
Bijlage 2
TEX in 2003: Part I

Propositions and conjectures on the future of TEX

NTG TEX future working group
P.O. Box 394,
1740 AJ Schagen,
The Netherlands
ntg-toekomsttex@ntg.nl
http://www.ntg.nl

Introduction
In the last year, there has been a lively discussion within
the Dutch TEX Users Group about the future of TEX. This
discussion was initialized by a couple of posts to theTEX-
NL e-mail list by Hans Hagen and Taco Hoekwater, but it
soon spread to a much larger group of correspondents.

Eventually, this resulted in a meeting between the most
interested people in December1997. The current articles
are a re-working of the long-term proposals and requests
formulated by this group of people. The short-term re-
quests were passed on to the eTEX team.

Our views on current work
At the moment, there are at least three distinct projects
available to current TEX users that are working to extend
TEX: Omega, Pdftex and eTEX.

The first two of these are in a sense niche products: If
you don’t need either non-latin language typesetting orPDF

output, there is little point in learning how to use these two
programs. The third project, eTEX follows the more gen-
eral approach, and is potentially of interest to every current
user of TEX.

The work done in eTEX is nicely thought out, and the
result is both stable and virtually bug-free, but it is hardly
ever used in real applications. The reason is simple: pack-
age writers will not use eTEX primitives until they can be
certain that eTEX is indeed available everywhere. On the
other side, eTEX cannot develop without input from pack-
age writers that intent to use eTEX. There is a chicken–egg
situation, and it leads to the following conclusion:

1. eTEX is a nice idea with too little momentum to make a
difference.

Another important problem is the fact that people that need
the functionality of either eTEX or Pdftexor Omegaand
one of the other two extensions, cannot do so from within
one document. All three have their own specific syntax
extensions, that are hard to fake in one of the other exten-
sions. This is unsolvable in the current situation, and leads
us to the following statement:

2. Omega, Pdftex and eTEX should be merged as soon as
possible.

Then there is a fourth project that has just started: the New
Typesetting System (NTS).
TheNTS development group hopes to increase the chances
of general acceptance ofNTS by guaranteeing compatibility
with TEX for a number of years to come. We feel that this
is a error, because most of the more fundamental issues that
NTS should deal with to live up to the ‘New’ in it’s name
cannot be done without sacrificing that compatibility. Is-
sues like grid-based typesetting and better insertion control
are very likely to require a completely new algorithm, res-
ulting in a completely new implementation. Of course it is
possible to do these things in parallel, but trying to imple-
ment something new while having to be really careful not
to break the old implementation unnecessarily complicates
development: people that want to use TEX should stay with
TEX anyway.

Therefore, we urge theNTS group to reconsider their de-
cision to stay compatible with TEX for at least the next five
years.

3. NTS will be pointless if it intends to be compatible with
TEX82

The second remark we have deals with the proposed modu-
larity of the system, which is facilitated by the use of Java:

4. NTS is a step forward and a step backward at the same
time.

A great feature ofNTS will be its extensibility. This is sim-
ilar in many ways to current LATEX packages, albeit much
more advanced. SinceNTS will be written in Java, one can

Najaar 1998 13

Bijlage 2 NTG TEX future working group

easily extendNTS with it’s own classes. We presume there
will be an easy interface to extendNTS (if not, someone
will just hack the sources).

In all likelihood, this will result in precisely the same
problems that current LATEX has:

Users are not aware of the packages available, and so
keep asking questions like: How can I make this work
in LATEX?
Furthermore, the portability of source documents (the
.tex or .nts? input file) will be seriously endangered. We
expect to see things like:

Error: this .nts style-file requires
module x.y which has not been
installed on your system.

TheNTS team should give very strict rules for these exten-
sions, otherwise we’ll end up with another\special- sim-
ilar situation. A central registry and a “head maintainer”
are needed to keep track of extension modules in order to
prevent these problems. It would be wise to turn this work
into a full-fledged job under the control of (probably)TUG.

5. We need time to experiment and must not fall into the
every year a new version trap.

An interesting common aspect in all current work is that
only experience can lead to useful functional specifications.
It is likely thatNTS functionality will follow the same track.

