
Hans Hagen NAJAAR 2004 5

The State of ConTEXt

Abstract
In this article I will describe the current state of the
ConTEXt macro package and the forces that play a role
in its evolution. I will also indicate the directions in
which we look for further developments.

ConTEXt developments
The public part of the ConTEXt story started around
1995. If we summarize the main developments in this
macro package we can roughly identify the following
points of focus:

2 a configurable environment where users can
define styles, using an interface in a language of
choice; the multilingual interface was first needed
when the chemical package ppchTEX was adapted to
English and made generic
2 support for document collections as we find in
educational settings, with a focus on re-usability;
multilingual support, selective processing and dedi-
cated modules for chemical formulas and consistent
usage of physical units evolved from there
2 features aimed at highly interactive documents,
optimized for reading on computer screens; support
for one source, multiple output was part of that
2 extensive support for grid snapping combined
with advanced multi column typesetting
2 typescripts as a means of building font collec-
tions and combining typefaces in many (possibly
weird) ways
2 all kind of fuzzy configuration options needed in
order to mimic the behavior of desktop publishing
applications
2 integrated support for processing XML docu-
ments and using XML databases

Extending and improving ConTEXt has never been
related to strong versioning or promises for successors.
Part of the game is that we try to remain downward
compatible. And so, officially we still have ConTEXt
version 1. Successive releases are tagged by date.

The most recent change was not so much related
to new features but more to the machinery behind the
screens. Those who have looked into the source code,
probably have noticed that for reasons we will not
discuss now, keywords and variable names look rather
Dutch, that is, until recently. Around August 2004

we made the move to a low level English interface.
Although we had some help from a Perl script that had
been written for this purpose years ago, still quite some
manual checking had to be done.

This does not mean that ConTEXt is completely clean
under the hood. When we started developing the
system, TEX’s were small, and so we ended up with
quite some dirty (not that verbose) code. One can
easily recognize the older code, but we hope to weed
out the ugly bits in due time.

There is good reason to qualify the current version
as ConTEXt version 2. The reason for this is that
users who use low level Dutch keyword constants
(prefixed by \v! and \c!) in their non--dutch styles,
need to translate these into English. A bonus is that
third party extensions will be easier to implement.
Such developments will further be stimulated by Taco
Hoekwater’s ConTEXt API project and Patrick Gund-
lach’s ConTEXt interface description project hosted at
contextgarden.net. I must admit, that the decision
to go low--level--english now and not later, was trig-
gered by their initiatives.

Of course one can legitimately ask whether there
is still need for further developments in TEX macro-
packages like ConTEXt. At Pragma ADE we deal with
documents coded in TEX as well as the more avant--
garde XML format. It cannot be denied that XML
coding makes documents much less error-prone: it’s
much simpler to check the syntax of an XML file than
of an TEX file. However, it can also not be denied that
the loss of typographic detail (or more precisely: the
means of authors to improve the look and feel of the
final result) is a high price to pay. Of course there
are also document types that cannot easily be covered
by a manageable set of XML elements. Just think of
highly complex math, physics or chemistry, or manuals
that use a wide range of visualisations. One easily
ends up with something that, although coded without
backslashes, looks rather familiar to TEX users.

An even more important observation is that whatev-
er means of going from document source to typeset
product we choose, the visualisation problem will
not change. No matter how many tools (or macros)
one writes, differences in designs (and not seldom
inconsistencies in designs) demand unique solutions.
Although one can easily become overwhelmed by the
possibilities that todays publishing tools provide, there
is still a place for the proven TEX technology.



6 MAPS 31 Hans Hagen

ConTEXt and browsers
Recently we redesigned the Pragma ADE web-site, a
site that is mostly dedicated to ConTEXt. The HTML
pages are generated from XML sources using xsltproc.
Some of the PDF documents are generated from the
same XML code. In addition, we generate templates
and interfaces for the PDF framework, of which we
now run an instance on the web site. This framework
is a shell around TEX and friends, and provides features
like page imposition and font tests, wrapped in an
interface, but very TEXish underneath.

