
fontsBogusław Jackowski
BOP s.c.
ul. Piastowska 70
80-363 Gdańsk, Poland
B.Jackowski@gust.org.pl

Janusz M. Nowacki
FOTO-ALFA
al. 23 Stycznia 56d
86-300 Grudziadz, Poland
J.Nowacki@gust.org.pl

Piotr Strzelczyk
BOP s.c.
ul. Piastowska 70
80-363 Gdańsk, Poland
piotrs@telbank.pl

Antykwa Półtawskiego:
a parameterized outline font

editor’s note
This paper originally appeared as ‘Antykwa Półtawskiego: a parameterized outline font’, pages
117–141, in EuroTeX’99 Proceedings Paperless TEX, Günter Partosch and Gerhard Wilhelms
(eds.), s.l., 1999

No doubt, METAFONT is a powerful programming language, well-suited for designing
fonts, in many respects much better than popular WYSIWYG programs (precision, possib-
ility of complex constructions, etc.); and, no doubt, there are thousands of fonts used all
over the world, only a negligible fraction of them being designed using METAFONT.

Computer Modern inheritance

The final exhortation of The METAFONT book ([1]): “GO FORTH now and create master-
pieces of digital typography!” suggests that Donald E. Knuth, when he designed META-
FONT, presumed that his idea of parameterized fonts would find many followers. Unfor-
tunately, his expectations failed. Why? The reasons are manifold.

One of the most important aspects is perhaps the exceptional programming talent of
Knuth – his style is not so easy to follow. The family of Computer Modern fonts is very
intricate: more than hundred files containing nearly a megabyte of METAFONT code. They
are rather complex – Knuth modestly admits in The METAFONT book.

The question arises whether the complexity of the Computer Modern family reflects
the nature of the problem (i.e., type design) or rather Knuth’s personal traits. We would
incline to the latter opinion. A herd of 62 parameters may raise doubts, the more so as they
control not only dimensions and slanting, but even the presence of serifs. Questionable
also is Knuth’s design decision to keep the continuous change of the proportions of glyphs
along with the change of font size – it perceivably deteriorates the quality of glyphs in
smaller fonts (5–7pt).

Knuth was apparently aware of weak points of the Computer Modern design. In
The METAFONT book he admits: they [the Computer Modern typefaces] were developed
rather hastily by the author of the system, who is a rank amateur at such things.

Parameterization was certainly a great idea, but it seems that Knuth went too far in
exploiting it.

Bitmaps versus outlines

Most harmful to the potential success of METAFONT as a tool for type designers was
perhaps Knuth’s adherence to the bitmap representationof fonts. Although in METAFONT

all graphic objects are represented by outlines (Bézier curves), METAFONT’s primary task
is to generate bitmaps. Therefore the outline representation of glyphs was unimportant for
Knuth.

For example, the letter ‘S’ of cmr10 consists of five pieces filled and, worse still,
stroked with a circular pen (Fig. 1). Many tricks of this kind can be found among the
Computer Modern programs: stroking with various pens, erasing (dish serifs), copying
bitmaps (German double ‘S’ in cmcsc10), etc.

86 MAPS

Antykwa Półtawskiego:a parameterized outline font fonts

Figure 1. The construction of the letter ‘S’ of cmr10: five separate elements are stroked with a
pen and filled.

Such an approach is satisfactory as long as the resulting bitmap is the main concern.
The fact is that TEX bitmap fonts have not become a worldwide standard. Instead, outline
font formats, Type 1 (PostScript) and TrueType (Windows; its PostScript equivalent is
known as Type 42), have won the competition.

The problem is that there does not exist a simple method of conversion of META-
FONT bitmap-oriented programs into a purely outlined form. Some preliminary results
(by Andreı̆ Slepukhin, [2]) show that it could be devised specifically for the Computer
Modern family, but:

1. the reasonableness of such an effort is doubtful;

2. the converter can be neither efficient nor reliable.

Richard J. Kinch, a staunch devotee of outlines ([4], p. 134) developed an interesting tool
for an interactive conversion of Computer Modern fonts to an outline form, MetaFog ([3]).
Recently, several fonts were prepared by Taco Hoekwater ([5]) using this technology.

In spite of the successes of Kinch’s approach, it looks as if re-writing the Computer
Modern programs from scratch were more advisable. Still better would be to have a macro
package facilitating the creation of outline fonts. But is METAFONT the most adequate
tool for such a purpose?

METAFONT versus METAPOST

In 1989, five years after the first release of METAFONT
1 , METAPOST ([6]) came to this

world. The originator was John D. Hobby, who designed many of the elegant algorithms
employed in METAFONT. Hobby realised that METAFONT is an excellent tool for design-
ing graphics, not only fonts, and that bitmap output is a severe limitation. His idea was to
use the METAFONT language to create PostScript output. He did not consider, however,
making a tool for generating PostScript fonts. Fortunately, his adaptation was sufficiently
general to admit font applications as well.

Again, a question arises: does it make sense to force METAPOST to do things for
which it was never intended? The answer is equivocal.