This means that when we deal with the next generation
TEX programs, common users must be patient until the de-
velopers of extensions and macro packages trust the new
features and can guarantee upward compatibility. It also
means that it will take some years until eTEX as well as
NTS will be accepted as descendants.

We have to keep in mind Knuth completely rewrote his
first TEX!

Packaging of Distributions
Over the last5 years TEX has become a lot easier to install.
The most important reasons for this are:

Cd-roms have become available at large. These can
easily hold a complete TEX system. The old-fashioned
piles of diskettes gave far too much trouble, and tape is
only for professionals.
Recently hard disk space has become so cheap that
complete installations on hard disk are not unusual
anymore.
Installation scripts were made to shield users from
tedious setup and configuration issues.

Still a number of problems remain because they are inher-
ent to the way that TEX systems work:

A typical TEX system consists of an incredible number
of files (more than31415). No one really knows which
parts are essential and which parts are not. In other
words: every system is too large.
“Everything” can be found onCTAN but only the most
recent version. Old versions can be necessary to run old
documents. OldCTAN dumps on cd-rom can be used
to track down older versions, but we really need more
professional version control.
Maintenance is only feasible for professionals. Others
are better off replacing the entire system, even though
this will undoubtedly cause problems. The draw-back
of ‘plug & play’ systems is that users have no idea
anymore of the inner workings of the system. Is that a
good thing or a bad thing?
There is no such thing as an easy upgrade path. It’s
usually very hard if not impossible to simply add some
files to a system and make them cooperate.
Initial configuration can be automated, but reconfiguring
is usually very hard. Any typical TEX system contains
dozens of configuration files in almost as many
completely different flavours. As a rule they are
scattered all over, and only an absolute expert can deal
with this.

This leads to a number of conjectures:

6. The number of files in a typical TEX system should be
reduced by a factor100.

We can achieve this by redefining the way any program
finds its resources. A central database should be queried
for any resource. This database should physically contain
all resources. And of course it should be able to report (in
any required level of detail) what’s available. The database
may event connect toCTAN (another database application)
to retrieve resources not available locally.

This setup would allow for a minimal local installation
to grow as necessary using Internet.

7. Configuration of a TEX system should be centralized
and automated.

If we can realize the previous issue this one will not be
too hard. Programs should specify formal descriptions of
the configuration details they need. These could then be
generated through menus or automatically by scanning the
current setup, i.e., querying the database.

14 MAPS

TEX in 2003: Part I Bijlage 2

8. Installation and maintenance should require far less
expertise.

The database may occasionally queryCTAN for any up-
dates. The administrator would get short descriptions of
these, with links to complete documentation. He/she could
then select which ones should be installed. This could even
be done silently (overnight) if you want an up-to-date sys-
tem all the time. If necessary, programs will be signaled to
reconfigure themselves.

This setup should also take care of the endless problems
with non-portableDVI files. We should all be using the
same resources and if we are not, the system should warn
us about possible mismatches. If we decide to make TEX
produceDVI files that require no virtual fonts at all (i.e.,
TEX readsVF’s itself instead of theDVI driver) an important
source of problems can be eliminated.

9. CTAN should have a complete index with descriptions
of everything and cross-links to anything related to
anything.

This is obvious now if we want the systems to interact.
Uploads toCTAN will have to be checked more carefully:
descriptions, specifications, version number, relations to
other packages, dependencies on other resources, etc. must
be supplied. Any item that doesn’t comply to this con-
vention should be moved out (‘not supported’) and deleted
after a certain period.

We realize that this might cause a cultural shock in the
TEX world, but we feel this is necessary to keep TEX alive
& kicking in the next millenium:

10. Anarchy is what made TEX great, and it’s anarchy
again that will kill TEX.

Let’s try to prevent this!

On-line Publication Wishlist
With the increasing growth of the internet, a whole new
branch of documents has appeared: documents that are
only or primarily intended for screen viewing. The used
formats differ, but it is easy to see that there are some com-
mon issues involved in all of those: file download

sizes, hyperlink support and ease-of-use are important
points for all of these formats.

