
The Font
Installation Guide

P H I L I P P L E H M A N

ifFf noOo
nsNn ttTt

A U G U S T 2 0 0 3

The Font
Installation Guide

Using Postscript fonts to their full

potential with Latex

P H I L I P P L E H M A N

V E R S I O N 1 . 2 3

Copyright © –, Philipp Lehman, lehman@gmx.net

Permission is granted to copy, distribute and/or modify this document
under the terms of the gnu Free Documentation License, version ., with
no invariant sections, no front-cover texts, and no back-cover texts.

A copy of the license is included in the appendix.

This document is distributed in the hope that it will be useful, but without
any warranty; without even the implied warranty of merchantability or
fitness for a particular purpose.

mailto:lehman@gmx.net

contents

introduction .

i the basics .

i. Renaming the files – • i. Using fontinst – • i. Installing the files –
 • i. Creating map files – • i. Using the fonts – • i. Computer
Modern and t1 encoding –

ii standard font sets .

ii. The fontinst file – • ii. The latinfamily macro revisited – • ii.
Map files revisited –

iii optical small caps and hanging figures

iii. The fontinst file – • iii. The map file – • iii. The style file – •
iii. Fonts supplied with Tex –

iv the euro currency symbol .

iv. Uncoded euro symbol – • iv. Euro symbol encoded as currency
symbol – • iv. Euro symbol taken from external symbol font – • iv.
Euro symbol taken from external text font –

v expert font sets, regular setup

v. Basic fontinst file – • v. Verbose fontinst file – • v. Inferior and
superior figures – • v. The map file – • v. The style file – • v.
Using the fonts –

vi expert font sets, extended setup

vi. The fontinst file – • vi. Text ornaments – • vi. The map file –
 • vi. Extending the user interface – • vi. A high-level interface for
ornaments – • vi. The style file –

code tables .

the gnu free documentation license

revision history .

introduction

This guide to setting up Postscript Type fonts for use with Tex and Latex is
not systematic but task-oriented. It will discuss the most common scenarios
you are likely to encounter when installing Postscript fonts. The individual tu-
torials collected here are not self-contained, though: the second tutorial will
presuppose that you have read the first one and so on. All the tools employed
in the installation process are documented well, the actual difficulty most users
are facing when trying to install new fonts is understanding how to put all the
pieces together. This applies to fontinst, the Tex font installation tool, in partic-
ular. Controlled by Tex commands, fontinst is a powerful and extremely flexible
tool. While its manual documents all available commands individually, you will
most likely wonder how to actually employ them after reading the manual. This
is what this guide is about. Because of its concept, you will need the following
additional manuals when working with it:

The fontinst manual – Shipping as fontinst.dvi, the fontinst manual is
the most important piece of documentation you will need when working
with this guide since most files required for proper Postscript font support
are generated by fontinst. You do not need to work through the sections
explaining all low-level commands in detail, but make sure that you have
read the more general parts and that you have a basic understanding of
what fontinst is and what it does. If this manual is not included in your
distribution, get it from the Comprehensive Tex Archive Network (ctan).¹

The Fontname scheme – Fonts used with Tex are usually renamed according
to a dedicated naming standard, the Fontname scheme by Karl Berry. Take
a look at the outline of the scheme as given in fontname.dvi and make
sure you have copies of the individual map files at hand. These lists define
names for a large number of commercial Postscript fonts. You will need
them while working with this guide. If the documentation of the Fontname
scheme is not part of your distribution, you can read it online² or download
the complete package from a ctan ftp server.³

The Latex font selection guide – It might be a good idea to read the Latex
font selection guide as well before proceeding with the first tutorial. It pro-
vides an overview of the New Font Selection Scheme (nfss). This scheme is
not used during font installation, but it will help you to understand certain
aspects of the installation process. This guide ships with most Tex distribu-
tions as fntguide.dvi and is also available in pdf format from ctan.⁴ Feel

 http://www.ctan.org/tex-archive/fonts/utilities/fontinst/doc/manual/
 http://www.ctan.org/tex-archive/info/fontname/
 ftp://tug.ctan.org/tex-archive/info/fontname.tar.gz
 http://www.ctan.org/tex-archive/macros/latex/doc/fntguide.pdf

www.ctan.org/tex-archive/fonts/utilities/fontinst/doc/manual/
www.ctan.org/tex-archive/info/fontname/
ftp://tug.ctan.org/tex-archive/info/fontname.tar.gz
www.ctan.org/tex-archive/macros/latex/doc/fntguide.pdf

 introduction

free to skip the chapter about math fonts as we are only going to deal with
text fonts. Setting up math fonts is a science in its own right.

Please note that this guide was written with version . of fontinst in mind. On
July , , Lars Hellström has released fontinst . to the public.¹ The recipes
proposed here should still work with the latest version, but they do not exploit
the new features of the new release. I will try to update this guide as my time
permits. The latest release of this guide can always be found at ctan.²

Acknowledgments

I am indebted to Timothy Eyre for taking the time to proofread and comment
on an earlier revision of the entire guide. I would also like to thank William
Adams, Adrian Heathcote, and Adrian Burd for pointing out spelling mistakes.

 http://www.ctan.org/tex-archive/fonts/utilities/fontinst/
 http://www.ctan.org/tex-archive/info/Type1fonts/fontinstallationguide.pdf

www.ctan.org/tex-archive/fonts/utilities/fontinst/
www.ctan.org/tex-archive/info/Type1fonts/fontinstallationguide.pdf

tutorial i

the basics

This introductory tutorial serves two purposes. It covers the most basic instal-
lation scenario by explaining how to use fontinst’s \latinfamily macro to
integrate a small font family into a Tex system. By providing step-by-step in-
stallation instructions, it will also discuss the installation procedure as a whole.
The later tutorials will focus on the more advanced capabilities of fontinst. Be-
fore we begin, let’s take a look at an overview of the installation procedure:

Step 1: renaming the font files – First of all, we copy all Type fonts (ex-
tension pfb) and the corresponding Ascii metric files (afm) to a temporary
directory and rename them according to the Fontname scheme.

Step 2: creating metrics and virtual fonts – We will use fontinst, a font
installer that works with Adobe font metric files in Ascii format (afm), to
generate metric files and virtual fonts. Fontinst is normally not used inter-
actively but controlled by a Tex file. Since the fontinst file is specific to a
given font family, we need to write a suitable file for our fonts first and run
it through Tex afterwards.

Step 3: compiling metrics and virtual fonts – Fontinst will generate font
metrics and virtual fonts in a human-readable format which need to be con-
verted to a machine-readable form afterwards. Hence we run all property
list files (pl) created by fontinst through pltotf to create Tex font met-
rics (tfm) and all virtual property list files (vpl) through vptovf to create
virtual fonts (vf) and the corresponding Tex font metrics for them.

Step 4: installing the files – We install all font metrics (afm), Type font
outlines (pfb), Tex font metrics (tfm), virtual fonts (vf), and font defini-
tion files (fd) into the local Tex tree. The remaining files are not required
anymore and may be deleted.

Step 5: creating map files – The fonts are now set up for Tex and Latex, but
not for dvi and pdf drivers, which are configured separately. We create map
files for dvips, pdftex, and, if a version of xdvi with native support for Post-
script fonts is available, for xdvi. We install the map files and add them to
the applications’ configuration files.

Step 6: updating the hash tables – Finally, we run texhash to update the
file hash tables used by the kpathsea search library.

i. Renaming the files

Users unfamiliar with fontinst tend to moan when introduced to the Fontname
scheme for the first time. This file naming standard, which is also known by
the name of its creator as the Karl Berry scheme, is often regarded as overly

 the basics

complicated, cumbersome, unclear, and unmanageable. And indeed, it will ap-
pear somewhat cumbersome to anyone working with an operating system that
does not impose silly limits on the lengths of file names. All of that is not the
fault of its creator, however, but an inevitable result of the historical need to en-
code a complete font designation in a string of eight characters in order to cope
with the limitations of the dos filesystem as well as the iso- filesystem used
for data cd-roms. The most important asset of the Fontname scheme is that it
is the only formalized naming system widely used within the Tex community.
Given the large number of files required to integrate a given typeface into a
Tex system, installations without formal file naming would quickly get out of
control. So, if the next couple of paragraphs should sound a bit cumbersome
to you, you are in good company. Rest assured that after installing a few font
families and watching your installation grow, you will understand the benefits
of this scheme.

In order to understand the basic principles of the Fontname scheme, see the
file fontname.dvi for an overview as well as excerpts from various map files.
Browse the map files of individual vendors for the complete listings. When us-
ing the \latinfamily macro, strict adherence to the scheme is required. If you
write a custom fontinst file using lower-level commands, the naming is techni-
cally up to you. It is still a good idea to stick to the naming system where possi-
ble. If a given typeface is not included in the map file for the respective foundry,
take the foundry code from supplier.map and the code of the typeface from
typeface.map. If the typeface is not listed at all, you will need to create a new
code. This should be an unused one if possible. Try handling weight, variant,
and encoding codes as strictly as possible. Foundry and typeface codes may be
handled more liberally.

For large text font families, most font vendors do not put all fonts in a sin-
gle package. They usually offer a base package containing upright and italic/
oblique fonts plus an advanced package complementing the former. The ad-
vanced package will usually contain one of the following additional font sets: a
set of optical small caps¹ and hanging figures,² a set of expert fonts,³ additional
weights, or a combination of these sets. This package has to be purchased sep-

 ‘Optical’ or ‘real’ small caps, as opposed to ‘mechanical’ or ‘faked’ ones, are special glyphs
found in a dedicated small caps font. They are preferable to mechanical small caps since they
were actually drawn by the font designer. Mechanical small caps are generated by taking the
tall caps of the font and scaling them down.

 While hanging or ‘old style’ figures have ascenders and descenders to blend in with lowercase
and mixed case text, lining figures are aligned with the height of the capital letters (compare
 to 1369). Hanging figures are designed for use within mixed case text whereas lining
figures are suitable for all uppercase text only. The latter also work well for applications like
numbered lists and, since they are usually monospaced, for tabular settings.

 ‘Expert’ fonts are complements to be used in conjunction with regular text fonts. They usu-
ally contain optical small caps, additional sets of figures, ligatures as well as some other sym-
bols. Please refer to tutorial v for further information.

using fontinst

arately and can normally not be used independently in a sensible way. We will
use Sabon as an example in this tutorial. The Sabon family offered by Adobe is
split up into two packages. The base package contains upright and italic fonts
(with lining figures) in regular and bold weights, while the so-called sc & osf
package provides optical small caps and hanging figures. Hanging figures are
also known as “old style figures”, hence the name sc & osf. In the first and the
second tutorial we will deal with the base package only. Adding the sc & osf
package to the base install will be discussed in the third tutorial. As we receive
the package from Adobe or from a vendor, it contains the following files:

sar_____.afm sai_____.afm sab_____.afm sabi_____.afm
sar_____.inf sai_____.inf sab_____.inf sabi_____.inf
sar_____.pfb sai_____.pfb sab_____.pfb sabi_____.pfb
sar_____.pfm sai_____.pfm sab_____.pfm sabi_____.pfm

Of those files, we only need two types: the font metrics in Ascii format (afm)
and the binary font outlines (pfb). We copy these to our working directory
to rename them. In this case, finding the proper names is simple because the
typeface is listed explicitly in adobe.map:

psbr8a Sabon-Roman A 088 sar_____
psbri8a Sabon-Italic A 088 sai_____
psbb8a Sabon-Bold A 088 sab_____
psbbi8a Sabon-BoldItalic A 088 sabi____

The first column indicates the Fontname name and the last column the orig-
inal name of the files as shipped by the vendor.¹ After renaming, we find the
following files in the working directory:

psbr8a.afm psbri8a.afm psbb8a.afm psbbi8a.afm
psbr8a.pfb psbri8a.pfb psbb8a.pfb psbbi8a.pfb

We can now begin with the installation process.

i. Using fontinst

Since writing a fontinst file can be quite a time-consuming thing to do, fontinst
provides a special macro which is able to deal with standard scenarios like this
one. You can look up the \latinfamily command in the fontinst manual to
understand what it does in detail. For our situation, it will suffice to say that
it is able to recognize the standard fonts we provide by their file name – hence
the need for strict adherence to the Fontname scheme in this case. Fontinst will
create all metric and auxiliary files required by Latex without further directions
in the form of lower-level commands. Therefore our fontinst file is as simple as
it can get:

 The fourth column may also prove helpful: it indicates the number of the Adobe font package
to which this font belongs. This number will save you a lot of time if you are trying to locate
updated metric files for a font on Adobe’s ftp server since the files are sorted by package
number there.

 the basics

₁ \input fontinst.sty
₂ \latinfamily{psb}{}
₃ \bye

After loading fontinst () we simply call the \latinfamily macro with the base
of the file names (the foundry code plus the typeface code) as the first argument
(). The second argument is code to be executed whenever this typeface is used.
This is often employed to suppress hyphenation of fixed-width typefaces by
setting the hyphenation character to a non-existing encoding position. If we
wanted to suppress hyphenation for this font family, we would call the macro
like this:

₂ \latinfamily{psb}{\hyphenchar\font=-1}

We save the file as drv-psb.tex, for example, and run it through tex:

tex drv-psb.tex

The \latinfamily macro will create metric files, virtual fonts, and auxiliary
files for four different encodings: Tex Base , ot1, t1, and ts1. While Tex Base

serves as the basis for virtual fonts using other encodings, it is usually not em-
ployed as such on the Latex level, although \latinfamily provides font defi-
nition files for the Tex Base encoded fonts as well.

The ot1 encoding is a -bit legacy encoding solely suitable for text using
the English alphabet only because it requires the use of composite glyphs when
typesetting accented letters. These glyphs are inferior to the native glyphs pro-
vided by Postscript fonts. When using ot1 encoding and typesetting the letter a
with a grave accent, for example, Tex does not use the real glyph à as provided
by the font because ot1 discards all accented letters. This amounts to almost
half of the glyphs found in common Postscript fonts. Instead, Tex will use the
stand-alone grave accent and move it over the lowercase letter a to form a com-
posite glyph. Apart from their inferior typographic quality, composite letters
break Tex’s hyphenation algorithm so that words containing an accented let-
ter are not hyphenated beyond this letter. Another problem with them is that
they break searching for words containing accented letters in pdf files. In short,
ot1 should be considered obsolete unless you need the letters of the English
alphabet only. But even in this case, t1 encoding would be a sound choice.

t1, also known as Cork encoding, is a more recent text encoding suitable
for a wide range of Latin scripts. Also known as Text Companion encoding,
ts1 complements t1 by providing additional glyphs such as currency signs and
other frequently used symbols like ‘copyright’ or ‘registered’. ts1 is never used
as the main text encoding because it merely contains symbols. A user interface
to the glyphs found in ts1 is provided by the textcomp package.

When running the fontinst file through tex, fontinst will write a lot of
messages to the terminal. These will include warnings about glyphs not being
found, since a few glyphs defined in ot1 and t1 encoding are missing from the
glyph set of our fonts:

using fontinst

(/usr/share/texmf/tex/fontinst/base/ot1.etx
Warning: missing glyph ‘dotlessj’.
Warning: missing glyph ‘lslashslash’.

(/usr/share/texmf/tex/fontinst/base/t1.etx
Warning: missing glyph ‘perthousandzero’.
Warning: missing glyph ‘dotlessj’.
Warning: missing glyph ‘Eng’.
Warning: missing glyph ‘eng’.

These warnings are normal, the missing glyphs are simply not provided by most
Postscript fonts. In addition to that, you will most likely be lacking the ligatures
‘ff ’, ‘ffi’, and ‘ffl’. This means that they will not be typeset as a single glyph but
as a sequence of characters. There is no warning message in this case as fontinst
will construct the ligatures using the single-letter glyphs at hand. You will usu-
ally find these ligatures in so-called expert fonts which complement the base
fonts. Some foundries however, like FontFont, include them in the base fonts.
Standard Postscript fonts should always provide the ligatures ‘fi’ and ‘fl’. The
situation is worse for ts1 encoding since parts of it are rather exotic, defin-
ing glyphs not found in industry-standard fonts such as a ‘copyleft’ symbol, or
glyphs which should rather go in a dedicated symbol font such as arrow sym-
bols:

(/usr/share/texmf/tex/fontinst/base/ts1.etx
Warning: missing glyph ‘arrowleft’.
Warning: missing glyph ‘arrowright’.
Warning: missing glyph ‘tieaccentlowercase’.
Warning: missing glyph ‘tieaccentcapital’.
Warning: missing glyph ‘newtieaccentlowercase’.
Warning: missing glyph ‘newtieaccentcapital’.
Warning: missing glyph ‘blank’.
Warning: missing glyph ‘hyphendbl’.
Warning: missing glyph ‘zerooldstyle’.
Warning: missing glyph ‘oneoldstyle’.
Warning: missing glyph ‘twooldstyle’.
Warning: missing glyph ‘threeoldstyle’.
Warning: missing glyph ‘fouroldstyle’.
Warning: missing glyph ‘fiveoldstyle’.
Warning: missing glyph ‘sixoldstyle’.
Warning: missing glyph ‘sevenoldstyle’.
Warning: missing glyph ‘eightoldstyle’.
Warning: missing glyph ‘nineoldstyle’.
Warning: missing glyph ‘angbracketleft’.
Warning: missing glyph ‘angbracketright’.
Warning: missing glyph ‘Omegainv’.
Warning: missing glyph ‘bigcircle’.
Warning: missing glyph ‘Omega’.
Warning: missing glyph ‘arrowup’.
Warning: missing glyph ‘arrowdown’.
Warning: missing glyph ‘born’.
Warning: missing glyph ‘divorced’.
Warning: missing glyph ‘died’.
Warning: missing glyph ‘leaf’.
Warning: missing glyph ‘married’.
Warning: missing glyph ‘musicalnote’.

 the basics

Warning: missing glyph ‘hyphendblchar’.
Warning: missing glyph ‘dollaroldstyle’.
Warning: missing glyph ‘centoldstyle’.
Warning: missing glyph ‘colonmonetary’.
Warning: missing glyph ‘won’.
Warning: missing glyph ‘naira’.
Warning: missing glyph ‘guarani’.
Warning: missing glyph ‘peso’.
Warning: missing glyph ‘lira’.
Warning: missing glyph ‘recipe’.
Warning: missing glyph ‘interrobang’.
Warning: missing glyph ‘interrobangdown’.
Warning: missing glyph ‘dong’.
Warning: missing glyph ‘pertenthousand’.
Warning: missing glyph ‘pilcrow’.
Warning: missing glyph ‘baht’.
Warning: missing glyph ‘numero’.
Warning: missing glyph ‘discount’.
Warning: missing glyph ‘estimated’.
Warning: missing glyph ‘openbullet’.
Warning: missing glyph ‘servicemark’.
Warning: missing glyph ‘quillbracketleft’.
Warning: missing glyph ‘quillbracketright’.
Warning: missing glyph ‘copyleft’.
Warning: missing glyph ‘circledP’.
Warning: missing glyph ‘referencemark’.
Warning: missing glyph ‘radical’.
Warning: missing glyph ‘euro’.

While this may seem like a long list, it is not unusual when installing fonts not
specifically designed for Tex. You will get the most common symbols such as
currency signs and other frequently used symbols, and chances are that you
are not going to miss the lacking ones. If you want to learn more about these
encodings, simply run fontinst’s encoding vectors through latex to get a dvi
file containing a commented listing of all the glyphs:

latex 8r.etx
latex ot1.etx
latex t1.etx
latex ts1.etx

After fontinst is finished, we run all property list files (pl) through pltotf to
create Tex font metric files (tfm) and all virtual property list files (vpl) files
through vptovf to create virtual fonts (vf). When using the Bash shell, this
can be done as follows:

for file in *.pl; do pltotf $file; done
for file in *.vpl; do vptovf $file; done

The generation of Tex font metrics, virtual fonts, and font definition files is now
complete.

i. Installing the files

The Tetex distribution supports a total of three Tex trees: a global one, a local
one, and a user tree. The global tree is usually maintained by package man-

installing the files

agement software. The local tree is for everything that is not part of the Tetex
distribution but should be available system-wide. The user tree is for private
files of individual users on the system.

Fonts and everything related to them should go in the local tree if you have
administrative access on the system. Putting them in the global tree is a bad idea
because they might get overwritten when you update Tetex; putting them in a
private one will restrict access to them to a single user which is probably not
what you want if you have administrative access. It is a good idea to define the
variable $TEXMF (all trees) in a way that references $TEXMFLOCAL (the local tree)
before $TEXMFMAIN (the global tree). This will allow you to install newer ver-
sions of selected packages in the local tree without updating the whole install. I
recommend defining $TEXMF as follows in texmf.cnf:

TEXMF = {$HOMETEXMF,!!$TEXMFLOCAL,!!$TEXMFMAIN}

This will give you two levels on top of the global install: your local extensions
will be preferred over files in the global tree and can in turn be overridden
by individual users who put files in their private tree ($HOMETEXMF). These set-
tings should go into the global configuration file for the kpathsea search library,
texmf.cfg. For the rest of this section we will assume that we are installing the
fonts in the local tree and that its top directory is /usr/local/share/texmf.
The relevant branches of the local tree are as follows:

/usr/local/share/texmf/
/usr/local/share/texmf/dvips/
/usr/local/share/texmf/dvips/config/
/usr/local/share/texmf/fonts/
/usr/local/share/texmf/fonts/afm/
/usr/local/share/texmf/fonts/afm/adobe/
/usr/local/share/texmf/fonts/afm/adobe/sabon/
/usr/local/share/texmf/fonts/tfm/
/usr/local/share/texmf/fonts/tfm/adobe/
/usr/local/share/texmf/fonts/tfm/adobe/sabon/
/usr/local/share/texmf/fonts/type1/
/usr/local/share/texmf/fonts/type1/adobe/
/usr/local/share/texmf/fonts/type1/adobe/sabon/
/usr/local/share/texmf/fonts/vf/
/usr/local/share/texmf/fonts/vf/adobe/
/usr/local/share/texmf/fonts/vf/adobe/sabon/
/usr/local/share/texmf/pdftex/
/usr/local/share/texmf/pdftex/config/
/usr/local/share/texmf/tex/
/usr/local/share/texmf/tex/latex/
/usr/local/share/texmf/tex/latex/adobe/
/usr/local/share/texmf/tex/latex/adobe/sabon/
/usr/local/share/texmf/xdvi/
/usr/local/share/texmf/xdvi/config/

The main components of this directory structure are defined by the Tex Di-
rectory Structure (tds),¹ another standard introduced to cope with the large

 http://www.tug.org/tds/

www.tug.org/tds/

 the basics

number of files that make up a typical Tex system. The appropriate locations
for the different file types should be more or less obvious. The fonts/ branch
has subdirectories for Ascii font metrics (afm/), Tex font metrics (tfm/), Type

fonts (type1/), and virtual fonts (vf/). It is customary to create subdirectories
for the foundry and for each font family. You can take the names of these subdi-
rectories from the Fontname scheme as well, although this is not a requirement.
The standard directory name for the foundry is given in the file supplier.map,
the standard name for the typeface in typeface.map. Here are the relevant
lines from both files for Sabon:

p adobe @r{Adobe (@samp{p} for PostScript)}
sb sabon Sabon b:ClassicalGaramondBT

The font description files (fd) for Latex go in a subdirectory of tex/latex/.
The exact location is up to you but I recommend using the foundry/typeface
scheme as well. We do not need the directories dvips/, pdftex/, and xdvi/ at
this point, but we are going to use them later. Now we create all directories and
copy the files into the local tree as follows:

cp *.afm /usr/local/share/texmf/fonts/afm/adobe/sabon/
cp *.tfm /usr/local/share/texmf/fonts/tfm/adobe/sabon/
cp *.pfb /usr/local/share/texmf/fonts/type1/adobe/sabon/
cp *.vf /usr/local/share/texmf/fonts/vf/adobe/sabon/
cp *.fd /usr/local/share/texmf/tex/latex/adobe/sabon/

All files left in the working directory will not be used any more and may be
deleted.

i. Creating map files

All the files that Tex and Latex need in order to use Sabon are now available.
At this point we could create a perfectly valid dvi file with the right amount
of blank space for every glyph – but we would not see a single glyph when
looking at a dvi preview. Note that Tex itself is completely indifferent to the
actual font files. It will only use the metrics in the tfm files without accessing
the glyph outlines. Rendering or embedding fonts is at the responsibility of
the application which displays the dvi file or processes it further in order to
generate Postscript. pdftex is a special case because it combines the roles of
Tex and of a pdf driver. All of these applications need to know which fonts
to use. This information is provided in ‘map’ files which map font metrics to
font outlines. We will deal with the three most popular applications, the Post-
script driver dvips, the dvi viewer xdvi, and pdftex. All of them need to be
provided with a suitable map file. For dvips, the syntax of this file is explained in
detail in the dvips manual.¹ For pdftex, it is is explained in the pdftex manual,
and for xdvi in the documentation that comes with the source distribution.
Fortunately, xdvi and pdftex are capable of reading dvips’s map files to a certain

 http://www.radicaleye.com/dvipsman/

www.radicaleye.com/dvipsman/

creating map files

extent. If written with a little bit of care, dvips, pdftex, and xdvi can share the
same map file. This section will explain how to do that.

