
software

Introducing GeX

Taco Hoekwater,
Bittext VOF
Michael Vulis,
The City College of New York & MicroPress, Inc.

abstract
This is a short introduction to the pilot release of GeX. GeX is

the most rapidly evolving part of VTEX; more detailed
documentation is available in the distribution of VTEX.

This article specifically describes GeX as implemented in the
public domain version of VTEX/Linux. While the same or
additional features may be available in the commercial
Windows version, we describe what exists in the freely

downloadable version. For information on downloading
VTEX/Linux see the NTG web site or the article in this MAPS

issue.

keywords
pdf, inline graphics, eps inclusion, GeX, VTeX

Why GeX?

VTEX’s PDF backend includes an integrated PostScript-
compatible processor (GeX).

GeX makes it possible to do easy one-pass handling of:

Encapsulated PostScript files (.eps)
PStricks, PSFrag, and Seminar code
Other inline PostScript code with optional feed-back of
information from GeX to the TEX processor

While .eps inclusion has been previously supported in
VTEX via GhostScript library calls, GeX offers much bet-
ter performance and output quality.

The .eps inclusion is likely to be the main initial ap-
plication of GeX. However, in our view it is the inline
PostScript which could lead to new and interesting appli-
cations.

Why call it GeX?

The GeX name [pronounced g-e-k-s] stands for Graphics
EXtensions.

While the current extensions are generally compatible
with the PostScript language, GeX is intended to be a
TEX-resident extension, not an Acrobat clone. Even in
the current implementation there are facilities for commu-

nication between TEX and PostScript, as well as appoxi-
mately a dozen of new operators; these facilities are likely
to be further developed. While it is our intention to stay
PostScript-compatible to the degree needed for .eps and
inline PostScript support, we envision further enhancing
GeX with features that are decisively non-PostScript.

Enabling GeX

The current implementation does not enable GeX by de-
fault. This is because the initialization of the PostScript
machinery takes 1-2 seconds and GeX is not needed for
documents that contain only text and bitmapped images.

To enable GeX, use the "-ox" switch on the VTEX com-
mand line.

Notice that GeX works only in the PDF backend mode;
in other modes the "-ox" switch has no effect.

Syntax

Supported PostScript operators
GeX currently supports a large subset of PostScript, includ-
ing most of Level I and a few Level II operators. A full
list of supported operators appears in the GeX reference
documentation which is part of the distribution.

Since not the PostScript operator set is supported in its
entirety, it is possible (and even easy) to write a valid
PostScript code which will be rejected by GeX; on the
other hand, the supported subset includes all the “practi-
cally” useful operators, so GeX would handle correctly es-
sentially every .eps that appears in real life. Testing of
GeX on a large random set of .eps files downloaded from
the Internet shows that GeX correctly handles more than
99% of them.

Supported additional operators
GeX also understands a number of extra operators, of
which the most important ones are listed below.

〈int〉 .autofontload If the integer argument is non-zero,
GeX will query the type1.rc file when the findfont op-
erator cannot resolve a font name. The default is not to
load fonts implicitly and substitute Helvetica. This opera-
tor is useful for processing MetaPost-generated code; see
the explanation at the end of this article.

Voorjaar 1999 117



software Taco Hoekwater & Michael Vulis

〈string〉 .loadfont Loads a Type 1 font into the inter-
preter. The argument should be a string containing a font
name. Only fonts listed in type1.rc can be loaded.

〈int〉 .setdigits This command sets the number of emit-
ted fractional digits in the generated PDF output to an inte-
ger argument. The default value is two, which is the best
value for most applications and devices. Only high-end
applications may benefit from a larger value and only non-
printable web-only files can do with a lower value.

.extend Will be explained below, in the section about ex-
tending GeX.

〈int〉 .enabletransfer A problem which arises with some
.eps images is the use of the settransfer PostScript and
related operators. The problem is that these operators are
used for both device-dependant and device-independant
color manipulations. The first usage is more common and
is essentially for minor color adjustments. In such situ-
ations the best strategy for producing device-independant
.pdf files is to disregard the transfer altogether. This is the
default behaviour of GeX (and of the Acrobat Distiller).

However, in some (fortunately rare) .eps files the same
operators are used to effect major device-independant ad-
justments. An example of such an adjustment would be
the invertion of a black-and-white picture; this can be done
with the

{ 1 exch sub } settransfer

PostScript code snippet. Disregarding this code will pro-
duce an inverted image. Thus, both Acrobat Distiller and
GeX allow the user to process this inversion. In the case
of Distiller, the override is a global Job option which will
apply to all parts of a document; GeX allows one to over-
ride the handling of only an individual image. This is ac-
complished with the extention operator .enabletransfer.
With an argument of zero, .enabletransfer disables pro-
cessing of the settransfer code; a non-zero argument en-
ables settransfer processing. Figure 1 is an example of
a small .eps file that uses transfer code.