11. TEX is rather well suited to cater for those needs as it
is, but some extensions are needed to make sure that
TEX will stay/become in the leading position in this
arena

For about15 years TEX was only capable of producingDVI

output. The limitations in both TEX and theDVI format
mainly concerned direct graphic support and color typeset-
ting, but color printers were rare and the lack of graphics
support could be worked around.

Although originally TEX was more or less supposed to
handle everything itself, those15 years of use have demon-
strated that many applications, like color and graphic in-
serts, heavily depend on theDVI postprocessing stage. To a
large extent, this is not feasible nor desired in on-line pub-
lication. On-line formats are all rather device independent
themselves: otherwise people would have to publish sev-
eral versions of the same document.

Theoretically, both pdftex the current trajectory using
and DVI to PDF processing through dvips and the Dis-
tiller can offer similar functionality, given that post pro-
cessors are available to help out in the second case, but
we can imagine both methods drifting apart, and we feel
that the use of external programs to solve intrinsic prob-
lems adds a great deal of unnecessary complexity to the
system.

12. On-line publishing needs primitive support

In fact, most of the conceptual extensions like hyper ref-
erencing can be implemented usingDVI and \specials.
However, usage can be far more robust in e.g. current pdf-
tex, simply because hyper referencing is build in, and there
is no longer a need to run various programs in turn. The
same goes for object reuse, fill-in forms, scripting (Java),
and graphic inclusion.

But systems like pdftex also create new problems. Take
for instance graphics inclusions: where originally TEX
macros only had to bother with the dimensions of the
needed box, on-line publishing backends have to include
the file directly.

Another conceptual extension is hyper referencing. Al-
though clever tricks can give acceptable results, all ap-
proaches based on current TEX interfere with either the ex-
plicit wishes of the author or the line and paragraph break
mechanisms present in TEX.

13. TEX objects should be easily re-usable

When we look at object reuse, we see that this concept
never surfaced inDVI (using\specials). This is probably
due to the fact that especially screen designed documents
need these features, and it hardly matters for paper output.

¿From the users point of view, reuse may look rather
straightforward (a sort of variant on copying boxes), but
from the implementors eyes, object definitions are just an-
other interfering kind of<whatsit>. And why is it inter-
fering? Simply because TEX has no particular mode which

Najaar 1998 15

Bijlage 2 NTG TEX future working group

suppresses all interference. Yes, we can use a box, and we
can let things happen at certain locations in the document
that don’t do any harm, but the situation is far from optimal.

When applied to for instance figure inclusion, reuse can
quite easily be implemented in original TEX (pure DVI , us-
ing Gilbert’sDVIview), the traditionalDVI–dvips–Acrobat
trajectory or Thanh’s pdftex. ButPDF fill-in fields support
demands for more.

To give you a real life example where objects are needed:
in PDF one can define a check field with several appear-
ances like on, off, mouse down, etc. Technically this means
something like this (in pdftex syntax):

\setbox0=\hbox{$\star $} \pdfform0
\edef\on {\the\pdflastform}

\setbox0=\hbox{\bullet} \pdfform0
\edef\off {\the\pdflastform}

\setbox0=\hbox{$\times $} \pdfform0
\edef\down{\the\pdflastform}

When defining the check field, we then can refer to\on,
\off and\down, as in the following code:

\pdfannot{ ... /On \on\space0 R ...}

Currently pdftex only flushes forms to the output file when
are accessed. (this feature is needed because we want to
be able to try out things, without ending up with redundant
objects, like in a macro that tries three different methods
and takes the best result).

Back to the three objects, these won’t end up in the file
when we refer to them in the field definition above, because
the field definition is handled like a\special: pdftex just
passes the information through.

Therefore, we end up with invalid references: the object
is referred to, but never passed to the file. What do we learn
from this:

14. TEX needs a real object model.

One with immediate as well as deferred definitions, that do
not interfere with the internal lists that TEX builds and that
permits forwardandbackward referencing.