Let’s take a look at the first line of what will become psb.map, our map file
for Sabon. The first column indicates the name of the raw Tex font without any
file extension:

psbr8r Sabon-Roman "TeXBase1Encoding ReEncodeFont" <8r.enc <psbr8a.pfb

Since the \latinfamily macro reencodes all regular text fonts from Adobe
Standard encoding (Fontname code 8a) to Tex Base (8r) when creating metric
files for Tex, it corresponds to the name of the pfb file with encoding 8r instead
of 8a. In this case, psbr8a.pfb becomes psbr8r.

psbr8r Sabon-Roman "TeXBase1Encoding ReEncodeFont" <8r.enc <psbr8a.pfb

The second column is the Postscript name of the font. Do not try to guess the
right name or copy it from some map file you found somewhere on the web
some time ago. If your font is included in one of the foundry-specific lists of
the Fontname scheme, the Postscript name is given in the second column of the
respective table. If it is not or if you are in doubt, the Postscript name should be
taken from the header of the afm file for every font. Here are a few lines from
psbr8a.afm:

StartFontMetrics 2.0
Comment Copyright (c) 1989 Adobe Systems Incorporated. All Rights Reserved.
Comment Creation Date:Fri Mar 10 16:47:51 PST 1989
FontName Sabon-Roman
FullName 12 Sabon* Roman 05232
FamilyName Sabon
EncodingScheme AdobeStandardEncoding

The relevant part is the line starting with “FontName” – the Postscript name
of this font is “Sabon-Roman.” For each font, we copy this name verbatim to
psb.map.

psbr8r Sabon-Roman "TeXBase1Encoding ReEncodeFont" <8r.enc <psbr8a.pfb

The third column of our map file is a reencoding instruction. As mentioned
above, the \latinfamily macro reencodes all fonts from Adobe Standard en-
coding to Tex Base when creating metric files for Tex. This affects the metrics
only, which are defined in the tfm files generated by fontinst, while the glyph
outlines as defined in the pfb file still use the font’s native encoding. Therefore,
we add a reencoding directive to the map file that will instruct all applications
dealing with the actual glyph outlines to reencode them accordingly.

psbr8r Sabon-Roman "TeXBase1Encoding ReEncodeFont" <8r.enc <psbr8a.pfb

Finally, the last column contains a list of files that dvips will embed in the Post-
script file. In this case, we need the Postscript encoding vector 8r.enc for Tex
Base encoding and the pfb file, since we want the fonts to be embedded in the
Postscript file. Now the map file for our basic Sabon set looks like this:

 the basics

psbr8r Sabon-Roman "TeXBase1Encoding ReEncodeFont" <8r.enc <psbr8a.pfb
psbri8r Sabon-Italic "TeXBase1Encoding ReEncodeFont" <8r.enc <psbri8a.pfb
psbb8r Sabon-Bold "TeXBase1Encoding ReEncodeFont" <8r.enc <psbb8a.pfb
psbbi8r Sabon-BoldItalic "TeXBase1Encoding ReEncodeFont" <8r.enc <psbbi8a.pfb

In addition to that, we need to tell dvips about the slanted versions of all upright
fonts which \latinfamily creates by default. We copy the lines for Sabon-
Roman and Sabon-Bold and insert o, the Fontname code for slanted fonts, after
the weight code of the Tex font name; psbr8r becomes psbro8r and psbb8r is
changed to psbbo8r:

psbro8r Sabon-Roman "0.167 SlantFont TeXBase1Encoding ReEncodeFont" <8r.enc <psbr8a.pfb
psbbo8r Sabon-Bold "0.167 SlantFont TeXBase1Encoding ReEncodeFont" <8r.enc <psbb8a.pfb

Note that the name of the pfb file does not change. We also add a “SlantFont”
instruction to the third column. By default, \latinfamily uses a slant factor
of . when creating the modified metrics and our map file has to indicate
this accordingly. Our complete map file looks like this:

psbr8r Sabon-Roman "TeXBase1Encoding ReEncodeFont" <8r.enc <psbr8a.pfb
psbri8r Sabon-Italic "TeXBase1Encoding ReEncodeFont" <8r.enc <psbri8a.pfb
psbb8r Sabon-Bold "TeXBase1Encoding ReEncodeFont" <8r.enc <psbb8a.pfb
psbbi8r Sabon-BoldItalic "TeXBase1Encoding ReEncodeFont" <8r.enc <psbbi8a.pfb
psbro8r Sabon-Roman "0.167 SlantFont TeXBase1Encoding ReEncodeFont" <8r.enc <psbr8a.pfb
psbbo8r Sabon-Bold "0.167 SlantFont TeXBase1Encoding ReEncodeFont" <8r.enc <psbb8a.pfb

The format suggested here is suitable for xdvi, dvips, and pdftex. We copy psb.
map to the branch dvips/config/ in the local Tex tree. In order to configure
dvips, we locate the default configuration file of dvips (config.ps) in the main
Tex tree and copy it to the same location. If the search order for all Tex trees
is set up as suggested above, this local copy will now be picked up instead of
the global one. We open this file in a text editor, locate the section for map files
(lines defining map files begin with a lowercase “p”), and add the new map file
so that the updated section looks as follows:

% Standard map file provided by default
p +psfonts.map
% New map file for Sabon
p +psb.map

The procedure for pdftex is similar: the configuration file is called pdftex.
cfg and map files are marked with the string “map” at the beginning of the
line. After copying the file to the branch pdftex/config of the local tree and
updating it, the relevant section should look similar to the following example:

% Standard map file provided by default
map +pdftex.map
% New map file for Sabon
map +psb.map

We repeat this step one more time for xdvi. The configuration file for xdvi is
called xdvi.cfg, the local branch is xdvi/config and lines indicating a map
file begin with “dvipsmap”:

using the fonts

% Map files provided by default
dvipsmap ps2pk.map
dvipsmap ...
% New map file for Sabon
dvipsmap psb.map

In addition to that, we have to make sure that an encoding definition for Tex
Base encoding is provided as well. The configuration file for xdvi should con-
tain the following line:

% Tag Suffix Encoding name Encoding file
enc 8r TeXBase1Encoding 8r.enc

The installation is now finished. Do not forget to update the file hash tables by
running texhash or an equivalent command!

i. Using the fonts

Everything you need to know about using the fonts can be found in the Latex
font selection guide.¹ The second chapter of this guide documents the standard
nfss commands used to switch fonts under Latex. Let’s take a look at some
examples. To select Sabon at any point in a Latex file, we use a command like:

\fontfamily{psb}\selectfont

Sabon provides two weights which are readily available using compact font se-
lection macros like \textbf and \bfseries. Larger font families may offer
more than two weights. To select a particular weight, we use the \fontseries
command in conjunction with the nfss series codes defined during the instal-
lation of the font family. Please refer to the code table on page of this guide
for a list of the most common nfss codes. To select the semibold (sb) weight
for example, we would use the following construct:

\fontseries{sb}\selectfont

Compact font switching macros such as \mdseries and \bfseries do not
switch to a fixed nfss font series, they use \mddefault and \bfdefault for
the regular and bold weight respectively. If we want to use semibold as the de-
fault bold weight, for example, we simply redefine \bfdefault accordingly:

\renewcommand*{\bfdefault}{sb}

In order to use Sabon as the default roman typeface for the whole document,
we redefine \rmdefault in the preamble:

\renewcommand*{\rmdefault}{psb}

It is much more convenient to put the initialization of the font family into a
dedicated style file (sty), though. Our file sabon.sty might look like this:

₁ \NeedsTeXFormat{LaTeX2e}
₂ \ProvidesPackage{sabon}[2002/04/17 v1.0 Adobe Sabon]

 http://www.ctan.org/tex-archive/macros/latex/doc/fntguide.pdf

www.ctan.org/tex-archive/macros/latex/doc/fntguide.pdf

 the basics

₃ \RequirePackage[T1]{fontenc}
₄ \RequirePackage{textcomp}
₅ \renewcommand*{\rmdefault}{psb}
₆ \endinput

Essentially, we redefine \rmdefault in order to use Sabon as the default roman
typeface for the whole document. In addition to that, we load the fontenc
package and switch to t1 encoding, which is more appropriate for Postscript
fonts than the ot1 encoding used by default. We also load the textcomp package
which provides a user interface for the symbols found in ts1 encoding. This will
allow us to access symbols such as ‘copyright’ or ‘registered’. If the textcomp
package is used in conjunction with inputenc, it is even possible to enter most
of these symbols directly in a Latex file.

There is one thing we have to keep in mind when switching to t1 encod-
ing. The default encoding is a global setting that applies to all text fonts used
in a Latex file, unless the encoding is reset explicitly using the nfss macro
\fontencoding. It will affect the font family defined as \rmdefault, but also
the families set up as \sfdefault and \ttdefault. By default, these are Com-
puter Modern Sans Serif (cmss) and Computer Modern Typewriter (cmtt). Us-
ing these fonts in conjuction with t1 encoding will pose some problems most
European Tex users are already well familiar with. It is perfectly possible, pro-
vided that we use a suitable version of the Computer Modern fonts. Choosing
a suitable version, however, can be quite difficult. We will discuss some typical
issues related to that in the following section. Alternatively, we could use other
t1 encoded sans serif and typewriter typefaces available in Postscript format.
For example, here is an enhanced version of sabon.sty using Helvetica (phv)
and Courier (pcr):

₁ \NeedsTeXFormat{LaTeX2e}
₂ \ProvidesPackage{sabon}[2002/04/17 v1.0 Adobe Sabon with PS fonts]
₃ \RequirePackage[T1]{fontenc}
₄ \RequirePackage{textcomp}
₅ \renewcommand*{\rmdefault}{psb}
₆ \renewcommand*{\sfdefault}{phv}
₇ \renewcommand*{\ttdefault}{pcr}
₈ \endinput

This setup is certainly not the most fortunate one in terms of typography, but
it should be safe from a technical perspective. Helvetica and Courier are part of
the Postscript base fonts built into every Level Postscript device. Most Tex dis-
tributions do not ship with the original versions of these fonts but they provide
suitable replacements for them. For our setup of Sabon, the next section is only
relevant if you want to use Computer Modern Sans Serif and Computer Mod-
ern Typewriter in conjunction with Sabon. If you deploy different t1 encoded
sans serif and typewriter typefaces, which are available in Postscript format, all
you need to do is redefine \sffamily and \ttfamily in sabon.sty or in the
preamble of the respective Latex file as shown above for Helvetica and Courier.

computer modern and t1 encoding

i. Computer Modern and t1 encoding

The Computer Modern fonts designed for t1 and ts1 encoding are called ec and
tc fonts respectively, together known as European Computer Modern. When
switching to t1 encoding, we implicitly switch to these fonts. Note that Euro-
pean Computer Modern, while being derived from Donald Knuth’s original
Computer Modern typefaces, is not simply a t1 encoded drop-in replacement.
Over the years it has evolved into an independent typeface. The additional fonts
created for the European Computer Modern family have been subject to debate
based on their design. Some of them are considered to be typographically infe-
rior to the original designs. From a technical perspective, the problem with the
European Computer Modern fonts is that, historically, they have been available
in Metafont format only. This implies that Postscript and pdf files will contain
bitmap representations of these fonts when we switch to t1 encoding. Bitmap
fonts, however, have a fixed resolution and so are not independent of the output
device. They are not suitable for on-screen display and a major inconvenience
for every print shop, if they are tolerated at all.

Donald Knuth had designed the Computer Modern fonts in Metafont for-
mat and with ot1 encoding in mind. Blue Sky Research and Y&Y developed
Postscript versions of these fonts later, which were donated to the public in
 and have been shipping with most Tex distributions ever since. While these
fonts work fine for Postscript and pdf files, they are not suitable for tasks re-
quiring letters not found in the English alphabet because their glyph base is
still restricted to ot1 encoding. Jörg Knappen’s European Computer Modern
fonts address this issue by providing a more comprehensive set of glyphs, but
they have in turn been subject to the limitations of Metafont. In the following,
I will briefly introduce several solutions which try to address these problems.
Most of them are trade-offs in one way or another. Tables and try to provide
an overview of the major design variations over the Computer Modern theme
along with their implementations. The tables are by no means exhaustive, there
are even more fonts derived from the original Computer Modern typefaces.

To work around the hyphenation problem of ot1 encoding while sticking
to the original Computer Modern fonts, there is a choice of two packages on
ctan which provide t1 encoded virtual fonts based on the original Computer
Modern family of fonts: the ae¹ and the ze² fonts. The ae fonts are built on top
of Computer Modern exclusively, but unfortunately they lack almost a dozen
t1 characters including the French double and single guillemets, which makes
their default setup unsuitable for all French and a lot of German texts. For Com-
puter Modern Typewriter, the situation is even worse. There is a supplemental
package called aecompl which adds Metafont versions of the missing charac-
ters, but that again brings up the problem we were trying to avoid in the first

 http://www.ctan.org/tex-archive/fonts/ae/
 http://www.ctan.org/tex-archive/fonts/zefonts/

www.ctan.org/tex-archive/fonts/ae/
www.ctan.org/tex-archive/fonts/zefonts/

 the basics

typeface fonts

name format

Computer Modern cm Metafont
cm, Blue Sky Postscript
cm, Bakoma Postscript
ae virtual fonts
ze virtual fonts

European Computer Modern ec & tc Metafont
ec & tc, Micropress Postscript
Tt Postscript
cm-super Postscript

Latin Modern lm Postscript
European Modern em Postscript

Table 1: Computer Modern, fonts and formats

place. A different complement called aeguill¹ at least adds Postscript versions
of the guillemets. An enhanced version of sabon.sty might then look like this:

₁ \NeedsTeXFormat{LaTeX2e}
₂ \ProvidesPackage{sabon}[2002/04/17 v1.0 Adobe Sabon with AE]
₃ \RequirePackage[T1]{fontenc}
₄ \RequirePackage{textcomp}
₅ \RequirePackage{ae}
₆ \RequirePackage{aeguill}
₇ \renewcommand*{\rmdefault}{psb}
₈ \endinput

The ze fonts take a different approach to work around this problem: the miss-
ing characters are taken from standard Postscript fonts such as Times and Hel-
vetica. This means that there will be some typographical inconsistencies, but we
are safe from a technical point of view. While the ae fonts and the correspond-
ing supplemental packages ship with most Tex distributions, you might need
to download the ze fonts from ctan. When using the ze fonts, our enhanced
version of sabon.sty would look like this:

₁ \NeedsTeXFormat{LaTeX2e}
₂ \ProvidesPackage{sabon}[2002/04/17 v1.0 Adobe Sabon with ZE]
₃ \RequirePackage[T1]{fontenc}
₄ \RequirePackage{textcomp}
₅ \RequirePackage{zefonts}
₆ \renewcommand*{\rmdefault}{psb}
₇ \endinput

There is a more robust solution you might be interested in if you require t1 en-
coded Computer Modern fonts. Free Postscript versions of the European Com-
puter Modern fonts have been made available, although they might not have
made their way into every Tex distribution yet. As mentioned before, one prob-

 http://www.ctan.org/tex-archive/macros/latex/contrib/supported/aeguill/

www.ctan.org/tex-archive/macros/latex/contrib/supported/aeguill/

computer modern and t1 encoding

fonts encoding

native supported

cm ot1 ot1
cm, Blue Sky ot1 ot1
cm, Bakoma font specific ot1
ae ot1 t1, with composite glyphs
ze ot1 t1, with composite glyphs
ec, tc t1, ts1 t1, ts1
cm-super a t1, ts1, t2a, t2b, t2c, x2
lm font specific t1, ts1, ly1, qx1

Table 2: Computer Modern, fonts and encodings

lem with ot1 encoded fonts is that they rely on composite glyphs which break
searching for words containing accented letters in pdf files. Both the ae and
the ze fonts, although they enable Tex to hyphenate words containing accented
letters properly, still suffer from this particular problem as they are based on
ot1 encoded fonts internally. It is highly advisable to switch to a real t1 version
of the Computer Modern fonts in Postscript format. Such fonts are included in
two independent packages: Péter Szabó’s Tt¹ as well as Vladimir Volovich’s
more recent cm-super² package. Both packages include Postscript fonts which
are traced and post-processed conversions of their Metafont counterparts.

Unless you know that a specific font you need is provided by the Tt

package only, go with the more advanced cm-super package which will bring
you as close to a real solution as you can possibly get when using free versions of
the European Computer Modern fonts. Note, however, that it is a rather large
download. Since it includes a huge number of fonts, the compressed package
is about mb in size. The cm-super fonts use Adobe Standard as their native
encoding, but the glyph set provided by these fonts includes Cyrillic letters as
well. In addition to t1 and ts1, cm-super supports the Cyrillic encodings t2a,
t2b, t2c, and x2. See the package documentation for installation instructions
and answers to the most frequently asked questions. Here is a version of our
style file for use in conjunction with cm-super:

₁ \NeedsTeXFormat{LaTeX2e}
₂ \ProvidesPackage{sabon}[2002/04/17 v1.0 Adobe Sabon with CM-Super]
₃ \RequirePackage[T1]{fontenc}
₄ \RequirePackage{textcomp}
₅ \RequirePackage{type1ec}
₆ \renewcommand*{\rmdefault}{psb}
₇ \endinput

Recently, yet another new implementation of Computer Modern has been re-

 http://www.ctan.org/tex-archive/fonts/ps-type1/ec/
 http://www.ctan.org/tex-archive/fonts/ps-type1/cm-super/

www.ctan.org/tex-archive/fonts/ps-type1/ec/
www.ctan.org/tex-archive/fonts/ps-type1/cm-super/

 the basics

leased to the public, the promising Latin Modern fonts created by Bogusław
Jackowski and Janusz M. Nowacki. Unlike Tt and cm-super, Latin Modern
is derived from the original Computer Modern designs and augmented with
accented letters as well as other glyphs missing from the very restricted glyph
base of the original fonts. While the Latin Modern fonts are younger than Eu-
ropean Computer Modern, they are a parallel development from a systematic
perspective. Consequently, they are not affected by the controversial design de-
cisions underlying certain parts of the European Computer Modern family of
fonts. They use a font specific encoding by default and feature a glyph base suit-
able for t1, ts1, ly1 as well as the Polish encoding qx1. Even though these fonts
are still under development, they are already perfectly usable as of this writing.
Here is yet another iteration of our style file for Sabon, combined with Latin
Modern for the sans serif and typewriter families:

₁ \NeedsTeXFormat{LaTeX2e}
₂ \ProvidesPackage{sabon}[2003/07/27 v1.0 Adobe Sabon with LM]
₃ \RequirePackage[T1]{fontenc}
₄ \RequirePackage{textcomp}
₅ \RequirePackage{lmodern}
₆ \renewcommand*{\rmdefault}{psb}
₇ \endinput

Apart from these free fonts, there are also commercial offerings from Y&Y¹
and Micropress.² Judging by the vendors’ websites, Micropress offers Postscript
versions of European Computer Modern while the European Modern fonts by
Y&Y are augmented Postscript versions of the original Computer Modern type-
faces. Please refer to the respective website for details and pricing. Since I have
never used any of these fonts, I cannot comment on their quality or on any
possible shortcomings.

 http://www.yandy.com/em.htm
 http://www.micropress-inc.com/fonts/ecfonts/ecmain.htm

www.yandy.com/em.htm
www.micropress-inc.com/fonts/ecfonts/ecmain.htm

tutorial ii

standard font sets

While the \latinfamily shorthand is very convenient, it is not capable of cop-
ing with complex installation scenarios. Sooner or later you will probably have
more specific requirements or simply desire more control over the basics. This
will require using lower-level fontinst commands in most cases.

ii. The fontinst file

In this tutorial, we will essentially repeat the scenario discussed in the previous
one. This time, however, we will employ lower-level commands. The verbose
file introduced here will also serve as a template for subsequent tutorials.

₁ \input fontinst.sty
₂ \substitutesilent{bx}{b}

After loading fontinst we set up an alias that will suppress a warning when the
respective font is substituted. Why would we want to set up this particular alias?
Note that bx is the nfss code of the ‘bold extended’ series. The Latex macros
\textbf and \bfseries do not switch to a fixed series, they use \bfdefault
instead which is set to bx by default. As long as you are using the Computer
Modern fonts this is fine since they actually include bold extended fonts. For
font families which do not, however, using these macros would result in a warn-
ing. To avoid that, you would need to redefine \bfdefault to a suitable weight.
The problem here is that \bfdefault is a global setting applying to all of La-
tex’s font families (\rmdefault, \sfdefault, and \ttdefault), but it is not
safe to assume that all of them will offer the same weights. To avoid any need
to redefine \bfdefault unless we really want to, we set up an alias so that ev-
ery request for ‘bold extended’ (bx) is substituted by ‘bold’ (b).¹ Unless bold
extended fonts are available, simply think of bx as the default bold weight.

The standard weight is selected by Latex in a similar way. The relevant
macro is called \mddefault and defaults to m. Make sure that the nfss series m
is always defined, either mapped to actual fonts or as a substitution. In this case
our font family provides regular-weight fonts so we will simply use them for
the m series. Some font families, however, are based on the main weights ‘light’
and ‘demibold’ instead of ‘regular’ and ‘bold’. In this case, we would either just
map these weights to the m and b series directly or use the proper nfss series
codes (l and db) plus the following substitutions:

\substitutesilent{m}{l}
\substitutesilent{bx}{db}

 This is a default substitution that fontinst will always silently include. We could omit line

here, but if semibold fonts are available you might prefer using those as a substitute for bx.

 standard font sets

Again, think of m as the default weight if regular-weight fonts are not available.
Every font family should provide mappings for the nfss series m and bx in the
font definition file. If fonts matching these series exactly are not available, use
substitutions to ensure that the defaults for \mddefault and \bfdefault will
work without user intervention. Since \mddefault and \bfdefault are overall
settings applying to all of Latex’s families, redefining them explicitly may cause
problems. Doing so should be an option, not a requirement.

₃ \substitutesilent{sc}{n}

We also add a substitution for the sc shape, which will in fact be used by the
ts1 encoded families only. Since ts1 contains symbols and figures, we do not
need an additional small caps font for this encoding as it would be identical to
the upright variant anyway. However, to ensure that all text commands of the
textcomp package will always work, even if the active nfss shape is sc, we set
up this shape substitution.

₄ \setint{smallcapsscale}{800}

The basic Sabon set we are dealing with offers upright and italic fonts but no
optical small caps. As a substitute, fontinst is capable of transparently gener-
ating so-called ‘mechanical’ or ‘faked’ small caps – as opposed to ‘optical’ or
‘real’ small caps which are actual glyphs found in a dedicated small caps font.
Mechanical small caps are generated by taking the tall caps of the font and scal-
ing them by a certain factor: means full size, means .. Since Type

fonts scale linearly, scaling down tall caps implies that they will appear lighter
than the corresponding lowercase glyphs, thus disturbing the color of the page.
However, if they are too tall they do not mix well with the lowercase alphabet.

Optical small caps match the ‘x-height’ of the font. This is the height of the
lowercase alphabet without ascenders and descenders. They blend in seamlessly
with lowercase and mixed case text. Depending on the typeface, this usually
corresponds to a value in the range of –. If you scale down tall caps so
that they match the x-height of the font, they will appear too light in running
text. Finding a suitable value for this is obviously a trade-off. We are going to
use fontinst’s default setting of here but you might want to experiment
with a value in the range of –. For serious applications of small caps
we would need optical small caps, provided in a dedicated small caps or in an
expert font. For details on small caps and expert sets, please refer to tutorial iii
and v respectively.

₅ \setint{slant}{167}

The integer variable smallcapsscale is a predefined variable used by fontinst’s
encoding vectors. We could use it in conjunction with \latinfamily as well.
The variable slant is specific to our fontinst file. We define it for convenience
so that we can set the slant factor for all subsequent font transformations glob-
ally. The slant factor defines how much the glyphs slope to the right. It is a real

the fontinst file

number equivalent to the tangent of the slant angle. Fontinst represents this
number as an integer though, so we have to multiply the tangent by . The
value (~ .°) is a reasonable default. Any value significantly greater that

(~ °) is usually too much.¹

₆ \transformfont{psbr8r}{\reencodefont{8r}{\fromafm{psbr8a}}}
₇ \transformfont{psbri8r}{\reencodefont{8r}{\fromafm{psbri8a}}}
₈ \transformfont{psbb8r}{\reencodefont{8r}{\fromafm{psbb8a}}}
₉ \transformfont{psbbi8r}{\reencodefont{8r}{\fromafm{psbbi8a}}}

We start off with some basic font transformations: all fonts are reencoded from
Adobe Standard (Fontname code 8a) to Tex Base encoding (8r). Please re-
fer to the fontinst manual for an explanation of the syntax of the individual
commands used here and in the following.

₁₀ \transformfont{psbro8r}{\slantfont{\int{slant}}\reencodefont{8r}{\fromafm{psbr8a}}}
₁₁ \transformfont{psbbo8r}{\slantfont{\int{slant}}\reencodefont{8r}{\fromafm{psbb8a}}}

Like the \latinfamily shorthand, our fontinst file should create slanted fonts
as well. These need to be reencoded and, well, slanted. We are using the slant
variable defined in line to set the slant factor. The raw, Tex Base encoded
fonts are now prepared for the generation of virtual fonts.

₁₂ \installfonts
₁₃ \installfamily{T1}{psb}{}
₁₄ \installfamily{TS1}{psb}{}

The installation of a font family is enclosed in an environment which we open
in line and close later in line . First of all, the font family we are about to
install has to be declared: we have Adobe Sabon and we are going to install it
in t1 encoding (Fontname code 8t) as well as in ts1 (8c). The third argument
to \installfamily corresponds to the second one of the \latinfamily com-
mand: it is used to include code in the font definition file that will be read by
Latex whenever the font is selected. t1 will serve as our base encoding in Latex’s
text mode later. It is complemented by ts1 which provides additional glyphs
such as currency signs and other frequently used symbols. The \latinfamily
command also provides ot1 (7t) and Tex Base encoded fonts. We will omit
both encodings here as we do not need them. While raw Tex Base encoded
fonts (8r) form the basis of all virtual fonts, they are usually not deployed as
such on the Tex level, and the ot1 encoding is not suitable for Postscript fonts
anyway. We will therefore deliberately ignore it and focus on t1 and ts1 exclu-
sively.

₁₅ \installfont{psbr8t}{psbr8r,latin}{t1}{T1}{psb}{m}{n}{}

 I suggest you do not bother trying to match the slope of the italic fonts when creating a
slanted variant of a roman font. This will usually not work for typefaces with true italics
because the latter are an independent design.

 standard font sets

To create the individual virtual fonts, we use fontinst’s \installfont com-
mand. The first argument to \installfont is the virtual font we are going
to create, the second one is a list of files used to build this font. These can be
afm, mtx, or pl files, their extension is omitted. If multiple fonts are provided,
\installfont does not overwrite any encoding positions when reading in ad-
ditional files, it simply fills vacant slots if it finds suitable glyphs in the next
font. The metric file latin.mtx is an auxiliary file provided by fontinst which
should always be read when creating ot1 or t1 encoded text fonts. The third
argument is the file name of an encoding vector without the file extension, in
this case t1.etx. The remaining arguments are written verbatim to the font
definition file and declare the respective font in a format that the Latex font
selection scheme (nfss) can process: t1 encoding, Adobe Sabon¹, medium²,
normal (that is, upright or roman). The last argument is only relevant if fonts
with different design sizes are available. It is empty for linearly scaled fonts.

₁₆ \installfont{psbrc8t}{psbr8r,latin}{t1c}{T1}{psb}{m}{sc}{}

The small caps font is slightly different. Since we do not have any Type font
containing optical small caps we need to ‘fake’ them by scaling the uppercase
alphabet and putting the scaled glyphs in the encoding positions of the low-
ercase alphabet. Fortunately, we do not have to deal with the actual low-level
glyph scaling. We simply load t1c.etx, a special encoding vector which will
take care of that, using the value of smallcapsscale as the scale factor.

₁₇ \installfont{psbro8t}{psbro8r,latin}{t1}{T1}{psb}{m}{sl}{}
₁₈ \installfont{psbri8t}{psbri8r,latin}{t1}{T1}{psb}{m}{it}{}

Since the slanting was already performed on the raw fonts, the virtual slanted
and the italic fonts are handled just like the upright ones. Now all regular fonts
are done and we can repeat this part (–) for the bold fonts:

₁₉ \installfont{psbb8t}{psbb8r,latin}{t1}{T1}{psb}{b}{n}{}
₂₀ \installfont{psbbc8t}{psbb8r,latin}{t1c}{T1}{psb}{b}{sc}{}
₂₁ \installfont{psbbo8t}{psbbo8r,latin}{t1}{T1}{psb}{b}{sl}{}
₂₂ \installfont{psbbi8t}{psbbi8r,latin}{t1}{T1}{psb}{b}{it}{}

After that, we add virtual fonts for ts1 encoding:

₂₃ \installfont{psbr8c}{psbr8r,textcomp}{ts1}{TS1}{psb}{m}{n}{}

Like latin.mtx, textcomp.mtx is an auxiliary metric file provided by fontinst.
It should always be added when creating ts1 encoded fonts for the textcomp
package. The third argument, the encoding vector, refers to ts1.etx in this
case. As ts1 encoding is for symbols only and we did set up a shape substitu-
tion, we do not need a ts1 encoded small caps font. Slanted and italic fonts are
handled like the upright one:

 Latex does not really care about the name of the font or the foundry. This argument simply
defines the code that identifies the font within the nfss.