.tkwrite .tkread .tklength These operators are ex-
plained below.

Using GeX

If you are going to use GeX only for inclusion of ready-
made .eps files, you should use a high-level package like
graphics rather than VTEX’s \special’s and disregard
the rest of this section and paper. The same applies if you
intend to use GeX with supported inline PS packages like

PStricks, PSfrag or Seminar. In all these cases, the config-
uration files tuned up for GeX are supplied and knowledge
of the low-level details in unneeded.

However, these details provide the framework for addi-
tional power to be realized in future packages for mixing
text and graphics.

The GeX engine is invoked from VTEX with the following
two \special’s:

\special{ps: ...} is used to pass a file to GeX
\special{pS: ...} is used to pass commands to GeX

With GeX enabled, VTEX allows you to precede a
\special with the \immediate command. \immediate
\special’s are passed to GeX right away, while TEX is still
doing formatting.

The PDF code generated in immediate mode can be re-
used, see the section below on re-using pdf code. Of course
the immediate mode can also be used to do calculations.

TEX-GeX interface

The communication interface between TEX and GeX con-
sists of three additional operators:

.tkread to read the contents of a TEX \toks register

.tkwrite to write to a TEX \toks register

.tklength to find out the length of a TEX \toks register

The syntax of these operators is as follows:

〈int〉 〈string〉 .tkread⇒ 〈int〉 〈string〉
where the 〈int〉 parameter should be in the range 0
through 255 and designate a TEX token register; the
〈string〉 parameter is the receiving string. In the output,
the integer value is the new length of the string; the
string contains the contents of the \toks register.
〈int〉 .tklength⇒ 〈int〉
where the 〈int〉 parameter should be in the range 0
through 255 and designate a TEX token register; the
output integer is the length of the contents of the TEX
\toks register.
〈boolean〉 〈int〉 〈string〉 .tkwrite⇒
where the 〈boolean〉 argument defermines if the data
should be appended to the \toks contents (true) or
overwrite it (false); the 〈int〉 parameter should be in
the range 0 through 255 and designate a TEX token
register; the contents of the 〈string〉 parameter will be
placed into the specified \toks register.

Note: During .tkread a rangeerror may occur if the
\toks register contains more characters than can be placed
into the receiving string; one can use the .tklength opera-

118 MAPS



Introducing GeX software

Figure 1. On the left the figure included with default settings. On the right the figure as it would appear after enabling
settransfer.

tor to find out how big the receiving string should be before
allocating it.

Note: Control sequence tokens withing TEX token strings
are converted into spaces during .tkread; they are counted
as single characters in .tklength.

Note: Token strings produced by .tkwrite contain only
tokens with TEX \catcode 12 (other).

Re-using pdf code

VTEX allows you to re-use the pdf code that is generated by
the \immediate form of the \special{pS:...} operator.

During the \immediate output, the pdf code is written to
a temporary stream. Any \immediate\special{pS:...}
operator opens such a stream (unless it is already opened by
another operator); the currently opened stream, if it exists,
is destroyed at the moment of shipout. Thus, by default,
everything written to immediate streams is lost.

To preserve the contents of an immediate stream,
use the \special{ice} command. This command
closes the immediate stream; the new TEX count register
\pdflaststream can be used to retrieve the handle to the
closed stream that was just closed. The command

\special{!stream \the\pdflaststream}

can be used to re-insert the frozen stream into the TEX ma-
chinery; it will be emitted during the normal shipout.

Notice that the \special{ice} command must be is-
sued in the \immediate mode (otherwise, there will be no
stream to freeze by the time it gets processed); on the other
hand, \special{!stream ...} must be deterred till the
\shipout.

If you generate pdf code during the \immediate mode,
you should realize that the positioning of your code will
not be known until the time of the \shipout. Thus, the

PostScript currentpoint is not really defined. The way
to overcome this problem is to initialize the current point
to (0, 0) by executing 0 0 moveto at the beginning of the
\immediate stream.

The data inserted in the output during the
\special{!stream...} processing is offset by the
currentpoint as computed during the \shipout.

Extending GeX

The major new feature added in VTEX 6.3 is GeXX. The
second “X” stands for eXtensible. With GeXX you can
supplement the existing set of operators with new con-
structs, implemented in C or C++.

In the Linux version, the extension libraries are standard
shared objects (.so), implemented with gcc/g++. While the
GeX API seems C++ at first sight, it is actually standard
C. The GeX API is portable, so the same extension can be
compiled for both Linux and Windows (under Windows it
would become a .dll). At this moment the only supported
compiler under Windows is BC, but it is likely that other
compilers and languages can be used on both platforms.