There are some interesting features present in METAFONT and absent from META-
POST, and vice versa. For example, the measuring of arc length is absent from META-

1. Actually, the first version of METAFONT appeared in 1979. Having gathered experience, Knuth re-
leased a new version of METAFONT in 1984, re-written form scratch and incompatible with the pre-
decessor. In the source of METAFONT, mf.web, the history of METAFONT starts with the statement:
Version 0 was completed on July 28, 1984.

Najaar 2000 87

fonts Jackowski, Nowacki and Strzelczyk

Figure 2. Antykwa Półtawskiego: letters and digits (lead print).

FONT and present in METAPOST, whereas METAFONT, but not METAPOST, is capable
of measuring the area tinted by filling a cyclic path.

From the point of view of the generation of outline fonts, both programs need postpro-
cessing: with METAFONT one has to analyse either a generic font file or a log file; with
METAPOST the resulting EPS files are to be processed.

It is intuition that remains in such ambiguous situations – it told us: METAPOST.

Antykwa Półtawskiego

The best method of the verification of intuition is to deal with a real-life case. None of the
authors is a professional type designer, so we could not even dream about designing a font
ab ovo. Fortunately, there exists an elegant typeface, designed in the ’twenties by a Polish
typographer, Adam Półtawski (Fig. 2). It was a tempting challenge to test our intuition
against Półtawski’s typeface.

In the sequel we shall use the Polish name “Antykwa Półtawskiego” instead of the
English translation “Półtawski’s Antique,” as the word “antique”– according to the Collins
dictionary – means: a family of typefaces having all lines of nearly equal thickness. This
is not true with Półtawski’s design. As you can see, it resembles rather neoclassical (also
called modern) typefaces.

At first glance, Antykwa Półtawskiego looks very regularly, almost austere. A close
inspection, however, reveals many surprising details (Fig. 3).

Studying the imprints of Antykwa Półtawskiego, we found ourselves in the position of
the explorers of pyramids: we had to conjecture the rules governing shapes and propor-

Figure 3. Antykwa Półtawskiego: characteristic details and features. Observe polygonal dots,
unconventional letters ‘g’, ‘y’ and ‘w,’ and queer right-angled hooks in ‘j’ and ‘f’. Note also the
neatly stroked ribbon-shaped diacritical elements of the Polish ‘l’ and ‘L’ – certainly, they cannot
be called “slashes.”

88 MAPS

Antykwa Półtawskiego:a parameterized outline font fonts

Figure 4. Common faults of outline design and avoiding them; the letter ‘Aogonek’ in the top
line comes from the standard set of Windows fonts (Arial CE Bold).

tions from faint evidence (or even none). Our situation would improve if we had access
to the original Półtawski templates. So far, we have not managed to track them down, but
there remains a spark of hope that they exist somewhere.

The bright side of this otherwise confusing situation is that it compels us to looking for
a general and flexible approach. Otherwise, we could easily get lost among the peculiarit-
ies of Antykwa Półtawskiego.

What we actually expect to obtain is a family of typefaces (not as broad as Computer
Modern) resembling Antykwa Półtawskiego. If we have luck, one member of the family
may happen to replicate nicely the original Antykwa Półtawskiego design, but it is not
crucial. Much more important is the possibility of generating font variations on the fly.

A glance at outline paradigms

A compendious survey of technical aspects concerning outline fonts can be found in the
Adobe manual concerning Type 1 fonts ([7]); we summarize here only the most important
and general (PostScript-independent) ones.

Direction of paths. In Type 1 fonts, paths to be filled and to be unfilled have different
orientation: the former – anticlockwise, the latter – clockwise (Fig. 4A). We decided to
follow this convention, although neither METAFONT nor METAPOST requires it.

Overlapping paths. Overlapping paths should be banished forever from outline fonts.
It should be noted, however, that many font vendors, including the celebrated Microsoft,
distribute fonts that do not follow this fundamental rule (Fig. 4B), which may cause un-
wanted effects. Therefore the operation of joining two outlines should belong to the set of
basic tools for generating outline fonts (cf. Sec. Removing overlaps below).

Najaar 2000 89

fonts Jackowski, Nowacki and Strzelczyk

Conciseness. The outline of a glyph should contain as few segments as possible
(Fig. 4C). For example, consecutive co-linear segments should be replaced by a single
one. Users of METAFONT and METAPOST should be aware of the problem of “ tiny seg-
ments” : joining two paths obtained by an intersection operation (intersectionpoint or
interseciontimes) may lead to nearly coincident and thus superfluous nodes. It is an
admittedly subtle problem, yet important from the point of view of the construction of tidy
outlines (cf. Sec. Joining paths below).

Points at extremes. The number of segments should not be too small either. Putting
nodes at extremes helps rasterizers to transform glyphs accurately. In particular, reposi-
tioning nodes in a slanted font may prove beneficial (Fig. 4D). This implies that a single
segment of a Bézier curve should not turn by more than 90 degrees. The points of inflec-
tion should also be avoided.