 In fact, the more appropriate name would be regular because medium is a moderate bold
weight with the nfss code mb.

the latinfamily macro revisited

₂₄ \installfont{psbro8c}{psbro8r,textcomp}{ts1}{TS1}{psb}{m}{sl}{}
₂₅ \installfont{psbri8c}{psbri8r,textcomp}{ts1}{TS1}{psb}{m}{it}{}

We repeat – for the bold fonts:

₂₆ \installfont{psbb8c}{psbb8r,textcomp}{ts1}{TS1}{psb}{b}{n}{}
₂₇ \installfont{psbbo8c}{psbbo8r,textcomp}{ts1}{TS1}{psb}{b}{sl}{}
₂₈ \installfont{psbbi8c}{psbbi8r,textcomp}{ts1}{TS1}{psb}{b}{it}{}

Finally, we close the install environment and terminate:

₂₉ \endinstallfonts
₃₀ \bye

ii. The latinfamily macro revisited

Note that our fontinst file is not strictly equivalent to the \latinfamily macro
but rather stripped down to the most useful parts with respect to typical Post-
script fonts. Essentially, we did not create any font description files for the raw
Tex Base encoded fonts and we dropped ot1 encoding. If you are curious,
you should be able to reconstruct all the steps taken by \latinfamily when
looking at the log file created by fontinst while keeping our file in mind. Here
are the relevant lines from the log file after running \latinfamily on the basic
Sabon set. Only lines beginning with “INFO> run” are relevant in this context
as they indicate lower-level macros used by \latinfamily:

INFO> run \transformfont <psbr8r> from <psbr8a>
INFO> run \installrawfont <psbr8r><psbr8r,8r><8r><8r><psb><m><n>
INFO> run \installfont <psbr7t><psbr8r,latin><OT1><OT1><psb><m><n>
INFO> run \installfont <psbr8t><psbr8r,latin><T1><T1><psb><m><n>
INFO> run \installfont <psbr8c><psbr8r,textcomp><TS1><TS1><psb><m><n>
INFO> run \installfont <psbrc7t><psbr8r,latin><OT1c><OT1><psb><m><sc>
INFO> run \installfont <psbrc8t><psbr8r,latin><T1c><T1><psb><m><sc>
INFO> run \transformfont <psbro8r> from <psbr8r> (faking oblique)
INFO> run \installrawfont <psbro8r><psbro8r,8r><8r><8r><psb><m><sl>
INFO> run \installfont <psbro7t><psbro8r,latin><OT1><OT1><psb><m><sl>
INFO> run \installfont <psbro8t><psbro8r,latin><T1><T1><psb><m><sl>
INFO> run \installfont <psbro8c><psbro8r,textcomp><TS1><TS1><psb><m><sl>
INFO> run \transformfont <psbri8r> from <psbri8a>
INFO> run \installrawfont <psbri8r><psbri8r,8r><8r><8r><psb><m><it>
INFO> run \installfont <psbri7t><psbri8r,latin><OT1i><OT1><psb><m><it>
INFO> run \installfont <psbri8t><psbri8r,latin><T1i><T1><psb><m><it>
INFO> run \installfont <psbri8c><psbri8r,textcomp><TS1i><TS1><psb><m><it>
INFO> run \transformfont <psbb8r> from <psbb8a>
INFO> run \installrawfont <psbb8r><psbb8r,8r><8r><8r><psb><n>
INFO> run \installfont <psbb7t><psbb8r,latin><OT1><OT1><psb><n>
INFO> run \installfont <psbb8t><psbb8r,latin><T1><T1><psb><n>
INFO> run \installfont <psbb8c><psbb8r,textcomp><TS1><TS1><psb><n>
INFO> run \installfont <psbbc7t><psbb8r,latin><OT1c><OT1><psb><sc>
INFO> run \installfont <psbbc8t><psbb8r,latin><T1c><T1><psb><sc>
INFO> run \transformfont <psbbo8r> from <psbb8r> (faking oblique)
INFO> run \installrawfont <psbbo8r><psbbo8r,8r><8r><8r><psb><sl>
INFO> run \installfont <psbbo7t><psbbo8r,latin><OT1><OT1><psb><sl>
INFO> run \installfont <psbbo8t><psbbo8r,latin><T1><T1><psb><sl>
INFO> run \installfont <psbbo8c><psbbo8r,textcomp><TS1><TS1><psb><sl>
INFO> run \transformfont <psbbi8r> from <psbbi8a>

 standard font sets

INFO> run \installrawfont <psbbi8r><psbbi8r,8r><8r><8r><psb><it>
INFO> run \installfont <psbbi7t><psbbi8r,latin><OT1i><OT1><psb><it>
INFO> run \installfont <psbbi8t><psbbi8r,latin><T1i><T1><psb><it>
INFO> run \installfont <psbbi8c><psbbi8r,textcomp><TS1i><TS1><psb><it>

This listing is a complete summary of what the \latinfamily macro does in
this case, broken down into lower-level commands. The order of the commands
differs slightly from our file, because the \transformfont calls are not grouped
at the beginning but rather used ‘on demand’ for each shape. This difference is
irrelevant from a technical point of view. \transformfont must obviously be
called before \installfont or \installrawfont tries to use the transformed
fonts, but the exact location does not matter. Since we did not create any font
description files for Tex Base encoding, we did not use the \installrawfont
macro in our fontinst file. This macro does not build a virtual font but rather
sets up a raw, Tex Base encoded font for use under Latex.

Here are some crucial points we would have to keep in mind when writ-
ing a fontinst file that does exactly what \latinfamily would do: the macro
\installrawfont is used in conjunction with 8r.mtx instead of latin.mtx,
the encoding file is obviously 8r.etx in this case. Creating ot1 encoded vir-
tual fonts requires latin.mtx and ot1.etx. You will also notice that, in ad-
dition to ot1c.etx and t1c.etx, fontinst used encoding files like ot1i.etx
and t1i.etx when creating italic virtual fonts. For t1 encoding, t1.etx and
t1i.etx are equivalent because t1i.etx reads t1.etx internally, hence we did
not use t1i.etx in our fontinst file. The situation is the same with ts1.etx
and ts1i.etx. For ot1 encoding, however, the difference is crucial because this
encoding differs depending on the shape: the upright shape features a dollar
symbol while the italic shape puts an italic pound symbol in the slot of the
dollar. This is yet another idiosyncrasy of ot1.

ii. Map files revisited

With all of that in mind, let’s now go back to the dvips map file from the first
tutorial and take another look at it. The meaning of the reencoding and slanting
instructions should be much clearer now:

psbr8r Sabon-Roman "TeXBase1Encoding ReEncodeFont" <8r.enc <psbr8a.pfb
psbri8r Sabon-Italic "TeXBase1Encoding ReEncodeFont" <8r.enc <psbri8a.pfb
psbb8r Sabon-Bold "TeXBase1Encoding ReEncodeFont" <8r.enc <psbb8a.pfb
psbbi8r Sabon-BoldItalic "TeXBase1Encoding ReEncodeFont" <8r.enc <psbbi8a.pfb
psbro8r Sabon-Roman "0.167 SlantFont TeXBase1Encoding ReEncodeFont" <8r.enc <psbr8a.pfb
psbbo8r Sabon-Bold "0.167 SlantFont TeXBase1Encoding ReEncodeFont" <8r.enc <psbb8a.pfb

Note that the t1 and ts1 encodings are used for the virtual fonts only, they are
what Tex will work with. A Postscript file created by dvips, however, does not
contain any virtual fonts. They will have been resolved into the raw fonts they
are based on by dvips. The raw fonts used to build virtual ones were reencoded
to Tex Base encoding during the installation. But this reencoding step affects
the font metrics only while the pfb files embedded in the Postscript code still

map files revisited

use Adobe Standard as their native encoding. Therefore every application read-
ing the final file has to repeat the reencoding step for the font outlines before
rendering the fonts. This is what the “ReEncodeFont” instruction is all about.
Since we cannot expect every application to know about Tex Base encoding,
we embed the respective encoding vector (8r.enc) along with the fonts. Com-
pare the first \transformfont command in the fontinst file to the first line of
the map file:

\transformfont{psbr8r} {\reencodefont{8r} {\fromafm{psbr8a}}}
psbr8r Sabon-Roman "TeXBase1Encoding ReEncodeFont" <8r.enc <psbr8a.pfb

The situation is similar for the slanted fonts. The font files embedded in the
Postscript file are not slanted, they are upright. Fontinst has performed the
slanting for the font metrics only, it does not touch the font outlines at all.
The slanting of the glyph outlines will be performed by a Postscript printer or
an interpreter like Ghostscript. After resolving the virtual fonts, all that dvips
does as far as the raw fonts are concerned is reading the files listed in psb.map
and embedding them along with the “SlantFont” instruction. The transforma-
tion of the glyph outlines takes place when the Postscript code is rendered on
screen or on paper. Both “ReEncodeFont” and “SlantFont” are instructions for
the application finally performing the rendering. The value of the “SlantFont”
instruction has to correspond to the slant factor used in the fontinst file. As
mentioned above, fontinst’s representation of the slant factor is slightly differ-
ent. The value used in the map file is a real number corresponding to fontinst’s
(integer) slant factor divided by . That’s why its precision is fixed to three
decimal places. Let’s compare a line of the map file to the corresponding line of
the fontinst file:

\transformfont{psbro8r}{\slantfont{167}\reencodefont{8r}{\fromafm{psbr8a}}}
psbro8r Sabon-Roman "0.167 SlantFont TeXBase1Encoding ReEncodeFont" <8r.enc <psbr8a.pfb

Essentially, think of map files as a way of recording all encoding and shape
modifications applied to the font metrics during the installation, so that they
can be repeated for the font outlines when the final Postscript file is displayed
or printed. This information is required for the raw fonts only because all the
information concerning the virtual fonts is contained in the virtual font files.
When using dvi or pdf as the final output format, the division of labor be-
tween the various tools involved differs since pdftex combines the roles of Tex
and dvips, while dvi viewers deal with both the virtual fonts and the render-
ing of the font outlines on screen. The principle, however, remains the same.
Therefore pdftex and xdvi require map files as well.

tutorial iii

optical small caps and
hanging figures

When choosing a new typeface, bear in mind that optical small caps and hang-
ing figures are not available for all commercial Postscript fonts. If they are
available for a certain typeface, they are usually provided separately, either in
a sc & osf or in an expert font package. We will deal with the former case in
this tutorial, the latter will be discussed in tutorial v. Suppose we have acquired
the Sabon sc & osf package to complement our base install of Sabon. This pack-
age provides four additional fonts: a regular sc & osf, an italic osf, a bold osf,
and a bold italic osf font. These fonts will provide us with hanging figures for
all shapes in both weights. Small caps are available for the regular weight only;
we will still have to make do with mechanical small caps for the bold weight.
Adobe does not include a separate regular-weight upright osf font. The respec-
tive figures are to be found in the small caps font instead. Our original file set
looks like this:

sar_____.afm sai_____.afm sab_____.afm sabi_____.afm
sar_____.inf sai_____.inf sab_____.inf sabi_____.inf
sar_____.pfb sai_____.pfb sab_____.pfb sabi_____.pfb
sar_____.pfm sai_____.pfm sab_____.pfm sabi_____.pfm

sarsc___.afm saiof___.afm sabof___.afm sabio___.afm
sarsc___.inf saiof___.inf sabof___.inf sabio___.inf
sarsc___.pfb saiof___.pfb sabof___.pfb sabio___.pfb
sarsc___.pfm saiof___.pfm sabof___.pfm sabio___.pfm

After renaming and choosing the required files, we could start off with the fol-
lowing set of files:

psbr8a.afm psbri8a.afm psbb8a.afm psbbi8a.afm
psbr8a.pfb psbri8a.pfb psbb8a.pfb psbbi8a.pfb

psbrc8a.afm psbrij8a.afm psbbj8a.afm psbbij8a.afm
psbrc8a.pfb psbrij8a.pfb psbbj8a.pfb psbbij8a.pfb

But before we begin, let’s take a closer look at the encoding of the fonts. We
will have to deal with some peculiarities characteristic for typical sc & osf sets.
Taking a look at psbr8a.afm, you will see that in Adobe Standard encoding,
which is the native encoding of all fonts of the Sabon family, the figures are
encoded as “zero”, “one”, “two” etc.:

C 48 ; WX 556 ; N zero ; B 52 -15 504 705 ;
C 49 ; WX 556 ; N one ; B 91 0 449 705 ;
C 50 ; WX 556 ; N two ; B 23 0 507 705 ;

Compare that to the glyph names of figures in an expert font:

C 48 ; WX 511 ; N zerooldstyle ; B 40 -14 480 436 ;
C 49 ; WX 328 ; N oneoldstyle ; B 35 -3 294 425 ;
C 50 ; WX 440 ; N twooldstyle ; B 44 -3 427 436 ;

 optical small caps and hanging figures

The different glyph names are appropriate because regular Postscript fonts usu-
ally come with lining figures by default while expert fonts feature hanging (‘old
style’) figures amongst other things. Now let’s take a look at psbrc8a.afm:

C 48 ; WX 556 ; N zero ; B 41 -15 515 457 ;
C 49 ; WX 556 ; N one ; B 108 0 448 442 ;
C 50 ; WX 556 ; N two ; B 72 0 512 457 ;

When comparing these glyph names to the actual outlines in psbrc8a.pfb,¹
we would see that this font in fact comes with hanging (‘old style’) figures even
though the figures are labeled using the standard names. This is the case with
all osf fonts included in the sc & osf package. The reason why this complicates
the installation procedure will become clear when we take a look at the Tex
side. In t1 encoding, for example, the figures are (essentially) encoded like this
by default:

\setslot{zero}\endsetslot
\setslot{one}\endsetslot
\setslot{two}\endsetslot

While ts1 encoding (essentially) references them as follows:

\setslot{zerooldstyle}\endsetslot
\setslot{oneoldstyle}\endsetslot
\setslot{twooldstyle}\endsetslot

We face a similar problem with small caps. The lowercase letters in psbr8a.afm
are labeled like this:

C 97 ; WX 500 ; N a ; B 42 -15 465 457 ;
C 98 ; WX 556 ; N b ; B 46 -15 514 764 ;
C 99 ; WX 444 ; N c ; B 25 -15 419 457 ;

Expert fonts, which provide small caps as well but do not need to follow Adobe
Standard encoding, encode small caps as follows:

C 97 ; WX 457 ; N Asmall ; B -15 -3 467 446 ;
C 98 ; WX 481 ; N Bsmall ; B 34 -3 437 437 ;
C 99 ; WX 501 ; N Csmall ; B 38 -14 477 448 ;

Our font psbrc8a features small caps in place of lowercase letters but it has to
follow Adobe Standard encoding:

C 97 ; WX 556 ; N a ; B 10 0 546 509 ;
C 98 ; WX 556 ; N b ; B 49 0 497 490 ;
C 99 ; WX 556 ; N c ; B 49 -12 512 502 ;

This is one of the tricky parts when installing typical sc & osf sets. Fontinst’s en-
coding vectors expect distinct names for distinct glyphs while the metric files of
sc & osf fonts do not provide unique names for optical small caps and hanging
figures. The other idiosyncrasy of sc & osf sets is specific to a few font foundries
(including Adobe) only: there is no separate upright osf font so we have to

 The correct name of this font is psbrcj8a, but we will stick to the naming proposed in
adobe.map here.

the fontinst file

take the upright hanging figures from the small caps font when building virtual
fonts.

iii. The fontinst file

For fontinst, we use the file introduced in the last tutorial as a template and
add the features we need. We will create two Latex font families: psb and psbj.
The former will provide lining figures while the latter will use the hanging fig-
ures of the osf fonts instead. Both families will incorporate optical small caps
where available. In the following, all comments concerning the fontinst file will
be restricted to those aspects diverging from our template. Please refer to the
previous tutorial for a commentary on the original template.

₁ \input fontinst.sty
₂ \substitutesilent{bx}{b}
₃ \substitutesilent{sc}{n}
₄ \setint{smallcapsscale}{800}
₅ \setint{slant}{167}
₆ \transformfont{psbr8r}{\reencodefont{8r}{\fromafm{psbr8a}}}
₇ \transformfont{psbri8r}{\reencodefont{8r}{\fromafm{psbri8a}}}
₈ \transformfont{psbb8r}{\reencodefont{8r}{\fromafm{psbb8a}}}
₉ \transformfont{psbbi8r}{\reencodefont{8r}{\fromafm{psbbi8a}}}

₁₀ \transformfont{psbrc8r}{\reencodefont{8r}{\fromafm{psbrc8a}}}
₁₁ \transformfont{psbrij8r}{\reencodefont{8r}{\fromafm{psbrij8a}}}
₁₂ \transformfont{psbbj8r}{\reencodefont{8r}{\fromafm{psbbj8a}}}
₁₃ \transformfont{psbbij8r}{\reencodefont{8r}{\fromafm{psbbij8a}}}

The first couple of lines of our template remain unchanged (–). After the
reencodings inherited form our template, we insert the additional fonts since
they need to be reencoded as well (–).

₁₄ \transformfont{psbro8r}{\slantfont{\int{slant}}\reencodefont{8r}{\fromafm{psbr8a}}}
₁₅ \transformfont{psbbo8r}{\slantfont{\int{slant}}\reencodefont{8r}{\fromafm{psbb8a}}}
₁₆ \transformfont{psbrco8r}{\slantfont{\int{slant}}\reencodefont{8r}{\fromafm{psbrc8a}}}
₁₇ \transformfont{psbboj8r}{\slantfont{\int{slant}}\reencodefont{8r}{\fromafm{psbbj8a}}}

In addition to that, we need slanted versions of the new fonts. Slanting the small
caps font () may seem like a strange thing to do at first since we do not really
want to create a slanted small caps shape. But since regular-weight hanging
figures are found in the small caps font, we need a slanted version of that as
well to provide matching figures for the slanted shape of the psbj family later.

₁₈ \installfonts
₁₉ \installfamily{T1}{psb}{}
₂₀ \installfamily{TS1}{psb}{}
₂₁ \installfont{psbr8t}{psbr8r,latin}{t1}{T1}{psb}{m}{n}{}
₂₂ \installfont{psbrc8t}{psbrc8r,unsetnum,kernoff,psbr8r,kernon,latin}{t1}{T1}{psb}{m}{sc}{}

The file psbrc8r provides small caps and hanging figures, but we want psb
to be a consistent family using lining figures throughout. Therefore, we read
psbrc8r first and clear the encoding positions of all figures using commands
from a separate metric file, unsetnum.mtx, right after that. This file is listed
further down; all it does is clear all figure slots. When adding psbr8r after-

 optical small caps and hanging figures

wards, the figure slots of the virtual font psbrc8t will be filled using the lining
figures found in psbr8r. Note that \installfont does not overwrite any en-
coding slots when processing additional metric files, it simply fills vacant slots
if it finds suitable glyphs in the next font. This allows us to insert the lining
figures of psbr8r in the virtual font while the rest of the glyphs including the
small caps is taken from psbrc8r. As to the encoding vector, we use the regular
encoding file t1.etx in this case since psbrc8r uses standard glyph names for
the small caps so that t1c.etx would be inappropriate.

There is one more thing we have to take into account: adding a metric file to
the \installfont command also adds kerning information provided by that
file. The problem here is that some of the glyph names in our raw fonts are not
unique since the small caps in psbrc8r are encoded and labeled just like the
lowercase letters in psbr8r. The kerning data in psbr8r, however, refers to or-
dinary lowercase letters. Under certain circumstances, misleading kerning data
might thus be included in the virtual small caps font psbrc8t. To avoid that,
we add two auxiliary files provided by fontinst, kernon.mtx and kernoff.mtx,
which enable and disable fontinst’s \setkern command. When added to the
input file list as shown above, this will effectively ignore the kerning data in
psbr8r.

₂₃ \installfont{psbro8t}{psbro8r,latin}{t1}{T1}{psb}{m}{sl}{}
₂₄ \installfont{psbri8t}{psbri8r,latin}{t1}{T1}{psb}{m}{it}{}
₂₅ \installfont{psbb8t}{psbb8r,latin}{t1}{T1}{psb}{b}{n}{}
₂₆ \installfont{psbbc8t}{psbb8r,latin}{t1c}{T1}{psb}{b}{sc}{}

Optical small caps are available for the regular weight only. For the bold series
we have to make do with ‘faked’ small caps, so we use the encoding file t1c.etx
here (). The remaining lines for t1 encoding do not require any adjustments:

₂₇ \installfont{psbbo8t}{psbbo8r,latin}{t1}{T1}{psb}{b}{sl}{}
₂₈ \installfont{psbbi8t}{psbbi8r,latin}{t1}{T1}{psb}{b}{it}{}

That’s it for t1 encoding. While ts1 is primarily intended for symbols comple-
menting t1, it includes hanging figures as well. Since the only way to use them is
loading the textcomp package and typing rather cumbersome text commands
like \textzerooldstyle it is not very useful to have them in ts1. Our psbj
family will make them the default figures anyway so that they are readily avail-
able. But we are being picky. We have put down some hard, cold cash for the
Sabon sc & osf package and we want to make the most of it. Let’s see how we
can put hanging figures in TS1/psb as well. As mentioned above, the problem
here is that the osf fonts use regular glyph names for the hanging figures while
fontinst’s ts1 encoding vector references them by oldstyle names. Hence we
have to turn regular figures – which are in fact hanging figures not encoded as
such – into hanging figures. To do that, we need an additional resource pro-
vided by fontinst, the metric file resetosf.mtx. With this in mind, let’s add a
section for ts1 encoding to our fontinst file:

the fontinst file

₂₉ \installfont{psbr8c}{psbr8r,unsetnum,kernoff,psbrc8r,kernon,resetosf,textcomp}{ts1}%
₃₀ {TS1}{psb}{m}{n}{}

For the upright fonts, the hanging figures are in fact in the small caps font which
complicates the installation even more. But we have dealt with this problem be-
fore and the first steps should therefore look familiar: we read psbr8r, clear the
standard figures using unsetnum, and read psbrc8r. Since we are dealing with
ts1 here, one additional step is required. We add resetosf.mtx to the input file
list of this \installfont command to rename the figures found in psbrc8r
(the figures in psbr8r have already been discarded by unsetnum). resetosf
will rename the figures to “zerooldstyle” and so on. We also add kernon.mtx
and kernoff.mtx to protect the kerning data. Typing \textthreeoldstyle in
a Latex file when the textcomp package has been loaded would now typeset a
proper hanging three.

₃₁ \installfont{psbro8c}{psbro8r,unsetnum,kernoff,psbrco8r,kernon,resetosf,textcomp}{ts1}%
₃₂ {TS1}{psb}{m}{sl}{}

The slanted shape is handled in a similar way because it relies on the figures in
the small caps font as well. For the remaining virtual fonts, the installation is
simpler. Since the osf fonts already provide hanging figures, all we need to do
is rename them for ts1 encoding by adding resetosf.mtx:

₃₃ \installfont{psbri8c}{psbrij8r,resetosf,textcomp}{ts1}{TS1}{psb}{m}{it}{}
₃₄ \installfont{psbb8c}{psbbj8r,resetosf,textcomp}{ts1}{TS1}{psb}{b}{n}{}
₃₅ \installfont{psbbo8c}{psbboj8r,resetosf,textcomp}{ts1}{TS1}{psb}{b}{sl}{}
₃₆ \installfont{psbbi8c}{psbbij8r,resetosf,textcomp}{ts1}{TS1}{psb}{b}{it}{}
₃₇ \endinstallfonts

This is the first half of our fontinst file which is dealing with the psb family.
Compared to the template introduced in the previous tutorial it adds optical
small caps to t1 and hanging figures to ts1 encoding. We will create an addi-
tional font family called psbj which we want to use hanging figures through-
out.

₃₈ \installfonts
₃₉ \installfamily{T1}{psbj}{}
₄₀ \installfont{psbrj8t}{psbr8r,unsetnum,kernoff,psbrc8r,kernon,latin}{t1}{T1}{psbj}{m}{n}{}

If we want the psbj family to incorporate hanging figures, we need to exchange
the figure set of the virtual font like we did when creating the regular-weight
small caps font above. But this time, we do it the other way around: we read
psbr8r first, clear the encoding slots of all figures, and add psbrc8r afterwards
to fill the figure slots using the hanging figures found in psbrc8r. Only the
figures found in psbrc8r will be included in the virtual font as all other en-
coding slots were already filled by psbr8r. Again, care needs to be taken with
the kerning data here. The kerning information in psbrc8r refers to small caps
although the glyphs are encoded as ordinary lowercase letters. Hence we need
to add kernon.mtx and kernoff.mtx to discard the kerning data in psbrc8r.

 optical small caps and hanging figures

₄₁ \installfont{psbrcj8t}{psbrc8r,latin}{t1}{T1}{psbj}{m}{sc}{}

The small caps font does not require any modifications this time. psbrc8r al-
ready contains hanging figures so we can use it as-is. Since psbrc8r uses stan-
dard glyph names for small caps and hanging figures, we use the regular encod-
ing vector t1.etx.

₄₂ \installfont{psbroj8t}{psbro8r,unsetnum,kernoff,psbrco8r,kernon,latin}{t1}{T1}{psbj}{m}{sl}{}

The slanted shape is straightforward to the upright one: we read psbro8r, clear
the figures, and add the slanted hanging figures provided by psbrco8r. We also
toggle fontinst’s \setkern macro by adding kernon and kernoff.

₄₃ \installfont{psbrij8t}{psbrij8r,latin}{t1}{T1}{psbj}{m}{it}{}

Building the italic virtual font is trivial because we have an italic osf font with
easily accessible hanging figures in the standard slots. Since there are osf fonts
for all bold shapes as well, they do not require any special modifications either.
We simply use the appropriate osf fonts instead of the fonts from the basic
Sabon package:

₄₄ \installfont{psbbj8t}{psbbj8r,latin}{t1}{T1}{psbj}{b}{n}{}
₄₅ \installfont{psbbcj8t}{psbbj8r,latin}{t1c}{T1}{psbj}{b}{sc}{}

We create ‘faked’ bold small caps using the special t1c.etx encoding file be-
cause there is no bold small caps font.

