
Eckhart W. Guthöhrlein NAJAAR 2004 77

Object-Oriented Graphics with
MetaObj

Abstract
MetaOBJ is a macro package for MetaPost [1], a programming language for graphics
producing PostScript output, based on the well-known MetaFont. MetaOBJ is
written and maintained by Denis B. Roegel. It has been released under the LPPL
(LaTEX Project Public License) and is available from CTAN.
The cool thing about MetaOBJ is that it provides very high-level object-oriented
macros which simplify the construction of complicated drawings by defining objects
of arbitrary complexity and combining them to larger structures. This is already
reflected in the name of the package: MetaOBJ is a shortcut for “MetaPost
Objects”. The cover picture of the MetaOBJ manual [2], reproduced in figure 1,
gives a first impression of the kind of graphics which can be produced.

Double box with green shadow

hexagon

a b

c

c

a

b

c

Figure 1 Title graphic of the MetaOBJ manual, taken from [2].

Introduction

It is not the aim of this paper to cover all possibilities and intricate details of
MetaOBJ. Although many examples and topics are borrowed from the excellent
user manual [2], the following cannot be and is not intended as a replacement. I
will rather try to portray MetaOBJ from my point of view – the point of view of a
user interested in getting qualitatively excellent graphics done relatively easily. So,
let me start by saying some words about my TEX-background.

I would characterize myself as an experienced, but not expert user of TEX. During
my studies, I used LaTEX for nearly all kinds of documents I had to produce. For

78 MAPS 31 Eckhart W. Guthöhrlein

graphics, I used either PSTRICKS or external software (which is of course annoying
because of difficulties concerning consistency and exactness). About three years
ago, I made first contact with ConTEXt and was immediately mesmerized by its
possibilities, the rapid development and future potential. And of course, I came to
know MetaPost this way. Since the few graphics I have to produce today happen
to be of a rather schematical and technical kind, there can presumably be no better
and more satisfactory way to create them than by using a graphic programming
language like MetaPost. Therefore, the system has become my favored choice.

When I first saw MetaOBJ, I started to use it because it provides features with
similar output to many PSTRICKS commands, works well with ConTEXt’s MetaPost
integration, and does not hamper direct PDF output. Anybody plunging deeper in-
to MetaOBJ will notice that this does not do full justice to its true strengths and
intentions, but, as stated above, in the same way my intention is to give an impres-
sion of what is available to the user easily, without focussing too much on object-
orientation, implementation or extensions.

After some small examples to quicken the reader’s appetite, I am going to show
how objects can be combined into more complex graphics like the MetaOBJ cover
graphic shown in figure 1 and how some PSTRICKS-like graphics can be produced. Fi-
nally, a custom class of objects will be defined to produce schematic representations
of certain molecules.

Example Graphics

Let us start right now with a first MetaOBJ graphic. The code is virtually self-
explanatory. But as simple as it is, figure 2 already shows a lot of MetaOBJ features:

Box

it!
newBox.box1(btex Box etex);
newCircle.circ(box1) "circmargin(2mm)",

"filled(true)", "fillcolor(.5white)";
newBox.box2(btex it! etex);
scaleObj(box2, 3/2);
slantObj(box2, -1/2);
box2.w - circ.e = (2cm, 4cm);
box1.c = origin;
drawObj(circ, box2);
drawdblarrow box1.e -- box2.s;

Figure 2 A first example.

2 Objects are created as instances of classes by newSomething constructors. In
the example, we have objects of classes Box and Circle.

2 Objects have names by which they can be accessed: box1, box2 and circ in
the example.

2 Most objects of the MetaOBJ standard library can be customized by the use
of options like filled or fillcolor.

2 Objects accept and store all kind transformations supported by MetaPost:
scaleObj, slantObj and so on with self-explanatory names.

2 Objects can contain pictures (and more, like paths and other variables, as we
will see later). Most importantly, they can contain other objects: box1 is a
subobject of circ.

2 Objects are floating, relative positioning to each other is possible: box2.w -
circ.e = (2cm, 4cm). Thus, objects can be only partly defined.