The libraries are not referenced from the executable, so
you can create new ones as you desire; a single library can
implement multiple extentions, and multiple libraries can
be loaded in the same job.

To enrich GeX with new operators, you should

Implement them within a C-language library
Call the .extend operator to load the new language
extensions
Provide additional TEX and/or PostScript code for easy
access to the new operators

Note: To be visible to the compiler, the extension library
should be placed into the vtex/bin/gex subdirectory.

Voorjaar 1999 119



software Taco Hoekwater & Michael Vulis

An extention library is only required to export three func-
tions:

1. A function that returns the version of the interface
as defined in gexi.h (If the version returned by the
extention library does not match the version needed for
the VTEX compiler, the library is not loaded)

2. A function that returns the number of extensions that
are implemented

3. A function that returns the PostScript names of the new
extensions and a pointer to the function that should be
called when a specific extension is encountered

If you decide to make your extentions publicly available,
you should make sure that it is clear for which version of
VTEX the extention is designed. This means either supply-
ing the extention in the source form (recommended), or at
least mentioning the version number in a readme file. Pub-
lic distributions of VTEX/Linux will be glad to host your
extentions.

Writing an extention operator
An extension operator should be declared as an int func-
tion; its solo argument is the GeX interface structure, GEXI.

The majority of the methods provided by GEXI corre-
spond one-to-one to either PostScript operators with the
same names, or GeX extention operators (.tkread, for ex-
ample). The only exceptions to this at the present time are
the methods that deal with the PostScript operand stack;
these methods are used to retrieve (and, later, pop) the ar-
guments provided on the operand stack.

Loading an extension library
To load an extension library, execute the .extend operator.

The syntax is: 〈string〉 .extend⇒ 〈int〉
where the 〈string〉 argument contains the name of the li-
brary file with the language extentions (without the file ex-
tension) and the returned 〈int〉 is the number of extention
operators loaded.

The .extend operator will fail with an error if:

the specified DLL cannot be found
the specified DLL does not export all three required
functions (Count(), Version(), Names())
the version returned by the DLL does not match the
version of the VTEX compiler

In all three cases, .extend will cause a PostScript
fileerror.

PieChart
PieChart is a real-life example of using GeXX, which im-
plements MS Word-like PieCharts in TEX. The implemen-

tation consists of

piechart.[dll|so], the extension library.
piechart.Sty, a LATEX2E style for using PieChart.

Here is some sample code using PieChart:

%% Define some colors
\definecolor{lightyell}{rgb}{1,1,0.75}
\definecolor{peach}{cmyk}{0,0.50,0.70,0}
\definecolor{orange}{cmyk}{0,0.61,0.87,0}
\definecolor{navyblue}{cmyk}{0.94,0.54,0,0}

\begin{center}
Shares of \TeX\ dialects:\par
\fbox{\begin{PieChart}[rt]{1.8in}
\PieSlice{orange}{65}{Other}
\PieSlice{yellow}{20}{\LaTeX\ 2.09}
\PieSlice{navyblue}{10}{AmS\TeX}
\PieSlice{green}{4}{Plain \TeX}
\PieSlice{lightyell}{1}{\LaTeXe}
\end{PieChart}}
\end{center}
%%

and a sample PieChart produced by this extension:

Shares of TEX dialects:

LATEX 2ε
Plain TEX

AmSTEX

LATEX 2.09

Other

The PieChart package has been written by Alex Kostin
at MicroPress.

Bugs

Being a pilot implementation with source of about 15000
lines of code, GeX undoubtly has many bugs. More than a
hundred of them were fixed since the happy moment in July
when we thought it more-or-less worked (and were proven
wrong on testing of huge set of real-life .eps’s from di-
verse sources).
In the aggravation of fixing what we thought was a working
program, we discovered that the bugs came in three flavors:

120 MAPS



Introducing GeX software

Our bugs
Peculiarities (often undocumented) of the PostScript
language
Bugs (or problems) in Adobe Software

Bugs of our implementation (important for us for senti-
mental reasons) are not worth discussing here; but some of
the other bugs are definitly worthwhile mentioning.

Degenerate matrices
Near-degenerate matrix transforms cause a serious prob-
lem with the Acrobat’s 16-bit computational limit. It can
be shown that the problem is not solvable correctly in gen-
eral; and Adobe Acrobat Distiller fails on degenerate trans-
forms.