₄₆ \installfont{psbboj8t}{psbboj8r,latin}{t1}{T1}{psbj}{b}{sl}{}
₄₇ \installfont{psbbij8t}{psbbij8r,latin}{t1}{T1}{psbj}{b}{it}{}
₄₈ \endinstallfonts
₄₉ \bye

This is the complete fontinst file for the nfss font families psb and psbj. It
requires the metric file unsetnum.mtx which is part of the fontinst package.
Metric files always begin with \relax and enclose all commands in a metrics
environment. Essentially, unsetnum.mtx consists of several \unsetglyph com-
mands which clear all figure slots:

\relax
\metrics
\unsetglyph{zero}
\unsetglyph{one}
\unsetglyph{two}
\unsetglyph{three}
\unsetglyph{four}
\unsetglyph{five}
\unsetglyph{six}
\unsetglyph{seven}
\unsetglyph{eight}
\unsetglyph{nine}
\endmetrics

You probably will have noticed that we did not create ts1 encoded fonts for the
psbj family. The reason is quite simple: since ts1 is not a regular text encoding
TS1/psbj would be identical to TS1/psb anyway. To ensure that the textcomp

the map file

package works for the psbj family nonetheless, we need to set up some substi-
tutions. Since fontinst does not support family substitutions we cannot create
them automatically. We have to write a font definition file manually. The file
ts1psbj.fd should like this:

\ProvidesFile{ts1psbj.fd}
\DeclareFontFamily{TS1}{psbj}{}
\DeclareFontShape{TS1}{psbj}{m} {n} {<-> ssub * psb/m/n} {}
\DeclareFontShape{TS1}{psbj}{m} {sc}{<-> ssub * psb/m/sc}{}
\DeclareFontShape{TS1}{psbj}{m} {sl}{<-> ssub * psb/m/sl}{}
\DeclareFontShape{TS1}{psbj}{m} {it}{<-> ssub * psb/m/it}{}
\DeclareFontShape{TS1}{psbj}{b} {n} {<-> ssub * psb/b/n} {}
\DeclareFontShape{TS1}{psbj}{b} {sc}{<-> ssub * psb/b/sc}{}
\DeclareFontShape{TS1}{psbj}{b} {sl}{<-> ssub * psb/b/sl}{}
\DeclareFontShape{TS1}{psbj}{b} {it}{<-> ssub * psb/b/it}{}
\DeclareFontShape{TS1}{psbj}{bx}{n} {<-> ssub * psb/b/n} {}
\DeclareFontShape{TS1}{psbj}{bx}{sc}{<-> ssub * psb/b/sc}{}
\DeclareFontShape{TS1}{psbj}{bx}{sl}{<-> ssub * psb/b/sl}{}
\DeclareFontShape{TS1}{psbj}{bx}{it}{<-> ssub * psb/b/it}{}
\endinput

The syntax of font definition files is explained in the Latex font selection guide
and will not be discussed in detail here.¹ The main point of this file should be
evident: for all series and shapes, we substitute TS1/psb for TS1/psbj because
we did not create virtual fonts for TS1/psbj. The ssub directive is a silent sub-
stitution. For details, see chapter of the font selection guide, section . in
particular. With this additional font definition file we now have a fully func-
tional setup for psb and psbj in t1 and ts1 encoding.

iii. The map file

After running the fontinst file through Tex and installing the new fonts, we
still need to update the map file psb.map. We add the following lines for the
additional fonts found in the sc & osf package:

psbrc8r Sabon-RomanSC "TeXBase1Encoding ReEncodeFont" <8r.enc <psbrc8a.pfb
psbrij8r Sabon-ItalicOsF "TeXBase1Encoding ReEncodeFont" <8r.enc <psbrij8a.pfb
psbbj8r Sabon-BoldOsF "TeXBase1Encoding ReEncodeFont" <8r.enc <psbbj8a.pfb
psbbij8r Sabon-BoldItalicOsF "TeXBase1Encoding ReEncodeFont" <8r.enc <psbbij8a.pfb

In addition to this, we need slanted versions of the new fonts. For the bold osf
font this is obvious. Since regular-weight hanging figures are found in the small
caps font, we need a slanted version of this font as well to provide matching
figures for the slanted shape of the psbj family. This leads us to the slanted
small caps variant:

psbrco8r Sabon-RomanSC "0.167 SlantFont TeXBase1Encoding ReEncodeFont" <8r.enc <psbrc8a.pfb
psbboj8r Sabon-BoldOsF "0.167 SlantFont TeXBase1Encoding ReEncodeFont" <8r.enc <psbbj8a.pfb

This is the complete map file:

psbr8r Sabon-Roman "TeXBase1Encoding ReEncodeFont" <8r.enc <psbr8a.pfb

 http://www.ctan.org/tex-archive/macros/latex/doc/fntguide.pdf

www.ctan.org/tex-archive/macros/latex/doc/fntguide.pdf

 optical small caps and hanging figures

psbri8r Sabon-Italic "TeXBase1Encoding ReEncodeFont" <8r.enc <psbri8a.pfb
psbb8r Sabon-Bold "TeXBase1Encoding ReEncodeFont" <8r.enc <psbb8a.pfb
psbbi8r Sabon-BoldItalic "TeXBase1Encoding ReEncodeFont" <8r.enc <psbbi8a.pfb
psbrc8r Sabon-RomanSC "TeXBase1Encoding ReEncodeFont" <8r.enc <psbrc8a.pfb
psbrij8r Sabon-ItalicOsF "TeXBase1Encoding ReEncodeFont" <8r.enc <psbrij8a.pfb
psbbj8r Sabon-BoldOsF "TeXBase1Encoding ReEncodeFont" <8r.enc <psbbj8a.pfb
psbbij8r Sabon-BoldItalicOsF "TeXBase1Encoding ReEncodeFont" <8r.enc <psbbij8a.pfb
psbro8r Sabon-Roman "0.167 SlantFont TeXBase1Encoding ReEncodeFont" <8r.enc <psbr8a.pfb
psbbo8r Sabon-Bold "0.167 SlantFont TeXBase1Encoding ReEncodeFont" <8r.enc <psbb8a.pfb
psbrco8r Sabon-RomanSC "0.167 SlantFont TeXBase1Encoding ReEncodeFont" <8r.enc <psbrc8a.pfb
psbboj8r Sabon-BoldOsF "0.167 SlantFont TeXBase1Encoding ReEncodeFont" <8r.enc <psbbj8a.pfb

iii. The style file

With two Sabon families at hand, we might want to update sabon.sty to make
them readily available. We add the two options oldstyle and lining for the
respective font families (–) and make hanging figures the default (). Loading
the package with the option oldstyle or without any option will set up psbj
as the default roman family while using the lining option will make it select
psb instead. It might also be handy to have dedicated text commands to switch
between the two figure sets. Since such commands will need to work with all
font families anyway, let’s put them in a stand-alone style file, nfssext.sty,
and load that in sabon.sty ():

₁ \NeedsTeXFormat{LaTeX2e}
₂ \ProvidesPackage{sabon}[2002/05/12 v1.1 Adobe Sabon]
₃ \RequirePackage[T1]{fontenc}
₄ \RequirePackage{textcomp}
₅ \RequirePackage{nfssext}
₆ \DeclareOption{oldstyle}{\renewcommand*{\rmdefault}{psbj}}
₇ \DeclareOption{lining}{\renewcommand*{\rmdefault}{psb}}
₈ \ExecuteOptions{oldstyle}
₉ \ProcessOptions

₁₀ \endinput

The style file nfssext.sty might look like this:

₁ \NeedsTeXFormat{LaTeX2e}
₂ \ProvidesPackage{nfssext}[2003/03/14 v1.2 Experimental NFSS Extensions]
₃ \newcommand*{\exfs@tempa}{}
₄ \newcommand*{\exfs@tempb}{}
₅ \newcommand*{\exfs@try@family}[1]{%
₆ \let\exfs@tempa\relax
₇ \begingroup
₈ \fontfamily{#1}\try@load@fontshape
₉ \expandafter\ifx\csname\curr@fontshape\endcsname\relax

₁₀ \PackageWarning{nfssext}{%
₁₁ Font family ’\f@encoding/#1’ not available\MessageBreak
₁₂ Ignoring font switch}%
₁₃ \else
₁₄ \gdef\exfs@tempa{\fontfamily{#1}\selectfont}%
₁₅ \fi
₁₆ \endgroup
₁₇ \exfs@tempa}

fonts supplied with tex

This is an outline for a command that makes use of a few nfss internals to
switch to a specific family if and only if it is available. Essentially, we try to load
the requested family in the current encoding (). If this succeeds, we set up a
macro () to be expanded later that will actually switch font families; if not,
we print a warning message (–) and do nothing.

₁₈ \def\exfs@get@base#1#2#3#4\@nil{#1#2#3}%
₁₉ \DeclareRobustCommand{\lnstyle}{%
₂₀ \not@math@alphabet\lnstyle\relax
₂₁ \exfs@try@family{\expandafter\exfs@get@base\f@family\@nil}}
₂₂ \DeclareRobustCommand{\osstyle}{%
₂₃ \not@math@alphabet\osstyle\relax
₂₄ \exfs@try@family{\expandafter\exfs@get@base\f@family\@nil j}}

The macros \lnstyle and \osstyle switch to lining and hanging (‘old style’)
figures respectively. They are like \bfseries or \itshape. Internally, they will
take the first three letters of the current nfss font family name (), append a
letter to it where appropriate (none for lining figures, j for hanging figures),
and call \exfs@try@family. Even though this mechanism is rather simple-
minded, it should work just fine for all fonts set up properly according to the
Fontname scheme.

₂₅ \DeclareTextFontCommand{\textln}{\lnstyle}
₂₆ \DeclareTextFontCommand{\textos}{\osstyle}
₂₇ \endinput

The corresponding text commands, \textln and \textos, take one manda-
tory argument and can be employed like \textbf or \textit.

iii. Fonts supplied with Tex

The standard Postscript fonts supplied with most Tex distributions do not in-
clude optical small caps, nor do they include hanging figures. The default type-
face of both plain Tex and Latex however, Computer Modern Roman, does in-
clude such glyphs. Unfortunately, the design of the small caps is flawed. Their
height corresponds to what you usually end up with when creating mechanical
small caps. Being too tall, these small caps hardly blend in with lowercase text
at all, even though their color matches that of the lowercase alphabet.

Hanging figures are included in Computer Modern as well, but they are hid-
den in some of the math fonts. The only way to use them with the default setup
is rather cumbersome: the command \oldstylenums{} will take the numbers
to be typeset as hanging figures as an argument. There is a set of virtual fonts
for the European Computer Modern fonts which make these hanging figures
the default in Tex’s text mode so that they are readily available. These fonts are
provided in the eco package available from ctan.¹ Please refer to the package
documentation for installation and usage instructions. Since this package es-
sentially consists of a set of virtual fonts, it should also work in conjunction
with the cm-super fonts mentioned in section i..

 http://www.ctan.org/tex-archive/fonts/eco/

www.ctan.org/tex-archive/fonts/eco/

tutorial iv

the euro currency
symbol

While the euro symbol has been supported by
Latex for quite some time – it is included in ts1
encoding and the textcomp package provides
the corresponding text command \texteuro –
the real problem is getting fonts that provide
this glyph and setting them up accordingly. You
might want to read this tutorial even if you are
not affected by this particular issue, because it

deals with some generic encoding problems that you may encounter in a differ-
ent context as well. There is a bit more to updating a font than drawing a euro
symbol and putting it in the font. It has to be properly encoded as well. Since the
euro symbol is not defined in Adobe Standard encoding, it can normally only
be included as an uncoded glyph in regular Postscript text fonts. An uncoded
glyph is only accessible after reencoding and assigning it to a valid encoding
position. Some font foundries decided to follow this path in order to conform
to Adobe Standard encoding. Others preferred to drop some supposedly rarely
used glyph and put the euro symbol in its encoding position instead. While
this violates the encoding standard, it can be more convenient under certain
circumstances. In the following, we will explore ways to handle both situations
cleanly. Finally, we will learn how to take the euro symbol from an external font
if none is provided by the text font itself.

iv. Uncoded euro symbol

While Adobe used to be rather inattentive to the problem at first, the foundry
is finally updating their typeface portfolio by gradually adding matching euro
symbols to their fonts – a process that has been promoted by the introduction
of the Opentype font format. Recent releases of Adobe Garamond, for example,
already ship with matching euro symbols. A quick look at the afm file shows that
in this case, the foundry decided to handle the encoding problem in a strict
manner. The new symbol is correctly labeled as “Euro” but it is not encoded
by default as that would violate Adobe Standard encoding. An encoding slot
number of -1 tells us that the glyph was not assigned to any encoding position:

C -1 ; WX 572 ; N Euro ; B -13 -14 542 640 ;

In order to access it, we need to reencode the font and assign the glyph “Euro”
to a valid encoding position. The standard procedure we have been pursuing in
this guide involves reencoding all fonts to Tex Base encoding anyway precisely

 the euro currency symbol

because of cases like this one. By reencoding all base fonts to Tex Base encod-
ing, we ensure that all glyphs our virtual fonts rely on are properly encoded
in the raw fonts we use as their basis. But we have to keep in mind that older
versions of Tex Base encoding did not include the euro symbol either. The pre-
vious release of fontinst, version ., came with an encoding vector that is not
suitable for our situation for this very reason. You can verify that by running
the file 8r.etx through Latex to create a documented listing of the encoding
vector as follows:

latex 8r.etx

Now take a look at the dvi file 8r.dvi: if the version number of this file is .

(dated June ,), it does not include the euro symbol. The best way to solve
this problem is updating fontinst to the latest release which ships with an up-
dated encoding vector.¹ After that, you can install the fonts as usual. Note, how-
ever, that you will need a matching version of 8r.enc as well, so that dvips and
pdftex can use the symbol. This file is distributed separately and not included
in the fontinst release.² In the following, we will create our own updated ver-
sions of 8r.etx and 8r.enc. This is merely intended as an illustrating of how
to deal with a typical encoding problem. If you simply want to get access to
an uncoded euro glyph, upgrade to fontinst ., update 8r.enc, and install the
fonts as usual. You might want to skip the next paragraphs and continue read-
ing with section iv. on page in this case. If you want to learn more about
fontinst’s encoding vectors, read on.

First, we create a copy of the file 8r.etx as provided by fontinst .. The
updated encoding vector of the new fontinst release puts the euro symbol in
slot . We will do the same to ensure that our vector remains compatible with
the official distribution. Let’s take a look at the relevant part of 8r.etx:

₆₂₄ \setslot{asciitilde}
₆₂₅ \comment{The ASCII tilde ‘\textasciitilde’.
₆₂₆ This is included for compatibility with typewriter fonts used
₆₂₇ for computer listings.}
₆₂₈ \endsetslot
₆₂₉
₆₃₀ \comment{The following 32 slots, 128--159, are based on Windows ANSI.}
₆₃₁
₆₃₂ \nextslot{130}
₆₃₃ \setslot{quotesinglbase}
₆₃₄ \comment{A German single quote mark ‘\quotesinglbase’ similar to a comma,
₆₃₅ but with different sidebearings.}
₆₃₆ \endsetslot

Slot defines “asciitilde”, slots – are empty, and slot defines the
lower single quotation mark “quotesinglbase”. The slot number is automatically
incremented by one for each \setslot command, but if some slots are left

 http://www.ctan.org/tex-archive/fonts/utilities/fontinst/
 http://www.ctan.org/tex-archive/info/fontname/8r.enc

www.ctan.org/tex-archive/fonts/utilities/fontinst/
www.ctan.org/tex-archive/info/fontname/8r.enc

uncoded euro symbol

empty the slot has to be set explicitly with a \nextslot command. This is done
for “quotesinglbase” above. We want to add the euro symbol in slot , so we
add the following:

₆₃₀ \comment{The following 32 slots, 128--159, are based on Windows ANSI.}

\nextslot{128}
\setslot{Euro}

\comment{The euro currency symbol ‘\texteuro’.}
\endsetslot

₆₃₂ \nextslot{130}
₆₃₃ \setslot{quotesinglbase}
₆₃₄ \comment{A German single quote mark ‘\quotesinglbase’ similar to a comma,
₆₃₅ but with different sidebearings.}
₆₃₆ \endsetslot

Since slot is empty and the last slot defined was we need to set the slot
explicitly by adding \nextslot before actually defining the encoding position.
When defining the slot, keep in mind that the glyph names are case sensitive;
“euro” is not equivalent to “Euro”. We also add an explanation so that the com-
mented listing of the encoding vector provides a meaningful explanation. This
is all we need. It might be a good idea to update \title and \date at the begin-
ning of the file to avoid any confusion. Finally, we install this file in the branch
tex/fontinst/base/ of the local Tex tree. If our system has been set up as
recommended in the first tutorial, fontinst will now pick up our updated en-
coding vector. Now we need a version of 8r.enc that matches our 8r.etx. This
is what the relevant part of 8r.enc looks like:

₇₁ % 0x70
₇₂ /p /q /r /s /t /u /v /w
₇₃ /x /y /z /braceleft /bar /braceright /asciitilde
₇₄ /.notdef
₇₅ % 0x80
₇₆ /.notdef /.notdef /quotesinglbase /florin
₇₇ /quotedblbase /ellipsis /dagger /daggerdbl
₇₈ /circumflex /perthousand /Scaron /guilsinglleft
₇₉ /OE /.notdef /.notdef /.notdef

Note that in Postscript encoding vectors empty slots are marked “.notdef”. We
can spot the same pattern: “asciitilde” in slot is followed by three empty
slots (–) and finally “quotesinglbase” in slot . We count the slots and
add “Euro” in slot (indicated in hexadecimal notation as ‘0x80’ here):

₇₁ % 0x70
₇₂ /p /q /r /s /t /u /v /w
₇₃ /x /y /z /braceleft /bar /braceright /asciitilde
₇₄ /.notdef
₇₅ % 0x80
₇₆ /Euro /.notdef /quotesinglbase /florin
₇₇ /quotedblbase /ellipsis /dagger /daggerdbl
₇₈ /circumflex /perthousand /Scaron /guilsinglleft
₇₉ /OE /.notdef /.notdef /.notdef

 the euro currency symbol

After that, we move our modified 8r.enc to dvips/base/ in the local Tex tree
and update the kpathsea file databases by running texhash. Our system is now
ready for the euro. Since reencoding all text fonts to Tex Base encoding is part
of our regular installation routine anyway, the fontinst file does not need any
adjustments. The reencoding is performed as usual:

\transformfont{padr8r}{\reencodefont{8r}{\fromafm{padr8a}}}
\transformfont{padri8r}{\reencodefont{8r}{\fromafm{padri8a}}}
\transformfont{padb8r}{\reencodefont{8r}{\fromafm{padb8a}}}
\transformfont{padbi8r}{\reencodefont{8r}{\fromafm{padbi8a}}}

The new 8r encoding vector will ensure that the euro symbol is available in all
Tex Base encoded raw fonts, so we can simply use them to build ts1 encoded
virtual fonts:

\installfont{padr8c}{padr8r,textcomp}{ts1}{TS1}{pad}{m}{n}{}
\installfont{padri8c}{padri8r,textcomp}{ts1}{TS1}{pad}{m}{it}{}
\installfont{padb8c}{padb8r,textcomp}{ts1}{TS1}{pad}{b}{n}{}
\installfont{padbi8c}{padbi8r,textcomp}{ts1}{TS1}{pad}{b}{it}{}

After installing the fonts and creating a map file as usual, the euro symbol will
be available as \texteuro when loading the textcomp package.

iv. Euro symbol encoded as currency symbol

Bitstream was one of the first type foundries to update their font collection
and add a matching euro symbol to all fonts. When looking at the fonts, the
first thing we notice is that the foundry decided to encode the euro symbol as
the generic currency symbol ¤. The reasoning behind this is that you can ac-
cess the symbol without reencoding the font. Since the generic currency sym-
bol is hardly ever used anyway, it is no surprise that this particular glyph was
dropped. We could install Bitstream fonts as usual and use \textcurrency in-
stead of \texteuro to access the euro symbol, but that would imply keeping
the idiosyncrasies of a given font in mind while writing, and modifying the text
when changing the typeface – not quite what one would expect when working
with a high-level markup language like Latex. When taking a closer look at the
pfb and afm files, we can see that the fonts in fact contain two euro symbols.
One of them is uncoded (slot -1) and labeled as “Euro”:

C -1 ; WX 556 ; N Euro ; B 6 -12 513 697 ;

The other one is found in encoding slot , that is, it is
encoded as the currency symbol and named accordingly.
To verify that, we have to take a look at the pfb files in a
font viewer or a font editor. Since the euro symbol is both
encoded and labeled just like a currency symbol, there is
no way to tell the difference by looking at the afm file only:

C 168 ; WX 556 ; N currency ; B 6 -12 513 697 ;

euro symbol taken from external symbol font

If we want a readily available euro symbol (and one that is available as such),
we have two options in this case. Either we reencode the font and assign the
uncoded euro symbol to a valid encoding position or we use the already en-
coded euro symbol found in the slot of the currency symbol and move it to the
proper encoding position. The former case was already discussed above, let’s
now investigate the latter.

The best way to move the glyph to a different slot is resetting it when creat-
ing the ts1 encoded virtual font. We use an approach that is functionally equiv-
alent to the way we have reset the hanging figures in the previous tutorial. The
appropriate low-level commands that set the glyph go in a dedicated metric file,
reseteur.mtx, which we have to create ourselves:

₁ \relax
₂ \metrics
₃ \resetglyph{euro}
₄ \glyph{currency}{1000}
₅ \endsetglyph
₆ \setleftrightkerning{euro}{currency}{1000}
₇ \unsetglyph{currency}
₈ \endmetrics

We reset the glyph “euro” based on the glyph “currency” scaled to its full size
(–), adjust the kerning on either side of “euro” to match that of “currency”
() and finally unset the glyph “currency” () because there is no such thing as
a currency symbol in this font. In the fontinst file, we include the metric file
reseteur.mtx in the file list of the respective \installfont command right
after the metrics for this font have been read. This might look as follows:

\installfont{bsbr8c}{bsbr8r,reseteur,textcomp}{ts1}{TS1}{bsb}{m}{n}{}

We only need to do this for the ts1 encoded virtual fonts as t1 does not include
the euro symbol. Apart from that, the fontinst file does not need any adjust-
ments.

iv. Euro symbol taken from external symbol font

Let’s go back to our install of Sabon to see if we can get euro support for Sabon
as well. The font itself does not include a euro symbol at all so all we can do is
take it from an external font. While some other font foundries at least provide
special symbol fonts containing a collection of matching euro glyphs for all
typefaces that have not been updated yet, Adobe merely offers a set of generic
euro fonts containing glyphs that do not really match any typeface at all.¹ From
a typographical perspective, this is a desperate workaround. However, lacking a
matching euro symbol, we do not have a choice. The Adobe Euro fonts come in
three flavors: serif (Euro Serif), sans serif (Euro Sans), and condensed sans serif
(Euro Mono, intended for use with monospaced fonts). Each family consists of
regular, regular italic, bold, and bold italic fonts. Instead of using a serif euro

 http://www.adobe.com/type/eurofont.html

www.adobe.com/type/eurofont.html

 the euro currency symbol

that does not match our typeface we will use the sans serif design which has
a more generic look that adheres to the shape of the reference design of the
European Commission. Granted, this one does not match our typeface either –
but at least it does not pretend to do so.

Now that we are aware of the most common encoding pitfalls, we inspect
the afm files first before proceeding with the installation. The Euro fonts put
the euro symbol in all encoding positions. When looking at the afm file, we can
see that the fonts use a font specific encoding and that the glyphs are labeled as
“Euro” with a consecutive number appended to the name:

C 33 ; WX 750 ; N Euro.001 ; B 10 -12 709 685 ;
C 34 ; WX 750 ; N Euro.002 ; B 10 -12 709 685 ;
C 35 ; WX 750 ; N Euro.003 ; B 10 -12 709 685 ;
C 36 ; WX 750 ; N Euro.004 ; B 10 -12 709 685 ;
C 37 ; WX 750 ; N Euro.005 ; B 10 -12 709 685 ;
C 38 ; WX 750 ; N Euro.006 ; B 10 -12 709 685 ;
C 39 ; WX 750 ; N Euro.007 ; B 10 -12 709 685 ;
C 40 ; WX 750 ; N Euro.008 ; B 10 -12 709 685 ;
C 41 ; WX 750 ; N Euro.009 ; B 10 -12 709 685 ;

On further inspection, we find two additional glyphs. There is a glyph labeled
as “Euro” in slot as well as an uncoded glyph labeled “uni20ac”:

C 128 ; WX 750 ; N Euro ; B 10 -12 709 685 ;
C -1 ; WX 750 ; N uni20AC ; B 10 -12 709 685 ;

The number 20ac is in hexadecimal. This is the encoding position of the
euro symbol in Unicode encoding, hence the string “uni20ac”. If nothing else,
one thing is for sure: someone was trying to make sure that every application
out there would be able to access that euro symbol. Fortunately, this covers our
situation as well. We need a glyph that is both properly encoded and labeled
as “Euro”; the encoding position does not matter since we will include it in
a virtual font using a different encoding anyway. The one in slot fits our
needs perfectly. In practice, this means that we can simply add the file name
to the input file list of an \installfont command when creating ts1 encoded
virtual fonts with fontinst. This time no reencoding or renaming is required.
The relevant section of our fontinst file for Sabon would look as follows:

\installfont{psbr8c}{psbr8r,zpeurs,textcomp}{ts1}{TS1}{psb}{m}{n}{}
\installfont{psbro8c}{psbro8r,zpeuros,textcomp}{ts1}{TS1}{psb}{m}{sl}{}
\installfont{psbri8c}{psbri8r,zpeuris,textcomp}{ts1}{TS1}{psb}{m}{it}{}
\installfont{psbb8c}{psbb8r,zpeubs,textcomp}{ts1}{TS1}{psb}{b}{n}{}
\installfont{psbbo8c}{psbbo8r,zpeubos,textcomp}{ts1}{TS1}{psb}{b}{sl}{}
\installfont{psbbi8c}{psbbi8r,zpeubis,textcomp}{ts1}{TS1}{psb}{b}{it}{}

Since the Adobe Euro fonts are non-standard, their naming is non-standard as
well. We will discuss that in more detail below. Before running this file, we need
to copy the properly named afm files of the Adobe Euro fonts to the working
directory so that fontinst will find them. For the euro glyph to be available later,
the Euro fonts need to be installed in the usual way so that Tex as well as pdftex,
dvips, and xdvi are able to use them. Because the above fontinst file depends

euro symbol taken from external symbol font

on this installation, it makes sense to do it first. Since the installation of symbol
fonts differs from that of regular text fonts, we will take a look at the required
steps. The Euro font package¹ will provide us with the following set of files:

_1______.afm _1i_____.afm _1b_____.afm _1bi____.afm
_1______.inf _1i_____.inf _1b_____.inf _1bi____.inf
_1______.pfb _1i_____.pfb _1b_____.pfb _1bi____.pfb
_1______.pfm _1i_____.pfm _1b_____.pfm _1bi____.pfm

_2______.afm _2i_____.afm _2b_____.afm _2bi____.afm
_2______.inf _2i_____.inf _2b_____.inf _2bi____.inf
_2______.pfb _2i_____.pfb _2b_____.pfb _2bi____.pfb
_2______.pfm _2i_____.pfm _2b_____.pfm _2bi____.pfm

_3______.afm _3i_____.afm _3b_____.afm _3bi____.afm
_3______.inf _3i_____.inf _3b_____.inf _3bi____.inf
_3______.pfb _3i_____.pfb _3b_____.pfb _3bi____.pfb
_3______.pfm _3i_____.pfm _3b_____.pfm _3bi____.pfm

The Fontname map file adobe.map defines the following names for these fonts:

zpeur EuroSerif-Regular A 916 _3______
zpeub EuroSerif-Bold A 916 _3b_____
zpeubi EuroSerif-BoldItalic A 916 _3bi____
zpeuri EuroSerif-Italic A 916 _3i_____
zpeurs EuroSans-Regular A 916 _1______
zpeubs EuroSans-Bold A 916 _1b_____
zpeubis EuroSans-BoldItalic A 916 _1bi____
zpeuris EuroSans-Italic A 916 _1i_____
zpeurt EuroMono-Regular A 916 _2______
zpeubt EuroMono-Bold A 916 _2b_____
zpeubit EuroMono-BoldItalic A 916 _2bi____
zpeurit EuroMono-Italic A 916 _2i_____

We select all afm and all pfb files, rename them, and start off with the following
file set:

zpeur.afm zpeuri.afm zpeub.afm zpeubi.afm
zpeur.pfb zpeuri.pfb zpeub.pfb zpeubi.pfb
zpeurs.afm zpeuris.afm zpeubs.afm zpeubis.afm
zpeurs.pfb zpeuris.pfb zpeubs.pfb zpeubis.pfb
zpeurt.afm zpeurit.afm zpeubt.afm zpeubit.afm
zpeurt.pfb zpeurit.pfb zpeubt.pfb zpeubit.pfb

As we do not really need fontinst when dealing with symbol fonts, we simply
run afm2tfm on each afm file to create a corresponding tfm file for Tex:

afm2tfm zpeur.afm zpeur.tfm
afm2tfm zpeuri.afm zpeuri.tfm
afm2tfm zpeub.afm zpeub.tfm
afm2tfm zpeubi.afm zpeubi.tfm
afm2tfm zpeurs.afm zpeurs.tfm
afm2tfm zpeuris.afm zpeuris.tfm
afm2tfm zpeubs.afm zpeubs.tfm
afm2tfm zpeubis.afm zpeubis.tfm
afm2tfm zpeurt.afm zpeurt.tfm
afm2tfm zpeurit.afm zpeurit.tfm

 http://www.adobe.com/type/eurofont.html

www.adobe.com/type/eurofont.html

 the euro currency symbol

afm2tfm zpeubt.afm zpeubt.tfm
afm2tfm zpeubit.afm zpeubit.tfm

We also need slanted versions of all upright fonts. As slant factor, we use the
generic value .:

afm2tfm zpeur.afm -s 0.167 zpeuro.tfm
afm2tfm zpeub.afm -s 0.167 zpeubo.tfm
afm2tfm zpeurs.afm -s 0.167 zpeuros.tfm
afm2tfm zpeubs.afm -s 0.167 zpeubos.tfm
afm2tfm zpeurt.afm -s 0.167 zpeurot.tfm
afm2tfm zpeubt.afm -s 0.167 zpeubot.tfm

In addition to that, we need a map file for dvips. Map files for symbol fonts are
simpler than those for text fonts because the fonts are not reencoded. Therefore,
there will be no “ReEncodeFont” instruction and no encoding vector. The first
lines of peu.map look like this:

zpeur EuroSerif-Regular <zpeur.pfb
zpeuri EuroSerif-Italic <zpeuri.pfb
zpeub EuroSerif-Bold <zpeub.pfb
zpeubi EuroSerif-BoldItalic <zpeubi.pfb
zpeurs EuroSans-Regular <zpeurs.pfb
zpeuris EuroSans-Italic <zpeuris.pfb
zpeubs EuroSans-Bold <zpeubs.pfb
zpeubis EuroSans-BoldItalic <zpeubis.pfb
zpeurt EuroMono-Regular <zpeurt.pfb
zpeurit EuroMono-Italic <zpeurit.pfb
zpeubt EuroMono-Bold <zpeubt.pfb
zpeubit EuroMono-BoldItalic <zpeubit.pfb

We also need to add “SlantFont” instructions for all slanted shapes:

zpeuro EuroSerif-Regular "0.167 SlantFont" <zpeur.pfb
zpeubo EuroSerif-Bold "0.167 SlantFont" <zpeub.pfb
zpeuros EuroSans-Regular "0.167 SlantFont" <zpeurs.pfb
zpeubos EuroSans-Bold "0.167 SlantFont" <zpeubs.pfb
zpeurot EuroMono-Regular "0.167 SlantFont" <zpeurt.pfb
zpeubot EuroMono-Bold "0.167 SlantFont" <zpeubt.pfb

While we are at it, let’s also write some font definition files for Latex. These are
not required if the fonts are only referenced by other virtual fonts, but they will
allow us the access the Euro fonts directly in any Latex file. The syntax of the
commands used in font definition files is explained in the Latex font selection
guide mentioned in the introduction. Our font definition file for Euro Serif,
upeu.fd, should look like this:

\ProvidesFile{upeu.fd}
\DeclareFontFamily{U}{peu}{}
\DeclareFontShape{U}{peu}{m} {n} {<-> zpeur} {}
\DeclareFontShape{U}{peu}{m} {sc}{<-> ssub * peu/m/n} {}
\DeclareFontShape{U}{peu}{m} {sl}{<-> zpeuro}{}
\DeclareFontShape{U}{peu}{m} {it}{<-> zpeuri}{}
\DeclareFontShape{U}{peu}{b} {n} {<-> zpeub} {}
\DeclareFontShape{U}{peu}{b} {sc}{<-> ssub * peu/b/n} {}
\DeclareFontShape{U}{peu}{b} {sl}{<-> zpeubo}{}
\DeclareFontShape{U}{peu}{b} {it}{<-> zpeubi}{}

euro symbol taken from external symbol font

\DeclareFontShape{U}{peu}{bx}{n} {<-> ssub * peu/b/n} {}
\DeclareFontShape{U}{peu}{bx}{sc}{<-> ssub * peu/b/n} {}
\DeclareFontShape{U}{peu}{bx}{sl}{<-> ssub * peu/b/sl}{}
\DeclareFontShape{U}{peu}{bx}{it}{<-> ssub * peu/b/it}{}
\endinput

For Euro Sans, upeus.fd:

\ProvidesFile{upeus.fd}
\DeclareFontFamily{U}{peus}{}
\DeclareFontShape{U}{peus}{m} {n} {<-> zpeurs} {}
\DeclareFontShape{U}{peus}{m} {sc}{<-> ssub * peus/m/n} {}
\DeclareFontShape{U}{peus}{m} {sl}{<-> zpeuros}{}
\DeclareFontShape{U}{peus}{m} {it}{<-> zpeuris}{}
\DeclareFontShape{U}{peus}{b} {n} {<-> zpeubs} {}
\DeclareFontShape{U}{peus}{b} {sc}{<-> ssub * peus/b/n} {}
\DeclareFontShape{U}{peus}{b} {sl}{<-> zpeubos}{}
\DeclareFontShape{U}{peus}{b} {it}{<-> zpeubis}{}
\DeclareFontShape{U}{peus}{bx}{n} {<-> ssub * peus/b/n} {}
\DeclareFontShape{U}{peus}{bx}{sc}{<-> ssub * peus/b/n} {}
\DeclareFontShape{U}{peus}{bx}{sl}{<-> ssub * peus/b/sl}{}
\DeclareFontShape{U}{peus}{bx}{it}{<-> ssub * peus/b/it}{}
\endinput

And for Euro Mono, upeut.fd:

\ProvidesFile{upeut.fd}
\DeclareFontFamily{U}{peut}{}
\DeclareFontShape{U}{peut}{m} {n} {<-> zpeurt} {}
\DeclareFontShape{U}{peut}{m} {sc}{<-> ssub * peut/m/n} {}
\DeclareFontShape{U}{peut}{m} {sl}{<-> zpeurot}{}
\DeclareFontShape{U}{peut}{m} {it}{<-> zpeurit}{}
\DeclareFontShape{U}{peut}{b} {n} {<-> zpeubt} {}
\DeclareFontShape{U}{peut}{b} {sc}{<-> ssub * peut/b/n} {}
\DeclareFontShape{U}{peut}{b} {sl}{<-> zpeubot}{}
\DeclareFontShape{U}{peut}{b} {it}{<-> zpeubit}{}
\DeclareFontShape{U}{peut}{bx}{n} {<-> ssub * peut/b/n} {}
\DeclareFontShape{U}{peut}{bx}{sc}{<-> ssub * peut/b/n} {}
\DeclareFontShape{U}{peut}{bx}{sl}{<-> ssub * peut/b/sl}{}
\DeclareFontShape{U}{peut}{bx}{it}{<-> ssub * peut/b/it}{}
\endinput

We install the map file peu.map as well as all afm, tfm, pfb, and fd files in the
local Tex tree as explained in the first tutorial and add peu.map to the con-
figuration files for pdftex, dvips, and xdvi. Finally, we run texhash. The euro
symbol can now be used in virtual fonts. Since we have font definition files for
Latex as well, we could also access it in any Latex file with a construct like this
one:

{\fontencoding{U}\fontfamily{peu}\selectfont\char 128}

So let’s make that a generic euro package, peufonts.sty, for use with all fonts
that do not provide a native euro symbol:

₁ \NeedsTeXFormat{LaTeX2e}
₂ \ProvidesPackage{peufonts}[2002/10/25 v1.0 Adobe Euro Fonts]
₃ \RequirePackage{textcomp}
₄ \DeclareRobustCommand{\eurrm}{{%

 the euro currency symbol

₅ \fontencoding{U}\fontfamily{peu}\selectfont\char 128}}
₆ \DeclareRobustCommand{\eursf}{{%
₇ \fontencoding{U}\fontfamily{peus}\selectfont\char 128}}
₈ \DeclareRobustCommand{\eurtt}{{%
₉ \fontencoding{U}\fontfamily{peut}\selectfont\char 128}}

We define three commands, \eurrm, \eursf, and \eurtt, which typeset a
serif, sans serif, and monospaced euro symbol respectively. Note the additional
braces to keep the font change local.

₁₀ \DeclareOption{sans}{\def\eur\eursf}
₁₁ \DeclareOption{serif}{\def\eur\eurrm}
₁₂ \DeclareOption{mono}{\def\eur\eurtt}
₁₃ \DeclareOption{textcomp}{%
₁₄ \PackageInfo{peufonts}{Hijacking ’\string\texteuro’}%
₁₅ \def\texteuro{\eur}}
₁₆ \ExecuteOptions{sans}
₁₇ \ProcessOptions
₁₈ \endinput

We also provide \eur along with three options controlling whether it uses the
serif, sans serif, or monospaced euro symbol; sans is set up as the default in line
. The option textcomp will hijack the text command \texteuro as provided
by the textcomp package. This is very handy when using the inputenc pack-
age with Latin (iso8859-15) as input encoding and entering the euro symbol
directly, as inputenc uses \texteuro internally. With this option, we may also
type \texteuro or simply € in the input file to typeset a euro symbol. For this
to work, inputenc has to be loaded before this package. Please keep in mind
that this is a global redefinition affecting all text fonts. We do not activate it by
default as some fonts may provide a native euro symbol. We also write a mes-
sage to the log when redefining \texteuro and request textcomp in line so
that it is loaded before peufonts.

iv. Euro symbol taken from external text font

There is yet another way to get the euro symbol for a font that does not provide
one by default. Suppose we have an external text font including a euro symbol
that would go reasonably well with our copy of Sabon. If this euro symbol is
uncoded but labeled correctly, we could simply add the text font to the input
file list of the respective \installfont commands as shown in section iv. and
then proceed as outlined in section iv.. What if it is encoded as the currency
symbol in the external text font? In this case, we take an approach that is based
on section iv. with some minor adjustments. Let’s assume we have a copy of
Bitstream Classical Garamond. Since Classical Garamond is Bitstream’s take on
Sabon, the euro symbol of this typeface will obviously go quite well with our
install of Sabon. The syntax of the \installfont commands will look like this:

\installfont{psbr8c}{psbr8r,unsetcur,bsbr8r,reseteur,psbr8r,textcomp}{ts1}{TS1}{bsb}{m}{n}{}

euro symbol taken from external text font

psb is Adobe Sabon, bsb is Bitstream Classical Garamond, and reseteur.mtx
has been discussed in section iv.. In this case, we need an additional metric
file, called unsetcur.mtx here, that clears the currency slot before bsbr8r.afm
is read. Without this additional step, the euro symbol found in the currency
slot of bsbr8r.afm would be discarded as psbr8r.afm has already provided
this symbol. reseteur.mtx would then move the currency symbol found in
psbr8r.afm to the euro slot, which is obviously not what we want. We need to
clear the currency slot using unsetcur.mtx, which is quite simple:

\relax
\metrics
\unsetglyph{currency}
\endmetrics

With this additional resource, what happens is this: psbr8r.afm is read and
processed, the currency slot is cleared by unsetcur.mtx, then bsbr8r.afm is
read, filling the currency slot with its euro glyph (which is encoded as the cur-
rency symbol in bsbr8r.afm). Our metric file reseteur.mtx will then move
the euro symbol found in bsbr8r.afm to the euro slot and clear the currency
slot. After that, we read psbr8r.afm again to get the original Adobe Sabon cur-
rency symbol of back. Our virtual font will now contain all glyphs found in
Adobe Sabon plus the euro symbol of Bitstream Classical Garamond, all prop-
erly encoded. Note that, for this to work, we need a complete install of Bitstream
Classical Garamond, including map files for dvips and pdftex, in addition to the
steps outlined above.

tutorial v

expert font sets,
regular setup

Expert fonts are complements to be used in conjunction with regular text fonts.
They usually contain optical small caps, additional sets of figures – hanging,
inferior, superior –, the f-ligatures ff, fi, fl, ffi, and ffl, plus a few text fractions
and some other symbols. Since they are companion fonts only, which do not
contain the regular uppercase and lowercase alphabet, they are not useful on
their own. To employ them in a sensible way we need the basic text fonts as
well. In this tutorial, we will install the complete Monotype Janson font set as
provided by the base and the expert package offered by Agfa Monotype. The
base package contains four text fonts (regular, regular italic, bold, bold italic):

jan_____.afm jani____.afm janb____.afm janbi___.afm
jan_____.inf jani____.inf janb____.inf janbi___.inf
jan_____.pfb jani____.pfb janb____.pfb janbi___.pfb
jan_____.pfm jani____.pfm janb____.pfm janbi___.pfm

The expert package adds the corresponding expert fonts:

jny_____.afm jnyi____.afm jnyb____.afm jnybi___.afm
jny_____.inf jnyi____.inf jnyb____.inf jnybi___.inf
jny_____.pfb jnyi____.pfb jnyb____.pfb jnybi___.pfb
jny_____.pfm jnyi____.pfm jnyb____.pfm jnybi___.pfm

When talking about “expert font sets” in this tutorial, we are referring to all
of the above (base plus expert package). The proper file names for Monotype
Janson are given in monotype.map. Expert fonts have essentially the same file
name as the corresponding text fonts, but their encoding code is 8x instead of
8a for Adobe Standard encoding. After renaming the files, we start off with the
following file set:

mjnr8a.afm mjnri8a.afm mjnb8a.afm mjnbi8a.afm
mjnr8a.pfb mjnri8a.pfb mjnb8a.pfb mjnbi8a.pfb

mjnr8x.afm mjnri8x.afm mjnb8x.afm mjnbi8x.afm
mjnr8x.pfb mjnri8x.pfb mjnb8x.pfb mjnbi8x.pfb

There are two ways to install an expert font set. Apart from writing a verbose
fontinst file using low-level commands we may also use the \latinfamily
macro. We will take a look at the latter case first and proceed with a verbose
fontinst file afterwards.

v. Basic fontinst file

As usual, our file begins with a typical header setting up some common font
substitutions (–). While the Janson expert package provides optical small
caps for the regular weight, the bold expert fonts do not contain optical small

 expert font sets, regular setup

caps. For the bold series, we have to make do with mechanical small caps. The
\latinfamily macro will take care of that automatically. All we need to do is
define a scale factor of . ():

₁ \input fontinst.sty
₂ \substitutesilent{bx}{b}
₃ \substitutesilent{sc}{n}
₄ \setint{smallcapsscale}{720}

In the third tutorial, we have incorporated lining and hanging figures by creat-
ing two font families: a family with the basic, three-character font family name
(lining figures) and a second family featuring hanging figures, with the letter
j appended to the font family name. The character j is the Fontname code
for hanging figures. In this tutorial, we need an additional code: the letter x,
indicating a font featuring expert glyphs. When installing expert sets with the
\latinfamily macro we use these family names to instruct fontinst that we
have an expert set at hand and that we want it to create a font family featur-
ing expert glyphs with lining figures () plus a second family featuring expert
glyphs with hanging figures ():

₅ \latinfamily{mjnx}{}
₆ \latinfamily{mjnj}{}
₇ \bye

Please note that appending x and j to the font family name works for expert
font sets only. The \latinfamily macro is not capable of dealing with sc & osf
font sets in the same way. These sets always require a fontinst file using low-level
commands such as the one discussed in tutorial iii.

v. Verbose fontinst file

While the \latinfamily macro incorporates the most fundamental features
of expert sets, such as optical small caps and additional f-ligatures, it does not
exploit all the glyphs found in expert fonts. To use them, you will need to use
low-level fontinst commands, at least for parts of the fontinst file. But before
we start with our verbose fontinst file, let’s first take a look at some encoding
issues specific to expert fonts. When dealing with sc & osf fonts in the third tu-
torial, we had to rename some glyphs or move them around because in sc & osf
fonts, hanging figures and small caps are found in the standard slots for figures
and the lowercase alphabet. With small caps and hanging figures provided by
expert fonts the installation is in fact simpler since all glyph names are unique.
To understand the difference, we will take a brief look at the glyph names in
the respective afm files. Compare the names of lowercase glyphs as found in
mjnr8a.afm to the small caps glyph names in mjnr8x.afm:

C 97 ; WX 427 ; N a ; B 59 -13 409 426 ;
C 98 ; WX 479 ; N b ; B 18 -13 442 692 ;
C 99 ; WX 427 ; N c ; B 44 -13 403 426 ;

verbose fontinst file

C 97 ; WX 479 ; N Asmall ; B 19 -4 460 451 ;
C 98 ; WX 438 ; N Bsmall ; B 31 -4 395 434 ;
C 99 ; WX 500 ; N Csmall ; B 37 -12 459 443 ;

The situation is similar for lining and hanging (‘old style’) figures. The follow-
ing lines are taken from mjnr8a.afm and mjnr8x.afm respectively:

C 48 ; WX 469 ; N zero ; B 37 -12 432 627 ;
C 49 ; WX 469 ; N one ; B 109 -5 356 625 ;
C 50 ; WX 469 ; N two ; B 44 0 397 627 ;

C 48 ; WX 469 ; N zerooldstyle ; B 39 0 431 387 ;
C 49 ; WX 271 ; N oneoldstyle ; B 44 -5 229 405 ;
C 50 ; WX 396 ; N twooldstyle ; B 37 0 356 415 ;

In practice, this means that adding expert fonts to the basic font set amounts
to little more than adding them to the input file list of \installfont in most
cases. Still, some additional steps are required. Fortunately, all we need to do in
order to make optical small caps and hanging figures readily available is using
dedicated encoding vectors provided by fontinst. These encoding vectors refer-
ence the glyphs by names corresponding to those found in expert fonts, thus
allowing us to pick optical small caps and hanging figures at will. With that
in mind, we can get down to business. Our fontinst file begins with a typical
header (–):

₁ \input fontinst.sty
₂ \substitutesilent{bx}{b}
₃ \substitutesilent{sc}{n}
₄ \setint{smallcapsscale}{720}
₅ \setint{slant}{167}

Unfortunately, Monotype Janson provides small caps for the regular weight
only. Hence we have to make do with mechanical small caps for the bold se-
ries. We set a scale factor of . for that ().

₆ \transformfont{mjnr8r}{\reencodefont{8r}{\fromafm{mjnr8a}}}
₇ \transformfont{mjnri8r}{\reencodefont{8r}{\fromafm{mjnri8a}}}
₈ \transformfont{mjnb8r}{\reencodefont{8r}{\fromafm{mjnb8a}}}
₉ \transformfont{mjnbi8r}{\reencodefont{8r}{\fromafm{mjnbi8a}}}

₁₀ \transformfont{mjnro8r}{\slantfont{\int{slant}}\reencodefont{8r}{\fromafm{mjnr8a}}}
₁₁ \transformfont{mjnbo8r}{\slantfont{\int{slant}}\reencodefont{8r}{\fromafm{mjnb8a}}}

We reencode (–) and slant (–) the basic fonts as usual. Expert fonts do
not require any reencoding, but we do need slanted variants of them as well:

₁₂ \transformfont{mjnro8x}{\slantfont{\int{slant}}{\fromafm{mjnr8x}}}
₁₃ \transformfont{mjnbo8x}{\slantfont{\int{slant}}{\fromafm{mjnb8x}}}

We will create two font families: mjnx, featuring expert glyphs, optical small
caps, and lining figures, plus mjnj incorporating hanging instead of lining fig-
ures. ts1 encoded virtual fonts will be generated for the mjnx family only.

₁₄ \installfonts
₁₅ \installfamily{T1}{mjnx}{}
₁₆ \installfamily{TS1}{mjnx}{}
₁₇ \installfont{mjnr9e}{mjnr8r,mjnr8x,latin}{t1}{T1}{mjnx}{m}{n}{}

 expert font sets, regular setup

As mentioned above, incorporating expert glyphs boils down to adding an ad-
ditional file to the arguments of the \installfont command, in this case the
file mjnr8x.afm. Note that we use the encoding suffix 9e instead of 8t for all
t1 encoded virtual fonts of the mjnx family to indicate that they feature expert
glyphs. While the code 8t, as defined by the Fontname scheme, is for t1 (Cork)
encoding, 9e indicates t1 plus expert glyphs. Please refer to section . of the
Fontname scheme for a comprehensive list of these codes and the code tables
on page of this guide for additional hints.

₁₈ \installfont{mjnrc9e}{mjnr8r,mjnr8x,latinsc}{t1c}{T1}{mjnx}{m}{sc}{}

For the small caps font we use the encoding vector t1c.etx which will map the
small caps in mjnr8x.afm to the encoding positions of the lowercase alphabet
in our t1 encoded virtual font. Instead of latin.mtx we use the special metric
file latinsc.mtx in this case. The remaining virtual fonts of the mjnx family
are built as expected:

₁₉ \installfont{mjnro9e}{mjnro8r,mjnro8x,latin}{t1}{T1}{mjnx}{m}{sl}{}
₂₀ \installfont{mjnri9e}{mjnri8r,mjnri8x,latin}{t1}{T1}{mjnx}{m}{it}{}
₂₁ \installfont{mjnb9e}{mjnb8r,mjnb8x,latin}{t1}{T1}{mjnx}{b}{n}{}
₂₂ \installfont{mjnbc9e}{mjnb8r,mjnb8x,latin}{t1c}{T1}{mjnx}{b}{sc}{}

Since the bold expert font does not provide small caps, we create mechanical
ones. The t1c.etx encoding vector will deal with that transparently, but we
have to make sure that the regular latin.mtx metric file is read here since
there are no optical small caps in the raw font.

₂₃ \installfont{mjnbo9e}{mjnbo8r,mjnbo8x,latin}{t1}{T1}{mjnx}{b}{sl}{}
₂₄ \installfont{mjnbi9e}{mjnbi8r,mjnbi8x,latin}{t1}{T1}{mjnx}{b}{it}{}

That’s it for t1 encoding. Creating ts1 encoded virtual fonts featuring expert
glyphs is pretty straightforward. We simply add the expert fonts to the input
file list. Note the encoding suffix of the virtual fonts. We use 9c instead of 8c to
indicate that the virtual fonts feature expert glyphs:

₂₅ \installfont{mjnr9c}{mjnr8r,mjnr8x,textcomp}{ts1}{TS1}{mjnx}{m}{n}{}
₂₆ \installfont{mjnro9c}{mjnro8r,mjnro8x,textcomp}{ts1}{TS1}{mjnx}{m}{sl}{}
₂₇ \installfont{mjnri9c}{mjnri8r,mjnri8x,textcomp}{ts1}{TS1}{mjnx}{m}{it}{}
₂₈ \installfont{mjnb9c}{mjnb8r,mjnb8x,textcomp}{ts1}{TS1}{mjnx}{b}{n}{}
₂₉ \installfont{mjnbo9c}{mjnbo8r,mjnbo8x,textcomp}{ts1}{TS1}{mjnx}{b}{sl}{}
₃₀ \installfont{mjnbi9c}{mjnbi8r,mjnbi8x,textcomp}{ts1}{TS1}{mjnx}{b}{it}{}
₃₁ \endinstallfonts

The mjnx family including t1 and ts1 encoded fonts is now complete. We con-
tinue with the mjnj family which we want to feature hanging figures by default:

₃₂ \installfonts
₃₃ \installfamily{T1}{mjnj}{}
₃₄ \installfont{mjnr9d}{mjnr8r,mjnr8x,latin}{t1j}{T1}{mjnj}{m}{n}{}

The encoding code 9d indicates a t1 encoded font with expert glyphs and hang-
ing figures. We will use this code for all t1 encoded virtual fonts of the mjnj
family. This family is supposed to feature hanging figures in the standard en-

inferior and superior figures

coding positions for figures. We have to keep in mind that the regular encoding
vector for t1 encoding (t1.etx) references the figures as “zero,” “one,” “two”
while the hanging (‘old style’) figures in the expert font (which we want to be
available by default) are labeled “zerooldstyle,” “oneoldstyle” and so on. In or-
der to arrange the glyphs according to our wishes, we could read the regular
font, clear the figures, read the expert font and rename the ‘old style’ figures.
In this case, however, there is a simpler way: we use the special encoding vector
t1j.etx which is essentially equivalent to t1.etx but automatically appends
the suffix “oldstyle” to all figures.

₃₅ \installfont{mjnrc9d}{mjnr8r,mjnr8x,latinsc}{t1cj}{T1}{mjnj}{m}{sc}{}

We have regular optical small caps, so we use the metric file latinsc.mtx here.
Instead of t1c.etx we use the encoding file t1cj.etx to make hanging figures
the default. The remaining virtual fonts are built like the upright shape ():

₃₆ \installfont{mjnro9d}{mjnro8r,mjnro8x,latin}{t1j}{T1}{mjnj}{m}{sl}{}
₃₇ \installfont{mjnri9d}{mjnri8r,mjnri8x,latin}{t1j}{T1}{mjnj}{m}{it}{}
₃₈ \installfont{mjnb9d}{mjnb8r,mjnb8x,latin}{t1j}{T1}{mjnj}{b}{n}{}
₃₉ \installfont{mjnbc9d}{mjnb8r,mjnb8x,latin}{t1cj}{T1}{mjnj}{b}{sc}{}

There are no optical small caps in the bold-weight expert fonts. Thus, when
generating the bold small caps font, we use the metric file latin.mtx and the
encoding file t1cj.etx to create mechanical small caps.

₄₀ \installfont{mjnbo9d}{mjnbo8r,mjnbo8x,latin}{t1j}{T1}{mjnj}{b}{sl}{}
₄₁ \installfont{mjnbi9d}{mjnbi8r,mjnbi8x,latin}{t1j}{T1}{mjnj}{b}{it}{}
₄₂ \endinstallfonts

At this point, we have a comprehensive text setup featuring expert f-ligatures,
optical small caps as well as a choice of readily available lining and hanging
figures. However, there are some glyphs in expert fonts that we have not con-
sidered yet.

v. Inferior and superior figures

Expert fonts usually provide superior and inferior figures which can be com-
bined with a dedicated fraction slash called ‘solidus’ to typeset arbitrary text
fractions like ¹⁄₂ or even ³¹⁄₁₂₇. Please note that these figures are not suitable for
Tex’s math mode but they can be useful in text mode even if there is no need
to typeset text fractions. For example, in this guide the footnote marks in the
body text are typeset using superior figures and inferior figures are used for the
line numbers of the code listings. Like hanging figures, we want inferior and
superior figures to be readily available. Therefore, we will create two additional
font families, mjn0 and mjn1, which put inferior and superior figures in the
standard encoding positions for figures just like our mjnj family does for hang-
ing figures. We have been using the encoding vector t1j.etx to make hanging
figures the default in this tutorial so let’s find out what t1j.etx does in detail
and try to modify this approach according to our needs. This is t1j.etx:

 expert font sets, regular setup

\relax
\encoding
\setcommand\lc#1#2{#2}
\setcommand\uc#1#2{#1}
\setcommand\lctop#1#2{#2}
\setcommand\uctop#1#2{#1}
\setcommand\lclig#1#2{#2}
\setcommand\uclig#1#2{#1}
\setcommand\digit#1{#1oldstyle}
\inputetx{T1}
\endencoding

As you can see, t1j.etx is short. It does not define any encoding slots. All it
does is predefine a few macros and use \inputetx to load t1.etx afterwards.
The relevant part (and the only point at which it differs from what t1.etx
does in this respect) is the line defining the \digit macro. To understand this
mechanism, we need to take a look at how t1.etx defines the encoding slots
for all figures:

\setslot{\digit{one}}\endsetslot
\setslot{\digit{two}}\endsetslot
\setslot{\digit{three}}\endsetslot

The glyph names of figures are not given verbatim, they are used as an argu-
ment to the \digit macro. The default definition of this macro as given in
t1.etx looks like this:

\setcommand\digit#1{#1}

This means that the glyph labeled “one” in the afm file will end up in the en-
coding position for the numeral one in the virtual font – and so on. t1j.etx
predefines the \digit macro as follows:

\setcommand\digit#1{#1oldstyle}

In this case the glyph labeled “oneoldstyle” in the afm file will end up in the
encoding position for the numeral one in the t1 encoded virtual font. When
taking a look at the glyph names of hanging, inferior, and superior figures in
the afm files of our expert fonts now, the approach we need to take in order to
access them should be obvious:

C 48 ; WX 469 ; N zerooldstyle ; B 39 0 431 387 ;
C 49 ; WX 271 ; N oneoldstyle ; B 44 -5 229 405 ;
C 50 ; WX 396 ; N twooldstyle ; B 37 0 356 415 ;

C 210 ; WX 323 ; N zeroinferior ; B 27 -13 296 355 ;
C 211 ; WX 323 ; N oneinferior ; B 84 -5 240 357 ;
C 212 ; WX 323 ; N twoinferior ; B 27 0 288 358 ;

C 200 ; WX 323 ; N zerosuperior ; B 27 293 296 661 ;
C 201 ; WX 323 ; N onesuperior ; B 84 298 240 661 ;
C 202 ; WX 323 ; N twosuperior ; B 27 303 288 661 ;

Just like ‘old style’ figures, inferior and superior figures use suffixes to the re-
spective glyph names in (properly encoded) expert fonts. This means that we

inferior and superior figures

can modify t1j.etx accordingly to create encoding vectors incorporating in-
ferior and superior figures. Hence our encoding vector for t1 encoded fonts
featuring inferior figures (t10.etx, read: t-one-zero since 0 is the Fontname
code for inferior figures) should look like this:

\relax
\encoding
\setcommand\lc#1#2{#2}
\setcommand\uc#1#2{#1}
\setcommand\lctop#1#2{#2}
\setcommand\uctop#1#2{#1}
\setcommand\lclig#1#2{#2}
\setcommand\uclig#1#2{#1}
\setcommand\digit#1{#1inferior}
\inputetx{t1}
\endencoding

All we need to do in t10.etx is use \setcommand to predefine the \digit
macro as follows:

\setcommand\digit#1{#1inferior}

This will add the suffix “inferior” to all digits. For superior figures, the approach
is similar. We create an encoding vector called t11.etx (read: t-one-one since
1 is the Fontname code for superior figures):

\relax
\encoding
\setcommand\lc#1#2{#2}
\setcommand\uc#1#2{#1}
\setcommand\lctop#1#2{#2}
\setcommand\uctop#1#2{#1}
\setcommand\lclig#1#2{#2}
\setcommand\uclig#1#2{#1}
\setcommand\digit#1{#1superior}
\inputetx{t1}
\endencoding

With t10.etx and t11.etx at hand, we may now create the font families mjn0
and mjn1 pretty much like we have generated mjnj. Let’s put the new encoding
vectors in our working directory and go back to the fontinst file:

₄₃ \installfonts
₄₄ \installfamily{T1}{mjn0}{}
₄₅ \installfont{mjnr09e}{mjnr8r,mjnr8x,latin}{t10}{T1}{mjn0}{m}{n}{}

We add the code 0 to the name of the virtual font (mjnr09e here), use the
encoding vector t10.etx, and adapt the nfss font declaration (in this case
T1/mjn0/m/n) accordingly. Other than that, the virtual fonts of the mjn0 family
are generated in the usual way:

₄₆ \installfont{mjnro09e}{mjnro8r,mjnro8x,latin}{t10}{T1}{mjn0}{m}{sl}{}
₄₇ \installfont{mjnri09e}{mjnri8r,mjnri8x,latin}{t10}{T1}{mjn0}{m}{it}{}
₄₈ \installfont{mjnb09e}{mjnb8r,mjnb8x,latin}{t10}{T1}{mjn0}{b}{n}{}
₄₉ \installfont{mjnbo09e}{mjnbo8r,mjnbo8x,latin}{t10}{T1}{mjn0}{b}{sl}{}
₅₀ \installfont{mjnbi09e}{mjnbi8r,mjnbi8x,latin}{t10}{T1}{mjn0}{b}{it}{}

 expert font sets, regular setup

₅₁ \endinstallfonts

Our fontinst file will omit the small caps shape to save some disk space. We have
included a global shape substitution for the sc shape in the header, so mjn0/sc
will be substituted by mjn0/n via a silent substitution in the font definition
file. Since the figures of upright and small caps shapes do not differ at all and
since we need the mjn0 family for figures only, we can safely omit the small caps
shape. For the mjn1 family, we adapt the names of the virtual fonts (adding the
Fontname code to indicate superior figures), the encoding vector (t11.etx),
and the nfss declaration in a similar way:

₅₂ \installfonts
₅₃ \installfamily{T1}{mjn1}{}
₅₄ \installfont{mjnr19e}{mjnr8r,mjnr8x,latin}{t11}{T1}{mjn1}{m}{n}{}
₅₅ \installfont{mjnro19e}{mjnro8r,mjnro8x,latin}{t11}{T1}{mjn1}{m}{sl}{}
₅₆ \installfont{mjnri19e}{mjnri8r,mjnri8x,latin}{t11}{T1}{mjn1}{m}{it}{}
₅₇ \installfont{mjnb19e}{mjnb8r,mjnb8x,latin}{t11}{T1}{mjn1}{b}{n}{}
₅₈ \installfont{mjnbo19e}{mjnbo8r,mjnbo8x,latin}{t11}{T1}{mjn1}{b}{sl}{}
₅₉ \installfont{mjnbi19e}{mjnbi8r,mjnbi8x,latin}{t11}{T1}{mjn1}{b}{it}{}
₆₀ \endinstallfonts
₆₁ \bye

This is our complete fontinst file which will provide us with four font families:
mjnx, mjnj, mjn0, and mjn1. Virtual fonts in t1 encoding are provided for all
families, but ts1 encoded ones for mjnx only since they would be identical for all
of our four font families anyway. Thus, we can simply use substitutions instead
of creating duplicate virtual fonts. As mentioned in the third tutorial, however,
fontinst does not provide family substitutions. We have to write font definition
files manually to ensure that the lacking ts1 encoded fonts are substituted by
their counterparts of the mjnx family so that the textcomp package will work
with all of them. For the mjnj family, our font definition file for ts1 encoding
(ts1mjnj.fd) looks like this:

\ProvidesFile{ts1mjnj.fd}
\DeclareFontFamily{TS1}{mjnj}{}
\DeclareFontShape{TS1}{mjnj}{m} {n} {<-> ssub * mjnx/m/n} {}
\DeclareFontShape{TS1}{mjnj}{m} {sc}{<-> ssub * mjnx/m/n} {}
\DeclareFontShape{TS1}{mjnj}{m} {sl}{<-> ssub * mjnx/m/sl}{}
\DeclareFontShape{TS1}{mjnj}{m} {it}{<-> ssub * mjnx/m/it}{}
\DeclareFontShape{TS1}{mjnj}{b} {n} {<-> ssub * mjnx/b/n} {}
\DeclareFontShape{TS1}{mjnj}{b} {sc}{<-> ssub * mjnx/b/n} {}
\DeclareFontShape{TS1}{mjnj}{b} {sl}{<-> ssub * mjnx/b/sl}{}
\DeclareFontShape{TS1}{mjnj}{b} {it}{<-> ssub * mjnx/b/it}{}
\DeclareFontShape{TS1}{mjnj}{bx}{n} {<-> ssub * mjnx/b/n} {}
\DeclareFontShape{TS1}{mjnj}{bx}{sc}{<-> ssub * mjnx/b/n} {}
\DeclareFontShape{TS1}{mjnj}{bx}{sl}{<-> ssub * mjnx/b/sl}{}
\DeclareFontShape{TS1}{mjnj}{bx}{it}{<-> ssub * mjnx/b/it}{}
\endinput

This is the equivalent for mjn0, the file ts1mjn0.fd:

\ProvidesFile{ts1mjn0.fd}
\DeclareFontFamily{TS1}{mjn0}{}
\DeclareFontShape{TS1}{mjn0}{m} {n} {<-> ssub * mjnx/m/n} {}

the map file

\DeclareFontShape{TS1}{mjn0}{m} {sc}{<-> ssub * mjnx/m/n} {}
\DeclareFontShape{TS1}{mjn0}{m} {sl}{<-> ssub * mjnx/m/sl}{}
\DeclareFontShape{TS1}{mjn0}{m} {it}{<-> ssub * mjnx/m/it}{}
\DeclareFontShape{TS1}{mjn0}{b} {n} {<-> ssub * mjnx/b/n} {}
\DeclareFontShape{TS1}{mjn0}{b} {sc}{<-> ssub * mjnx/b/n} {}
\DeclareFontShape{TS1}{mjn0}{b} {sl}{<-> ssub * mjnx/b/sl}{}
\DeclareFontShape{TS1}{mjn0}{b} {it}{<-> ssub * mjnx/b/it}{}
\DeclareFontShape{TS1}{mjn0}{bx}{n} {<-> ssub * mjnx/b/n} {}
\DeclareFontShape{TS1}{mjn0}{bx}{sc}{<-> ssub * mjnx/b/n} {}
\DeclareFontShape{TS1}{mjn0}{bx}{sl}{<-> ssub * mjnx/b/sl}{}
\DeclareFontShape{TS1}{mjn0}{bx}{it}{<-> ssub * mjnx/b/it}{}
\endinput

And finally, ts1mjn1.fd for the mjn1 family:

\ProvidesFile{ts1mjn1.fd}
\DeclareFontFamily{TS1}{mjn1}{}
\DeclareFontShape{TS1}{mjn1}{m} {n} {<-> ssub * mjnx/m/n} {}
\DeclareFontShape{TS1}{mjn1}{m} {sc}{<-> ssub * mjnx/m/n} {}
\DeclareFontShape{TS1}{mjn1}{m} {sl}{<-> ssub * mjnx/m/sl}{}
\DeclareFontShape{TS1}{mjn1}{m} {it}{<-> ssub * mjnx/m/it}{}
\DeclareFontShape{TS1}{mjn1}{b} {n} {<-> ssub * mjnx/b/n} {}
\DeclareFontShape{TS1}{mjn1}{b} {sc}{<-> ssub * mjnx/b/n} {}
\DeclareFontShape{TS1}{mjn1}{b} {sl}{<-> ssub * mjnx/b/sl}{}
\DeclareFontShape{TS1}{mjn1}{b} {it}{<-> ssub * mjnx/b/it}{}
\DeclareFontShape{TS1}{mjn1}{bx}{n} {<-> ssub * mjnx/b/n} {}
\DeclareFontShape{TS1}{mjn1}{bx}{sc}{<-> ssub * mjnx/b/n} {}
\DeclareFontShape{TS1}{mjn1}{bx}{sl}{<-> ssub * mjnx/b/sl}{}
\DeclareFontShape{TS1}{mjn1}{bx}{it}{<-> ssub * mjnx/b/it}{}
\endinput

As far as Latex is concerned, our setup is complete now. We still need a map
file, though.

v. The map file

The syntax of map files has been discussed in detail before. The lines for the
basic font set should therefore be obvious:

mjnr8r JansonMT "TeXBase1Encoding ReEncodeFont" <8r.enc <mjnr8a.pfb
mjnri8r JansonMT-Italic "TeXBase1Encoding ReEncodeFont" <8r.enc <mjnri8a.pfb
mjnb8r JansonMT-Bold "TeXBase1Encoding ReEncodeFont" <8r.enc <mjnb8a.pfb
mjnbi8r JansonMT-BoldItalic "TeXBase1Encoding ReEncodeFont" <8r.enc <mjnbi8a.pfb
mjnro8r JansonMT "0.167 SlantFont TeXBase1Encoding ReEncodeFont" <8r.enc <mjnr8a.pfb
mjnbo8r JansonMT-Bold "0.167 SlantFont TeXBase1Encoding ReEncodeFont" <8r.enc <mjnb8a.pfb

Mapping lines for expert fonts are simpler because there is no need for reen-
coding and no encoding vector will be included:

mjnr8x JansonExpertMT <mjnr8x.pfb
mjnri8x JansonExpertMT-Italic <mjnri8x.pfb
mjnb8x JansonExpertMT-Bold <mjnb8x.pfb
mjnbi8x JansonExpertMT-BoldItalic <mjnbi8x.pfb

We do need slanted expert fonts as well, though:

mjnro8x JansonExpertMT "0.167 SlantFont" <mjnr8x.pfb
mjnbo8x JansonExpertMT-Bold "0.167 SlantFont" <mjnb8x.pfb

This is our complete map file for Monotype Janson, mjn.map.

 expert font sets, regular setup

v. The style file

Our style file for Janson, janson.sty, is based on the one suggested in section
iii.. We simply adjust the package name and the names of the font families:

₁ \NeedsTeXFormat{LaTeX2e}
₂ \ProvidesPackage{janson}[2002/12/30 v1.0 Monotype Janson]
₃ \RequirePackage[T1]{fontenc}
₄ \RequirePackage{textcomp}
₅ \RequirePackage{nfssext}
₆ \DeclareOption{oldstyle}{\renewcommand*{\rmdefault}{mjnj}}
₇ \DeclareOption{lining}{\renewcommand*{\rmdefault}{mjnx}}
₈ \ExecuteOptions{oldstyle}
₉ \ProcessOptions

₁₀ \endinput

With an expert font set at hand, however, we have to extend nfssext.sty to
support expert families:

₁ \NeedsTeXFormat{LaTeX2e}
₂ \ProvidesPackage{nfssext}[2003/03/14 v1.2 Experimental NFSS Extensions]
₃ \newcommand*{\exfs@tempa}{}
₄ \newcommand*{\exfs@tempb}{}
₅ \newcommand*{\exfs@try@family}[2][]{%
₆ \let\exfs@tempa\relax
₇ \begingroup
₈ \fontfamily{#2}\try@load@fontshape%
₉ \expandafter\ifx\csname\curr@fontshape\endcsname\relax

₁₀ \edef\exfs@tempa{#1}%
₁₁ \ifx\exfs@tempa\@empty
₁₂ \PackageWarning{nfssext}{%
₁₃ Font family ’\f@encoding/#2’ not available\MessageBreak
₁₄ Ignoring font switch}%
₁₅ \else
₁₆ \PackageInfo{nfssext}{%
₁₇ Font family ’\f@encoding/#2’ not available\MessageBreak
₁₈ Font family ’\f@encoding/#1’ tried instead}%
₁₉ \exfs@try@family{#1}%
₂₀ \fi
₂₁ \else
₂₂ \gdef\exfs@tempa{\fontfamily{#2}\selectfont}%
₂₃ \fi
₂₄ \endgroup
₂₅ \exfs@tempa}

As soon as expert fonts come into play, the \lnstyle macro has to cater for
two font families which, depending on the font, may contain lining figures: a
basic font family with a three-character code or an expert family with a four-
character code ending with the letter x. To make sure that nfssext.sty will
work for fonts like Janson as well as fonts without an expert set, the first thing
we need to do is extend our main font switching macro, enabling it to cope with
both cases. To do so, we will introduce an optional argument. Essentially, we try
to load the font family given by the mandatory argument first (). If this family
is not available, we do not quit with a warning but add a note to the log file
(–) and try the family given by the optional argument next (). If loading

using the fonts

the alternative family fails as well, we finally print a warning message (–). If
the optional argument is not used, the second step will be omitted.

₂₆ \def\exfs@get@base#1#2#3#4\@nil{#1#2#3}
₂₇ \DeclareRobustCommand{\lnstyle}{%
₂₈ \not@math@alphabet\lnstyle\relax
₂₉ \exfs@try@family[\expandafter\exfs@get@base\f@family\@nil]%
₃₀ {\expandafter\exfs@get@base\f@family\@nil x}}

After that, the \lnstyle macro needs to be adjusted in order to exploit the op-
tional argument. It will try the expert family with a four-character code first
() and make \exfs@try@family fall back to the basic font family with a
three-character code () if the former is not available.

₃₁ \DeclareRobustCommand{\osstyle}{%
₃₂ \not@math@alphabet\osstyle\relax
₃₃ \exfs@try@family{\expandafter\exfs@get@base\f@family\@nil j}}

The availability of hanging figures is expressed by appending the letter j to the
font family code for both basic and expert font sets, so \osstyle does not need
any modification.

₃₄ \DeclareRobustCommand{\instyle}{%
₃₅ \not@math@alphabet\instyle\relax
₃₆ \exfs@try@family{\expandafter\exfs@get@base\f@family\@nil 0}}
₃₇ \DeclareRobustCommand{\sustyle}{%
₃₈ \not@math@alphabet\sustyle\relax
₃₉ \exfs@try@family{\expandafter\exfs@get@base\f@family\@nil 1}}

With inferior and superior figures implemented as two additional font families,
mjn0 and mjn1, we add two macros activating these families by adding 0 and 1
to the family name respectively.

₄₀ \DeclareTextFontCommand{\textln}{\lnstyle}
₄₁ \DeclareTextFontCommand{\textos}{\osstyle}
₄₂ \DeclareTextFontCommand{\textin}{\instyle}
₄₃ \DeclareTextFontCommand{\textsu}{\sustyle}
₄₄ \endinput

We also add two text commands, \textin and \textsu, which activate these
figures locally, similar to \textit or \textbf.

v. Using the fonts

Most features of expert font sets such as additional f-ligatures and optical small
caps will be available automatically when selecting the new font families. Using
them does not require any additional macros. Lining and hanging figures can be
conveniently selected by activating the respective font family, in this case mjnx
and mjnj, or by using the style file janson.sty suggested above. Since inferior
and superior figures are not used as regular figures, they are treated differently.
We will take a look at some possible applications. The inferior and superior fig-
ures found in expert fonts were originally intended for typesetting text fractions
so let’s write a simple macro for that. To typeset a fraction, we combine inferior

 expert font sets, regular setup

and superior figures with the \textfractionsolidus macro provided by the
textcomp package. Accessing the figures implies switching font families locally.
Note the additional set of braces which will keep the font change local:

\newcommand*{\textfrac}[2]{%
{\fontfamily{mjn1}\selectfont #1}%
\textfractionsolidus
{\fontfamily{mjn0}\selectfont #2}}

Writing \textfrac{1}{2} in the input file will typeset the fraction ¹⁄₂. When
looking at an expert font in a font editor, you will see that expert fonts contain a
fixed number of text fractions. Some of them are included in ts1 encoding and
supported by the textcomp package, but typing rather long commands such
as \textthreequarters is not exactly convenient. Since there are only nine
of them they are not very useful anyway. With a complete set of inferior and
superior figures at our disposal, our macro will work for arbitrary fractions like
³⁄₇ or ¹³⁄₁₇. Instead of using ‘hard-wired’ fonts as shown above, it is even better
to use the font switching macros provided by nfssext.sty instead since they
will dynamically adjust to the active text font:

\newcommand*{\textfrac}[2]{%
\textsu{#1}%
\textfractionsolidus
\textin{#2}}

What about using superior figures as footnote numbers? To do so, we need to
redefine \@makefnmark. This is the default definition:

\def\@makefnmark{\hbox{\@textsuperscript{\normalfont\@thefnmark}}}

In order to use optical superior figures instead of mechanical ones, we drop
\@textsuperscript and switch font families instead:

\def\@makefnmark{\hbox{\fontfamily{mjn1}\selectfont\@thefnmark}}

We do not need to add additional braces in this case since \hbox will keep
the font change local. Using our new font switching macros, this may also be
accomplished like this:

\def\@makefnmark{\hbox{\sustyle\@thefnmark}}

Note that, if you want to put a definition of \@makefnmark in the preamble of a
regular Latex input file (as opposed to a class or a style file), it has to be enclosed
in \makeatletter and \makeatother:

\makeatletter
\def\@makefnmark{\hbox{\sustyle\@thefnmark}}
\makeatother

tutorial vi

expert font sets,
extended setup

In this tutorial we will combine what we have learned in tutorials iii and v to
install a very complete font set featuring expert fonts, small caps, and hang-
ing figures. This tutorial will also add multiple weights, italic small caps, italic
swashes and text ornaments to that. Our example is Adobe Minion, base plus
expert packages:

pmnr8a Minion-Regular A 143 morg____
pmnri8a Minion-Italic A 143 moi_____
pmns8a Minion-Semibold A 143 mosb____
pmnsi8a Minion-SemiboldItalic A 143 mosbi___
pmnb8a Minion-Bold A 143 mob_____
pmnbi8a Minion-BoldItalic A 143 mobi____
pmnc8a Minion-Black A 143 mobl____
pmnrc8a Minion-RegularSC A 144 mosc____
pmnric8a Minion-ItalicSC A 144 moisc___
pmnriw7a Minion-SwashItalic A 144 moswi___
pmnsc8a Minion-SemiboldSC A 144 mosbs___
pmnsic8a Minion-SemiboldItalicSC A 144 mosic___
pmnsiw7a Minion-SwashSemiboldItalic A 144 mossb___
pmnbj8a Minion-BoldOsF A 144 mobos___
pmnbij8a Minion-BoldItalicOsF A 144 mobio___
pmncj8a Minion-BlackOsF A 144 mozof___
pmnr8x MinionExp-Regular A 144 mjrg____
pmnri8x MinionExp-Italic A 144 mji_____
pmns8x MinionExp-Semibold A 144 mjsb____
pmnsi8x MinionExp-SemiboldItalic A 144 mjsbi___
pmnb8x MinionExp-Bold A 144 mjb_____
pmnbi8x MinionExp-BoldItalic A 144 mjbi____
pmnc8x MinionExp-Black A 144 mjbl____
pmnrp Minion-Ornaments A 144 moor____

In addition to these fonts, the expert package includes a set of regular-weight
display fonts intended for titling and display work at very large sizes. Generated
from the same master sources by interpolation, the display fonts share the let-
tershapes of the text fonts while being based on a design size of pt. Since they
form a complete set including small caps and expert fonts, they are handled just
like the Minion text set and we will not explicitly consider them here.

vi. The fontinst file

With a very comprehensive set of fonts at our disposal, we will be fastidious.
There will be no computed glyph shapes – no mechanical small caps and no
slanted fonts – thus making this setup suitable for professional typesetting.
Note that the bold and black weights do not feature optical small caps. Even
though there are expert fonts for these weights, they do not contain any small
caps glyphs. The bold weight is merely intended for applications requiring a

 expert font sets, extended setup

very strong contrast, for example to highlight the keywords in a dictionary,
while the black weight of a typeface like Minion is only relevant for certain
types of display work. Without further ado, we start off as usual:

₁ \nonstopmode
₂ \input fontinst.sty
₃ \substitutesilent{bx}{sb}
₄ \substitutenoisy{sc}{n}
₅ \substitutenoisy{si}{it}

When looking at our font set it is obvious that semibold should be used as the
main bold weight, hence we make it the default by substituting sb for bx. Since
the bold and black weights do not feature optical small caps, we add appropriate
substitutions for the sc and si (italic small caps) shapes.

₆ \transformfont{pmnr8r}{\reencodefont{8r}{\fromafm{pmnr8a}}}
₇ \transformfont{pmnrc8r}{\reencodefont{8r}{\fromafm{pmnrc8a}}}
₈ \transformfont{pmnri8r}{\reencodefont{8r}{\fromafm{pmnri8a}}}
₉ \transformfont{pmnric8r}{\reencodefont{8r}{\fromafm{pmnric8a}}}

₁₀ \transformfont{pmns8r}{\reencodefont{8r}{\fromafm{pmns8a}}}
₁₁ \transformfont{pmnsc8r}{\reencodefont{8r}{\fromafm{pmnsc8a}}}
₁₂ \transformfont{pmnsi8r}{\reencodefont{8r}{\fromafm{pmnsi8a}}}
₁₃ \transformfont{pmnsic8r}{\reencodefont{8r}{\fromafm{pmnsic8a}}}
₁₄ \transformfont{pmnb8r}{\reencodefont{8r}{\fromafm{pmnb8a}}}
₁₅ \transformfont{pmnbi8r}{\reencodefont{8r}{\fromafm{pmnbi8a}}}
₁₆ \transformfont{pmnc8r}{\reencodefont{8r}{\fromafm{pmnc8a}}}

Reencoding: you know the drill. We reencode all base fonts using Adobe Stan-
dard as their native encoding. While the swash fonts are based on Adobe Stan-
dard as well, they contain a special set of glyphs and are handled like expert
fonts.

₁₇ \installfonts
₁₈ \installfamily{T1}{pmnx}{}
₁₉ \installfamily{TS1}{pmnx}{}
₂₀ \installfont{pmnr9e}{pmnr8r,pmnr8x,latin}{t1}{T1}{pmnx}{m}{n}{}
₂₁ \installfont{pmnri9e}{pmnri8r,pmnri8x,latin}{t1}{T1}{pmnx}{m}{it}{}

The setup of the upright and italic shapes does not differ from tutorial v.

₂₂ \installfont{pmnrc9e}%
₂₃ {kernoff,pmnr8r,pmnr8x,kernon,glyphoff,pmnrc8r,glyphon,resetsc,latinsc}%
₂₄ {t1c}{T1}{pmnx}{m}{sc}{}
₂₅ \installfont{pmnric9e}%
₂₆ {kernoff,pmnri8r,pmnri8x,kernon,glyphoff,pmnric8r,glyphon,resetsc,latinsc}%
₂₇ {t1c}{T1}{pmnx}{m}{si}{}

There is one problem with taking optical small caps from an expert font as
demonstrated in tutorial v: there are no kerning pairs between the uppercase
alphabet and the small caps replacing the lowercase letters. Without dedicated
small caps fonts there is nothing we can do about that. Now that we have both
expert and small caps fonts, however, we could take an approach similar to the
one outlined in tutorial iii, adding the expert font on top of them to get the
additional ligatures. We will use a different technique though, which extracts
the more comprehensive kerning data from the small caps fonts while taking

the fontinst file

the glyphs from the base and the expert fonts only. Apart from being conceptu-
ally cleaner, this approach has the additional benefit of not requiring the small
caps fonts after the metrics and the virtual fonts have been generated, result-
ing in slightly smaller pdf and Postscript files if fonts are embedded. The input
file list should be more or less self-explanatory: we use kernoff.mtx to ignore
the kerning data while reading the respective base and expert fonts. Then we
add kernon.mtx to re-activate the kerning commands and a special metric file
called glyphoff.mtx to ignore the glyph data. After that, we read the corre-
sponding small caps font and re-activate the glyph commands. Finally, we add
resetsc.mtx as well as latinsc.mtx. Our encoding file is t1c.etx.

₂₈ \installfont{pmns9e}{pmns8r,pmns8x,latin}{t1}{T1}{pmnx}{sb}{n}{}
₂₉ \installfont{pmnsi9e}{pmnsi8r,pmnsi8x,latin}{t1}{T1}{pmnx}{sb}{it}{}
₃₀ \installfont{pmnsc9e}%
₃₁ {kernoff,pmns8r,pmns8x,kernon,glyphoff,pmnsc8r,glyphon,resetsc,latinsc}%
₃₂ {t1c}{T1}{pmnx}{sb}{sc}{}
₃₃ \installfont{pmnsic9e}%
₃₄ {kernoff,pmnsi8r,pmnsi8x,kernon,glyphoff,pmnsic8r,glyphon,resetsc,latinsc}%
₃₅ {t1c}{T1}{pmnx}{sb}{si}{}

We repeat these steps for the semibold weight.

₃₆ \installfont{pmnb9e}{pmnb8r,pmnb8x,latin}{t1}{T1}{pmnx}{b}{n}{}
₃₇ \installfont{pmnbi9e}{pmnbi8r,pmnbi8x,latin}{t1}{T1}{pmnx}{b}{it}{}
₃₈ \installfont{pmnc9e}{pmnc8r,pmnc8x,latin}{t1}{T1}{pmnx}{eb}{n}{}

The bold and black weights are handled differently because there are no optical
small caps. We will simply omit the respective shapes. The black weight will be
mapped to the eb series of the nfss. After finishing t1 encoding we continue
with ts1. Our setup for ts1 encoding does not differ from tutorial v either:

₃₉ \installfont{pmnr9c}{pmnr8r,pmnr8x,textcomp}{ts1}{TS1}{pmnx}{m}{n}{}
₄₀ \installfont{pmnri9c}{pmnri8r,pmnri8x,textcomp}{ts1}{TS1}{pmnx}{m}{it}{}
₄₁ \installfont{pmns9c}{pmns8r,pmns8x,textcomp}{ts1}{TS1}{pmnx}{sb}{n}{}
₄₂ \installfont{pmnsi9c}{pmnsi8r,pmnsi8x,textcomp}{ts1}{TS1}{pmnx}{sb}{it}{}
₄₃ \installfont{pmnb9c}{pmnb8r,pmnb8x,textcomp}{ts1}{TS1}{pmnx}{b}{n}{}
₄₄ \installfont{pmnbi9c}{pmnbi8r,pmnbi8x,textcomp}{ts1}{TS1}{pmnx}{b}{it}{}
₄₅ \installfont{pmnc9c}{pmnc8r,pmnc8x,textcomp}{ts1}{TS1}{pmnx}{eb}{n}{}
₄₆ \endinstallfonts

The pmnx family is now complete. We continue with pmnj which will feature
hanging figures by default:

₄₇ \installfonts
₄₈ \installfamily{T1}{pmnj}{}
₄₉ \installfont{pmnr9d}{pmnr8r,pmnr8x,latin}{t1j}{T1}{pmnj}{m}{n}{}
₅₀ \installfont{pmnri9d}{pmnri8r,pmnri8x,latin}{t1j}{T1}{pmnj}{m}{it}{}

To make hanging figures the default throughout the pmnj family we employ
the encoding file t1j.etx. Other than that, the setup of the upright and italic
shapes does not differ from pmnx.

₅₁ \installfont{pmnrc9d}
₅₂ {kernoff,pmnr8r,pmnr8x,kernon,glyphoff,pmnrc8r,glyphon,resetosf,resetsc,latinsc}%
₅₃ {t1cj}{T1}{pmnj}{m}{sc}{}

 expert font sets, extended setup

₅₄ \installfont{pmnric9d}
₅₅ {kernoff,pmnri8r,pmnri8x,kernon,glyphoff,pmnric8r,glyphon,resetosf,resetsc,latinsc}%
₅₆ {t1cj}{T1}{pmnj}{m}{si}{}

For the small caps shape of the pmnj family we essentially use the technique
introduced above. Since this font family will feature hanging figures we use the
encoding file t1cj.etx and add the metric file resetosf.mtx.

₅₇ \installfont{pmns9d}{pmns8r,pmns8x,latin}{t1j}{T1}{pmnj}{sb}{n}{}
₅₈ \installfont{pmnsi9d}{pmnsi8r,pmnsi8x,latin}{t1j}{T1}{pmnj}{sb}{it}{}
₅₉ \installfont{pmnsc9d}
₆₀ {kernoff,pmns8r,pmns8x,kernon,glyphoff,pmnsc8r,glyphon,resetosf,resetsc,latinsc}%
₆₁ {t1cj}{T1}{pmnj}{sb}{sc}{}
₆₂ \installfont{pmnsic9d}
₆₃ {kernoff,pmnsi8r,pmnsi8x,kernon,glyphoff,pmnsic8r,glyphon,resetosf,resetsc,latinsc}%
₆₄ {t1cj}{T1}{pmnj}{sb}{si}{}

Again, we repeat these steps for the semibold weight.

₆₅ \installfont{pmnb9d}{pmnb8r,pmnb8x,latin}{t1j}{T1}{pmnj}{b}{n}{}
₆₆ \installfont{pmnbi9d}{pmnbi8r,pmnbi8x,latin}{t1j}{T1}{pmnj}{b}{it}{}
₆₇ \installfont{pmnc9d}{pmnc8r,pmnc8x,latin}{t1j}{T1}{pmnj}{eb}{n}{}
₆₈ \endinstallfonts

The bold and black weights are essentially handled like those of the pmnx family,
only differing in the choice of the encoding file.