A glance at tools for assembling outlines

The set of tools for generating outlines should facilitate complying with the rules summar-
ized in the previous section. We describe here a few representative tools we implemented.
Hopefully, it should suffice to convey the most important issues.

Joining paths. The simplest tool is perhaps an operator for joining paths that have ends
nearly coincident:

def && = amp_amp_ whatever enddef; % a common postfix-notation trick
%
tertiarydef p amp_amp_ q = % |length(p)>0|
(subpath(0,length(p)-1) of p) ..
controls (postcontrol length(p)-1 of p)
and (precontrol length(p) of p) ..

enddef;

You use this operator like a normal ampersand, e.g.:

p && q && cycle

The only difference is that if the edge nodes do not exactly coincide, you must not use a
single ampersand; double ampersand works in both cases: it simply removes the former
of two nodes. (Note that if nodes are actually distant, you may obtain weird results.)

In the METAFONT sources of Computer Modern, tiny segments appear regularly
whenever two paths intersect, for example in the arrows of cmsy10 (Fig. 5). Such seg-
ments are harmless from the point of view of generating bitmaps. They can, however,
cause quite a lot of commotion from the point of view of outline construction: the path
shown in Fig. 5 yields strange values of the turningnumber function, depending on the
actual resolution:−1 for a laser printer mode (300 dpi), and−3 for a phototypesettermode
(1270 dpi).

It is numerical instability that is responsible for the singular behaviour of METAFONT

and METAPOST. Tiny segments may form loops having an impact on the result of the
turningnumber operation; thus, the important characteristic of a path, its turning number,
is not reliable if paths are constructed incautiously.

Tangency is another feature of geometric objects that leads to numerical instability. For
example, the turning number for a path defined as

(0,0)--(0,-1){up}..(1,1)--cycle

90 MAPS

Antykwa Półtawskiego:a parameterized outline font fonts

0

12

345

6 7 8

9 10

Figure 5. The rightward arrow from cmsy10. The outline of the arrow contains two pairs of
nearly coinciding nodes: 3, 4 and 7, 8. Their coordinates for a Linotronic mode, 1270 dpi, read:
(150.4547, 42.00003), (150.4547, 41.99976), (150.4547, 46.00024), and
(150.4547, 45.99997), respectively, which causes a strange turning number of the path (equal
to −3).

is 0, whereas the value becomes 1 after reversing the path. The reason behind this
somewhat-amazing result is that the path turns by 180 degrees at the node (0,−1), i.e.,
the path is locally self-tangent.

In general, the problems caused by numerical instability cannot be solved automat-
ically: only a careful control over the details of the construction of a path may help to
overcome the unwanted consequences of the instability. This is exactly the reason why
a universal, efficient and reliable converter from a bitmap-oriented METAFONT program
into a tidy outline form is hardly imaginable (cf. Sec. Bitmaps versus outlines above).

A problem in elementary geometry. Elementary geometry prompts constructions that
prove useful in computer type design. An example of such a construction is the computa-
tion of a side of a right-angled triangle, given its hypotenuse (c) and the length of one of
its sides (b):

tertiarydef c side b = % |pair c; numeric b;|
begingroup
save a; pair a;
% |(length(c)+-+b)=length(a)|
c=a+b/(length(c)+-+b)*(a rotated -90);
a
endgroup
enddef;

The following example illustrates the application of the macro side: given the height h

and width w of a rectangle, construct a band (parallelogram) of the width b inscribed in
the rectangle (Fig. 6A).

The construction with a ruler-and-compasses method is elementary (Fig. 6B):

1. draw the rectangle in question (let’s call its diagonal c);

2. draw in one of the corners of the rectangle (say lower-right – node 0 in Fig 6C) a
circle of radius b;

3. draw the side a, i.e., a straight line tangential to the circle and passing through the
opposite end of the diagonal (node 2).

The crossing point of the side and the base of the rectangle is one of the two remaining
corners of the parallelogram (node 3); the other remaining corner (node 1) can be found
similarly.

This construction can be translated to METAPOST as follows:

Najaar 2000 91

fonts Jackowski, Nowacki and Strzelczyk

b

w

h

A

|c|
= √

w 2
+

h 2
= √

|a| 2
+

b 2

b

a

B

0

12

3

C

Figure 6. Inscribing a band (a parallelogram) in a given rectangle: a typical example of
construction of a side of a right-angled triangle; more explanations in the text.

z0=(w,0); z2=(0,h);
z1=z0+whatever*(z2-z0 side -b); y1=y2; % this fixes node 1
z1-z2=z0-z3; % this fixes node 3 by symmetry

The clue is the expression z0+whatever*(z2-z0 side -b) which can be interpreted as
“ somewhere on a straight line covering the side a.”

Slanting: another problem in elementary geometry. Slanting (in the art of type
design) is not as simple an operation as it may look at first glance. We already noted that
slanting necessitates adding points at extremes (Fig. 4D). Furthermore, slanting should
not affect the width of stems (see Fig. 7A).

Assume that the stem slope is given by a vector d and that its resulting breadth after

b b

slant=0.35

A

b
b

slant=0.35

B

Figure 7. A capital lambda from an imaginary grotesque font: slanting (exaggerated here)
usually affects the width of stems (A), but this effect can (and should) be neutralized (B).

