
Siep Kroonenberg NAJAAR 2004 67

Exact layout with LaTEX
Implementing a letterhead

Keywords
letterhead, picture environment, boxes, PostScript,
docstrip

Abstract
This article describes several techniques useful for
implementing a professionally-designed layout such as
a letterhead.

The Economics Department of Groningen University
recently got new logos and an updated house style,
including a new letter template.

The LaTEX implementation of the old version was
done by Erik Frambach. Although I didn’t have to
change the basic structure very much, it still involved
more than just changing some parameters. This article
highlights some of the tricks, both new and inherited,
that were used.

The page layout perspective
The previous time, the designer kept pointing out
how much simpler and more natural things were with
QuarkXPress, and he did have a point.

In case you don’t realize what you are missing: the

screenshot on this page shows how you can place text
in a page layout application1.

The dialog box contains entries X-Pos and Y-Pos for
exact page coordinates of the box on the left. This is
very different from TEX and wordprocessors, where po-
sitioning is usually relative to the text cursor, and po-
sitioning relative to the page requires frightening con-
tortions.

Grid typesetting
More advanced page layout applications support type-
setting on a grid of evenly spaced horizontal lines. If
things don’t fit within their allotted space then either
that fact is ignored or the text jumps to the next grid-
line. The Scribus screenshot illustrates the former:
the ‘18pt’ line only occupies the default 12-point line
height, and tangles with the line above.

Our letterhead also uses a 12-point vertical grid, al-
though the grid is enforced only for the letterhead it-
self; TEX and LaTEX haven’t been designed with grid
typesetting in mind, and I know of no simple, reliable
way to enforce grid typesetting in general with LaTEX.

Units
Most of the graphics industry works with ‘big points’,
of which there are exactly 72 to the inch. The spe-
cified line height was 12bp. It seemed best to lift all
fontsize definitions from size10.clo and modify them
for big points.

I found TeXCalc2, a utility from Taco Hoekwater for
unit conversions, very useful.

Below, I’ll mostly use big points for vertical meas-
urements.

Using the picture environment
If you need to place items at specified positions, then
the LaTEX picture environment comes to mind. This is
how you use it:

\unitlength=1bp
\begin{picture}(..,..)(..,..)
picture commands
\end{picture}

The first pair of numbers is the size of the picture, in
unit lengths; the second pair is optional and indicates

68 MAPS 31 Siep Kroonenberg

the coordinates of the lower left corner, which need
not be (0,0).

Actually, the size is not necessarily the real size; it
is the size that LaTEX is going to reserve for the pic-
ture. Therefore you can put in some extra whitespace
by telling LaTEX that the picture is larger than it really
is. You can also do the opposite: you can place picture
objects at coordinates far outside the declared picture
dimensions and LaTEX will typeset the rest of the page
as if those objects aren’t there.

There were two problems with the picture environ-
ment which had to be worked around:

2 The makebox command of the picture environment
doesn’t bother about baselines. In the picture below,
we would like the descender of ‘p’ to extend below the
baseline, but instead it sits on it:

\unitlength=1bp
\begin{picture}(12,15)(0,-5)

\put(0,0){\line(1,0){12}}
\put(0,0){\makebox(0,0)[bl]{p}}

\end{picture}

produces: p

2 A lot of syntax can’t be used inside the picture envir-
onment. As a workaround, you can prepare material
in advance.

Plain TEX boxes
LaTEX itself has various box commands, such as \mbox,
\parbox and the minipage environment. However,
working with boxes can become incredibly verbose
and roundabout if you insist on using the LaTEX box
commands. So here comes a quick introduction to
plain TEX boxes, at least of what I am going to use of
them3.

TEX uses box registers, which have to be allocated,
e.g.:

\newbox{\pbox}

You can fill and place this box:

\setbox\pbox=... % define box contents
\copy\pbox %place the box contents
\box\pbox % place and clear the box

There are hboxes, vboxes and vtops. They are differ-
ent in what you can put into them, not in how you can
use them. hboxes are like LaTEX mboxes, but you use
different syntax to fill them. \\ does nothing inside an
hbox. vboxes and vtops are different: when you start
filling such a box you are in internal vertical mode, and
\\ does work. I am not going into the intricacies of
modes in boxes; if you want to put anything complic-
ated inside, then the LaTEX alternatives may be more
appropriate.