The example file

% lwid.ps
0 0 moveto
gsave 100 200 lineto 2 3 scale 1 0 0

setrgbcolor stroke grestore
gsave 200 100 lineto 0.5 0.3 scale 0 1 0

setrgbcolor stroke grestore
gsave 200 200 lineto 0 0 1 setrgbcolor

[0.186718 -0.565306 0.873838 -2.64563 0 0]
setmatrix

stroke grestore
showpage

should produce three lines from the origin. Distiller, how-
ever, will miss the middle line. GeX, on the other hand,
will produce correct output:

Near-degenerate matrices are not a perverted abberation:
they tend to be generated by some common software, es-
pecially CorelDraw. The particular set of numbers in the
source above came from a Corel example.

While GeX does the work correctly in all cases, some
distortion in the line widths is possible and is not avoidable.

Level 1 strokeadjust
Some graphics programs (Freehand is one) output Level
I PostScript code which fits the coordinates to an integer
grid. This code, if executed literally, will produce rather
disasterous results with GeX.

The nature of the problem is a bug (or feature) in the
Freehand adjustment code which does not bother to check
for the device matrix and assumes that it corresponds to the
output pixel resolution of 300 dpi or higher (which would
imply a device matrix [4 0 0 4.. ..]). However, the
GeX device matrix is chosen to be an identity, to avoid
extra rounding by TEX’s ⇔ GeX’s coordinate translation.
This causes extremely coarse coordinate rounding (72dpi)
in the default case.

An example of this effect is provided in the VTEX/Linux
distribution.

Font name collision bug
There seems to be a bug in many versions of Acrobat
which results in (different) fonts with names starting with
|------... being treated as a single font. To avoid this
problem, we replace such names with |xxxxxx... .

Encoding bug
Under Windows, the Acrobat Reader seems to ig-
nore the /StandardEncoding specification and uses the
WinAnsiEncoding instead. This may lead to incorrect
character substitution for some codes in the 2nd half of the
ASCII set.

To overcome this problem, VTEX always includes the
encoding vector, even if the font is not reencoded.

Dirty Tricks and examples

show redefinition
In order to accomodate packages such as PStricks and
PSfrag, VTEX keeps track of redefinition of the show
PostScript primitive within the GeX engine. In addition
to supporting the mentioned packages, this allows rather
nice font effects to be implemented with very simple inline
code.

Simple outline The examples below were produced with

\def\outl#1{\special{pS: save /show{false
charpath stroke}def}#1\special{pS: restore}}

Wider outline with color The macro

\def\outla#1{\special{pS: save /show{false

Voorjaar 1999 121



software Taco Hoekwater & Michael Vulis

3 setlinewidth 1 0 0 setrgbcolor charpath
stroke}def} #1\special{pS: restore}}

produces

Filled letter with outline

\def\outlb#1{\special{pS: save /show{false
charpath gsave 2 setlinewidth 1 0 0 setrgbcolor
stroke grestore 0 1 0 setrgbcolor fill}def}
#1\special{pS: restore}}

produces

Charpath shown
We can also get inside the character representation

(something which PostScript would not do on Type 1
fonts):

\def\outlc#1{\special{pS: save

/rct{
newpath 0.5 add exch 0.5 add exch moveto
currentpoint exch -1 add exch lineto
currentpoint -1 add lineto
currentpoint exch 1 add exch lineto
currentpoint 1 add lineto stroke} def

/show{
false charpath gsave
0 setlinewidth 1 0 0 setrgbcolor
stroke grestore
0 setlinewidth 0 0 0 setrgbcolor
{rct}
{rct}
{rct 1 0 0 0 setcmykcolor
rct rct 0 0 0 setrgbcolor}
{} pathforall }def}
#1\special{pS: restore}}

to obtain:

Fragment repositioning
Several examples in PSTricks use the PostScript com-
mands to move the text around in order to land it in an
appropriate place on a drawing.

VTEX keeps track of PostScript attempts to group the
TEX output; when such activity is detected, VTEX generates
PostScript code rather than PDF and feeds this code into the
GeX engine.

MetaPost support

While GeX can handle MetaPost-generated files, it is im-
portant to state that MetaPost outputs invalid EPS files.
Rather than use the standard fonts or embed fonts in EPS,
MetaPost merely includes declarations like:

/cmr10 /cmr10 def

and expects post-processing to find and substitute the fonts.
Instead of such post-postprocessing, GeX ignores (pro-
cesses, which is the same really) this declaration, but
requires either explicit loading of needed fonts via the
.loadfont extension:

\special{pS: /cmr10 .loadfont}

(one such command for each required font) or enabling of
the autoloading feature via the .autofontload extension

\special{pS: 1 .autofontload}

These commands must be issued before a MetaPost-
generated file is actually included.

Acknowledgements

The authors wish to express thanks to:

Alex Kostin for extremely heavy testing of preliminary
versions of GeX and finding a few dozen glitches.
Denis Girou and Timothy van Zandt for cooperation and
help in cleaning bugs in PStricks and Seminar which
made their use with GeX possible.

122 MAPS


