Aut Aplevich

Circuit_macros
An application of little languages

Keywords
Electric circuit diagrams, line drawings, LaTeX

Abstract
The evolution of the Circuit_macros package is described, with some of the
conventions for drawing circuit elements and some of the lessons learned.

Introduction

Adding diagrams and other artwork to TgX and LaTiX documents is a source of
guaranteed discussion among users of these tools. There is a large selection of
programs capable of creating artwork in .eps form and a somewhat smaller group
that invoke the TgX engine as part of the drawing process. The circuit_macros tools
are in the second group. This article briefly describes the macros provided in the
package, along with some decisions taken during their evolution and some lessons
learned.

In 1989 I needed to produce a few simple diagrams, including Figure 1, for a
research monograph [1] that I was producing on a basic LaTgX installation. From
the perspective of the year 2004 it is hard to remember that there were few graphic
tools readily available at that time. The picture environment mentioned in the LaTgX
manual [5] seemed adequate, but the coordinate calculations were tedious, and
I automated them by writing an interpreter. I called it dpic, since it implemented a
subset of the pic language [4]. The original pic language was developed at a time
when a typist would be given hand-written notes with a sketch or two and told to
put them “into the computer”, so simplicity was its primary feature, together with
moderate drawing power. The resulting language is very easy to learn and read.

O >
(Y1)———» —
_’-Q =@

D
—Z ()

Uk

©
-

Figure 1. An operational diagram produced by careful use of LaTEX picture objects and
the epic style.

NAJAAR 2004 19

20 MAPS 31

Aut Aplevich

I also needed to draw basic electric and electronic circuits, but found little sup-
port for including them in LaTgX documents. It was a simple step to supplement
the basic line drawing of the pic language with circuit-element macros defined in
the widely available m4 macro language. However, the LaTX picture objects pro-
duce only limited line slopes and lengths, so alternative processing is required.
One solution is the GNU pic processor gpic [6] that generates tpic \special com-
mands, but it was also easy to modify dpic to generate output in several formats,
of which the PSTricks [7] package seemed to offer the most power and flexibility
at the time, at least for producing Postscript files. The current Circuit macros dis-
tribution and the dpic interpreter are the result of those efforts, drawings I have
had to produce since, and suggestions received. The macro libraries, example files,
and user’s manual [2] total approximately 12 000 source lines. The overall philo-
sophy has been to combine the power of proven components implementing “little
languages”, as encouraged in the Unix computing environment. Thus the workflow
has a Unix flavour, but is readily performed on other operating systems, such as a
Windows machine with the Cygwin tools installed. A “make” facility, for example,
can automate the complete production of a book containing scores of diagrams.

An overview will be given of the macros, together with some of the pro-
cessing possibilities that the dpic interpreter offers. Element design is emphas-
ized, rather than the details of the pic [6] or m4 [3] languages. For more inform-
ation on the macros, the user’s manual [2], available in any CTAN repository in
graphics/Circuit_macros, can be consulted.

In the following, keep in mind the pic drawing elements: linear objects (line,
arrow, move, spline, arc), and planar objects (box, ellipse, circle). Planar blocks
containing arbitrary objects can be defined. The start, centre, and end of linear
objects and the compass corners of planar objects can be referenced. Strings to be
typeset in a later word-processor step are allowed. Variables beginning with lower-
case letters can be assigned values and used in computations. Any drawn element
can be given a name beginning with an upper-case letter. The scope of a variable
is the block that contains it, but positions can be referenced from outside a block.
Pic also has a selection of mathematical functions, as well as looping and other
facilities.

A definition in the m4 macro language is of the form define(‘name’,
replacement text), and the macro is invoked with comma-separated arguments as
name(arg 1, arg 2, ...). Strings are protected from expansion by enclosing them
in ¢, ’ quotes, and recursive macro expansion is allowed.

Workflow alternatives

The essentials of the process to be described are shown in Figure 2. The choice of
output formats of dpic is provided both for compatibility and necessity.

Dpic without options or with the -t option is for producing simple, portable dia-
grams. The Mfpic output is for compatibility, for creating fonts containing portable
diagrams, or as an intermediate step in producing pdf files. The MetaPost output
is provided for compatibility and because this is also a good route to producing pdf
files on many installations.

The xfig output of dpic allows the definition of detailed circuit elements in m4
and pic form, and their interactive placement using xfig. Xfig can output diagrams
in pic format, so an iterative design process is sometimes appropriate.