Another typicality that surfaces often in on-line docu-
ments is the fact that screen layouts tend to use a lot more
page decorations and colors than traditional typesetting.
This is an area where a lot of disagreement is possible, but
in the real world there are lots of practical applications of
this.

At TUG97 there were several presentations on graphics.
The related discussions invoked a BOF session on graphic
primitives. Direct inclusion of METAPOST output (in pd-
ftex) had already proven that a relatively small subset of

PostScript primitives could be used for advanced graphics
and therefore the discussion focussed on those primitives.

These graphic primitives in TEX are not meant for draw-
ing free hand graphics like one would do in programs
like Illustrator, CorelDRAW, or indeed Freehand. Instead,
they are most often (to be) used for things like visualizing
statistical results, plotting functions and drawing almost-
mathematical shapes that can be used to emphasize certain
layouts. In these graphics, text plays a important role, and
this text must preferably be typeset by TEX. It follows that
inclusion of an external file will not do, and the conclusion
is:

15. TEX needs a reliable system for in-line graphics and
colors

The most important outcome of the ’97 BOF session was
an agreement on the way to go: define a set of extensions
that permit direct METAPOST output inclusion. It was felt
that this set could also suffice the needs of the mainstream
graphic macro packages written in TEX.

During theNTG ‘future of TEX meeting’ the participants
made the exact specification of these graphic primitives
(currently to be implemented as\specials) one of its main
goals. To this end, we had to create a formal specification
of the syntax involved, and that put us right in the middle
of the\special problems.

Our final proposal on that matter will appear somewhere
else in these proceedings, but Gilbert has already done
some of the groundwork. Below is his explainatory text
on the\specials that are currently included inDVIview.
This text is kept here because it demostrates very well that
only a few primitive commands are enough to give almost
full in-line graphics capabilities.

To allow for instance METAPOSTdrawings te be inlined in
TEX you need several things:

A macro to interpret METAPOST’s POSTSCRIPToutput.
Hans Hagen wrote a set of macros forPDFTEXusing
\pdfliteral commands. These macros are easy to
adapt to another standard using\special syntax
A primitive sub-set of POSTSCRIPT commands is
needed. METAPOST uses only a few POSTSCRIPT

commands to draw it’s figures.

To actually test the inline graphics standard we needed a
viewer where this support was easy to include.DVIview
was coming to life at that time so it was logical to use that
as a test and development environment.

All primitives are easy to interpret, except for a few
things like clipping and the like. The syntax will probably
change in the future when the new special syntax is standar-

16 MAPS

TEX in 2003: Part I Bijlage 2

ized. Converting these specials to POSTSCRIPT output
(e.g. modifying dvips) is easy to do, since the commands
hardly need any translation.
Specials and stuff for inline graphics inDVIview:

\special{dv:startgraphic}
\special{dv:stopgraphic}
\special{dv:moveto x y}
\special{dv:lineto x y}
\special{dv:curveto x1 y1 x2 y2 x3 y3}
\special{dv:stroke}
\special{dv:setlinejoin j}
\special{dv:setlinecap c}
\special{dv:setdash offset values}
\special{dv:setlinewidth w}
\special{dv:setmiterlimit m}
\special{dv:rotate r}
\special{dv:translate x y}
\special{dv:concat x1 y1 x2 y2 x3 y3}
\special{dv:newpath}
\special{dv:closepath}
\special{dv:clip}
\special{dv:fill}

\special{dv:gsave}
\special{dv:grestore}

As you can see the amount of commands needed to support
METAPOSToutput is in fact quiet small.
Some explanations:

dv:startgraphic
Starts a graphics figure. It saves the current position and
context of theDVI interpreter. The current location is
marked as(0, 0). As in POSTSCRIPT positivex, y draws
to the right and up.

dv:stopgraphic
Stops a graphics figure and restores the context.

dv:moveto x y
Moves the current position tox, y.

dv:lineto x y
Draws a line tox, y. This does not actually draw the line
but only remembers the coordinates. The actual drawing is
performed bystroke.