92 MAPS

Antykwa Półtawskiego:a parameterized outline font fonts

slanting by a slant s should be b; the initial breadth of the stem (i.e., prior to slanting),
b′, is given by the following formula, in the sequel referred to as the “ slant correction
formula” :

b’=b*length(unitvector(d) slanted s)

The result of taking this correction into account is displayed in Fig. 7B.

An advanced problem in elementary geometry. Consider now a “mixture” of two
previously demonstrated problems: assume that we want to inscribe a band into a given
rectangle in such a way that after slanting by a given slant it will have the width b. Neither
the macro ‘side’ nor the formula for the correction of a stem width can be applied expli-
citly, as both initial and final slopes depend on each other.

The solution is an iterative algorithm:

1. use the macro ‘side’ to find the band of the width b for the non-slanted case;

2. find the corrected stem width b′ using the slant correction formula;

3. set b← b′ and repeat the steps (1)–(3) until the process converges (in practice 3–4
steps suffice).

The code is here, in case you’re curious:

primarydef c /\ b =
% A variant of the |side| procedure that iteratively counteracts
% a slant deformation; given: |slant|: a slant (global),
% |c|: the hypotenuse (vector) of a right-angled triangle,
% |b|: the length of one of its sides; result: the other side
% of the triangle (vector).
if slant=0: (c side b) else:
begingroup save b_,b__, n; b_:=b__:=b; n:=10;
forever:
b_:=b*length(unitvector(c side b_) slanted slant);
exitif (abs(b_-b__)<.01) or (n<=0);
b__:=b_; n:=n-1;

endfor
if (abs(b_-b__)>=.01): errmessage "Iteration hasn’t converged"; fi
c side b_
endgroup
fi
enddef;

Examples of the use of this macro can be found in many places in the sources of Antykwa
Półtawskiego.

Removing overlaps. As the last general-purpose tool, we consider the operation of
“welding” outlines, also known as “ removing overlaps.” Most WYSIWYG graphic pro-
grams are equipped with such an option. Surprisingly enough, this operation is missing
from the set of standard tools for METAFONT/METAPOST.

The set of macros implementing the relevant outline operations, ROEX ([8], [9], [10]),
has never become popular (we know about a few people using it) which is understandable,
considering the size of the code (70 kB) and the relatively low efficiency and robustness
of the employed algorithms.

It should be emphasized, however, that algorithms accomplishing operations of this
kind cannot be fully reliable because of the above-mentioned numerical instability prob-
lems (cf. Sec. Joining paths above). Nonetheless, when used in a disciplined way, they

Najaar 2000 93

fonts Jackowski, Nowacki and Strzelczyk

A B

C D

Figure 8. Rudimentary set-theoretic operations on outlines: union (A), subtraction (C, D), and
intersection (D); the operations are accomplished by a single macro, depending on the
orientation of paths: anticlockwise paths are marked with a solid line, clockwise with
a dashed line.

prove to be extraordinarily useful: the source code is compact and comprehensible. There-
fore, for the purposes of work on Antykwa Półtawskiego, we devised a simplified version
(4 kB) of the algorithm accomplishing set-theoretic operations (Fig. 8).

The relevant macro takes two cyclic path as arguments, intersects them and assembles
the result according to the orientation of the input paths: if both paths are anticlockwise,
the result is the union of the two paths, if both are clockwise – the result is the intersection,
otherwise the clockwise path is subtracted from the anticlockwise one. In fonts, the first
situation occurs most frequently (‘x’ or ‘ lslash’), but sometimes, due to the paradigm of
having two input paths only, other operations can also be necessary (‘oslash’).

Specific tools for Antykwa Półtawskiego

So far, we have demonstrated a set of basic tools expediting the work on type shapes.
Obviously, each font has its own peculiar yet regular features, having an impact on the
font appearance as a whole. The glyph programs should reflect all regularities of the font.

A “building blocks” paradigm. Our general aim was to create a set of “building blocks”
– macros returning paths rather than a set of relations (dependencies) such as, e.g., the
plain macro penpos returns – and a set of operators for handling the paths. The glyphs are
assembled from the “building blocks” with the help of the operators.

Let’s look into the code of the letter ‘H’ (the numbering of lines, of course, does not
belong to the code):

1. beginglyph(H);
2. save serif_tl, serif_bl, serif_tr, serif_br; % local
3. path serif_tl, serif_bl, serif_tr, serif_br; path letter_H;
4. % fix serifs:
5. sym_serif4’((wd.H,0), down, uc_stem, uc_serif_jut)(serif_br);
6. sym_serif3’((wd.H,uc_height), up, uc_stem, uc_serif_jut)(serif_tr);
7. sym_serif4’((0,uc_height), up, uc_stem, uc_serif_jut)(serif_tl);
8. sym_serif3’((0,0), down, uc_stem, uc_serif_jut)(serif_bl);
9. % fix bar:
10. x1=x4=serif_tl.first.x; x2=x3=serif_br.first.x;
11. y1=y2=1/2uc_height; y4=y3=y2+thin_stem;

94 MAPS

Antykwa Półtawskiego:a parameterized outline font fonts

se
ri
f
br

se
ri
f
bl

se
ri
f
tr

se
ri
f
tl

Figure 9. The letter ‘H’ from Antykwa Półtawskiego; the construction of letterforms is based
on assembling “building blocks,” in this case serifs (marked with solid lines); triangles denote
the starting points of the serifs, the origin of the whole outline is marked with a circle; arrows
show so-called hints.

