terms of computer pro-

grams, TEX is among the few applications that are able

to adapt themselves rather fast to current develop-



8 PRAGMA ADE

Calculate the recursive multiplication of n, n–1, n–2, etc.

Figure 14 The n! screen.

ments while at the same time preserving the high qual-

ity and stability its users are accustomed to. As TEX

gave mathematicians the means of circumventing the

often lousy text editing and desk top publishing out-

put in the early days of computing, TEX can give its

users the high quality and stable authoring platform

they need in this multi--media age. As demonstrated

here, TEX can do a wonderful job not only in produc-

ing interactive documents, but in producing intelligent

documents too.