dv:curveto x1 y1 x2 y2 x3 y3
Draws a Bézier curve starting at the current point to
(x3, y3). The control points are given as(x1, y1) and
(x2, y2).

dv:stroke
Performs the actual drawing using the current pen-style,
color and width.

dv:setlinejoin j
How lines are joined.j can be0, 1 or 2.

dv:setlinecap c
How the line-endings will look like.c can be0 1 or 2.

dv:setdash offset vals
Sets the pen-style.vals is any number of values and spe-
cifies how long the pen is on and how long the pen is off.
offset can be used to specifiy a starting offset in thevals
pattern.

dv:setlinewidth w
Sets the thickness of the current pen.

dv:setmiterlimit m
Sets the miterlimit.

dv:rotate r
Modifies the current transformation matrix so that
everything following this is rotatedr degrees.

dv:translate x y
Modifies the current transformation matrix so everything
following this is translated(x, y).

dv:concat x1 y1 x2 y2 x3 y3
Multiplies the current transformation matrix with the given
values.

dv:newpath
Discards any present paths and start a new path.

dv:closepath
Closes the current path. After this you can use fill to fill the
closed path.

dv:clip
Selects the current path as the clipping path. All subsequent
fills and strokes are clipped to the this path. The clipping
path may contain one or more closed paths.

dv:fill
Fills the current path with the current color.

dv:gsave
Saves the graphics state.

Najaar 1998 17

Bijlage 2 NTG TEX future working group

dv:grestore
Restores the graphics state.

dv:setrgbcolor r g b
Sets the current color.r, g, andb are specified from0 to 1.

dv:setcmykcolor c m y k
Sets the current color.

dv:setgray g
Sets the current gray-level.0 means black, and1 means
white.

Though it is easy to extend this set and include much
more POSTSCRIPT operators, this is not the intention. It
should be noted that complex graphics which require the
full POSTSCRIPT set of commands should be done by in-
cluding theEPSfile and let PostScript do the work.

Language extension wishlist
Removal of limitations regarding fonts
The font limitations that are inherent in theTFM format
should be dropped. One fairly simple way to achieve this is
to make TEX read.pl or .vpl files instead ofTFMs, but it
is also possible to adopt a new format like Omega’s OFM
files or even create a completely new specification.

An overview of limitations in current TEX shows limits
in almost all places: the amount of characters present in a
TFM, The number of separate width / height / depth / italics-
corr values, the number of ligatures and kerning pairs, math
sizing stuff, etc. Almost all of these limitations are not
really needed anymore; most of them were born out of
Knuth’s desire to use as small an amount of memory as
possible.

Especially the current implementation of math mode has
some really weird demands on the used fonts (some char-
acters get really weird places in the glyph container, like
integrals and delimiters are all below the baseline, and the
height of the\sqrt sign is used to decide the width of the
extension bar). This should be fixed so that it becomes pos-
sible to use non-metafont math fonts in a reliable way, and
to facilitate the creation of new math font sets. The current
situation makes it impossible to use non-TEX math fonts
from e.g. mathematica withoutlotsof vf trickery.

These things are all very easy to fix in the executable,
but it won’t do any good at the moment, because we are
still stuck with theTFM format.

16. The wayTFM and VF formats are defined and
implemented is the primary cause of the current font
chaos

If we want to adopt a new format, the extensibility of
the syntax of PL files is to our advantage, even allow-
ing new features to be added in the future while remain-
ing backward-compatible. But, although there no longer is
a real reason for binary file input as speed or disk space
optimization, binary filesdo have the advantage of being
non-editable (meaning that the chances of a user accidently
breaking them is very small).

17. We need symbolic names for characters

TEX currently uses encoding instead of glyph names. En-
coding is old-fashioned and merely a speed optimizing
thing. The coupling of glyph-name – character should be
a TEX internal operation.

The used named characters from the fonts should be de-
ductible from the output (DVI) file, to prevent reencoding
issues in postprocessing applications. To reach this goal,
it is very likely that TEX needs an internal naming scheme
for glyphs that does not depend on font encoding. Work in
this area is already being done by the eTEX team. It is con-
sidered unlikely that using unicode will solve the problem,
but it might well be that a solution based on the predefined
set of unicode names (the road taken by Omega) is the right
way to go.