Object-Oriented Graphics with MetaObj NAJAAR 2004 79

2 Standard MetaOBJ objects provide a standard interface. They have a set of
points in the directions of the compass, as shown in figure 3. The interface
for accessing the points and setting the position of the object is compatible
to the the boxes.mp package by John D. Hobby.

nw n ne

e

sessw

w c
show_empty_boxes := true;
newEmptyBox.e(5cm, 3cm)

"framed(true)";
e.c = origin;
drawObj(e);

Figure 3 Points of the MetaOBJ standard interface.

2 Specifying one point of an object defines the position of all points of the
object (at least for the standard objects): box1.c = origin. As we will
see, objects store equations determining the relative positions of their points.

2 Once absolutely positioned, they can be drawn with a call to drawObj,
which internally calls the respective drawing function of the class, i. e.
drawCircle or drawBox.

2 Finally, the line drawdblarrow box1.e – box2.s shows that making an
object a subobject of another object does not hamper us from accessing it
directly. This is true for any depth of nesting and is an important advantage
compared to approaches which do not preserve the object structure, e. g. by
storing just pictures inside.

how nice!

Look:

√
♣

hownice!

Look:

√
♣

newDEllipse.ell(new_Box_(btex Look: etex)());
save t;
rotateObj(ell, 180);
scaleObj(ell, 2/3);
newPolygon.pol(btex \bf how nice! etex, 11)

"filled(true)", "fillcolor(.5red)",
"picturecolor(white)", "shadow(true)";

newCircle.root(btex $\sqrt\clubsuit$ etex);
slantObj(root, 1/2);
newTree.t(root)(pol, ell);
rebindVisibleObj(t);
t.c = origin;
drawObj(t);
duplicateObj(t2, t);
reflectObj(t2)(origin, (0,1));
draw t.se + (2mm, 0) -- t.ne + (2mm, 0)

dashed evenly;
t2.e = t.e + (4mm, 0);
drawObj(t2);

Figure 4 Another example graphic.

In addition to the above, the second example (figure 4) shows some more points
worth mentioning:

2 There are streamlined versions of the standard constructors, returning an
object of the respective type. They can be used to pass the new object to an-
other object immediately, like the Box in newDEllipse.ell(new_Box_(btex

80 MAPS 31 Eckhart W. Guthöhrlein

Look: etex)()), or to assign the object to a variable. Streamlined construc-
tors are distinguished from the normal ones by underscores as in new_Box
and have a slightly different syntax.

2 An in-depth, identical yet independent clone can be created by
duplicateObj.

2 Classes for regular arrangement of objects can be defined, such as the Tree
and Matrix classes of the standard library.

There are of course many more features which cannot all be commented here.
Two last examples in figure 5 show that it is also possible to define recursive objects.
VonKochFlake and RecursiveBox are part of the standard MetaOBJ library.

newVonKochFlake.flake(3);
scaleObj(flake,.45);
flake.c=origin;
drawObj(flake);

newRecursiveBox.rb(14)
"rotangle(7.5)";

randomizeRecursiveBox(rb);
scaleObj(rb, .2);
rb.c = origin;
drawObj(rb);

Figure 5 VonKochFlake and RecursiveBox

Actually, I have cheated a little bit, since the following code has also been used to
produce the colorful RecursiveBox.

def randomcolor =
(uniformdeviate 1, uniformdeviate 1, uniformdeviate 1)

enddef;

vardef randomizeRecursiveBox(suffix n) =
if known n.sub :

randomizeRecursiveBox(obj(n.sub));
fi;
ExecuteOptions(n)("fillcolor(randomcolor)");

enddef;

setObjectDefaultOption("RecursiveBox")("filled")(true);

Connections and Graphs

The previous examples have already shown many of the basic classes of the MetaOBJ
library, and how these can be combined to composite objects. A common need that
has not yet been addressed is how to draw connections between objects. And, what
about that promised PSTRICKS functionality? Indeed, the commands for connecting
objects in MetaOBJ are very similar to those from PSTRICKS. Figure 6 summarizes

Object-Oriented Graphics with MetaObj NAJAAR 2004 81

some of the possibilities. As you can see, the connections can operate on objects as
in ncline(A)(B) as well as on points, which means that you can write something
like nccurve(A)(origin).