Each box has a reference point, which is normally
on a baseline at the left edge. For an hbox there is
only one baseline. Vtop and vbox boxes can have more
baselines. The reference point for a vtop it is the top
baseline and for a vbox the bottom one.

From what we saw in the above example, for place-
ment purposes it seems smart to pretend that there is
nothing below the reference point. To this end, we use
the \smash macro, which pretends that depth is zero,
and width and height too.

The following example shows how this works out
inside a picture environment.

% first, turn off parindent
\newlength\parsave
\parsave=\parindent
\parindent=0bp

\setbox\pbox=\hbox{p\\q}%
\setbox\qbox=\vbox{p\\q}%
\setbox\rbox=\vtop{p\\q}%

% boxes ready, can turn parindent back on
\parindent=\parsave

\noindent
\unitlength=1bp
\begin{picture}(40,40)(0,-15)

\put(0,0){\line(1,0){40}}
\put(0,0){\makebox(0,0)[bl]%

{\smash{\box\pbox}}}
\put(20,0){\makebox(0,0)[bl]%

{\smash{\box\qbox}}}
\put(30,0){\makebox(0,0)[bl]%

{\smash{\box\rbox}}}
\end{picture}

gives you correct alignment with the baseline:

pq
p
q p

q

Since we can place objects freely anyway inside a
picture environment, the choice between \vtop and
\vbox is often a matter of taste. But if you do want a
text block to start at a given point and the number of
lines may vary, then a \vtop box is the way to go. The
relevant part of the classfile might look as follows:

\def\@toname{}
\def\toname#1{\def\@toname{#1}}

\long\def\@toaddress{}
\long\def\toaddress#1{%

\long\def\@toaddress{#1}}

Exact layout with LaTEX NAJAAR 2004 69

\def\@frominfo{%
This Isme \\
MyStreet 99 \\
9999 ZZ MyCity \\
Phone 0123456789}

\newbox\frombox
\newbox\logobox
\newbox\tobox
\def\makeletterhead{%

\setbox\frombox=\vtop{\@frominfo}%
\setbox\logobox=\hbox{%

\includegraphics[width=1in]{logo}}%
\setbox\tobox=\vtop{\@toname \\\@toaddress}%
\unitlength=1bp
\begin{picture}(300,126)

\put(280,192){\makebox(0,0)[bl]%
{\smash{\box\logobox}}}

\put(280,180){\makebox(0,0)[bl]%
{\smash{\box\frombox}}}

\put(0,180){\makebox(0,0)[bl]%
{\smash{\box\tobox}}}

\end{picture}}

You can use this classfile as follows:

\pdfoptionpdfminorversion=3
\documentclass{letterdemo}
\begin{document}
\toname{Some Body}
\toaddress{%

Business Deparment \\
Room 000 \\
HisStreet 111\\AA 0000 HisTown \\
Some Country}

\makeletterhead

MyCity, \today

Dear Some,

This is a sample letter. Hope you are well.

Regards,
\end{document}

For a full listing of the classfile, see the end of the art-
icle.

Printing a grid
In order to check placement visually, you can print a
grid as part of the page header; see Figure 1. The file
grid.eps is hand-written PostScript:

67

66

65

64

63

62

61

60

59

58

57

56

55

54

53

52

51

50

49

48

47

46

45

44

43

42

41

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

This Isme
MyStreet 99
9999 ZZ MyCity
Phone 0123456789

Some Body
Business Deparment
Room 000
HisStreet 111
AA 0000 HisTown
Some Country

MyCity, December 6, 2004

Dear Some,

This is a sample letter. Hope you are well.