18. Ligatures and kern info should be independent of the
character metrics

Ligatures can be present in the current font definitions, but
we would like to be able to modify the lig-table internally
from within TEX. This request has already be passed on
to the eTEX group, but it needs a more general solution
than the primitives that were proposed to eTEX(\noligs
and\nolig<char>). Likewise for the kerning tables.

The mechanism by which a user loads fonts into TEX’s
memory is much too simple. It should be possible to spe-
cify encodings, kerning info and ligature tables separate
from the actual glyph dimensions. The ligature problem
actually comprises two very different problems.

The simple case is most noticeable in typesetting ver-
batim stuff in non-tt fonts, something that is often needed
for textbooks on programming languages.

The hard case comes from the fact that ligatures depend
on the language, not on the used font itself. The spanish
quotation e.g. is never needed outside of Spain, and we are
all stuck with it now. Ideally, every language should have
it’s own ligature table, that is part of the language attributes
just like\patterns are.

19. Metafont is becoming outdated, even if TEX itself isn’t

18 MAPS

TEX in 2003: Part I Bijlage 2

A new version of metafont is needed that can generate ac-
ceptable outline fonts instead of the now used.pk format,
and the use of non-metafont fonts (Postscript, TrueType)
should be simplified. As stated in a previous article, TEX
should take care of the virtuality of fonts itself. But that
does nothave to imply using.vf files. There are some
other possible solutions that may not be as powerful as.vf,
but are a lot less confusing: The only widely used applic-
ations of virtual fonts are reencoding and creation of com-
posite characters.

User interface
Currently, TEX shows a weird duality: while mostly a batch
tool, there are still a number of places where user interven-
tion is needed.

On one side, if TEX wants to survive as a batch tool
(either as a stand-alone typesetter or as back-end for e.g.
SGML processing systems), it will need extensions so that
it is 100% safe to run the program unattended. Thinks like
breaking math formulas and placement of figures cannot be
left to TEX on its own.

On the other end of the spectrum, TEX needs a real-time
graphical user interface to satisfy interactive users (maybe
this can be a partial implementation, like havingGUI-based
equation- or table-editors). This goal can only be reached if
the GUI-based tools have fool-proof TEX input format that
they can rely on.
There are two probable roads we envisage:

Moving a large number of current macros into the
executable itself will avoid confusion of macro formats,
but there are still problems to be solved relating to
redefined primitives.
Allowing a tokenized input in a precompiled format
would probably be better since it circumvents these
problems. The idea is that, assuming we are an external
program that tries to generate TEX code, we want to be
very sure that\par really means\par.

But there are some other idiosyncracies in TEX’s language
that needs to be dealt with as well. Sometimes optional,
sometimes not optional keywords and characters like equal
signs; arguments with braces versus arguments that are
space-delimited; confusing rules for spaces; etc.

20. At all events, the language should be cleaned up
drastically.

The syntax should definitely be cleaned out. Anybody who
has ever tried to write a non-trivial macro will know that
even if your approach in itself is correct, chances are that
the macro still won’t work, because of a stupid mistake
with \expandafter or extra / too few spaces. Solutions
that use markup in the style of SGML or lisp would be
vastly preferable over the current situation. The current
syntax often justifies the following statement:

21. TEX’s macro language encourages writing garbage

We can safely say that many sources look awful in terms
of formatting, just take a look at the sources of the style
used to typeset this article. (Or look at the sources of the
TEXbook: the output is beautiful, the input just ugly.) In the
hands of common users, bad input becomes bad output.

22. We would profit from better programming primitives

Finally, experience shows that format files are never simple
and small, like Knuth presumed they would be. Instead,
format files are complex programs with numerous interac-
tions between the various parts. TEX’s macro language was
never supposed to support this, and as a result has virtually
no programming support. Among the missing things are
data structures like lists and queues; name spaces; control
structures (like cases and while loops); signals; and reliable
\if tests.

Najaar 1998 19