12. % assemble glyph:
13. letter_H = (serif_br--serif_tr--z3--z4--serif_tl--serif_bl--
14. z1--z2--cycle) start.default;
15. Fill letter_H;
16. % final touch:
17. fix_hstem(thin_stem)(letter_H);
18. fix_vstem(uc_stem)(letter_H);
19. fix_hsbw(wd.H,marg,marg);
20. endglyph;

The resulting letterform is displayed in Fig. 9.
As you can see, there are several parameters involved in the code: wd.H (lines 5, 6,

and 19), uc_stem (lines 5–8, and 18), uc_serif_jut (lines 5–8), uc_height (lines 6, 7
and 11), thin_stem (lines 11 and 17), and marg (line 9). Their meaning is supposed to be
self-explanatory.

The macro sym_serif (lines 5–8) constructs a serif based on a small number of para-
meters: the position of a chosen construction point and direction and the sizes of the stem
and jut. The result (an open path) is assigned to the last parameter (suffix). The number
of the chosen construction node is passed as an optional suffix parameter (see Fig 10 and
Sec. Serifs below); in this example, the positions of nodes 3’ and 4’ (lines 6, 8 and 5, 7,
respectively) are being fixed.

Such a scheme of defining “building blocks” and assembling outlines out of them has
proved very convenient. There are several macros in the Antykwa Półtawskiego package
defined in this way. Note, however, that the bar of the letter ‘H’ is constructed explicitly
(lines 10 and 11). It should be emphasized that it is not at all obvious which elements of
a font should be classified as “building blocks” and which not (cf. Sec. Unique features
below).

Postfix notation also proved to be handy in use in some cases. There are two ex-
amples of postfix operators in the quoted code: first.x (line 10) and start.default
(line 14). The former operator returns the x-coordinate of the last node of the argument
path (serif_tl); the latter operator shifts cyclically the numbering of nodes in such a way
that the rightmost lower point of the argument path becomes the first point of the resulting

Najaar 2000 95

fonts Jackowski, Nowacki and Strzelczyk

path. We will not dwell too much on this subject, as postfix notation should be regarded
as “ syntactic sugar” rather than as an important programming technique.

The final portion of the code of the letter ‘H’ contains three lines that deserve attention:

Lines 17–18 specify the information about vertical and horizontal lines (stems) which
have thickness to be kept uniform throughout the whole font. This information is used
by PostScript interpreters for improving the process of conversion of outlines into pixels.
The relevant PostScript operators controlling the process of conversion are called hints.
Some programs detect hints “automagically” by finding heuristically all feasible distances.
We decided that distances could be supplied explicitly without trouble, and thus only the
location of hints remains to be found by a heuristic algorithm.

Line 19 shifts the resulting glyph appropriately in the field of the character, adding
left and right side bars (margins; both equal to marg in this case). This procedure can
be regarded as a simplified version of the adjust_fit macro of the Computer Modern
programs.

Serifs. The shape of serifs is the feature of fonts acknowledged as most characteristic.
The shapes of serifs of Antykwa Półtawskiego noticeably differ from those of Computer
Modern ones; the manner in which the serifs are defined and used is also different.

Let’s have a look into the code of the sym_serif macro, the heart of the program for
the letter ‘H.’ Actually, it is an instance of a macro defining a serif with non-identical left
and right juts, asym_serif:

1. vardef sym_serif@#(expr start, in_dir, stem, jut)(suffix result) =
2. asym_serif@#(start, in_dir, stem, jut, jut)(result);
3. enddef;
4.
5. vardef asym_serif@#(expr start, in_dir, stem, l_jut, r_jut)
6. (suffix result) =
7. % |@#| -- if not empty, defines which point of a serif
8. % is to be placed at |start|; otherwise |z.basic| is meant
9. clearxy; save v_; path result; numeric result.ht, result.wd;
10. v_=signum(ypart(in_dir));
11. if (str @# =""): z.basic else: z@# fi=start;
12. % fix central part:
13. x1-x1’=x6’-x6=v_*spread_wd;
14. x2-x1=if v_>0: r_jut else: -l_jut fi;
15. x6-x5=if v_>0: l_jut else: -r_jut fi;
16. x2-x3=x5-x4=v_*serif_slab*slant; % the correction of slanted serifs
17. y.basic’=y0=y7=y2-v_*spread_ht;
18. y2=y1=y1’=y5=y6=y6’=y.basic-v_*serif_slab; y3=y4=y.basic;
19. % fix ending points:
20. z.basic^in_dir=z.basic’;
21. z0^in_dir=z1’^in_dir=
22. (z.basic’+1/2stem*stem_corr(in_dir)*unitvector(in_dir rotated -90));
23. z7^in_dir=z6’^in_dir=
24. (z.basic’+1/2stem*stem_corr(in_dir)*unitvector(in_dir rotated 90));
25. % define ‘‘hook’’ (alignment) points:
26. z3’=(x2,y3); z4’=(x5,y4); % for |slant=0|, |z3=z3’| and |z4=z4’|
27. % complete the construction:
28. result:=z0{in_dir}..z1--z2--z3--z4--z5--z6..{-in_dir}z7;
29. result.wd:=v_*(x3-x4); result.ht:=v_*(y3-y0);
30. enddef;