When rebuilding the web site, it was enlightening to
find out that standards like css were not always precise-
ly supported, even after being around for many years.
FireFox (mozilla gecko engine) does a decent job. But
for Internet Explorer, we have to cheat dimensions and
use dirty tricks to get the alignment right. Opera was
not that bad, but could not handle relative dimensions
well. In the end we had to follow yet another approach
to make Apple’s Safari Browser (based on the kde
engine) happy as well. One lesson that I learned here
was that even an abundance of implementations (or
renderers) and tons of documentation (it’s easy to find
info in the web on css and HTML) makes defining a
simple layout a painful and time consuming process.
It’s also interesting to see that the amount of XSLT
code needed is not on fore-hand smaller than the
ConTEXt code needed to generate similar output in
PDF. Although the TEX community is under pressure of
evolving techniques, it should also realize that its huge
repository of tools and macros is not that bad after all.

Interesting is that browsers can handle complex op-
erations, like displaying Arab or Chinese and handling
widgets and JavaScript quite well, but setting up a
simple geometry based on fractions (percentages of
the screen size) goes beyond their capacity. Something
similar can be observed with the XML related css
cousin XSL-FO: I still have to run into a nicely typeset
book done that way with a more than mediocre design.
Again the focus seems to be more on the machinery
around it, than on the creation of masterpieces. But
then, this may well be beyond its purpose. Whatever
a TEX user may think of css compared to his or her
favorite macro package, its influence is undeniable.
The evolution of the Mozilla platform demonstrates
this: it provides a user interface builder based on css
and xhtml called xul. When PDF came around, I made
some documents that could considered to be programs.
It looks like in the end typesetting and user interfacing
finally meet each other.

Future developments
The majority of documents is a collection of para-
graphs of running text, itemized lists, a few graphics
here and there, and a couple of tables. TEX and TEX-
related packages can handle such documents with ease.

However, it seems that even in automated work-flows,
where most of the interface can be hidden, TEX is
seldom considered to be an option. But, when no other
alternative is available, or when other applications
failed to perform, this 25 year old program can come to
help. It’s interesting to observe that the TEX community
can still attract new users who don’t consider the user
interface too much of a problem. So it definitely makes
sense to continue development, if only because there
is still a large group of documents that demand such
tools and typographical detail. As long as TEX can keep
up, the ConTEXt story will continue and we will see
version 4 (extremely modularized), version 8, 16 and
maybe 32 some time in the future. In the end it may be
that properly typeset documents where time and effort
is put in the look and feel, become a niche, and make
place for documents with a minimum of design that
can be generated each time they are updated, using
the user’s preferences.

What is currently happening at the ConTEXt fron-
tier? ConTEXt has been ε-TEX aware for a long time,
and the pdfTEX engine is supported quite well. The
good news is that pdfTEX is still under active devel-
opment. For instance large parts of the font handling
were redesigned, and paragraph optimization (pdfTEX
implements a font expansion algorithm akin to the hz
micro--typography algorithm by Prof. Hermann Zapf)
as well as protruding (hanging punctuation) have
become more user friendly. ConTEXt supports both
mechanism quite well.

With the arrival of Aleph, the stable descendant of
Omega, support for this extension will become more
visible than it was so far. Although UTF is supported,
as well as some specialized Chinese encodings, using
Aleph will bring unicode support in the broadest sense,
given that adequate fonts and hyphenation patterns
become available. In many aspects Omega is not as
multilingual as advertised, and certainly not by nature.
Omega and therefore Aleph provide some mechanisms,
but one still needs macros on top of these to tie the
directional typesetting to actual languages and layout.
Taking fonts as a starting point, the MacOs X specific
unicoded TEX variant XeTEX also looks promising. Ac-
cording to one of the ConTEXt MacOs X experts, Adam
Lindsay, there are hardly any extensions to ConTEXt are
needed in order to get documents typeset in virtually
every script.

Other developments that may become of interest
are Taco Hoekwater’s merge of TEX and MetaPost.
There ConTEXt will not only benefit from a speedup
due to more efficient inter--process communication,
but it may also open new worlds. The average user
will probably not use ConTEXt the way we do, for
instance to create DTP like output from XML sources,
which often means multiple calls to MetaPost per page.
Think of documents with 250--500 pages, hundreds of



The State of ConTEXt NAJAAR 2004 7

(possibly run time manipulated) graphics, thousands
of calls to MetaPost, with an occasional size of over
500 Megabytes, and you can imagine that any speed
improvement counts. Most features that we use in
projects end up in the kernel, and so many users may
profit from an efficient integration.