Regards,

Figure 1. The letter printed with a grid

%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 0 0 360 806
<< /PageSize [360 806] >> setpagedevice
0.4 setlinewidth
/Courier findfont 8 scalefont setfont
1 12 793 {
newpath
dup 0 exch moveto
dup 360 exch lineto stroke
dup 18 exch moveto
dup 12 idiv 67 exch sub 2 string cvs show

} for

The nice thing of PostScript is that you can draw lines
simply with commands moveto, lineto and stroke,
using absolute page coordinates. This basic simplicity
gets somewhat obfuscated by PostScript’s lack of syn-
tactic niceties, necessitating some juggling with dup
and exch. So you may prefer to do the same with TEX
macros.

Ghostscript will convert this to grid.pdf with the
right boundingbox, thanks to the page definition on

70 MAPS 31 Siep Kroonenberg

the third line. Without this line, you need a script such
as epstopdf for conversion.

You can place it on the page as part of the page
header code:

\def\ps@debug{%
\def\@oddhead{%

\smash{\raisebox{-705bp}%
{\includegraphics{grid}}}}%

\let\@oddfoot\@empty}
\pagestyle{debug}

If you can’t sort out the exact value of the first raisebox
parameter then just use trial and error.

Removing debug code with docstrip
In this simplified example, there is only one piece of
code that needs removing. In more complex cases, you
can mark the debug code

%<*debug>
...
%</debug>

and use a docscript ‘batchfile’ myletter.ins to re-
move them:

\input docstrip
\generate{\file{myletter.cls}%

{\from{letterdemo.cls}{!debug}}}
\endbatchfile

Run this batchfile as follows

\latex myletter.ins

to get a version myletter.cls of your classfile
without debug code.

The full listing
\LoadClass[a4paper]{article}
\usepackage{graphicx}

% duplicate definition of normalsize from size10.clo, but
% use big points for normal line spacing
\renewcommand\normalsize{%

\@setfontsize\normalsize{10pt}{12bp}
\abovedisplayskip 10\p@ \@plus2\p@ \@minus5\p@
\abovedisplayshortskip \z@ \@plus3\p@
\belowdisplayshortskip 6\p@ \@plus3\p@ \@minus3\p@
\belowdisplayskip \abovedisplayskip
\let\@listi\@listI}

\normalsize

\textwidth=360bp

\parindent=0bp
\parskip=12bp

\pagestyle{empty}
%<*debug>
\def\ps@debug{%

\def\@oddhead{%
\smash{\raisebox{-705bp}{\includegraphics{grid}}}}%
\let\@oddfoot\@empty}

\pagestyle{debug}
%</debug>

\def\@toname{}
\def\toname#1{\def\@toname{#1}}

\long\def\@toaddress{}
\long\def\toaddress#1{\long\def\@toaddress{#1}}

\def\@frominfo{%
This Isme \\
MyStreet 99 \\
9999 ZZ MyCity \\
Phone 0123456789}

\newbox\frombox
\newbox\logobox
\newbox\tobox
\def\makeletterhead{%

\setbox\frombox=\vtop{\@frominfo}%
\setbox\logobox=\hbox{\includegraphics[width=1in]{logo}}%
\setbox\tobox=\vtop{\@toname \\\@toaddress}%
\unitlength=1bp
\begin{picture}(300,127)

\put(280,192){\makebox(0,0)[bl]{\smash{\box\logobox}}}
\put(280,180){\makebox(0,0)[bl]{\smash{\box\frombox}}}
\put(0,180){\makebox(0,0)[bl]{\smash{\box\tobox}}}

\end{picture}}

Notes
1. Scribus, to be precise, Linux’ answer to QuarkXPress and
InDesign. Url: http://ahnews.music.salford.ac.uk/
scribus/
2. Available from http://tex.aanhet.net/utils/. It is
written in Perl/Tk.
3. A more complete discussion can be found in Victor Eijk-
hout’s TEX by topic book, which can be downloaded for free
from http://www.eijkhout.net/tbt/

Siep Kroonenberg
siepo@cybercomm.nl