96 MAPS

Antykwa Półtawskiego:a parameterized outline font fonts

1 1’
33’ 44’

66’

0

2 5

7basic’

basic

s

w

h
1 1’

33’ 44’
66’

0

2 5

7basic’

basic

slanted by 15 degree

Figure 10. The construction of the serif of Antykwa Półtawskiego; the distances s, w, and h

correspond to the global parameters serif_slab, spread_wd, and spread_ht, respectively.
Observe the vertical edges of the serif after slanting.

Although the code looks entangled at first glance, it becomes elementary when illustrated
(Fig. 10). Still, it is worthwhile to supply a few words of explanation.

Line 11: the optional suffix parameter @# determines the position of a particular con-
struction point: an empty suffix refers implicitly to z.basic; otherwise it is a suffix of any
point used in the construction of a serif. Note that all construction points are used locally
(clearxy in line 9).

Lines 13 and 16–18: the global parameters used in the macro, namely, spread_wd,
spread_ht, serif_slab and slant, are common to the upper- and lowercase letters,
therefore they do not appear among arguments of the macro.

Line 16: this line reflects a somewhat uncommon design decision – we assumed that
the sides of the serifs should be vertical after slanting, hence an appropriate correction to
the position of nodes 3 and 4 is computed. For this reason, nodes 3′ and 4′ should be used
for vertical alignment prior to slanting.

Lines 20, 21, and 22: the binary operation aˆb, defined as a+whatever*b, is used in
the Antykwa Półtawskiego programs instead of the phrase whatever[a,b]; the latter form
can be used if both a and b are known, while the former requires only that the value of b
is known.

Lines 22 and 24: the stem_corr operation computes the slant correction formula for
a given slope (in_dir in this case; cf. Sec. Slanting: another problem in elementary geo-
metry above).

There exists a variant of a serif used in lowercase letters (see Fig. 11). It is constructed
and used in a very similar way to the serif just described, therefore we will skip the code.

Lobes. Lobes occurring in the lowercase letters ‘b,’ ‘ d,’ ‘ p,’ and ‘q’ are essential for the
appearance of Antykwa Półtawskiego. In particular, it is important that they are similar,
although not necessarily identical: ‘b’ and ‘d’ have (probably) different lobes from that of
‘p’ and ‘q’ (Fig. 11).

The definition of lobes complies with the scheme that the programs for the construction
of serifs manifest. In particular, the header of the macro lc_lobes resembles that of
asym_serif:

vardef lc_lobes@#(expr start, width, height, raise, drop)(suffix result)

Najaar 2000 97

fonts Jackowski, Nowacki and Strzelczyk

Figure 11. The construction of the lobes of Antykwa Półtawskiego (marked with a solid line).
Observe a slight difference of the lobes in ‘b’ and ‘d’ as compared to the lobes in ‘p’ and ‘q’
(the drop of the upper part). The job is done by the macro lc_lobes which calculates both
inner and outer edge appropriately oriented.

There are more kinds of lobes (letters: ‘ j,’ ‘ J,’ ‘ m,’ ‘ n,’ ‘ u’ , ‘U’ , etc.), but all of them can be
defined using the same paradigm, which unifies and thus facilitates the task of assembling
glyphs.

Unique features. Like the majority of fonts, Antykwa Półtawskiego contains many
characteristic details (such as the shape of the bottom part of the letter ‘g’ – Fig. 3) ap-
pearing in only one glyph. Sometimes it is natural to consider them as an intrinsic part of
the program for a given glyph, and sometimes it is reasonable to parameterize such local
features by defining macros or constants for a single use.

Working on Computer Modern, Knuth apparently faced the same problem. Dozens
of coefficients evidently introduced ad hoc can be encountered in the Computer Modern
programs. For example, the program for the roman letter ‘a’ contains several “magic”
numbers (the most striking ones are underlined):

...
if serifs: pos1(flare,180); pos2(hair,180);
pos3(vair,90); lft x1r=hround max(u,2.1u-.5flare); x3=.5w-.5u;
y1=min(bh+.5flare+2vair+2,.9[bh,h]-.5flare);
bulb(3,2,1); % bulb
else: pos1(5/7[vair,flare],95); x1l=good.x 1.5u; x1r:=good.x x1r;
pos3(1/8[vair,thin_join],90);
x3=.5w-.2u; top y1r=vround .82[bh,top y3r];
filldraw stroke term.e(3,1,left,.9,4); fi % terminal
pos4(stem,0); rt x4r=hround(w-2.5u+.5stem); y4=1/3[bh,h];
pos5(stem,0); x5=x4; y5=max(.55bh,2vair);
...