A

B

A

B

A

B

ncline(A)(B);
ncline(A.e)(B.w)
"nodesep(5mm)";

ncline(A)(B) "arrows(-)",
"linestyle(dashed evenly)",
"doubleline(true)";

A

B

A

B

A

B

nccurve(A)(B) "angleA(-45)",
"angleB(0)";

ncarc(A)(B);
ncarc(B)(A);

ncbar(A)(B) "linecolor((1,0,1))",
"angleA(-90)";

A

B

A

B
A

B

ncbox(A)(B)
"nodesep(5mm)";

ncarcbox(A)(B) "nodesep(5mm)",
"linecolor(red)", "linewidth(.5mm)",
"linestyle(dashed evenly)", "doubleline(true)"; nczigzag(A)(B) "coilwidth(1mm)";

Figure 6 Some of the node connections defined by MetaOBJ. For a complete overview
of types and options, please refer to the manual.

Several options trigger the appearance of the connections. It should also be men-
tioned that the examples show only one type of connections: the immediate ones,
which are drawn instantly, meaning that the object positions have to be already de-
fined. MetaOBJ also provides deferred versions of all connections, which are mem-
orized with an object and are drawn when the object is drawn. The commands
are identical except for the object name as a suffix: ncline.A(A)(B) stores the
connection between objects A and B together with object A.

The MetaOBJ manual title graphic (see figure 1) uses nearly everything men-
tioned so far and a little bit more, so it may be a good time to reveal its source. The
code should be easily understandable by now, and hopefully, you will be delighted
to see how a relatively complicated graphic can be programmed in such an intuitive
and simple manner.

newBox.a("a");
newEllipse.b("b");
newEllipse.c("c") "filled(true)", "fillcolor(red)","picturecolor(green)",

"framecolor(blue)","framewidth(2pt)";
newTree.t(c)(a,b) "linecolor((1,1,0))";
newBox.aa(t) "filled(true)", "fillcolor((0,1,1))","rbox_radius(2mm)";
aa.c=origin;

82 MAPS 31 Eckhart W. Guthöhrlein

newHexagon.xa("hexagon") "fit(false)","filled(true)","fillcolor((1,0,1))";
newEllipse.xc("c") "filled(true)", "fillcolor(red)","picturecolor(green)",

"framecolor(blue)","framewidth(2pt)";
newTree.xt(xc)(xa,aa) "linecolor((1,1,0))";
newCircle.xaa(xt) "filled(true)", "fillcolor((.6,.8,.5))";
newDBox.db(btex Double box with green shadow etex)

"shadow(true)", "shadowcolor(green)",
"filled(true)","fillcolor(blue)","picturecolor((1,1,0))";

newTree.nt(xaa)(db);
drawObj(nt);
nccoil(xc)(db) "angleA(0)","angleB(180)",

"coilwidth(5mm)","linetension(0.8)","linecolor(red)",
"doubleline(true)","posB(e)";

duplicateObj(dt,aa);
reflectObj(dt,origin,up);
slantObj(dt,.5);
rotateObj(dt,30);
dt.c=nt.c-(6cm,-1cm);
drawObj(dt);
nczigzag(a)(treepos(obj(dt.sub))(1))

"angleA(-120)","coilwidth(7mm)","linecolor(.5green)","linearc(1mm)",
"border(2pt)";

Apart from trees, which have been used in the examples so far, matrices are another
way of arranging objects in a regular way provided by MetaOBJ (as by PSTRICKS).
For simplification of connections between tree nodes and matrix elements, there
are special connection commands which refer to the connected elements by their
coordinates in the container object. The example in figure 7 shows how this is done
for a matrix. In addition, you can see that labels can be added to connections (and
to all other objects) easily.

