
Voorjaar 1999 89

development

Introducing Eetex

Taco Hoekwater
Hans Hagen
NTG TEX Future Group
ntg-toekomsttex@ntg.nl

abstract
This article gives an introduction to eetex. Eetex is an extension

to e-tex 2.0 that defines a collection of new primitives. Most
of these deal with list data structures, but some other things

are added as well.

keywords
e-tex, eetex, extensions, SGML

Where it comes from

Eetex is the NTG TEX Future Group’stoy program to
investigate new extension proposals forE-TEX and NTS.
Most of the web programming for eetex is done by Taco
Hoekwater, and most of the prototyping and debugging is
done by Hans Hagen.

Because of this, eetex currently contains mostly things
that are desired by one of us two:

Hans’s desire to simplify and speed-up CONTEXT;
Taco’s desire to parse XML and SGML.

The current program’s code isneither stable nor bug-free!.
Use this program at your own risk. Eetex is a moving tar-
get, and the implementors do not care much for backward
compatibility. We do not even guarantee that the current
added primitives will still exist tomorrow. We have proba-
bly made many mistakes and omissions in this version that
are so serious that we may have to re-think the entire ap-
proach, and eetex might change drastically because of that.

Eetex does not have any associated logo, it’s name is
precisely as given here,5 lowercase letters with normal
capitalization when that is grammatically normal for the
language in which the text is written.

Notes on using eetex

Eetex writes it’s format files with extension.eefm (.eef
on real-modeMSDOS) to distinguish itself from other exe-
cutables that use the same TEX source for their format files.

Starting eetex and generating formats for eetex is a lot

like usingE-TEX in extended mode. For example,

eetex -ini *plain

creates a new format file forplain.tex with the E-TEX
extensions and the eetex extensions both enabled. Don’t
forget the* in the command line, or you will end up with
a halfway solution.

New primitives for list manipulations

All following primitives deal with lists. Lists behave a lot
like normal TEX macros, but they have an internal sub-
structure that can most easily be thought of as specifying
separate token list items in a list, separated by one or more
tokens that are handled specially.

The primitives listed below are really quite primitive.
Higher-level macros have to be written to make real use of
the new functionality. Depending on the design of these
macros, lists can work either as arrays or as lists or as
queues or as unique sets.

Without going into very much detail, here are some of
the problems that can benefit from the addition of lists to
TEX’s repertoire of basic data structures:

Parsing input data.
Some TEX macro packages read a lot of plain ASCII
data that has to be split into separate tokens for
processing. An example would be a plotting package,
another example would be a macro package like
CONTEXT’s supp-ver, that interprets verbatim text.

The macros that do this usually process the
argument one character at a time using a brute force
approach. In most of these cases, the same work can
be done a lot easier and faster using lists.
Parsing key=value pairs.
There are commands available to get just a portion of
an item. This comes in handy when macros are used
to parse things like

\includegraphics[height=6cm]{figure.eps}

Creating cross-reference lists.
Labels are usually required to be unique withing a
certain scope. Lists make it fairly simple to create an
application wherein the scope of the uniqueness
(document, chapter, section) can be changed.

development Taco Hoekwater, Hans Hagen

90 MAPS

Lists also make it easier to write macros that
differentiate between different types of labels
(sections, formulas, tables).
Economizing the hash table.
TEX’s hash table usually has a limited size (even in
‘dynamic’ versions like web2c, there still is an upper
limit). But there usually is a lot of memory for token
lists available. Therefore, it makes sense to store
commands as token lists.

Every list occupies just one hash entry, regardless
of it’s size. Yet, a list can be used to save the value
of a macro in it’s items.
Database publishing.
Lists can be used for publication of for instance
production or bibliographical databases, because lists
allows you to use more than50.000 cross-refs within
on document easily using the tricks from the previous
two items.
Exporting information from within a group.
Lists make it possible to save values that are
computed within a level of TEX grouping without
having to resort to\global definitions.
Maintaining information stacks.

Tracking what is going on

\tracinglists
Just like all the other tracing commands, this primitive dis-
plays information about what the executable is doing. Cur-
rently, this is somewhat more like debugging information
than something a user might be interested in. Usable val-
ues are1 and2.

Related to this new primitive, setting\tracingstats to
3 or 4 results in a large amount of memory allocation in-
formation.

