
12 MAPS 31 Maarten Sneep

Producing graphs with MetaPost
multiple aligned graphs and error
bars

Keywords
MetaPost, graphs, error-bars

Abstract
MetaPost is an interesting companion for generating figures for documents written in
TEX or one of its derivatives. This article focuses on generating graphs in MetaPost,
and more specifically on two problems one can encounter when creating graphs:
multi part graphs and error bars.

Introduction

In Maps 29 Karel Wesseling described how several MetaPost graphs can be aligned
relative to each other, when including them in a \startcombination[1*2] com-
mand in ConTEXt. Here I describe a different approach to the same problem: align-
ing multiple graphs in a single figure.

The method proposed in that article required a solid, near white background to
be printed behind the graphs. The lightness of this background ensured that it
appeared white when printed, but somehow it still feels as a ‘dirty’ trick. Having
the graph and the axes in a fixed location to the bounding box of the figure can
be highly desirable for some effects though. One such situation occurs when one
wants to align all graphs with the vertical axis on the left margin throughout the
document (so that the axis labels stick out in the left margin).

When that is not required, a different solution becomes possible. Note that I
use LaTEX instead of ConTEXt, but the same technique should work in other TEX and
MetaPost combinations.

Another issue that is often encountered in generating (scientific) graphs is the
inclusion of error bars in the graph. The second part of this note provides a possible
solution for that.

Multiple graphs in a single figure

This is the annotated code to produce the graph shown in figure 1. The code gen-
erates a graph with multiple panes, in a single figure. The alignment is not accom-
plished in TEX but in MetaPost. We use the graph module written by John Hobby.
This example uses LaTEX for its labels, and this temporary document requires some
preamble material. This is also where you change the typefaces should you want
to do so, and include other packages.

Since this example uses pdfLaTEX instead of TEX, the invocation of mpost is
slightly more elaborate:

mpost -tex=latex file.mp

Producing graphs with MetaPost NAJAAR 2004 13

1100

1150

1200

1250

1300

1350 a

1.4

1.6

1.8

2

2.2

2.4

2.6

1990 1992 1994 1996 1998 2000

b

Pe
ar

s
A

pp
le

s

Year

Figure 1. The sample figure with multiple graphs in a single figure. The MetaPost code
is shown in the first listing. Note that this not really is about Apples and Pears, the
data is just some goniometric functions with some added Gaussian noise.

mptopdf file.0
mv file-0.pdf file.pdf

This loads the graph package for MetaPost and sets up latex, so that it uses the
correct fonts – here we show how to use times, but in the figures themselves, the
Maps fonts have been used. After the fonts are changed, the numbers for the graph
package have to be initialised again, which is done by the init_numbers function.

input graph;

verbatimtex
\documentclass[10pt]{article}
\usepackage{amsmath}
\usepackage{txfonts}
\begin{document}
etex

init_numbers(btex$−$etex, btex1etex, btex${\times}10$etex,
btex${}^−$etex, btex2etex) ;

Start the figure itself. Some variables are declared here: a pair corner; to hold the
corner of the final image for placing the axis labels, a few numerics to hold the size
of the graphs, and an array picture thepart[]; to store the parts of the figure. In this
example there are only two parts, more parts are left as an exercise for the reader.

beginfig(0);
pair corner;

14 MAPS 31 Maarten Sneep

numeric width, height, gap; width := 90mm; height := 40mm; gap := 2mm;
picture thepart[];

Begin the first part of the figure, for the top of the final figure. A fairly simple graph,
all auto scaled and without horizontal markers as they will appear on the bottom
graph. More fancy examples for individual graphs can be found in the mpgraph
manual. The label for this part of the figure is drawn outside the graph routines,
so the physical units can be used for positioning the label in the top left corner of
the graph.

draw begingraph(width,height);
gdraw "Apples.dat";
autogrid(,itick.lft);

endgraph;

label.llft(btex a etex, (2mm, height−1mm));

This is the crucial part: here the current graph is captured into the array, and the
currentpicture is wiped to start with the other part of the graph.

thepart[1] := currentpicture;
currentpicture := nullpicture;