x0 x1

copy copy

↓ ↓

↓

copy

↓

y0

0 0

10 10

0 0

0

10

0

newCircle.xnull(btex x_0\strut etex);
newCircle.xeins(btex x_1\strut etex);
newCircle.ynull(btex y_0\strut etex);
for i=1 upto 4 :

newCircle.pfeil[i](btex \downarrow\strut etex);
newEllipse.copy[i](btex copy\strut etex);

endfor
newMatrix.mat(7,3)(

xnull,nb,xeins, copy1,nb,copy2, pfeil1,nb,pfeil2,
nb,pfeil3,nb, nb,copy3,nb, nb,pfeil4,nb,
nb,ynull,nb) "hsep(5mm)", "vsep(5mm)";

mcline.Obj(mat)(1,1,2,1) "name(a)";
ObjLabel.Obj(mat)(btex $\scriptscriptstyle0$ etex)

"labpathname(a)", "labdir(lft)";

% ... (other labels, not shown here)

mcline.Obj(mat)(6,2,7,2) "name(l)";
ObjLabel.Obj(mat)(btex $\scriptscriptstyle0$ etex)

"labpathname(l)", "labdir(lft)";
mat.c=origin;
drawObj(mat);

Figure 7 Example graph showing the use of matrices, matrix connections and
labels.

Object-Oriented Graphics with MetaObj NAJAAR 2004 83

Custom Objects

At some point, you will probably wish to create your own classes. In principle, all
you need to define for a Nice class is a constructor newNice, a drawing function
drawNice and a bounding path BpathNice. MetaOBJ helps you with many prede-
fined standard components and functions.

Before creating new objects, let us first look at a simple standard object, EmptyBox.
Here is the constructor:

vardef newEmptyBox@#(expr dx,dy) text options=
ExecuteOptions(@#)(options);
assignObj(@#,"EmptyBox");
StandardInterface;
ObjCode StandardEquations,

"@#ise-@#isw=(" & decimal dx & ",0)",
"@#ine-@#ise=(0," & decimal dy & ")";

enddef;

The constructor takes two dimensions as arguments – used as width and height
of the box – as well as a potentially empty list of options. These are processed by
ExecuteOptions. assignObj takes care of making the new object a member of the
correct class (and some more internal things). Then, StandardInterface declares
the standard points shown in figure 3 as well as, unmentioned before, a second set
of these points (ine, in, ine, and so on) for use from within the object (don’t bother
about the reasons for now). The equations determining the relations between the
object points are stored as strings using ObjCode, where StandardEquations is an
abbreviation for (PureStandardEquations & StandardInnerEquations),
which in turn are defined as

def PureStandardEquations=
("@#se-@#sw=@#ne-@#nw;" & % parallelogram equation
"xpart(@#se-@#ne)=0;" &
"ypart(@#se-@#sw)=0;" &
"@#n=.5[@#ne,@#nw];" & % North
"@#s=.5[@#se,@#sw];" & % South
"@#e=.5[@#ne,@#se];" & % East
"@#w=.5[@#nw,@#sw];" & % West
"@#c=.5[@#n,@#s];") % Center

enddef;

def StandardInnerEquations=
("@#ine=@#ne;@#inw=@#nw;@#isw=@#sw;@#ise=@#se;@#in=@#n;@#is=@#s;" &

"@#ie=@#e;@#iw=@#w;@#ic=@#c;")
enddef;

Drawing an EmptyBox is simple – it is shown only if enabled (and you won’t see
much unless it is filled or framed). In any case, paths stored with the object are
drawn:

def drawEmptyBox(suffix n)=
if show_empty_boxes:

drawFramedOrFilledObject_(n);
fi;
drawMemorizedPaths_(n);

enddef;

The bounding path (used e. g. for filling) is also very simple:

def BpathEmptyBox(suffix n)=StandardBpath(n) enddef;

an abbreviation for (n.inw–n.isw–n.ise–n.ine–cycle). And that’s it. Of course,
the definitions get more complicated for more sophisticated objects, but the princi-
ple remains the same.