₆₉ \installfonts
₇₀ \installfamily{T1}{pmn0}{}
₇₁ \installfont{pmnr09e}{pmnr8r,pmnr8x,latin}{t10}{T1}{pmn0}{m}{n}{}
₇₂ \installfont{pmnri09e}{pmnri8r,pmnri8x,latin}{t10}{T1}{pmn0}{m}{it}{}
₇₃ \installfont{pmns09e}{pmns8r,pmns8x,latin}{t10}{T1}{pmn0}{sb}{n}{}
₇₄ \installfont{pmnsi09e}{pmnsi8r,pmnsi8x,latin}{t10}{T1}{pmn0}{sb}{it}{}
₇₅ \installfont{pmnb09e}{pmnb8r,pmnb8x,latin}{t10}{T1}{pmn0}{b}{n}{}
₇₆ \installfont{pmnbi09e}{pmnbi8r,pmnbi8x,latin}{t10}{T1}{pmn0}{b}{it}{}
₇₇ \installfont{pmnc09e}{pmnc8r,pmnc8x,latin}{t10}{T1}{pmn0}{eb}{n}{}
₇₈ \endinstallfonts

In addition to pmnx and pmnj, we also add dedicated font families incorporating
inferior and superior figures. Since inferior figures are found in the expert fonts,
our approach here does not differ from the one introduced in section v..

₇₉ \installfonts
₈₀ \installfamily{T1}{pmn1}{}
₈₁ \installfont{pmnr19e}{pmnr8r,pmnr8x,latin}{t11}{T1}{pmn1}{m}{n}{}
₈₂ \installfont{pmnri19e}{pmnri8r,pmnri8x,latin}{t11}{T1}{pmn1}{m}{it}{}
₈₃ \installfont{pmns19e}{pmns8r,pmns8x,latin}{t11}{T1}{pmn1}{sb}{n}{}
₈₄ \installfont{pmnsi19e}{pmnsi8r,pmnsi8x,latin}{t11}{T1}{pmn1}{sb}{it}{}
₈₅ \installfont{pmnb19e}{pmnb8r,pmnb8x,latin}{t11}{T1}{pmn1}{b}{n}{}
₈₆ \installfont{pmnbi19e}{pmnbi8r,pmnbi8x,latin}{t11}{T1}{pmn1}{b}{it}{}
₈₇ \installfont{pmnc19e}{pmnc8r,pmnc8x,latin}{t11}{T1}{pmn1}{eb}{n}{}
₈₈ \endinstallfonts

The same holds true for superior figures.

₈₉ \installfonts
₉₀ \installfamily{T1}{pmnw}{}
₉₁ \installfont{pmnriw9d}{pmnri8r,unsetcaps,pmnriw7a,pmnri8x,latin}{t1j}{T1}{pmnw}{m}{it}{}
₉₂ \installfont{pmnsiw9d}{pmnsi8r,unsetcaps,pmnsiw7a,pmnsi8x,latin}{t1j}{T1}{pmnw}{sb}{it}{}

the fontinst file

₉₃ \endinstallfonts
₉₄ \bye

In order to incorporate the italic swashes we create an additional font family
called pmnw. We read the respective base font and clear the slots of the capi-
tal letters using the metric file unsetcaps.mtx. After that we add the respec-
tive swash font and finally the expert font as usual. We employ t1j.etx to get
hanging figures by default. Our self-made metric file unsetcaps.mtx uses the
\unsetglyph command as follows:

\relax
\metrics
\unsetglyph{A}
\unsetglyph{B}
\unsetglyph{C}
...
\unsetglyph{X}
\unsetglyph{Y}
\unsetglyph{Z}
\endmetrics

We are merely clearing the slots of captial letters found in the English here.
Capital letters with an accent are not removed because the Minion swash set
does not provide accented swash capitals anyway. This means that all accented
capital letters will be taken from the ordinary italic font. In this particular case
ot1 encoding could be used as a workaround since this encoding constructs
accented letters from the English alphabet as discussed in tutorial i. So here is
the respective part of the file for ot1 encoding:

\installfonts
\installfamily{OT1}{pmnw}{}
\installfont{pmnriw9o}{pmnri8r,unsetcaps,pmnriw7a,pmnri8x,latin}{ot1j}{OT1}{pmnw}{m}{it}{}
\installfont{pmnsiw9o}{pmnsi8r,unsetcaps,pmnsiw7a,pmnsi8x,latin}{ot1j}{OT1}{pmnw}{sb}{it}{}
\endinstallfonts

Note that using a setup including ot1 encoding for one font family only will
require switching the encoding explicitly when selecting the swash fonts:

\fontencoding{OT1}\fontfamily{pmnw}\selectfont

The pmnw family as generated by fontinst will only cover two shapes in either
case. Since fontinst does not support family substitutions we cannot take the
missing shapes from pmnj in the fontinst file. We have to edit the respective font
definition file, t1pmnw.fd, after running fontinst. For t1 encoding it should
look as follows:

\ProvidesFile{t1pmnw.fd}
\DeclareFontFamily{T1}{pmnw}{}
\DeclareFontShape{T1}{pmnw}{m} {n} {<-> ssub * pmnj/m/n} {}
\DeclareFontShape{T1}{pmnw}{m} {sc}{<-> ssub * pmnj/m/sc} {}
\DeclareFontShape{T1}{pmnw}{m} {sl}{<-> ssub * pmnj/m/it} {}
\DeclareFontShape{T1}{pmnw}{m} {it}{<-> pmnriw9d} {}
\DeclareFontShape{T1}{pmnw}{m} {si}{<-> ssub * pmnj/m/si} {}
\DeclareFontShape{T1}{pmnw}{sb}{n} {<-> ssub * pmnj/sb/n} {}

 expert font sets, extended setup

\DeclareFontShape{T1}{pmnw}{sb}{sc}{<-> ssub * pmnj/sb/sc}{}
\DeclareFontShape{T1}{pmnw}{sb}{sl}{<-> ssub * pmnj/sb/it}{}
\DeclareFontShape{T1}{pmnw}{sb}{it}{<-> pmnsiw9d} {}
\DeclareFontShape{T1}{pmnw}{sb}{si}{<-> ssub * pmnj/sb/si}{}
\DeclareFontShape{T1}{pmnw}{b} {n} {<-> ssub * pmnj/b/n} {}
\DeclareFontShape{T1}{pmnw}{b} {sc}{<-> ssub * pmnj/b/sc} {}
\DeclareFontShape{T1}{pmnw}{b} {sl}{<-> ssub * pmnj/b/it} {}
\DeclareFontShape{T1}{pmnw}{b} {it}{<-> ssub * pmnj/b/it} {}
\DeclareFontShape{T1}{pmnw}{b} {si}{<-> ssub * pmnj/b/si} {}
\DeclareFontShape{T1}{pmnw}{eb}{n} {<-> ssub * pmnj/eb/n} {}
\DeclareFontShape{T1}{pmnw}{eb}{sc}{<-> ssub * pmnj/eb/sc}{}
\DeclareFontShape{T1}{pmnw}{eb}{sl}{<-> ssub * pmnj/eb/it}{}
\DeclareFontShape{T1}{pmnw}{eb}{it}{<-> ssub * pmnj/eb/it}{}
\DeclareFontShape{T1}{pmnw}{eb}{si}{<-> ssub * pmnj/eb/si}{}
\DeclareFontShape{T1}{pmnw}{bx}{n} {<-> ssub * pmnw/sb/n} {}
\DeclareFontShape{T1}{pmnw}{bx}{sc}{<-> ssub * pmnw/sb/sc}{}
\DeclareFontShape{T1}{pmnw}{bx}{sl}{<-> ssub * pmnw/sb/it}{}
\DeclareFontShape{T1}{pmnw}{bx}{it}{<-> ssub * pmnw/sb/it}{}
\DeclareFontShape{T1}{pmnw}{bx}{si}{<-> ssub * pmnw/sb/si}{}
\endinput

Only the pmnx family offers ts1 encoded fonts as the glyphs found in this en-
coding are identical across all font families. To make sure that all font families
work as expected, however, we need font definition files containing family sub-
stitutions which cannot be defined in a fontinst file. For the pmnj family:

\ProvidesFile{ts1pmnj.fd}
\DeclareFontFamily{TS1}{pmnj}{}
\DeclareFontShape{TS1}{pmnj}{m} {n} {<-> ssub * pmnx/m/n} {}
\DeclareFontShape{TS1}{pmnj}{m} {sc}{<-> ssub * pmnx/m/n} {}
\DeclareFontShape{TS1}{pmnj}{m} {sl}{<-> ssub * pmnx/m/sl} {}
\DeclareFontShape{TS1}{pmnj}{m} {it}{<-> ssub * pmnx/m/it} {}
\DeclareFontShape{TS1}{pmnj}{sb}{n} {<-> ssub * pmnx/sb/n} {}
\DeclareFontShape{TS1}{pmnj}{sb}{sc}{<-> ssub * pmnx/sb/n} {}
\DeclareFontShape{TS1}{pmnj}{sb}{sl}{<-> ssub * pmnx/sb/sl}{}
\DeclareFontShape{TS1}{pmnj}{sb}{it}{<-> ssub * pmnx/sb/it}{}
\DeclareFontShape{TS1}{pmnj}{b} {n} {<-> ssub * pmnx/b/n} {}
\DeclareFontShape{TS1}{pmnj}{b} {sc}{<-> ssub * pmnx/b/n} {}
\DeclareFontShape{TS1}{pmnj}{b} {sl}{<-> ssub * pmnx/b/sl} {}
\DeclareFontShape{TS1}{pmnj}{b} {it}{<-> ssub * pmnx/b/it} {}
\DeclareFontShape{TS1}{pmnj}{eb}{n} {<-> ssub * pmnx/eb/n} {}
\DeclareFontShape{TS1}{pmnj}{eb}{sc}{<-> ssub * pmnx/eb/n} {}
\DeclareFontShape{TS1}{pmnj}{eb}{sl}{<-> ssub * pmnx/eb/sl}{}
\DeclareFontShape{TS1}{pmnj}{eb}{it}{<-> ssub * pmnx/eb/it}{}
\DeclareFontShape{TS1}{pmnj}{bx}{n} {<-> ssub * pmnx/sb/n} {}
\DeclareFontShape{TS1}{pmnj}{bx}{sc}{<-> ssub * pmnx/sb/n} {}
\DeclareFontShape{TS1}{pmnj}{bx}{sl}{<-> ssub * pmnx/sb/sl}{}
\DeclareFontShape{TS1}{pmnj}{bx}{it}{<-> ssub * pmnx/sb/it}{}
\endinput

For the pmnw family:

\ProvidesFile{ts1pmnw.fd}
\DeclareFontFamily{TS1}{pmnw}{}
\DeclareFontShape{TS1}{pmnw}{m} {n} {<-> ssub * pmnx/m/n} {}
\DeclareFontShape{TS1}{pmnw}{m} {sc}{<-> ssub * pmnx/m/n} {}
\DeclareFontShape{TS1}{pmnw}{m} {sl}{<-> ssub * pmnx/m/sl} {}
\DeclareFontShape{TS1}{pmnw}{m} {it}{<-> ssub * pmnx/m/it} {}

the fontinst file

\DeclareFontShape{TS1}{pmnw}{sb}{n} {<-> ssub * pmnx/sb/n} {}
\DeclareFontShape{TS1}{pmnw}{sb}{sc}{<-> ssub * pmnx/sb/n} {}
\DeclareFontShape{TS1}{pmnw}{sb}{sl}{<-> ssub * pmnx/sb/sl}{}
\DeclareFontShape{TS1}{pmnw}{sb}{it}{<-> ssub * pmnx/sb/it}{}
\DeclareFontShape{TS1}{pmnw}{b} {n} {<-> ssub * pmnx/b/n} {}
\DeclareFontShape{TS1}{pmnw}{b} {sc}{<-> ssub * pmnx/b/n} {}
\DeclareFontShape{TS1}{pmnw}{b} {sl}{<-> ssub * pmnx/b/sl} {}
\DeclareFontShape{TS1}{pmnw}{b} {it}{<-> ssub * pmnx/b/it} {}
\DeclareFontShape{TS1}{pmnw}{eb}{n} {<-> ssub * pmnx/eb/n} {}
\DeclareFontShape{TS1}{pmnw}{eb}{sc}{<-> ssub * pmnx/eb/n} {}
\DeclareFontShape{TS1}{pmnw}{eb}{sl}{<-> ssub * pmnx/eb/sl}{}
\DeclareFontShape{TS1}{pmnw}{eb}{it}{<-> ssub * pmnx/eb/it}{}
\DeclareFontShape{TS1}{pmnw}{bx}{n} {<-> ssub * pmnx/sb/n} {}
\DeclareFontShape{TS1}{pmnw}{bx}{sc}{<-> ssub * pmnx/sb/n} {}
\DeclareFontShape{TS1}{pmnw}{bx}{sl}{<-> ssub * pmnx/sb/sl}{}
\DeclareFontShape{TS1}{pmnw}{bx}{it}{<-> ssub * pmnx/sb/it}{}
\endinput

For the pmn0 family:

\ProvidesFile{ts1pmn0.fd}
\DeclareFontFamily{TS1}{pmn0}{}
\DeclareFontShape{TS1}{pmn0}{m} {n} {<-> ssub * pmnx/m/n} {}
\DeclareFontShape{TS1}{pmn0}{m} {sc}{<-> ssub * pmnx/m/n} {}
\DeclareFontShape{TS1}{pmn0}{m} {sl}{<-> ssub * pmnx/m/sl} {}
\DeclareFontShape{TS1}{pmn0}{m} {it}{<-> ssub * pmnx/m/it} {}
\DeclareFontShape{TS1}{pmn0}{sb}{n} {<-> ssub * pmnx/sb/n} {}
\DeclareFontShape{TS1}{pmn0}{sb}{sc}{<-> ssub * pmnx/sb/n} {}
\DeclareFontShape{TS1}{pmn0}{sb}{sl}{<-> ssub * pmnx/sb/sl}{}
\DeclareFontShape{TS1}{pmn0}{sb}{it}{<-> ssub * pmnx/sb/it}{}
\DeclareFontShape{TS1}{pmn0}{b} {n} {<-> ssub * pmnx/b/n} {}
\DeclareFontShape{TS1}{pmn0}{b} {sc}{<-> ssub * pmnx/b/n} {}
\DeclareFontShape{TS1}{pmn0}{b} {sl}{<-> ssub * pmnx/b/sl} {}
\DeclareFontShape{TS1}{pmn0}{b} {it}{<-> ssub * pmnx/b/it} {}
\DeclareFontShape{TS1}{pmn0}{eb}{n} {<-> ssub * pmnx/eb/n} {}
\DeclareFontShape{TS1}{pmn0}{eb}{sc}{<-> ssub * pmnx/eb/n} {}
\DeclareFontShape{TS1}{pmn0}{eb}{sl}{<-> ssub * pmnx/eb/sl}{}
\DeclareFontShape{TS1}{pmn0}{eb}{it}{<-> ssub * pmnx/eb/it}{}
\DeclareFontShape{TS1}{pmn0}{bx}{n} {<-> ssub * pmnx/sb/n} {}
\DeclareFontShape{TS1}{pmn0}{bx}{sc}{<-> ssub * pmnx/sb/n} {}
\DeclareFontShape{TS1}{pmn0}{bx}{sl}{<-> ssub * pmnx/sb/sl}{}
\DeclareFontShape{TS1}{pmn0}{bx}{it}{<-> ssub * pmnx/sb/it}{}
\endinput

For the pmn1 family:

\ProvidesFile{ts1pmn1.fd}
\DeclareFontFamily{TS1}{pmn1}{}
\DeclareFontShape{TS1}{pmn1}{m} {n} {<-> ssub * pmnx/m/n} {}
\DeclareFontShape{TS1}{pmn1}{m} {sc}{<-> ssub * pmnx/m/n} {}
\DeclareFontShape{TS1}{pmn1}{m} {sl}{<-> ssub * pmnx/m/sl} {}
\DeclareFontShape{TS1}{pmn1}{m} {it}{<-> ssub * pmnx/m/it} {}
\DeclareFontShape{TS1}{pmn1}{sb}{n} {<-> ssub * pmnx/sb/n} {}
\DeclareFontShape{TS1}{pmn1}{sb}{sc}{<-> ssub * pmnx/sb/n} {}
\DeclareFontShape{TS1}{pmn1}{sb}{sl}{<-> ssub * pmnx/sb/sl}{}
\DeclareFontShape{TS1}{pmn1}{sb}{it}{<-> ssub * pmnx/sb/it}{}
\DeclareFontShape{TS1}{pmn1}{b} {n} {<-> ssub * pmnx/b/n} {}
\DeclareFontShape{TS1}{pmn1}{b} {sc}{<-> ssub * pmnx/b/n} {}
\DeclareFontShape{TS1}{pmn1}{b} {sl}{<-> ssub * pmnx/b/sl} {}

 expert font sets, extended setup

\DeclareFontShape{TS1}{pmn1}{b} {it}{<-> ssub * pmnx/b/it} {}
\DeclareFontShape{TS1}{pmn1}{eb}{n} {<-> ssub * pmnx/eb/n} {}
\DeclareFontShape{TS1}{pmn1}{eb}{sc}{<-> ssub * pmnx/eb/n} {}
\DeclareFontShape{TS1}{pmn1}{eb}{sl}{<-> ssub * pmnx/eb/sl}{}
\DeclareFontShape{TS1}{pmn1}{eb}{it}{<-> ssub * pmnx/eb/it}{}
\DeclareFontShape{TS1}{pmn1}{bx}{n} {<-> ssub * pmnx/sb/n} {}
\DeclareFontShape{TS1}{pmn1}{bx}{sc}{<-> ssub * pmnx/sb/n} {}
\DeclareFontShape{TS1}{pmn1}{bx}{sl}{<-> ssub * pmnx/sb/sl}{}
\DeclareFontShape{TS1}{pmn1}{bx}{it}{<-> ssub * pmnx/sb/it}{}
\endinput

vi. Text ornaments

The Minion expert package includes a dedicated ornament font, pmnrp.pfb. As
discussed before in section iv., we do not really need fontinst when installing
symbol fonts. Since no reencoding is required and there are no virtual fonts,
afm2tfm is sufficient for the job:

afm2tfm pmnrp.afm pmnrp.tfm

Using the fonts with Latex requires a font definition file, though. Symbol fonts
are not based on any particular encoding, so we use the encoding code U (un-
coded, unknown) in this case. This is upmnp.fd:

\ProvidesFile{upmnp.fd}
\DeclareFontFamily{U}{pmnp}{}
\DeclareFontShape{U}{pmnp}{m}{n}{<-> pmnrp}{}
\endinput

vi. The map file

The map file for Minion is longer than the one in the last tutorial, but concep-
tually similar. Note that the sc & osf fonts are not required. They are included
here for reference only. The swash and ornament fonts were not reencoded,
hence their mapping is similar to that of expert fonts:

pmnr8r Minion-Regular "TeXBase1Encoding ReEncodeFont" <8r.enc <pmnr8a.pfb
pmnri8r Minion-Italic "TeXBase1Encoding ReEncodeFont" <8r.enc <pmnri8a.pfb
pmns8r Minion-Semibold "TeXBase1Encoding ReEncodeFont" <8r.enc <pmns8a.pfb
pmnsi8r Minion-SemiboldItalic "TeXBase1Encoding ReEncodeFont" <8r.enc <pmnsi8a.pfb
pmnb8r Minion-Bold "TeXBase1Encoding ReEncodeFont" <8r.enc <pmnb8a.pfb
pmnbi8r Minion-BoldItalic "TeXBase1Encoding ReEncodeFont" <8r.enc <pmnbi8a.pfb
pmnc8r Minion-Black "TeXBase1Encoding ReEncodeFont" <8r.enc <pmnc8a.pfb
pmnrc8r Minion-RegularSC "TeXBase1Encoding ReEncodeFont" <8r.enc <pmnrc8a.pfb
pmnric8r Minion-ItalicSC "TeXBase1Encoding ReEncodeFont" <8r.enc <pmnric8a.pfb
pmnsc8r Minion-SemiboldSC "TeXBase1Encoding ReEncodeFont" <8r.enc <pmnsc8a.pfb
pmnsic8r Minion-SemiboldItalicSC "TeXBase1Encoding ReEncodeFont" <8r.enc <pmnsic8a.pfb
pmnbj8r Minion-BoldOsF "TeXBase1Encoding ReEncodeFont" <8r.enc <pmnbj8a.pfb
pmnbij8r Minion-BoldItalicOsF "TeXBase1Encoding ReEncodeFont" <8r.enc <pmnbij8a.pfb
pmncj8r Minion-BlackOsF "TeXBase1Encoding ReEncodeFont" <8r.enc <pmncj8a.pfb
pmnr8x MinionExp-Regular <pmnr8x.pfb
pmnri8x MinionExp-Italic <pmnri8x.pfb
pmns8x MinionExp-Semibold <pmns8x.pfb
pmnsi8x MinionExp-SemiboldItalic <pmnsi8x.pfb
pmnb8x MinionExp-Bold <pmnb8x.pfb

extending the user interface

pmnbi8x MinionExp-BoldItalic <pmnbi8x.pfb
pmnc8x MinionExp-Black <pmnc8x.pfb
pmnriw7a Minion-SwashItalic <pmnriw7a.pfb
pmnsiw7a Minion-SwashSemiboldItalic <pmnsiw7a.pfb
pmnrp Minion-Ornaments <pmnrp.pfb

vi. Extending the user interface

Before creating a style file for Minion, we will update nfssext.sty one more
time to support its additional features. Support for swashes is easily added since
the framework is already in place. Therefore, the first part of the file does not
require any changes, we simply add support for swashes by defining \swstyle
in a similar vein (–):

₁ \NeedsTeXFormat{LaTeX2e}
₂ \ProvidesPackage{nfssext}[2003/03/14 v1.2 Experimental NFSS Extensions]
₃ \newcommand*{\exfs@tempa}{}
₄ \newcommand*{\exfs@tempb}{}
₅ \newcommand*{\exfs@try@family}[2][]{%
₆ \let\exfs@tempa\relax
₇ \begingroup
₈ \fontfamily{#2}\try@load@fontshape
₉ \expandafter\ifx\csname\curr@fontshape\endcsname\relax

₁₀ \edef\exfs@tempa{#1}%
₁₁ \ifx\exfs@tempa\@empty
₁₂ \PackageWarning{nfssext}{%
₁₃ Font family ’\f@encoding/#2’ not available\MessageBreak
₁₄ Ignoring font switch}%
₁₅ \else
₁₆ \PackageInfo{nfssext}{%
₁₇ Font family ’\f@encoding/#2’ not available\MessageBreak
₁₈ Font family ’\f@encoding/#1’ tried instead}%
₁₉ \exfs@try@family{#1}%
₂₀ \fi
₂₁ \else
₂₂ \gdef\exfs@tempa{\fontfamily{#2}\selectfont}%
₂₃ \fi
₂₄ \endgroup
₂₅ \exfs@tempa}
₂₆ \def\exfs@get@base#1#2#3#4\@nil{#1#2#3}
₂₇ \DeclareRobustCommand{\lnstyle}{%
₂₈ \not@math@alphabet\lnstyle\relax
₂₉ \exfs@try@family[\expandafter\exfs@get@base\f@family\@nil]%
₃₀ {\expandafter\exfs@get@base\f@family\@nil x}}
₃₁ \DeclareRobustCommand{\osstyle}{%
₃₂ \not@math@alphabet\osstyle\relax
₃₃ \exfs@try@family{\expandafter\exfs@get@base\f@family\@nil j}}
₃₄ \DeclareRobustCommand{\instyle}{%
₃₅ \not@math@alphabet\instyle\relax
₃₆ \exfs@try@family{\expandafter\exfs@get@base\f@family\@nil 0}}
₃₇ \DeclareRobustCommand{\sustyle}{%
₃₈ \not@math@alphabet\sustyle\relax
₃₉ \exfs@try@family{\expandafter\exfs@get@base\f@family\@nil 1}}
₄₀ \DeclareRobustCommand{\swstyle}{%
₄₁ \not@math@alphabet\swstyle\relax
₄₂ \exfs@try@family{\expandafter\exfs@get@base\f@family\@nil w}}

 expert font sets, extended setup

Adding thorough support for italic small caps is not quite as easy. The problem
is that the creators of the nfss apparently did not think of italic small caps
when putting italics and small caps in the same category. Since both variants
are on the shape axis of the nfss they are mutually exclusive. While this will
not keep us from using \fontshape to select italic small caps explicitly, nesting
\scshape and \itshape does not have the desired effect. When nested, these
macros simply override each other instead of switching to italic small caps. This
problem is not as exotic as it may seem because italic small caps are hardly
ever used explicitly. Typically, they come into play when small caps and italics
are mixed on the same line. For example, think of a page header which is set
in small caps, containing a highlighted word set in italics; or an italic section
heading with an acronym set in small caps. To work around this problem, we
will have to redefine a few nfss macros. But first of all, we will add a macro for
explicit switching to italic small caps.