Splitting arguments into items

\listsep
This is a new internal token register, whose contents is
used both as item separator when the user specifies a list
and as filler between items when an expansion of a list
takes place. See below for an example of the usage of
\listsep.

The logic by which the separation happens is a perhaps
little strange, but the current solution turned out to be the
most desirable behaviour. It goes like this:

The first token from the expansion of\listsep is
used as separator token in list specifications. This
token (on its own) is used to decide where items end
and a new one starts.
However, all subsequent tokens from\listsep are

removed from the input as well, provided that they
appear directly after the item separator and in the
correct relative order.
If \listsep’s current value is empty, the input will be
split up into separate tokens, each item consisting of
precisely one token from the input.
Initex initializes\listsep to the equivalent of
\listsep={,}.

The trick with subsequent tokens makes it possible to say
for example\listsep{, }, making certain that there are
no items in the resulting list that start off with a space (as
might be the case for\listsep{,}).

How to define a list
There are many ways to define a list or change the defini-
tion of an already existing list. The following new primi-
tives work directly on lists.

\listdef <csname> [{item text}|<listcs>]
\appdef "
\predef "
\insdef "
\elistdef "
\eappdef "
\epredef "
\einsdef "

The four primitives that start with"e" expand the
item text, the others don’t. This difference is anologous
to the difference between\def and\edef.

All eight primitives are assignments, just like the ‘nor-
mal’ \def. It is much easier to give an example of how to
use these commands than it is to try to explain the formal
logic, so here is an example of the four different types of
definitions:

\listsep{, }
\listdef \mylist {noot,mies}
\appdef \mylist {wim}
\listdef \first {aap,}
\predef \mylist \first
\insdef \mylist {noot,zus}
\listsep{ }
\message {\mylist}
\bye

The terminal output of this example is:

zus aap noot mies wim

with two spaces betweenaap andnoot.
Wat happens on the preceding lines is the following:

1. Initializes\listsep
2. This line defines the csname\mylist to be a2-item

Introducing Eetex development

Voorjaar 1999 91

list consisting of the itemsnoot andmies.
3. This appends the itemwim. The list\mylist now has

3 items.
4. This defines\first as another2-item list. The

second item of this list is empty.
5. Prepends that new list to\mylist. (\mylist now is

"aap" "" "noot" "mies" "wim")
6. Requests insertion of the itemsnoot andzus. noot

already exists in the list, so that one is ignored and
zus is added.

7. Changes\listsep for the subsequent expansion.
8. Expands\mylist. Notice that you get2 spaces

around the empty item.

All of these primitives adhere to standard TEX grouping,
and they all understand the\global prefix. The control
sequence name that becomes defined is always considered
to be\long and never considered to be\outer.

An completely emptyitem text does nothing if it is
used together with the insertion or addition primitives, but
\listdef \mylist {} doeschange\mylist into a csname
that expands into a list (of zero items). Empty lists as well
as empty items are legal (both have their uses).

Lists expand into a token list that is a concatenation of the
items’ contents, with the items separated by the current ex-
pansion of\listsep. This expansion happens without the
need for the user to do anything; lists are ‘callable’ just
like macros even if their interal structure is quite different.

But lists expand into the internal representation of a
number if TEX is looking for an integer (for primitives like
\ifcase, \number, counter assignments, etc.) The returned
number is the number of items in the list. This gives you a
simple way to measure the length of a list.

\newlist<csname> <number>
Creates a list with<number> amount of items. This is use-
ful for array specifications, and for extending or shortening
an already existing list. If you are extending an already ex-
isting list or if you are creating an entiry new one, all new
items in it will be empty.

Already existing items keep their value. If you are short-
ening an existing list, the items that are cut off are irretriev-
ably lost though. Subsequently extending the list willnot
give them back.

Mapping macros to lists

\scanlist<listcs> <token>
Explicitly expands the list that is pointed to by<listcs>.
But instead of inserting the current meaning of\listsep,
it inserts the<token> between every item and before the
very first item of the list, and it adds braces around the

separate items. The idea is (see below for an explanation
of \quitlist):

\def\noot{noot}
\def \test#1{\def \tempa{#1}

\ifx \tempa \noot
\message{done}%
\quitlist 1

\else
\message{#1}%

\fi }
\scanlist \mylist \test

If \mylist consists of the three itemsaap, noot andmies,
the\scanlist expands into

\test{aap}\test{noot}\test{mies}

\quitlist<number>
Quits from the<number>-ed input level above the current
one that is a token list which is the result of expanding
the \scanlist primitive. This sounds complicated, but it
simply means that

\quitlist 1

could be used in the\test macro above to escape out of
the list’s expansion once the condition was met (so that
\test{mies} was never expanded). On long lists, this can
safe a lot of processing time. In nested definitions, num-
bers higher than one might also be useful.