84 MAPS 31 Eckhart W. Guthöhrlein

Now we have everything to go ahead and create our own classes. I once came
across the need to draw a schematic representation for a cyclic peptide. Maybe you
know that peptide molecules are polymers, composed of monomers called amino
acids. Anyway, I wanted to represent each amino acid as three circles (the main
chain atoms) connected by lines (covalent bonds), with a color box in the back-
ground, as shown in figure 8.

newAminoAcid.X;
X.c=origin;
drawObj(X);

Figure 8 Schematic representation of an amino acid.

Admittedly, the code is not very nice, and of course I would do it differently if I did
it again. But due to lack of time for a rewrite, here it is. After some setup:

% ad : atom circle diameter
% dx : x distance between two atom centers
% dy : y distance

numeric ad, dx, dy, hyp, offset;
ad = 5mm;
dx = 2ad;
dy = 1/2dx;
hyp = sqrt(dx**2+dy**2);

% ahlength : length of arrow heads
ahlength := 3/4ad;

% colors for atoms N, C, CA and background
color NColor, CColor, CAColor, AAColor;

NColor = (.38,.431,.769);
CAColor = .9white;
CColor = (.722,0,0);
AAColor = (.95,.95,.67);

we define the constructor for an AminoAcid:

vardef newAminoAcid@# =
assignObj(@#,"AminoAcid");
StandardInterface;
save N,CA,C; string N,CA,C;
N=newobjstring_; CA=newobjstring_; C=newobjstring_;
newCircle.obj(N)(nullpicture) "circmargin(.5ad)",

"filled(true)","fillcolor(NColor)";
newCircle.obj(CA)(nullpicture) "circmargin(.5ad)",

"filled(true)","fillcolor(CAColor)";
newCircle.obj(C)(nullpicture) "circmargin(.5ad)",

"filled(true)","fillcolor(CColor)";
SubObject(N,obj(N)); SubObject(CA,obj(CA)); SubObject(C,obj(C));
ObjCode StandardEquations,

"@#isw=obj(@#N).sw",
"@#ine=(xpart obj(@#C).e,ypart obj(@#CA).n)",
"obj(@#CA).c-obj(@#N).c=(dx,dy)",
"obj(@#C).c-obj(@#CA).c=(dx,-dy)";

StandardTies;
ncline.@#(obj(@#N))(obj(@#CA)) "arrows(-)";
ncline.@#(obj(@#CA))(obj(@#C)) "arrows(-)";

enddef;

As you can see, three Circles are created for the atoms and registered as subobjects
of the AminoAcid using the SubObject function. newobjstring_ provides a new

Object-Oriented Graphics with MetaObj NAJAAR 2004 85

unique name for each subobject. In addition to the StandardEquations, there are
some relations arranging the subobjects. StandardTies memorizes the connection
between the object and its subobjects. Finally, the lines representing the bonds are
added to the AminoAcid object using ncline.

def BpathAminoAcid(suffix n)=StandardBpath(n) enddef;

def drawAminoAcid(suffix n)=
fill BpathAminoAcid(n) withcolor AAColor;
drawObj(obj(n.N),obj(n.CA),obj(n.C));
drawMemorizedPaths_(n);

enddef;

The bounding path is not special at all. drawAminoAcid is straightforward, too:
the background is filled, and the subobjects as well as the stored paths are drawn.

Now, the amino acids had to be combined to a peptide, as shown in figure 9 for
a pentapeptide.

I

II

III

IV V

γ

β I newPentaPeptide.p;
lowerTurn.p(btex γ etex);
upperTurn.p(btex $\beta\,$I etex);
p.c=origin;
drawObj(p);

Figure 9 Schematic drawing of pentapeptide.

