
♦ ♦ ♦

Extending ExTEX
Simon Pepping

abstract. What can be done after the completion of ExTEX? I describe a dream,
some results, and some further ideas.

keywords: ExTEX, DSSSL, file location, extension of ExTEX, primitives in ExTEX

SGML, DSSSL and TEX

Complex architectures have always appealed to me. It is no wonder then that the
system SGML – DSSSL – typographical backend found in me a believer. Sebastian
Rahtz’s jadetex is a good implementation of TEX as the typographical backend. But
ever since I had a look at it and at the way the jade DSSSL engine communicates with
the backend, I have had this dream of a direct communication between the DSSSL
engine and TEX, and of a direct implementation of flow objects in TEX.

One might think that this dream has been made obsolete by modern developments:
SGML is out, XML is the new king. But I do not think things have really changed in
the style specification area: The style language is now called XSL, its abstract page
specification objects are now called formatting objects, but the idea has remained the
same.

Obviously, I was not sufficiently skilled as a programmer to realize such a program.
I also had the idea that with the current TEX program it would be impossible, and
anyway I had little desire to work through the complicated canonical route to hack
the TEX sources.

Therefore I looked forward to the release of the ongoing ExTEX project, so that I
could try to realize my idea in a system with a more extensible structure. When I got
the program in March, I started to try and understand its structure, and see where I
should start to plug in my changes. That gave rise to some interesting conclusions.

TEX input without macros
When the jade program talks directly to the typographical backend, it makes calls to
subroutines that start and end the flow objects, subroutines that register new values
of characteristics, and subroutines that receive textual data. Those calls specify the
layout in terms of abstract flow objects. From there the typographical backend should
take it, and produce pages according to the abstract specification.

TEX, on the other hand, requires input in terms of its macro language. That has



extending extex 147

been a great benefit. While the TEX program itself has proved hard to extend, the
macro language has provided programmers/users with ample opportunity to write
extensions.

The interprogram communication sketched above bypasses the macro language com-
pletely. As a consequence none of the extensions created in the 80s and 90s are avail-
able. When one looks at jadetex, one sees that it makes a good effort to pull in all
major packages written for latex2ε. So, when we are not able to use those, we have
a big problem. It is even worse: we have even bypassed plain TEX; indeed, we do
not even have plain TEX’s output routine, because that is specified through control
sequences as well.

Karel Skoupy, the author of ExTEX, tells me that we do not even have a typesetting
engine; we have no more than a library. It is the macro language that glues it all
together into a typesetting engine. So my idea comes down to doing away with that
glue!

That is where my plans have stalled. I will need some bright ideas to find a way
forward.

Serving the files to ExTEX

When I had the ExTEX program, and took part in some discussions between its
author and its users, it soon became clear that there was a problem in the way ExTEX
finds the required files in the TEX distribution. Java, being a platform-independent
language, has problems communicating with the environment. The chosen solution
was to launch kpsewhich as a separate process to find the files for ExTEX.

While the kpathsea library has become a de facto standard, I am not ready to
accept it as the only way to locate files in a TEX distribution, now and in the future.
And therefore I do not think it a good idea to hard-code the use of kpsewhich into
ExTEX. I prefer a separation between the typesetting engine and the TEX distribution,
even though TEX has built-in file locating capabilities. I want a file locator architecture
that is configurable by the distribution. The setup of Java’s security mechanism, which
is extremely configurable, with the possibility to plug in third party implementations
of one or more functions, showed me how this could be achieved.

I constructed what I call the pluggable file locator architecture. ExTEX creates a
File Locator object which defines the required file location functionality and its API.
One or more implementations of that functionality may then be written, and added to
ExTEX as modules. Start-up options determine which of the available implementations
is actually used.

Basically, it works as follows. On the command line one has to tell ExTEX which file
locator implementation one wishes to use. This can be done using the java property
nts.filelocatorclass. Or it can be done in a configuration file, whose name should
be communicated to the application using the java property nts.filelocatorconfig.
An added bonus of a configuration file is that its path is communicated to the im-
plementation, a feature which I use below in the kpathsea implementation. Extra
arguments can be passed to the implementation. For more information, see the doc-



148 simon pepping

umentation in the java code itself (which is extractable with the javadoc tool). The
idea is that the TEX distribution configures the command line to its needs, so that
this is transparent to users.