It seems that there is no simple answer to the question “ to parameterize or not to para-
meterize?” – the choice is unavoidably controversial.

Documenting Antykwa Półtawskiego

Knuth apparently did not think about literate programming in METAFONT (although
METAFONT itself is written in WEB), therefore there are neither tangle nor weave equi-
valents for the METAFONT language. Knuth equipped, however, the METAFONT system
with a simple formatting program, MFT, that converts a METAFONT source into a format-

98 MAPS

Antykwa Półtawskiego:a parameterized outline font fonts

Figure 12. An example of the formatting of the documentation of Antykwa Półtawskiego: the
excerpt from the documentation corresponding to the source quoted above.

ted TEX document. MFT is smart enough to be used in a literate style, though obviously
only for “weaving.”

The basic idea is the same as in Knuth’s WEB system: the METAFONT source is
interleaved with TEX code. It can be achieved due to a peculiar MFT convention, in that a
double percent sign has dual meanings: for METAFONT it denotes just a usual comment,
whereas for the MFT program it means that the text appearing after a double percent is to
be inserted verbatim into the resulting TEX document.

Obviously, the MFT program can also be used for formatting METAPOST sources.
A typical fragment of the “ literate documentation” of Antykwa Półtawskiego looks as
follows:

%% \---
%% In general, all objects are supposed to be drawn by the
%% {\bf endglyph} macro, i.e., all drawing operations are deferred.
%% The same concerns labelling, which necessitates redefinition
%% of labelling macros.
%% \-
%% Zak/lada si/e, /ze wszelkie operacje rysowania s/a ,,odraczane’’
%% i~realizowane dopiero przez makro {\bf endglyph}. To samo
%% dotyczy etykietowania, sk/ad konieczno/s/c przedefiniowania
%% makr etykietuj/acych.
%% \---
vardef pen_labels@#(text t) =
if project>2: % proofing level
forsuffixes $$=l,,r: forsuffixes $=t:
if known z$.$$: makelabel@#(str$.$$,z$.$$) fi;
endfor endfor
fi
enddef;

In this case, the TEX code invokes the macro \- which typesets the bilingual description of
the METAPOST source. The ensuing METAFONT code is formatted by the MFT program.
The result of the typesetting process is displayed in Fig. 12.

METAPOST, like METAFONT, is capable of generating hardcopy proofs. Actually,
METAPOST proofs are EPS files, therefore they can be used in a wider context than
METAFONT ones. In particular, they can be included into the formatted sources. We used
this technique in the Antykwa Półtawskiego sources. The examples of pages containing
proof illustrations are shown in Fig 13.

Najaar 2000 99

fonts Jackowski, Nowacki and Strzelczyk

Figure 13. The appearance of the documentation of Antykwa Półtawskiego: the METAFONT

source can contain references to proofs.

Postprocessing METAPOST output

The idea of postprocessing is rooted in the design principles of TEX. There are several
TEX-oriented utilities belonging to the standard TEX distribution: POOLTYPE, DVITYPE,
TFTOPL, PLTOTF, VFTOVP, and VPTOVF. In a sense, all of them, as well as TEX drivers,
can be regarded as postprocessors.

There are also METAFONT-oriented postprocessors: MFT, GFTYPE, GFTOPK, and
PKTYPE (TFTOPL and PLTOTF could also be included here).

So far, there are no publicly released postprocessors for METAPOST, but sooner or
later they are bound to appear, the more so as the METAPOST system is, actually, based
on postprocessing (METAPOST→ TEX→ DVI→ METAPOST).

Knuth insisted that his WEB system was independent of external systems: he pro-
grammed all the above-mentioned utilities in PASCAL. In the early ’eighties such an
attitude was plausible, but – in our humble opinion – it no longer is. Nowadays, there
exist stable, public domain systems for processing text and binary files. Our experience
shows that a lot can be achieved with the aid of a simple text file processor, AWK ([11]).
A few years ago, it was adopted as a part of the Gnu Project (GAWK) which guarantees
both stability and maintenance in the future. Since METAPOST generates well-formed
7-bit ASCII files, we decided to use GAWK for postprocessing METAPOST output.

A Type 1 font consists of a binary file PFB (or its hexadecimal equivalent, PFA), con-
taining the description of glyph shapes, and should be accompanied by a text metric file
AFM.

In theory, GAWK might have written the hexadecimally encoded PFA files, but there
is another tool, better suited for this purpose, namely, the T1UTILS package ([13]). It
contains both an assembler and a disassembler of Type 1 fonts. Obviously, we need the
assembler first of all, but the disassembler also proves useful from time to time.