The PentaPeptide class was defined as follows.

vardef newPentaPeptide@#=
assignObj(@#,"PentaPeptide");
StandardInterface;
save I,II,III,IV,V; string I,II,III,IV,V;
forsuffixes s = I, II, III, IV, V :

s=newobjstring_;
newAminoAcid.obj(s);
SubObject(s,obj(s));

endfor
rotateObj(obj(IV),35); rotateObj(obj(V),-35); rotateObj(obj(I),270);
rotateObj(obj(II),180); rotateObj(obj(III),90);
ObjCode StandardEquations,

"xpart .5[obj(obj(@#III).C).c,obj(obj(@#I).N).c]=xpart obj(@#II).c",
"ypart obj(obj(@#III).C).c=ypart obj(obj(@#I).N).c",
"obj(obj(@#I).C).c-obj(obj(@#II).N).c=(dx,dy)",

"xpart .5[obj(@#V).c,obj(@#IV).c]=xpart obj(@#II).c",
"obj(obj(@#V).N).c-obj(obj(@#IV).C).c=(hyp,0)",

"ypart obj(obj(@#IV).N).c-ypart obj(obj(@#III).C).c="
&"sqrt(hyp**2-(xpart obj(obj(@#III).C).c-xpart obj(obj(@#IV).N).c)**2)",
"@#isw=(xpart obj(@#III).n,ypart obj(@#II).n)",

"@#ine=(xpart obj(@#I).n,ypart obj(@#IV).n)";

86 MAPS 31 Eckhart W. Guthöhrlein

StandardTies;
ncline.@#(obj(obj(@#I).C))(obj(obj(@#II).N)) "arrows(-)";
ncline.@#(obj(obj(@#II).C))(obj(obj(@#III).N)) "arrows(-)";

ncline.@#(obj(obj(@#III).C))(obj(obj(@#IV).N)) "arrows(-)";
ncline.@#(obj(obj(@#IV).C))(obj(obj(@#V).N)) "arrows(-)";
ncline.@#(obj(obj(@#V).C))(obj(obj(@#I).N)) "arrows(-)";
ObjLabel.obj(@#I)(btex I etex) "labpoint(n)", "labshift((.5ad,0))";
ObjLabel.obj(@#II)(btex II etex) "labpoint(n)", "labshift((0,-.5ad))";
ObjLabel.obj(@#III)(btex III etex) "labpoint(n)", "labshift((-.5ad,0))";
ObjLabel.obj(@#IV)(btex IV etex) "labpoint(n)", "labshift((-.5ad,.5ad))";
ObjLabel.obj(@#V)(btex V etex) "labpoint(n)", "labshift((.5ad,.5ad))";

enddef;

def drawPentaPeptide(suffix n)=
drawObj(obj(n.I),obj(n.II),obj(n.III),obj(n.IV),obj(n.V));
drawMemorizedPaths_(n);

enddef;

And finally two convenient abbreviations.

vardef lowerTurn@#(expr name)=
nccurve.@#(obj(obj(@#.III).N))(obj(obj(@#.I).C)) "name(turnlow)",

"angleA(30)", "angleB(-30)", "nodesepA(.5ad)", "nodesepB(.5ad)",
"linewidth(2pt)";

ObjLabel.@#(name) "labpathname(turnlow)", "labdir(bot)";
enddef;

vardef upperTurn@#(expr name)=
nccurve.@#(obj(obj(@#.I).N))(obj(obj(@#.III).C)) "name(turnup)",

"angleA(150)", "angleB(-150)", "nodesepA(.5ad)", "nodesepB(.5ad)",
"linewidth(2pt)";

ObjLabel.@#(name) "labpathname(turnup)", "labdir(bot)";
enddef;

Several wishes remain unaddressed so far, for example parameterization of labels.
But this is another story, which may be told another day.

Final Remarks

In the course of writing this article, I had to realize that it is not trivial to point
out the distinctive features of MetaOBJ without getting too lengthy or quoting the
whole manual. I hope that some of the Maps readers will feel like trying MetaOBJ
themselves after reading. In this case, I have achieved my aim. My thanks and all
credits for MetaOBJ go to Denis B. Roegel for creating this awesome package and
making it publicly available.

References

[1] J. D. Hobby, A User’s Manual for MetaPost, AT&T Bell Laboratories Com-
puting Science Technical Report 162, 1992.

[2] D. B. Roegel, The MetaOBJ tutorial and reference manual, 2002, http://
www.tug.org/tex-archive/graphics/metapost/contrib/macros/
metaobj/doc/momanual.pdf.

Eckhart W. Guthöhrlein
eckhart.guthoehrlein@uni-bielefeld.de