Here is an example of the startup line of ExTEX using a file locator configuration
file:
java -Dnts.fmt=latex \
-Dnts.filelocatorconfig=/usr/share/TeX/bin/ntsfilelocator.cfg \
Nts latex-file

The configuration file contains the following line:
nts.filelocator=<package>.<file locator implementation class>

Here is an example of a startup line directly providing the file locator implementation
class. This class has a single constructor argument:
java -Dnts.filelocatorclass=’<package>.kpsewhich \

/usr/share/TeX/bin/kpsewhich’ \
Nts tex-file

kpathsea
Of course, the de facto standard kpathsea was my first implementation. Since it is
written in C, I used the Java Native Interface (JNI) to access it from the Java code.
Hacking kpathsea turned out to be relatively easy. I took the code of kpsewhich,
removed all code that is related to the command line options, added the functions
that implement the Java interface, and I was almost done.

There was one complication: kpathsea is very much written for the situation where
it is linked into an executable. Here the executable is java, which is of little help. So
I have to supply artificially the name of another program, one in the kpathsea bin
directory. I use kpsewhich for this purpose.

To my surprise, modifying in the kpathsea code the name of the executable from
java to that of a kpathsea program:
kpse_set_program_name(NTSprogpath, NTSprogname);

at first did not work. It turns out that on glibc systems kpathsea does not use the
two arguments of this function. The glibc library catches the program names and
those are used by kpathsea. Therefore I have to reset the glibc program names:
program_invocation_name = NTSprogpath;
program_invocation_short_name = NTSprogname;

The file locator configuration file itself can be put in the kpathsea bin directory
and used as a pseudo kpathsea program. When the first of the above ExTEX startup
lines is used, the File Locator class communicates the path of the configuration file
to the constructor of the implementation, and the latter uses it as the program path.
This feature really embeds the file locator interface to ExTEX in the kpathsea setup
of bootstrapping the distribution from the path of the executable.



extending extex 149

TEX file server
As became apparent during discussions, Java is not good at communicating with the
environment of the computer on which it runs. On the other hand, it is excellent in
communicating with the networked world. So the idea presented itself to serve files
over a network.1 This was my second file locator implementation.

It was my goal to write a simple proof-of-concept. So I wrote a simple TEX file
server using Java’s ServerSocket class, and a simple TeXFSClient class as the file
locator implementation that uses the TEX file server to get its files. The protocol is
also simple:
Open TeX session The client sends a handshake to the server, to make sure the

server can be found and is alive.
Open TeX file The client requests a file. It communicates the characteristics which

are familiar from kpathsea: file name, format, must exist and program name.
This implementation basically demonstrates the idea. But it has some serious lim-

itations:
� The session is not persistent, each file is requested in a new connection.
� In kpathsea it is not possible to change the name of the format, so once opened,

the TEX file server serves files for only one format.
If this were to be turned into a serious tool, there is still a lot to be done. There are

several possibilities to set up a more robust TEX file server. A good way to do it is over
HTTP. It makes use of an established protocol, which is implemented in a number of
excellent web server systems. To communicate TEX specific messages, one could use a
CGI- and XML-based protocol, such as that recently developed by the Open Archives
Initiative (see http://www.openarchives.org/OAI/openarchivesprotocol.htm).

Other extensions to ExTEX

latex2ε has some outstanding features which deserve to be separated from latex’s
document style features and made available to all TEX users:
NFSS Ever since the early 90s latex’s font selection scheme has made it relatively

easy to manage an ever growing font collection. Adding a new family of fonts is
done in a systematic and transparent way.

graphicx/s providing the much needed integration of latex with graphics.
babel making (La)TEX multilingual.
latex has implemented a number of extended primitives, such as \newcommand, or

the control sequences of the ifthen package, which make macro programming more
robust and easier. These could be implemented as true primitives within ExTEX.
latex provides an interface to document classes, and for that purpose defines many

latex primitives, such as \@startsection, the counter commands, the option com-
mands. That interface can be realized in ExTEX itself, as a module. latex users can

1I understand that the file server idea has also been put forward within the NTS steering group.



150 simon pepping

use it, others can leave it alone.
These facilities (and latex itself) have been realized using TEX’s extension mech-

anism, its macro language. This is an astonishing feat, in view of the fact that the
macro language is hardly adequate as a programming language. Now that we have an
extensible program, it seems a good idea to program these facilities as modules. As a
programmer, I believe that the use of a programming language would make it much
easier to achieve the desired logic.

Epilog

ExTEX has been awaited for a long time, and its realization is not entirely satisfactory:
it is slow and resource hungry. But despite these drawbacks, we should appreciate that
it is the first complete reimplementation of TEX ever made.

Its release provides us with a tool that we can play with, modify, and extend, more
readily than we can do with TEX. At the very least, it is a sandbox on which new
ideas can be tested. I hope the recount of my efforts provides inspiration to others to
start working with the system.