₄₃ \newcommand*{\sidefault}{si}

Note that the nfss does not use fixed shape codes like it and sc for the italic
and the small caps shape, but rather macros like \itdefault and \scdefault.
We will handle italic small caps in a similar way by defining \sidefault, which
defaults to si. Now let’s define \sishape for explicit switching to italic small
caps:

₄₄ \DeclareRobustCommand{\sishape}{%
₄₅ \not@math@alphabet\sishape\relax
₄₆ \fontshape\sidefault\selectfont}

While we are able to typeset italic small caps by selecting them explicitly, macros
like \itshape and \scshape will simply ignore the new shape. Let’s redefine
these macros to make them take advantage of italic small caps transparently. In
order to do so, we need a macro that will merge properties of the shape axis,
thereby allowing us to treat italics and small caps as if they were not on the same
axis:

₄₇ \newcommand*{\exfs@merge@shape}[3]{%
₄₈ \edef\exfs@tempa{#1}%
₄₉ \edef\exfs@tempb{#2}%
₅₀ \ifx\f@shape\exfs@tempb
₅₁ \expandafter\ifx\csname\f@encoding/\f@family/\f@series/#3\endcsname\relax
₅₂ \else
₅₃ \edef\exfs@tempa{#3}%
₅₄ \fi
₅₅ \fi
₅₆ \fontshape{\exfs@tempa}\selectfont}

This macro will switch to the font shape given as the first argument unless the
current shape is identical to the one indicated by the second argument. In this
case it will switch to the shape designated by the third argument instead, pro-
vided that it is available for the current font family. With this macro at hand we
redefine \itshape:

extending the user interface

₅₇ \DeclareRobustCommand{\itshape}{%
₅₈ \not@math@alphabet\itshape\mathit
₅₉ \exfs@merge@shape{\itdefault}{\scdefault}{\sidefault}}

Essentially, \itshape will switch to the font shape it unless the current shape
is sc, in which case it will switch to si instead, provided that si is available.
\scshape does it the other way around:

₆₀ \DeclareRobustCommand{\scshape}{%
₆₁ \not@math@alphabet\scshape\relax
₆₂ \exfs@merge@shape{\scdefault}{\itdefault}{\sidefault}}

We also redefine \upshape to make it switch to sc instead of n if the current
shape is si:

₆₃ \DeclareRobustCommand{\upshape}{%
₆₄ \not@math@alphabet\upshape\relax
₆₅ \exfs@merge@shape{\updefault}{\sidefault}{\scdefault}}

If no italic small caps are available, all of these macros will behave like they did
before, making them suitable for global use. While we are at it, we also define a
new macro, \dfshape, that will reset the current shape to the default (n unless
\shapedefault has been redefined) regardless of the current shape:

₆₆ \DeclareRobustCommand{\dfshape}{%
₆₇ \not@math@alphabet\dfshape\relax
₆₈ \fontshape\shapedefault\selectfont}

Before we add text commands for our new font switches, there is still one thing
left to do. The macro \swstyle, which we have defined above (–), will
switch to the the font family providing italic swashes (for example, pmnw). How-
ever, it will not activate the italic shape. It would be convenient to have a macro
which takes care of all of that. We first create an auxiliary macro holding the
shape which provides the actual swashes:

₆₉ \newcommand*{\swshapedefault}{\itdefault}

Then we create a macro which will call \swstyle and select the shape providing
the italic swashes in one shot:

₇₀ \DeclareRobustCommand{\swshape}{%
₇₁ \not@math@alphabet\swshape\relax
₇₂ \swstyle\fontshape\swshapedefault\selectfont}

Finally, we add text commands for our new font switches:

₇₃ \DeclareTextFontCommand{\textln}{\lnstyle}
₇₄ \DeclareTextFontCommand{\textos}{\osstyle}
₇₅ \DeclareTextFontCommand{\textin}{\instyle}
₇₆ \DeclareTextFontCommand{\textsu}{\sustyle}
₇₇ \DeclareTextFontCommand{\textsi}{\sishape}
₇₈ \DeclareTextFontCommand{\textdf}{\dfshape}
₇₉ \DeclareTextFontCommand{\textsw}{\swshape}

As far as text is concerned, all features of Minion are readily available at this
point. Using the ornaments would still require low-level commands, though.

 expert font sets, extended setup

vi. A high-level interface for ornaments

Technically, ornament fonts are comparable to the euro fonts discussed in sec-
tion iv.. To typeset the first ornament of Minion, for example, we could use
the following construct:

{\usefont{U}{pmnp}{m}{n}\char 97}

As this is rather awkward and requires looking at the afm file to find out the
encoding slot of each ornament, we will implement a higher-level solution. The
problem is that ornament fonts do not conform to any encoding, so there is
no standard we could rely on as far as the order of the glyphs in the font is
concerned. We have to provide this information explicity in minion.sty. To
facilitate this, we define the following macro:

₈₀ \newcommand*{\DeclareTextOrnament}[7]{%
₈₁ \expandafter\def\csname#1@orn\@roman#2\endcsname{#3/#4/#5/#6/#7}}

To declare the first ornament of Minion, this macro would be employed as fol-
lows:

\DeclareTextOrnament{pmn}{1}{U}{pmnp}{m}{n}{97}

We use the first three letters of the font family name as an identifier (pmn) and
assign a number (in this case) to the ornament defined by the remaining argu-
ments. These arguments form a complete font declaration with a syntax similar
to that of the nfss macro \DeclareFontShape. The last argument is the encod-
ing slot of the ornament (here) as given in the afm file. You might wonder
why we use a complete font declaration here. Since all ornaments are located
in the same font, using the same encoding, series, and shape, this seems to be
redundant. In this case, this is actually true. The problem is that ornaments are
not neccessarily provided in dedicated fonts. Adobe Garamond, for example,
comes with ornaments which are included in some of the alternate text fonts
so we use a complete declaration for maximum flexibility. Internally, the or-
naments are saved in a format modeled after the way the nfss handles font
shapes. When typesetting an ornament later, we need a macro to parse this font
declaration:

₈₂ \begingroup
₈₃ \catcode‘\/=12
₈₄ \gdef\exfs@split@orndef#1/#2/#3/#4/#5\@nil{%
₈₅ \def\f@encoding{#1}%
₈₆ \def\f@family{#2}%
₈₇ \def\f@series{#3}%
₈₈ \def\f@shape{#4}%
₈₉ \def\exfs@tempa{#5}}
₉₀ \endgroup

Since we use the base of the font family name as an identifier, we also need a
macro that expands to the first three letters of the current font family:

₉₁ \def\exfs@base@family{\expandafter\exfs@get@base\f@family\@nil}

the style file

Now we can finally implement a user macro that actually typesets the orna-
ment. We will simply call it \ornament:

₉₂ \DeclareRobustCommand{\ornament}[1]{%
₉₃ \expandafter\ifx\csname\exfs@base@family @orn\@roman#1\endcsname\relax
₉₄ \PackageWarning{nfssext}{%
₉₅ Ornament #1 undefined for font family ’\exfs@base@family’\MessageBreak
₉₆ Setting debug mark}%
₉₇ \rule{1ex}{1ex}%
₉₈ \else
₉₉ \begingroup

₁₀₀ \edef\exfs@tempb{\csname\exfs@base@family @orn\@roman#1\endcsname}%
₁₀₁ \expandafter\expandafter\expandafter\exfs@split@orndef
₁₀₂ \expandafter\string\exfs@tempb\@nil
₁₀₃ \selectfont\char\exfs@tempa
₁₀₄ \endgroup
₁₀₅ \fi}
₁₀₆ \endinput

First of all, we check if the desired ornament has been declared () and issue
a warning if not (–). We also typeset a mark () to facilitate debugging in
this case. If it has been declared, we expand and parse the declaration (–),
switch fonts, and typeset the ornament (). We use a group to keep the font
change local.

vi. The style file

The style file for Minion is similar to the ones suggested in section iii. and v..
The only difference is the declaration of the text ornaments. This is the first part
of minion.sty:

₁ \NeedsTeXFormat{LaTeX2e}
₂ \ProvidesPackage{minion}[2003/03/25 v1.0 Adobe Minion]
₃ \RequirePackage[T1]{fontenc}
₄ \RequirePackage{textcomp}
₅ \RequirePackage{nfssext}
₆ \DeclareOption{oldstyle}{\renewcommand*{\rmdefault}{pmnj}}
₇ \DeclareOption{lining}{\renewcommand*{\rmdefault}{pmnx}}
₈ \ExecuteOptions{oldstyle}
₉ \ProcessOptions

When declaring the text ornaments, we take the encoding slot numbers from
the respective afm file:

C 97 ; WX 885 ; N ornament1 ; B 50 -65 835 744 ;
C 98 ; WX 1036 ; N ornament2 ; B 50 4 986 672 ;
C 99 ; WX 1066 ; N ornament3 ; B 50 -106 1016 745 ;
C 100 ; WX 866 ; N ornament4 ; B 50 98 816 534 ;
C 101 ; WX 390 ; N ornament5 ; B 50 86 341 550 ;

We add a declaration for each ornament:

₁₀ \DeclareTextOrnament{pmn}{1}{U}{pmnp}{m}{n}{97}
₁₁ \DeclareTextOrnament{pmn}{2}{U}{pmnp}{m}{n}{98}
₁₂ \DeclareTextOrnament{pmn}{3}{U}{pmnp}{m}{n}{99}
₁₃ \DeclareTextOrnament{pmn}{4}{U}{pmnp}{m}{n}{100}
₁₄ \DeclareTextOrnament{pmn}{5}{U}{pmnp}{m}{n}{101}

 expert font sets, extended setup

₁₅ \DeclareTextOrnament{pmn}{6}{U}{pmnp}{m}{n}{102}
₁₆ \DeclareTextOrnament{pmn}{7}{U}{pmnp}{m}{n}{103}
₁₇ \DeclareTextOrnament{pmn}{8}{U}{pmnp}{m}{n}{104}
₁₈ \DeclareTextOrnament{pmn}{9}{U}{pmnp}{m}{n}{105}
₁₉ \DeclareTextOrnament{pmn}{10}{U}{pmnp}{m}{n}{106}
₂₀ \DeclareTextOrnament{pmn}{11}{U}{pmnp}{m}{n}{107}
₂₁ \DeclareTextOrnament{pmn}{12}{U}{pmnp}{m}{n}{108}
₂₂ \DeclareTextOrnament{pmn}{13}{U}{pmnp}{m}{n}{109}
₂₃ \DeclareTextOrnament{pmn}{14}{U}{pmnp}{m}{n}{110}
₂₄ \DeclareTextOrnament{pmn}{15}{U}{pmnp}{m}{n}{111}
₂₅ \DeclareTextOrnament{pmn}{16}{U}{pmnp}{m}{n}{112}
₂₆ \DeclareTextOrnament{pmn}{17}{U}{pmnp}{m}{n}{113}
₂₇ \DeclareTextOrnament{pmn}{18}{U}{pmnp}{m}{n}{114}
₂₈ \DeclareTextOrnament{pmn}{19}{U}{pmnp}{m}{n}{115}
₂₉ \DeclareTextOrnament{pmn}{20}{U}{pmnp}{m}{n}{116}
₃₀ \DeclareTextOrnament{pmn}{21}{U}{pmnp}{m}{n}{117}
₃₁ \DeclareTextOrnament{pmn}{22}{U}{pmnp}{m}{n}{118}
₃₂ \DeclareTextOrnament{pmn}{23}{U}{pmnp}{m}{n}{119}
₃₃ \endinput

As mentioned before, Adobe Garamond features ornaments in the alternate
text fonts, requiring a complete font declaration. In this case, the definitions
would look as follows:

\DeclareTextOrnament{pad}{1}{U}{pada}{m}{n}{49}
\DeclareTextOrnament{pad}{2}{U}{pada}{m}{n}{50}
\DeclareTextOrnament{pad}{3}{U}{pada}{m}{it}{49}

Note that the ornament macro is deliberately designed to be sensitive to the
active font family. When using Minion as text font, \ornament{1} will typeset
the symbol a. When using Adobe Garamond, the same command sequence
will typeset 1 instead. If you would like to use these text ornaments in a font
independent manner, simply switch font families explicitly, adding extra braces
to keep the font change local:

{\fontfamily{pmnx}\selectfont\ornament{1}}

Which Minion font family you select (for example, pmnx or pmnj) does not
matter, but it has to be a known one, that is, there has to be a font definition
file corresponding to the active text encoding in addition to the one for the
ornament font. Note that, since the ornament declarations are given in the style
file, you also need to load the respective package in the document preamble.
For example, if you would like to typeset a document in Sabon and make use
of some Minion text ornaments, you might do the following:

\documentclass...
\usepackage{minion}
\usepackage{sabon}
...
\begin{document}
...
Text in Sabon
...
{\fontfamily{pmnx}\selectfont\ornament{1}}

the style file

Apart from that, you can always go back to lower-level commands which merely
depend on a font definition file (upmnp.fd and upada.fd here) for the respec-
tive ornament font:

{\usefont{U}{pmnp}{m}{n}\char 97}
{\usefont{U}{pada}{m}{n}\char 49}

code tables

The tables on the following pages are intended to give an idea of how the codes
of the Fontname scheme relate to those used by Latex’s font selection scheme
(nfss). The Fontname codes are what we use when renaming the font files
during the installation while the nfss codes are what we need when select-
ing a certain font under Latex later. Sticking to the nfss codes listed below
is not a technical requirement for a functional font installation. When using
the \latinfamily macro, fontinst will indeed use these nfss codes. When
employing low-level fontinst commands, however, the nfss font declaration
is controlled by the last five arguments of the \installfont command. In the-
ory, we could use an arbitrary code and the nfss would handle that just fine.
It is still highly recommended to stick to these codes to avoid confusion and
incompatibility. Two dashes in one of the table cells indicate that there is no
customary code for this font property in the respective scheme whereas a blank
cell means that the code is omitted. Properties which are not catered for by the
\latinfamily macro are marked with an asterisk in the last column.

Please note that Fontname codes and nfss codes cannot be mapped on
a one-to-one basis in all cases since the two schemes are rather different in
concept. Weights and widths, which are treated separately by the Fontname
scheme, need to be concatenated and handled as a ‘series’ when using the nfss
since the latter does not have independent categories (‘axes’) for weight and
width. The ‘variant’ category of the Fontname scheme on the other hand, which
embraces several different properties including shapes like italics as well as spe-
cial glyph sets such as small caps or alternative figures, does not correspond
to a single nfss axis. Some variants, like italics and small caps for example,
are mapped to the ‘shape’ axis of the nfss. Others, such as alternative figures,
are handled in completely different ways. Table lists variants corresponding to
the most common nfss shapes only. When looking at the documentation of the
Fontname scheme, you will find a lot more variant codes not mentioned here.
Although they are used for file naming, they do not, or, at least do not neces-
sarily correspond to a customary nfss shape. Hanging, inferior, and superior
numbers (Fontname codes j, 0, and 1), for example, are treated as ‘variants’ by
the Fontname scheme but they are usually implemented as independent font
families on the level of the nfss. For the encodings listed in table the situation
is similar. For example, a virtual font in t1 encoding featuring expert glyphs is
indicated by adding 9e to the file name. However, on the level of the nfss the
encoding code is T1 for all t1 encoded fonts and the fact that the font provides
expert glyphs is expressed by adding the letter x to the font family name.

 code tables

weight fontname code nfss series

ultra light, thin, hairline a ul*
extra light j el*
light l l
book k m
regular r m
medium m mb
demibold d db
semibold s sb
bold b b
heavy h eb
black c eb
extra bold, extra black x eb
ultra bold, ultra black u ub
poster p --*

Table 3: Codes for font weights

width fontname code nfss series

ultra compressed u uc*
ultra condensed o uc*
extra compressed, extra condensed q ec*
compressed p c*
condensed c c*
narrow n c
regular
extended x x*
expanded e x*
extra expanded v ex*
ultra expanded -- ux*
wide w --*

Table 4: Codes for font widths

variant fontname code nfss shape

normal, upright, roman n
italic i it
oblique, slanted o sl
small caps c sc
italic small caps ic si*
upright italic -- ui*
outline l ol*

Table 5: Codes for font variants

code tables

encoding fontname code nfss encoding

Adobe Standard 8a 8a
Expert 8x 8x
Tex Base 8r 8r
Tex Text 7t OT1
Tex Tex with expert set 9t OT1
Tex Text with expert set and osf 9o OT1
Cork 8t T1
Cork with expert set 9e T1
Cork with expert set and osf 9d T1
Text Companion 8c TS1
Text Companion with expert set 9c TS1

Table 6: Codes for font encodings

the gnu free
documentation license

Version ., November

Copyright © , , Free Software Foundation, Inc.
 Temple Place, Suite , Boston, ma - usa

. Preamble

The purpose of this license is to make a manual, textbook, or other functional
and useful document ‘free’ in the sense of freedom: to assure everyone the ef-
fective freedom to copy and redistribute it, with or without modifying it, either
commercially or noncommercially. Secondarily, this license preserves for the
author and publisher a way to get credit for their work, while not being consid-
ered responsible for modifications made by others.

This license is a kind of ‘copyleft’, which means that derivative works of the
document must themselves be free in the same sense. It complements the gnu
General Public License, which is a copyleft license designed for free software.

We have designed this license in order to use it for manuals for free software,
because free software needs free documentation: a free program should come
with manuals providing the same freedoms that the software does. But this
license is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We
recommend this license principally for works whose purpose is instruction or
reference.

. Applicability and definitions

This license applies to any manual or other work, in any medium, that contains
a notice placed by the copyright holder saying it can be distributed under the
terms of this license. Such a notice grants a world-wide, royalty-free license,
unlimited in duration, to use that work under the conditions stated herein. The
document, below, refers to any such manual or work. Any member of the public
is a licensee, and is addressed as you. You accept the license if you copy, modify
or distribute the work in a way requiring permission under copyright law.

A modified version of the document means any work containing the docu-
ment or a portion of it, either copied verbatim, or with modifications and/or
translated into another language.

A secondary section is a named appendix or a front-matter section of the
document that deals exclusively with the relationship of the publishers or au-
thors of the document to the document’s overall subject (or to related matters)
and contains nothing that could fall directly within that overall subject. (Thus,
if the document is in part a textbook of mathematics, a secondary section may

 the gnu free documentation license

not explain any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal, commercial,
philosophical, ethical or political position regarding them.

The invariant sections are certain secondary sections whose titles are des-
ignated, as being those of invariant sections, in the notice that says that the
document is released under this license. If a section does not fit the above def-
inition of secondary then it is not allowed to be designated as invariant. The
document may contain zero invariant sections. If the document does not iden-
tify any invariant sections then there are none.

The cover texts are certain short passages of text that are listed, as front-cover
texts or back-cover texts, in the notice that says that the document is released
under this license. A front-cover text may be at most five words, and a back-
cover text may be at most words.

A transparent copy of the document means a machine-readable copy, repre-
sented in a format whose specification is available to the general public, that is
suitable for revising the document straightforwardly with generic text editors or
(for images composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to text formatters
or for automatic translation to a variety of formats suitable for input to text for-
matters. A copy made in an otherwise transparent file format whose markup,
or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not transparent. An image format is not transparent
if used for any substantial amount of text. A copy that is not ‘transparent’ is
called ‘opaque’.

Examples of suitable formats for transparent copies include plain Ascii
without markup, Texinfo input format, Latex input format, sgml or xml us-
ing a publicly available dtd, and standard-conforming simple html, Postscript
or pdf designed for human modification. Examples of transparent image for-
mats include png, xcf and jpg. Opaque formats include proprietary formats
that can be read and edited only by proprietary word processors, sgml or xml
for which the dtd and/or processing tools are not generally available, and the
machine-generated html, Postscript or pdf produced by some word processors
for output purposes only.

The title page means, for a printed book, the title page itself, plus such fol-
lowing pages as are needed to hold, legibly, the material this license requires to
appear in the title page. For works in formats which do not have any title page
as such, ‘title page’ means the text near the most prominent appearance of the
work’s title, preceding the beginning of the body of the text.

A section entitled xyz means a named subunit of the document whose title
either is precisely xyz or contains xyz in parentheses following text that trans-
lates xyz in another language. (Here xyz stands for a specific section name
mentioned below, such as ‘Acknowledgements’, ‘Dedications’, ‘Endorsements’,
or ‘History’.) To ‘preserve the title’ of such a section when you modify the docu-

the gnu free documentation license

ment means that it remains a section ‘entitled xyz’ according to this definition.
The document may include warranty disclaimers next to the notice which

states that this license applies to the document. These warranty disclaimers are
considered to be included by reference in this license, but only as regards dis-
claiming warranties: any other implication that these warranty disclaimers may
have is void and has no effect on the meaning of this license.

. Verbatim copying

You may copy and distribute the document in any medium, either commer-
cially or noncommercially, provided that this license, the copyright notices, and
the license notice saying this license applies to the document are reproduced in
all copies, and that you add no other conditions whatsoever to those of this li-
cense. You may not use technical measures to obstruct or control the reading or
further copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough number
of copies you must also follow the conditions in section .

You may also lend copies, under the same conditions stated above, and you
may publicly display copies.

. Copying in quantity

If you publish printed copies (or copies in media that commonly have printed
covers) of the document, numbering more than , and the document’s li-
cense notice requires cover texts, you must enclose the copies in covers that
carry, clearly and legibly, all these cover texts: front-cover texts on the front
cover, and back-cover texts on the back cover. Both covers must also clearly
and legibly identify you as the publisher of these copies. The front cover must
present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes
limited to the covers, as long as they preserve the title of the document and
satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you
should put the first ones listed (as many as fit reasonably) on the actual cover,
and continue the rest onto adjacent pages.

If you publish or distribute opaque copies of the document numbering
more than , you must either include a machine-readable transparent copy
along with each opaque copy, or state in or with each opaque copy a computer-
network location from which the general network-using public has access to
download using public-standard network protocols a complete transparent
copy of the document, free of added material. If you use the latter option, you
must take reasonably prudent steps, when you begin distribution of opaque
copies in quantity, to ensure that this transparent copy will remain thus acces-
sible at the stated location until at least one year after the last time you distribute
an opaque copy (directly or through your agents or retailers) of that edition to

 the gnu free documentation license

the public.
It is requested, but not required, that you contact the authors of the doc-

ument well before redistributing any large number of copies, to give them a
chance to provide you with an updated version of the document.

. Modifications

You may copy and distribute a modified version of the document under the
conditions of sections and above, provided that you release the modified
version under precisely this license, with the modified version filling the role
of the document, thus licensing distribution and modification of the modified
version to whoever possesses a copy of it. In addition, you must do these things
in the modified version:

a. Use in the title page (and on the covers, if any) a title distinct from that of
the document, and from those of previous versions (which should, if there
were any, be listed in the history section of the document). You may use the
same title as a previous version if the original publisher of that version gives
permission.

b. List on the title page, as authors, one or more persons or entities respon-
sible for authorship of the modifications in the modified version, together
with at least five of the principal authors of the document (all of its prin-
cipal authors, if it has fewer than five), unless they release you from this
requirement.

c. State on the title page the name of the publisher of the modified version, as
the publisher.

d. Preserve all the copyright notices of the document.
e. Add an appropriate copyright notice for your modifications adjacent to the

other copyright notices.
f. Include, immediately after the copyright notices, a license notice giving the

public permission to use the modified version under the terms of this li-
cense.

g. Preserve in that license notice the full lists of invariant sections and required
cover texts given in the document’s license notice.

h. Include an unaltered copy of this license.
i. Preserve the section entitled ‘History’, preserve its title, and add to it an item

stating at least the title, year, new authors, and publisher of the modified
version as given on the title page. If there is no section entitled ‘History’
in the document, create one stating the title, year, authors, and publisher
of the document as given on its title page, then add an item describing the
modified version as stated in the previous sentence.

j. Preserve the network location, if any, given in the document for public ac-
cess to a transparent copy of the document, and likewise the network lo-
cations given in the document for previous versions it was based on. These

the gnu free documentation license

may be placed in the ‘History’ section. You may omit a network location for
a work that was published at least four years before the document itself, or
if the original publisher of the version it refers to gives permission.

k. For any section entitled ‘Acknowledgements’ or ‘Dedications’, preserve the
title of the section, and preserve in the section all the substance and tone of
each of the contributor acknowledgements and/or dedications given there-
in.

l. Preserve all the invariant sections of the document, unaltered in their text
and in their titles. Section numbers or the equivalent are not considered
part of the section titles.

m. Delete any section entitled ‘Endorsements’. Such a section may not be in-
cluded in the modified version.

n. Do not retitle any existing section to be entitled ‘Endorsements’ or to con-
flict in title with any invariant section.

o. Preserve any warranty disclaimers.

If the modified version includes new front-matter sections or appendices
that qualify as secondary sections and contain no material copied from the
document, you may at your option designate some or all of these sections as
invariant. To do this, add their titles to the list of invariant sections in the mod-
ified version’s license notice. These titles must be distinct from any other section
titles.

You may add a section entitled ‘Endorsements’, provided it contains nothing
but endorsements of your modified version by various parties – for example,
statements of peer review or that the text has been approved by an organization
as the authoritative definition of a standard.

You may add a passage of up to five words as a front-cover text, and a pas-
sage of up to words as a back-cover text, to the end of the list of cover texts
in the modified version. Only one passage of front-cover text and one of back-
cover text may be added by (or through arrangements made by) any one entity.
If the document already includes a cover text for the same cover, previously
added by you or by arrangement made by the same entity you are acting on be-
half of, you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the document do not by this license give
permission to use their names for publicity for or to assert or imply endorse-
ment of any modified version.

. Combining documents

You may combine the document with other documents released under this li-
cense, under the terms defined in section above for modified versions, pro-
vided that you include in the combination all of the invariant sections of all of
the original documents, unmodified, and list them all as invariant sections of

 the gnu free documentation license

your combined work in its license notice, and that you preserve all their war-
ranty disclaimers.

The combined work need only contain one copy of this license, and multi-
ple identical invariant sections may be replaced with a single copy. If there are
multiple invariant sections with the same name but different contents, make
the title of each such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if known, or else
a unique number. Make the same adjustment to the section titles in the list of
invariant sections in the license notice of the combined work.

In the combination, you must combine any sections entitled ‘History’ in
the various original documents, forming one section entitled ‘History’; likewise
combine any sections entitled ‘Acknowledgements’, and any sections entitled
‘Dedications’. You must delete all sections entitled ‘Endorsements.’

. Collections of documents

You may make a collection consisting of the document and other documents
released under this license, and replace the individual copies of this license in
the various documents with a single copy that is included in the collection,
provided that you follow the rules of this license for verbatim copying of each
of the documents in all other respects.

You may extract a single document from such a collection, and distribute it
individually under this license, provided you insert a copy of this license into
the extracted document, and follow this license in all other respects regarding
verbatim copying of that document.

. Aggregation with independent works

A compilation of the document or its derivatives with other separate and in-
dependent documents or works, in or on a volume of a storage or distribution
medium, is called an ‘aggregate’ if the copyright resulting from the compila-
tion is not used to limit the legal rights of the compilation’s users beyond what
the individual works permit. When the document is included in an aggregate,
this license does not apply to the other works in the aggregate which are not
themselves derivative works of the document.

If the cover text requirement of section is applicable to these copies of the
document, then if the document is less than one half of the entire aggregate,
the document’s cover texts may be placed on covers that bracket the document
within the aggregate, or the electronic equivalent of covers if the document is
in electronic form. Otherwise they must appear on printed covers that bracket
the whole aggregate.

. Translation

Translation is considered a kind of modification, so you may distribute transla-
tions of the document under the terms of section . Replacing invariant sections

the gnu free documentation license

with translations requires special permission from their copyright holders, but
you may include translations of some or all invariant sections in addition to
the original versions of these invariant sections. You may include a translation
of this license, and all the license notices in the document, and any warranty
disclaimers, provided that you also include the original English version of this
license and the original versions of those notices and disclaimers. In case of a
disagreement between the translation and the original version of this license or
a notice or disclaimer, the original version will prevail.

If a section in the document is entitled ‘Acknowledgements’, ‘Dedications’,
or ‘History’, the requirement (section) to preserve its title (section) will typ-
ically require changing the actual title.

. Termination

You may not copy, modify, sublicense, or distribute the document except as
expressly provided for under this license. Any other attempt to copy, modify,
sublicense or distribute the document is void, and will automatically terminate
your rights under this license. However, parties who have received copies, or
rights, from you under this license will not have their licenses terminated so
long as such parties remain in full compliance.

. Future revisions of this license

The Free Software Foundation may publish new, revised versions of the gnu
Free Documentation License from time to time. Such new versions will be sim-
ilar in spirit to the present version, but may differ in detail to address new prob-
lems or concerns.¹

Each version of the license is given a distinguishing version number. If the
document specifies that a particular numbered version of this license “or any
later version” applies to it, you have the option of following the terms and con-
ditions either of that specified version or of any later version that has been pub-
lished (not as a draft) by the Free Software Foundation. If the document does
not specify a version number of this license, you may choose any version ever
published (not as a draft) by the Free Software Foundation.

 http://www.gnu.org/copyleft/

www.gnu.org/copyleft/

revision history

1.23 2003-08-31 Added tables and to section i.
Revised section i., adding note about Latin Modern
Revised section i.

1.20 2003-07-17 Added preliminary hints concerning fontinst . to section iv.
Fixed problem with nfssext.sty (sections iii., v., and vi.)
Improved support for swashes in nfssext.sty (section vi.)
Revised discussion of ornaments in section vi.
Revised discussion of swashes in section vi.
Added spelling corrections by William Adams
Added spelling corrections by Adrian Burd

1.10 2003-03-27 Added gnu Free Documentation License to the appendix
Added explicit licensing clause

1.00 2003-03-25 Final release for fontinst .
Added tutorial vi
Updated notes on contributions

0.80 2003-03-23 Added spelling corrections and suggestions by Timothy Eyre
Revised section i., splitting off section i.
Added section iii.
Updated notes on contributions

0.68 2003-02-09 Revised section iv.
Updated notes on contributions

0.66 2003-01-26 Added highlighting to code listings
0.65 2003-01-19 Added spelling corrections by Adrian Heathcote

Added spelling corrections by William Adams
Added section ii.
Revised section ii.
Revised introduction

0.60 2003-01-11 Revised tutorial iii
Added discussion of kerning issues to section iii.

0.54 2003-01-04 Revised discussion of ot1 encoding in tutorial i
Added minor changes to code tables

0.52 2003-01-02 Added code table to appendix
Revised note on code tables in appendix

0.50 2002-12-30 Added tutorial v
Added code tables , , and to appendix
Added revision history

0.43 2002-10-25 First public pre-release featuring tutorials i–iv
Added installation instructions to section iv.
Added section iv.

0.40 2002-08-11 Added tutorial iv
0.30 2002-05-12 Added tutorial iii
0.20 2002-04-17 Unreleased draft including tutorials i and ii

	Contents
	Introduction
	The basics
	Renaming the files
	Using fontinst
	Installing the files
	Creating map files
	Using the fonts
	Computer Modern and T1 encoding

	Standard font sets
	The fontinst file
	The latinfamily macro revisited
	Map files revisited

	Optical small caps and hanging figures
	The fontinst file
	The map file
	The style file
	Fonts supplied with Tex

	The euro currency symbol
	Uncoded euro symbol
	Euro symbol encoded as currency symbol
	Euro symbol taken from external symbol font
	Euro symbol taken from external text font

	Expert font sets, regular setup
	Basic fontinst file
	Verbose fontinst file
	Inferior and superior figures
	The map file
	The style file
	Using the fonts

	Expert font sets, extended setup
	The fontinst file
	Text ornaments
	The map file
	Extending the user interface
	A high-level interface for ornaments
	The style file

	Code tables
	The GNU Free Documentation License
	Revision history