Some TX and Metafont programs have fixed-length storage arrays, which can be
over-filled by diagrams containing many drawn objects. The .eps format with psfrag
strings is an alternative but also occasionally exceeds program capacity. The raw
Postscript output of dpic removes any requirement for passing the drawing through
LaTgX, but the text labels are not then typeset. Very large or complex diagrams
can be produced by creating two versions, one containing only graphics converted

Circuit_macros

diagram source* jmacro libraries

NAJAAR 2004 21

gpic -t |- m4 = dpic
-e P -m -s -f -r -X
t.pic LaTeX| PSTricks mfpic| MetaPost Postscript Postscript Xfig
\special psfrag i
tex .tex .tex .tex -mp eps .eps g
. ‘ '
LaTEX LaTEX LaTEX LaTEX
. ; t
kel pict2e PSTricks Mfpic RS psfrag
v v
Metafont LaTEX
| —

Figure 2. The Circuit_macros workflow. The dpic options and filetypes produced are
shown. In some cases, TEX or PDFLatex can be substituted for LaTEX. Strings are not
typeset in the raw Postscript or xfig output of dpic.

to .eps form by dpic, and the other containing only labels at appropriate places,
overlaying the first diagram in the final document.

For producing Postscript, the PSTricks option has proven both flexible and reli-
able, and can be assumed by default in the following descriptions. It can be sup-
plemented by ps4pdf or sometimes the PDFtricks package.

What is a circuit?

Basic circuits contain two-terminal elements, but multiterminal elements are al-
lowed. In fact, a circuit diagram can be a rather general line diagram together
with typeset text. Color, elaborate fills, and visual transformations associated with
pictorial graphics are comparatively rare, however. Therefore, almost any line-
drawing tool can produce circuits. Regardless of language, effort is required to
design high-quality standard elements that are easy to use and modify.

No library of drawing objects can hope to satisfy the needs and taste of everyone,
and the potential number of circuit elements is huge. Therefore, the Circuit macros
manual encourages the user to modify and add to the published macros, and some
attention has been paid to ease of modification in their design. However, there is
always a compromise between macro generality and simplicity.

Two-terminal elements

In the Circuit _macros collection, two-terminal elements are drawn according to a
common convention. The first argument of each macro defines an invisible line
along which the element is drawn; thus, for example, inductor(up_ 0.5 from
A) draws an inductor 0.5 units up from predefined position A. All macro arguments
are optional, and when the first argument (called a linespec) is omitted, a line of
default length in the current drawing direction is assumed.

An invisible line that can be named is first drawn as specified by the linespec.
Then the visible components are added, an invisible block is placed over the element
body to facilitate later labeling, and another invisible line is finally drawn to allow
post-reference to the element. For example, the command L1: inductor(,W)
produces the inductor shown in Figure 3, the second argument specifying a “wide”
body shape with a default number of loops. The element (the initially drawn in-
visible line, in fact) has been named L1, so the positions L1.start, L1.center, and
L1.end can later be referenced.

22 MAPS 31

Aut Aplevich
- elen_
|l«——— dimen_ ﬁ
Ll.start Ll.center Ll.end

Figure 3. Inductor produced by L1:inductor(,W).

Figure 3 shows the length of the macro dimen_, which evaluates to the dpic
parameter linewid. Element bodies are drawn in units of dimen_, so changing its
definition or assigning a new value to linewid changes the size of elements. The
macro elen_ is the default element length and is initially set to dimen_*3/2.

Depending on the element, the arguments may be used to specify element type
and other variations. Figure 4 shows the diode variants, for example. In addition

to the radiation arrows shown, a variety of arrows and marks is available to signify
element variability.

diode 4@7 diode(,T,E) ~—Jg—— diode(,D)

diode(,Z,RE diode(,L X
iode() ——P—— diode(,L) —\N— diode(,LE)

——p»—— diode(,PR)

/;«

Figure 4. Variants of the macro diode (linespec,BID|ILILE[R] IP[R]|SITI|Z, [R] [E]).

diode(,S) —Ppl¢—— diode(,B)

Multiterminal elements

By convention, each multiterminal elements is enclosed in a block. Connection
nodes and important sub-elements are named. If a linespec is one of the arguments,
it defines the reference direction and length of the element but not its position, since
the enclosing block is positioned by default or by specifying the location of one of
its elements. Thus, for example, bi_tr with .B at Here draws a bipolar tran-
sistor in the current drawing direction, placed with internal location B (the base
connection) at the current drawing location Here, which is always defined. Mul-
titerminal elements are often asymmmetric with respect to the drawing direction
and typically contain an argument to orient them to the right or left. Thus, Figure 5
shows commands to orient a transistor to left and right, and the resulting diagram.

C C
B{ }B up_; bi_tr; bi_tr(,R) with .E at last [].E+(0.5,0)
E E

Figure 5. The macro bi_tr (linespec,L|R,P,E) contains internal locations E, B, and C.
The figure shows both left and right orientation of the transistor base with respect to
the upward drawing direction.