The command\quitlist 0 is a special case: it kills the
current token list, regardless of its type. This is likely to
be the expansion of a macro, and it means that macros can
actually quit themselves (likeexit andreturn do in other
programming languages).

Finding out if this is a list

\iflist<csname>
Returns true if the<csname> represents a list.

Besides this,\ifx returns true if it’s two csnames are
two lists which have the same number of itemsand
whose expansions fully agree. Note that the comparison
is expansion-based, such that in the following example:

\listdef\mylist{no,ta}
\listdef\mylisttwo{n,ota}
\listsep{}
\ifx\mylist\mylisttwo

the\ifx evaluates to true.
\ifx returns false in all other cases, including the com-

parison between a one-item list and a macro that has pre-
cisely the same expansion.

development Taco Hoekwater, Hans Hagen

92 MAPS

\ifcase, \ifnum and\number return the number of items
(which would be2 in this case).

Searching for (part of) an item

\ifhasitem <listcs> [{item}|<listcs>]
\ifsubitem <listcs> [{subitem}|<listcs>]
\ifsublist <listcs> [{items}|<listcs>]
\ifsubset <listcs> [{items}|<listcs>]

These are four new\if tests.
\ifhasitem tests for the existance of one item. You can

specify more than one item in theitems part if you want,
but those are never looked at.

\ifsubitem tests for an item that starts withsubitem.
This is especially useful for key=value pairs.

\ifsublist tests foritems appearing in the specified
relative order. Intervening items are allowed, but the rela-
tive order must be maintained.

\ifsubset tests for all the items appearing in any order
at all. There is currently no way to test whether items ap-
pear more than once in the list.

\itemnumber <listcs> [{item}|<listcs>]
\subitemnumber <listcs> [{subitem}|<listcs>]

These are two new expandable primitives that return TEX
internalnumbers. Here it is also possible to specify extra
items if you want to, but they are ignored completely. If
the requested (sub)-item does not exist, these commands
return zero.

The above six new primitives have an extra sideeffect:
when the tests are succesfull (either the\ifs are true or
for \...number there is indeed such an item), the request-
ed item’s info is saved in two global variables that can be
queried by the user. These are:

\lastitemnumber % a counter
\lastitemdata % a \long macro

If the test is unsuccessful,\lastitemnumber will be 0 and
\lastitemdata will be empty.

If the test is successful,\lastitemnumber will be the
itemnumber of the requested (sub)item and\lastitemdata
will be the text of that item.

If the request was for a subitem,\lastitemdata con-
tainsonly the trailing contents of the item, with one op-
tional layer of containing braces stripped.

The main advantage of this side-effect is that it allows
you to replace the construction

\ifsubitem \mylist {clip}
\getitem \mylist \subitemnumber{clip} to \tempa
\EA\def\EA\keyval\EA{\EA\stripeq\tempa=}\fi

with this code, which is both faster and a lot cleaner to look
at:

\ifsubitem \mylist {clip=}
\EA\def\EA\keyval\EA{\lastitemdata}%

\fi

Note: for \ifsublist and\ifsubset, the values will be
the info of the last specified item.
Second note: \lastitemnumber might be zero even with-
in the true branch (this is the result you get from checking
for the existence of an empty item).
One last note: \lastitemdata is a\long macro after the
first use of one of these six primitives, but for initex it is
initialized to a weird typeless primitive. The contents or
both csnames do not survive dumping and undumping for-
mats, so they can not be used in\everyjob.

Manipulating items

\getitem <listcs> <number> to <csname>
\setitem "
\delitem "
\insitem "

Four new primitives to play with separate items.
\getitem defines<csname> to be the meaning of the

relevant item of the list.\setitem works the other way
around.\delitem is like \getitem but it also destroys the
item of the list (the list actually becomes shorter),\insitem
is \delitem inverted (the list gets longer).

Negative values for<number> count from the tail for-
ward, such that -1 means the last item, and1 the first item.
These primitives are quite flexible, but<csname> has to be
a macro. Using other primitives like\message will give
you an error message.