I already mentioned XML. In the next couple of
years, more ConTEXt subsystems will use this format in
one way or another. If you take a closer look at the dis-
tribution, you will notice that quite some XML objects
are present already, like in the figure database mecha-
nism and other tools. New is foXet, yet another XSL-FO
engine. Formatting objects (fo’s) are a kind of building
blocks that are to be handled by a typesetting engine.

Although foXet ended up on our agenda due to some
vague promises made long ago, the actual develop-
ment of foXet was triggered by the observation that
the ConTEXt MathML engine is being used to fill in the
gap in commercial engines. Why bother making small
bitmaps (or PDF snippets) of formulas while TEX can
do the whole thing? It is interesting to notice that most
of the documents that this applies to are rather trivial
to typeset with either ConTEXt built--in XML features or
by using XSLT to generate intermediate TEX code. It is
also interesting to observe that there are ConTEXt users
who use XML documents with ConTEXt as a backend,
thereby hiding TEX completely.

The magic sound of XSL-FO occasionally makes our
customers express the wish for an engine that can
handle them (even if their designs are not that well
suited for it). Somehow the magic obscures the fact
that it’s a relatively slow process, that it may take
longer to implement (as said before: the problem does
not change), does not necessarily lead to well typeset
documents, et cetera. If one knows that something is
possible (and with TEX much is possible) the demands
of designers are seldom adapted. When something
is not possible at all (and this occurs with XSL-FO)
my guess is that the demands will be dropped. Float
handling and marginal notes are examples of areas
where TEX is hard to beat.

Paragraph building
So what about TEX’s superior paragraph builder? Un-
fortunately most of the documents that we have to
typeset professionally are designed by those who use
DTP systems with poor quality paragraph builders.
This makes that they simply cannot believe that there
are programs that can do a decent job. As a result we
end up with colorful and abundantly illustrated docu-
ments that have rather complex layouts (especially if
you take into account that they are typeset automat-
ically) but with poorly typeset paragraphs, and that
is what they recognize. It is hard to explain that by
setting all TEX’s penalties to their maximum, the solu-
tion space becomes pretty small. Even the somehow

always demanded ragged right justification then looks
plain bad. The problem for the TEX community is that
alternatives for TEX don’t have to provide TEX quality
paragraph routines. As long as they can get the layout
done, they win the game. ConTEXt users who like to
look into the source will have noticed that quite some
control was added in order to meet these demands,
even to the extent that it may lower the quality.

So what good is it for TEX users? As with many
things, it’s no bad idea to take the best of all worlds.
There is nothing wrong with DTP, and for many ap-
plications, an Office Suite does well. And for a certain
range of documents XSL-FO is a good choice. Of course
it remains puzzling why some of todays publishing on
demand work-flows are presented as something new,
while in practice it already could have be done that
way for decades using SGML and TEX, at far lower costs
too. In some sense TEX was simply to far ahead.

One can mix those techniques. Just as one makes a
graphic in a drawing program, one can imagine embed-
ding one page documents coded in XSL-FO as graphic
in a TEX document. In this way we get a kind of ‘placed
XML’. And ConTEXt already can happily combine TEX
and XML in such ways. Also, it’s more convenient
to store information in a standardized (XML) format,
than to invent some syntax for each situation and
develop different tools for each of them. For instance,
if we want file information in our documents, we
use xmltools to generate a directory database (this
can be done at document processing time by using a
system call) and we then let TEX filter the information
from that database. Another example is OpenOffice.
Anyone who has taken a closer look at this program
will probably have recognized similarities with XSL-FO
related developments. Seeing TEX as an alternative
back-end for texts edited in that environment is not
such a bad idea.

All these worlds can meet each other in ConTEXt.
In ConTEXt, TEX and XML come together not only in
foXet, but also in what we’ve called ‘The Example
Framework’. The PDF logo has the x, m, and l hidden
inside, but the actual purpose of this project is to hide
TEX from users. On our web site you can play with
some of these framework features.

It will be clear that the future of ConTEXt is to some
extent related to the advance of XML, although the
pure TEX approach will not be neglected. For many
documents the TEX syntax (or in our case, the ConTEXt
one) is quite well suited and efficient. Although I
nowadays code most database related documents in
XML (like the PDF showcase document interfaces) I
have no plans to abandon TEX. Even thinking of coding
a manual like the one about MetaFun in XML already
gives reasons for nightmares. And so . . . plenty of
ConTEXt ahead.
Hans Hagen