Circuit_macros NAJAAR 2004 23

The libraries

In addition to two-terminal elements, the circuit libraries currently contain defini-

tions for the following, with representative samples shown:
O operational amplifiers, delays, and integrators [D_
O potentiometers, -’\/{/\r
O grounding and protection symbols, @
O transformers, e
O audio components: speaker, bell, microphone, buzzer, earphone, IZD
O general n-ports, ::I:
O contacts and relays, E:j I"L'I
O bipolar and MOS devices, EE [
O scr devices, _H;
O functional and rectangular logic gates, and)D° 1T o
O flip-flops and multiplexors. T

The distribution contains examples of flowcharts, binary trees, signal-flow graphs,
parallel-line arrows, and integrated circuits. In total, there are approximately 600
macros, a minority of which are meant to be called internally by other macros.

Changing direction

Circuit elements all have a reference direction, and most have an orientation (left
or right) with respect to this direction. Most elements can be drawn up, down,
left, right or, if required, at any angle. Labels typically should not rotate with the
element.

Although pic provides several ways of placing an element, it does not provide
arbitrary rotation, which must be performed instead at the macro expansion stage.
A transformation matrix similar to the Postscript coordinate transformation matrix
is defined each time an element linespec or its default is executed, and the element
is rotated accordingly. The reference direction can also be set explicitly.

By convention, all macros are designed with respect to a reference direction
pointing right (or O degrees). Coordinates are specified as vec_(x,y) and rela-
tive coordinates as rvec_(x,y). These two macros expand to the required rotated
and translated coordinates.

Customizing elements

Recent versions of the libraries have attempted to simplify the customization of
defined elements. The diode macro shown in Figure 4 is an example. This macro
could simply test its arguments and invoke one of many special diode macros, but
this solution was proving cumbersome and hard to maintain. Instead, the diode
macro now draws the initial invisible line, sets some internal dimensions, and in-
vokes the internal macro m4gen_d (chars) that draws the details. Its argument is
a “DNA-like” character string. This string is tested for a given substring, and if
present, the substring is removed, the corresponding element part is drawn, and
the process is repeated for other substrings. Thus for example, the argument of
m4gen_d (LCFR) contains L to draw the left stem of the diode, C to draw the cath-
ode crossbar, F for the filled arrowhead, and R for the right stem. Custom elements
are then easy to define by omitting argument substrings or modifying the macros

24 MAPS 31

Aut Aplevich

to test for new substrings and draw the corresponding subcomponents.
Time will tell whether this DNA-like solution is flexible and robust. It provides
easy customization but requires the user to understand it.

Interaction with LaTgX and post-processors

Often it is necessary to know the dimensions of typeset text in a figure, but these
dimensions are unavailable until after LaTgX is run on the document containing the
diagram. This classic forward-referencing problem can be handled just as LaTgX
handles other references, by writing definitions to a file and processing twice.

The distribution includes a small style file, boxdims. sty, defining a LaTgX macro
\boxdims that inserts the dimensions of its second argument into the definition of
an m4 macro named by the first argument. Such definitions are written to the file
jobname .dim, where jobname is the main LaTiX file, or to an explicitly named file.
On the second pass, m4 reads in the .dim file and, voild, the dimensions of the
typeset text are known.

The pic language allows arbitrary strings to be inserted into its output. For ex-
ample, these strings can command PSTricks, MetaPost, or Postscript to displace, fill,
clip, or rotate objects, including their typeset labels.

Comments

The Circuit_macros library has evolved over a decade and a half. Circuits can be
(and are) produced in any of several excellent drawing languages now available,
although comments I have received testify to the ease of learning pic. Drawing
tools are only part of the issue, however; good design requires thought and work
no matter what mechanism places the lines on the document.

References

[1] J.D. Aplevich. Implicit Linear Systems. Springer Verlag, Heidelberg, 1991.
Lecture Notes in Control and Information Sciences, Vol. 152.

[2] J.D. Aplevich. M4 macros for electric circuit diagrams in LaTgX documents,
Circuit_macros user’s guide, 2004.

[3] B. W Kernighan and D. M. Richie. The M4 macro processor. Technical
report, Bell Laboratories, 1977.

[4] B.W Kernighan and D. M. Richie. PIC—A graphics language for typesetting,
user manual. Technical Report 116, AT&T Bell Laboratories, 1991.

[5] L. Lamport. LalgX, A Document Preparation System. Addison-Wesley,
Reading, Mass., 1986.

[6] E.S.Raymond. Making pictures with GNU PIC, 1995. In GNU groff source
distribution.

[7] T Van Zandt. PSTricks user’s guide, 1993.

Dwight Aplevich
University of Waterloo Waterloo Canada