Argument specifications (both# marks and delimited
text) for macros are saved into the list as well, so that it
is possible to do this:

\def\tempa#1#2{\message{(#1, #2)}}
\setitem \mylist 1 to \tempa
\getitem \mylist 1 to \tempb
\tempb {A}{B}

Other primitives and functionality

The primitives below have nothing to do with lists, but are
added because we thought they might be useful.

\eeTeXversion
The first of these is for maintenance reasons only.
\eeTeXversion is a read-only register that gives you the
release number of the version of eetex that you are using.
Currently, it returns the value2.

Introducing Eetex development

Voorjaar 1999 93

Toks manipulation
The commands\apptoks and\pretoks allow you to ap-
pend or prepend tokens to a token register. Here are four
simple examples:

\apptoks \everyjob ={\message{This is eetex}}
\pretoks \output ={\message{Output called}}
\apptoks \toks5 \toks2
\pretoks \mytoks \toks0

\sgmlmode
This is a read-write register with default value0. Setting
this register to a non-zero value changes the way TEX reads
control sequence names. With\sgmlmode=1, a csname
ends ateitherthe next spaceor at the complement character
of it’s escape char. A complement character is not removed
from the input, and it is also not part of the csname (it is
usually the first character of the argument specification). A
trailing space is removed though, as in TEX.

The following complements are currently defined, while
waiting for the implementation of a more general solution
that is already proposed by Michael Vulis:<↔>, (↔),
[↔] and &↔;. This set is designed such that parsing
XML-like syntax is rather simple.

Suppose you want to parse the following input:

<p indent=none>First paragraph</p>
<p>Second paragraph</p>
<s3 align=center>A subsubsection

Thep’s are simple to do in current TEX, using a definition
like:

\def\p#1>{....}
\catcode ‘\< = 0

where in the second paragraph macro the argument#1 is
empty.

But thes3 is a little trickier. If there ares3’s, it’s a safe
bet that there are alsos1 ands2’s. The logical thing would
be to define\s in such a way that it looks ahead to see what
the next character is and then do an\ifcase based on the
result. This is a little cumbersome, but quite straightfor-
ward.

Unfortunately, there are also</p> constructions. There-
fore, you also need to define\/ to do such a lookahead.
Besides the fact that\/ has a primitive meaning (italic cor-
rection), it also has to do a rather huge switch matching
following tokens to predefined ‘element’ names.

This is why\sgmlmode was invented. The following def-
initions do the same trick (almost) without all that fuzz:

\def\sdef#1{\expandafter\def
\csname #1\endcsname##1>}

\sdef{p}{...}

\sdef{/p}{...}
\sdef{h3}{...}
\sdef{/h3}{...}
\catcode‘\< = 0
\sgmlmode=1

The macro\sdef creates a\csname construction that pre-
cisely matches the command that is needed for one specif-
ic case; once eetex starts parsing the example text input, it
will end every\csname (all of which start off with a"<")
only when it reaches the next">" or when it reaches the
next space, which gives the desired result.

Watch out for the fact that once you get into\sgmlmode,
spaces at the end of control sequences become required.
Exchanging the last two lines from the example would not
have worked:

\sgmlmode=1
\catcode‘\< = 0

creates a total of4 tokens for the2nd line:"\catcode‘\<",
which will probably result in an ‘undefined csname’ error,
and the three commands"=", " " and"0" that will be type-
set!

New dimension specifiers
Eetex recognizes two new types of dimensions:px and%.

A px corresponds to a pixel, using a resolution of96 dots
per inch to calculate the conversion factor:96px equals
1in.

The % is introduced because certain kinds of input use
it to signify a percentage of a default or previous value.
Setting up% in a meaningful turned out ot be quite tricky,
so the current implementation maps one on one tosp: 100%
equals100sp. Of course,% only works if the\catcode of %
is 12.

Where to get it

Eetex is available as pre-compiled binaries from the fol-
lowing URL:

http://www.cybercomm.nl/˜bittext/eetex/

There are binaries for DOS/Win95 using the DJGPP com-
piler and Linux binaries using glibc. Both of these are
linked use web2c version7.2. In the future, there may be a
source distribution (web change files) available as well.

The NTG TEX Future Group can be reached atntg-
toekomsttex@ntg.nl (our mailing list). subscription re-
quests can be sent tomajordomo@ntg.nl with body “sub-
scribe ntg-toekomsttex [e-mail address]”.