Here we start all over again, drawing the second graph, and storing it in the array.
The labels at the bottom are done manually to make sure the full year is used – and
not rounded to three digits, as MetaPost might do.

draw begingraph(width,height);
gdraw "Pears.dat";
autogrid(,itick.lft);
itick.bot(btex 1990 etex, 1990); itick.bot(btex 1992 etex, 1992);
itick.bot(btex 1994 etex, 1994); itick.bot(btex 1996 etex, 1996);
itick.bot(btex 1998 etex, 1998); itick.bot(btex 2000 etex, 2000);

endgraph;
label.llft(btex b etex, (2mm, height−1mm));

thepart[2] := currentpicture;
currentpicture := nullpicture;

Assemble the graph: draw both parts, with the required gap in between. In this case
the last wipe is not needed, as the bottom part will end up in the same location.
I would still advise to follow this method, as it avoids many bugs and frustration
when you decide later on to add parts.

draw thepart[1] shifted (0,height+gap);
draw thepart[2] shifted (0,0);

Figure out what the overall lower left corner of the current canvas is.

corner := llcorner currentpicture;

Producing graphs with MetaPost NAJAAR 2004 15

Draw the axis labels. This is not done using the standard MetaPost graph methods,
as they include the axis labels in determining the width of the graph. This has the
effect of drawing the label off centre. Since we already know the length of the axis,
determining the centre is easy. That leaves the offset, which can be determined
from the lower left corner of the assembled graph. Note that the labels for the
vertical axes are at height/2 and 3height/2 + gap.

The ‘Apples’ and ‘Pears’ are smashed, to make sure the baselines are at the same
distance from the axis. Yes, I’m aware that this can be done more easily in MetaFun,
but I’ve never managed to get it to work outside of ConTEXt.

label.lft(btex $\smash[b]{\text{Pears}}$ etex rotated 90,
(xpart corner, height/2));

label.lft(btex $\smash[b]{\text{Apples}}$ etex rotated 90,
(xpart corner, gap + 3∗height/2));

label.bot(btex Year etex,
(width/2, ypart corner));

endfig;

Close the LaTEX document used for typesetting the labels.

verbatimtex
\end{document}
etex
end

I’m sure there are a dozen more solutions, and one may be more suitable than the
other, depending on one’s needs. This one worked rather well for me.

Error bars in MetaPost graphs

This second part of this note shows how to add error bars to a graph. Many graphs
in scientific papers require the use of error indicators. This is the annotated code
to produce the graph shown in figure 2. Again, we use the graph module written
by John Hobby. Just like the previous example, this one uses LaTEX for its labels.

input graph;

verbatimtex
\documentclass[10pt]{article}
\usepackage{amsmath}
\usepackage{txfonts}
\begin{document}
etex

init_numbers(btex$−$etex, btex1etex, btex${\times}10$etex,
btex${}^−$etex, btex2etex) ;

Define a few new macros for producing the error bars themselves. There are three
versions: one with vertical error bars (errorbary), one with horizontal error bars
(errorbarx) and one with indicators on both directions (errorbarxy). All three work
in much the same fashion: define an empty path p;, and add a line from (x, y+∆y)
to (x, y − ∆y) to this path and draw it. Add the end caps, which are just pictures,
and a marker to the data point itself. At the end of the routine, the path is declared

16 MAPS 31 Maarten Sneep

2 4 6 8
0

5

10

15

Figure 2. A sample graph with error bars. The MetaPost code is shown in the second
listing.

again, which empties the path for the next point. The endcap pictures are rotated,
so only a horizontal line is needed in most cases.