Having METAPOST, GAWK and the Type 1 assembler, we are ready to accomplish the
process of generating Type 1 fonts. It consists of three steps:

1. METAPOST compiles the font source and writes each glyph to a separate EPS file;

100 MAPS

Antykwa Półtawskiego:a parameterized outline font fonts

additional information (e.g., hints, the name of a glyph, etc.) is written by special
commands and stored as PostScript comments after the header of an EPS file.

2. GAWK processes the resulting EPS files along with a few auxiliary (configuration)
files and creates an AFM file and an input file for the Type 1 assembler.

3. The Type 1 assembler translates the intermediate result generated by GAWK into a
PFB file.

In order to use the resulting font in TEX, one more step is needed: the installation of a font.
The main part of the task of the installation of a PostScript font is generating the relev-

ant TEX font metric file – TFM. This can be performed by using, e.g., a popular program
AFM2TFM by Tomas Rokicki. There are several packages facilitating the installation of
PostScript fonts for TEX, most notably fontinst ([12]). We decided, however, not to include
any of them into our METAPOST-to-Type 1 machinery.

The best tool for generating TFM files is of course METAFONT. At present, the sources
of Antykwa Półtawskiego are unuseable by METAFONT. We are thinking about preparing
a format acceptable to both METAFONT and METAPOST and adding one more step to
the process of the generation of Type 1 fonts: generating a TFM file by METAFONT from
the same source. It seems that, in general, there are no fundamental obstacles, but, as wise
people say, don’t count your chickens before they are hatched.

Conclusions

The process of generating Type 1 fonts turned out to be fairly efficient. It is comparable
with the process of generating PK files. Therefore, it is possible to generate the font
variations on the fly, in accordance with our postulates (see Sec. Antykwa Półtawskiego).
There remains the problem of the TEX-METAPOST interface, but that must be a matter
for the future.

There is, however, a distressing side of the story: is it worthwile to put a lot of energy
into an obsolescent Type 1 format? What about Multiple Master, TrueType, OpenType,
and a multitude of other fonts?

Adobe PostScript is a stable worldwide standard. So far, Adobe have paid attention to
the backward compatibility of PostScript versions. We hope that the situation will endure
for a few years more and that Type 1 fonts will be usable for a pretty long period.

From the point of view of TEX applications, the quality and the functionality of Type 1
fonts is sufficient. The advantages that can be gained by using METAPOST seem at least
equivalent, if not more valuable, than the glorified features offered by the above-mentioned
font formats. For example, you may regard the technique described in this paper as a TEX-
oriented implementation (and, in some respects, a generalization) of the most important
features of Multiple Master fonts.

Knuth says in his The METAFONT book : It seems clear that further work with META-
FONT has the potential of producing typefaces of real beauty. This, nobody can deny. We
believe, however, that replacing the word “METAFONT” by “METAPOST” offers even
better prospects.

References

[1] Donald E. Knuth, The METAFONT book, Addison-Wesley, seventh printing, 1992.

[2] Andreı̆ Slepukhin, private communication, January, 1996.

[3] Richard J. Kinch, MetaFog: converting METAFONT shapes to contours, TUGboat
16 (3), pp. 233–243, 1995.

Najaar 2000 101

fonts Jackowski, Nowacki and Strzelczyk

[4] Richard J. Kinch, Belleek: A call for METAFONT revival, Proc. of 19th Annual
TUG Meeting, AuGUST 17–20, 1998, Toruń, Poland, pp. 131–136.

[5] Taco Hoekwater, Generating Type 1 fonts from METAFONT sources, Proc. of 19th
Annual TUG Meeting, AuGUST 17–20, 1998, Toruń, Poland, pp. 137–147.

[6] John D. Hobby, http://cm.bell-labs.com/who/hobby/MetaPost.html

[7] Adobe Type 1 Font Format, Addison-Wesley, 1990.

[8] Bogusław Jackowski and Marek Ryćko, Labyrinth of METAFONT paths in outline,
Proc. of 8th European TEX Conference, September 26–30, 1994, Gdańsk, Poland,
pp. 18–32.

[9] Bogusław Jackowski, A METAFONT-EPS interface, Proc. of 9th European TEX
Conference, September 4–8, 1995, Arnhem, The Netherlands, pp. 257–271.

[10] ROEX: a METAFONT macro package accomplishing operations on paths,
commonly known as “ removing overlaps” and “ expanding strokes,”
ftp://ftp.GUST.org.pl/TeX/graphics/MF-PS/roex/

[11] Alfred V. Aho, Brian W. Kernighan, Peter J. Weinberger, The AWK Programming
Language, Addison-Wesley, 1988.

[12] Alan Jeffrey, Rowland McDonnell, Ulrik Vieth, Fontinst: the font installation
package, ftp://ftp.gust.org.pl/TeX/fonts/utilities/fontinst/

[13] I. Lee Hetherington, Utilities for assembling and disassembling Type 1 fonts,
ftp://ftp.gust.org.pl/TeX/fonts/utilities/t1utils.zip

Acknowledgements

The authors express their hearty thanks to the Polish TEX Users Group GUST for par-
tially sponsoring the work on Antykwa Półtawskiego and to Phil Taylor for many valuable
comments concerning the presentation of the work.

102 MAPS

