
♦ ♦ ♦

A Tour around the NTS implementation
Karel Skoupý

abstract. NTS is a modular object-oriented reimplementation of TEX written in
Java. This document is a summary of a presentation which shows the path along
which the characters and constructions present in the input file pass through the

machinery of the program and get typeset. Along the way the key classes and concepts
of NTS are visited, the differences with original TeX are explained and the good points

where to dig into the system are proposed.

keywords: NTS , Java, extension

NTS is a modular object-oriented reimplementation of TEX. It is written in Java and
is meant to be extended with new functionality and improvements. In spite of the
expectations of many it is not simpler than original TEX and it probably could not be
if it has to do exactly the same job. But whereas TEX is a very monolithic system, the
complexity of NTS is divided into many independent modules and is accommodated in
lots of useful abstractions. As a consequence one need not know all the details about
the whole system in order to extend or change just a specific part. The dependencies
between the modules are expressed by clear interfaces and the interfaces is all one
needs to know about untouched parts. So extending and changing NTS should be
quite easy, shouldn’t it?

The problem is that detailed documentation is still missing and that there are
hundreds of classes, so it is hard to know where to start. Although the classes are many,
fortunately there are a limited number of main concepts which are really important.

The processing in NTS is naturally quite similar to TEX. The input is scanned
and converted to Tokens. Each Token has a certain meaning: a Command. Some
Commands are non-typographic, these usually deal with macro expansion or registers.
Typographic Commands build some typographic material consisting of Nodes using
Builders. Lists of Nodes are packed by a Packer and finally typeset by an instance of
Typesetter.

Of course there are a few more basic concepts than those emphasized in the previous
paragraph but not that many. They are always represented by an abstract class or
an interface. The other classes in NTS are either various implementations of those
interfaces or they are auxiliary and not so interesting.

Recently we have been trying to improve the design of NTS so that extensions and
configuration are even easier. We will also look into ways how to increase performance
and interoperability with the TEX directory structure.