The data files are just ASCII text files, with the columns x, y, and ∆y in the
version with vertical error indicators. The columns are white space separated. The
version with horizontal indicators, the columns are x, y, ∆x. The final version with
indicators on both axes, the order is a bit different: x, ∆x, y, and ∆y.

def errorbary(expr file,marker,endcap) =
path p;
gdata(file, s,
augment.p(scantokens(s1), scantokens(s2)−scantokens(s3));
augment.p(scantokens(s1), scantokens(s2)+scantokens(s3));
glabel(endcap, scantokens(s1), scantokens(s2)−scantokens(s3)) ;
glabel(endcap rotated 180, scantokens(s1), scantokens(s2)+scantokens(s3));
gdraw p;
path p;
glabel(marker, s1, s2) ;

)
enddef;

def errorbarx(expr file,marker,endcap) =
path p;
gdata(file, s,
augment.p(scantokens(s1)−scantokens(s3), scantokens(s2));
augment.p(scantokens(s1)+scantokens(s3), scantokens(s2));
glabel(endcap rotated 270, scantokens(s1)−scantokens(s3), scantokens(s2));
glabel(endcap rotated 90, scantokens(s1)+scantokens(s3), scantokens(s2));
gdraw p;
path p;
glabel(marker, s1, s2) ;

)
enddef;

Producing graphs with MetaPost NAJAAR 2004 17

def errorbarxy(expr file,marker,endcap) =
path p;
gdata(file, s,
augment.p(scantokens(s1)−scantokens(s2), scantokens(s3));
augment.p(scantokens(s1)+scantokens(s2), scantokens(s3));
glabel(endcap rotated 270, scantokens(s1)−scantokens(s2), scantokens(s3));
glabel(endcap rotated 90, scantokens(s1)+scantokens(s2), scantokens(s3));
gdraw p;
path p;
augment.p(scantokens(s1), scantokens(s3)−scantokens(s4));
augment.p(scantokens(s1), scantokens(s3)+scantokens(s4));
glabel(endcap, scantokens(s1), scantokens(s3)−scantokens(s4)) ;
glabel(endcap rotated 180, scantokens(s1), scantokens(s3)+scantokens(s4));
gdraw p;
path p;
glabel(marker, s1, s3) ;

)
enddef;

Here we build the graph. We declare some placeholders for the end caps and the
marker symbols.

beginfig(0);
numeric width, height;
width := 90mm; height := 70mm;
picture marker[], endcap[] ;
numeric Symbolsize; Symbolsize := 2mm;

Create the end caps. Two versions are shown here: a simple line, and a wedge like
shape.

draw ((−0.5,0) −− (0.5,0)) scaled Symbolsize ;
endcap[1] := currentpicture ;
currentpicture := nullpicture ;

draw ((−0.5,−0.2) −− origin −− (0.5,−0.2)) scaled Symbolsize ;
endcap[2] := currentpicture ;
currentpicture := nullpicture ;

Here we create three markers for the three different data sets: an open circle, a
closed circle and a diagonal cross.

fill fullcircle scaled Symbolsize withcolor white ;
draw fullcircle scaled Symbolsize ;
marker[1] := currentpicture ;
currentpicture := nullpicture;

fill fullcircle scaled Symbolsize ;
marker[2] := currentpicture ;
currentpicture := nullpicture;

draw ((−0.5,−0.5) −− (0.5,0.5)) scaled Symbolsize ;

18 MAPS 31 Maarten Sneep

draw ((0.5,−0.5) −− (−0.5,0.5)) scaled Symbolsize ;
marker[3] := currentpicture ;
currentpicture := nullpicture;

Finally: the graph itself. All three modes are shown, with different end caps and
markers.

draw begingraph(width,height);
errorbary("oranges.dat", marker[1], endcap[1])
errorbarx("oranges.dat", marker[3], nullpicture)
errorbarxy("oranges.dat", marker[2], endcap[2])

autogrid(itick.bot,itick.lft);
endgraph ;

endfig ;

Close the LaTEX document used for typesetting the labels.

verbatimtex
\end{document}
etex
end

(Meta) Post Script

In the article that started this all, Karel Wesseling complains about the manual
of the graph package. I can see his point, I’m not a fan of the documentation of
metapost in general. There are other manuals, including a nice one written by
André Heck: “Learning MetaPost by Doing”, a link is provided below. Another
manual that contains a lot of general MetaPost advice is the MetaFun manual –
although some parts are obviously beyond plain MetaPost.

http://remote.science.uva.nl/^heck/Courses/mptut.pdf

Maarten Sneep
Atoom & Laserfysica
Vrije Universiteit
Amsterdam
sneep@nat.vu.nl

