
68 MAPS 34 Paweł Jackowski

Enjoy TEX pearls diving!
Pearls Session – BachoTEX 2006

The BachoTEX 2006 conference continued the Pearls of TEX Programming open
session introduced in 2005 during which volunteers present TEX-related tricks and
shorties.

What was requested :

short TEX, Metafont or MetaPost macro/macros (half A4 page or half a screen
at most),
the code should be generic; potentially understandable by plain-oriented
users,
results need not be useful or serious, but language-specific, tricky, preferably
non-obvious,
obscure oddities, weird TEX behaviour, dirty and risky tricks and traps are also
welcome,
the code should be explainable in a couple of minutes.

Already collected pearls can be found at http://www.gust.org.pl/pearls. All pearl-
divers and pearl-growers are kindly asked to send the pearl-candidates to pearls@
gust.org.pl, where Paweł Jackowski, our pearl-collector, is waiting impatiently. The
pearls market-place is active during the entire year, not just before the annual
BachoTEX Conference.

Note: The person submitting pearl proposals and/or participating pearls session
needs not necessarily be the inventor. Well known hits are also welcome, unless
already presented at one of our sessions.

If you yourself have something that fits the bill, please consider. If you know
somebody’s work that does, please let us know, we will contact the person. We
await your contributions even if you are unable to attend the conference. In such
a case you are free either to elect one of the participants to present your work or
“leave the proof to the gentle reader” (cf. e.g. http://www.aurora.edu/mathematics
/bhaskara.htm).

Is there a font? – Frank Mittelbach

The following code allows to check, if some font (tfm metric) is available.

\batchmode
\font\X=%
\errorstopmode
\ifx\X\nullfont

\else

<use the font>
\fi

Having ε-TEX we can switch between modes using handy \interactionmode
primitive.

Enjoy TEX pearls diving! NAJAAR 2006 69

\relax ex machina – Paweł Jackowski

Guess what is the meaning of macros in the following cases:

\edef\stra{\csname undefined\endcsname}
\edef\strb{\ifnum0=1\else\fi}
\edef\strc{\ifnum0=0\else\fi}
\edef\strd{\relax}

\meaning\stra % -> \undefined (plus side effect alike
% \let\undefined\relax)

\meaning\strb % -> (empty)
\meaning\strc % -> \relax
\meaning\strd % -> \relax

. . . and can you explain why \ifx\strc\strd is false, although both control
sequences have the same meaning?

\ifx\strc\strd true\else false\fi \message{?\strc?\strd?}

Since the behavior of is somewhat weird, I’ve learned to dislike the acting as the
universal string delimiter in cases such as

\def\gobbler#1\relax{}
\expandafter\gobbler\strc whatever \relax

\def\iterator#1{%
\ifx\relax#1\else\message{Can you see that #1?!}%
\expandafter\iterator\fi}

\expandafter \iterator \stra whatever \relax

Instead I propose

\def\endstr{\noexpand\endstr}

– no endless loop in spite of recursion (expands to itself)

– alike \relax, \endstr returns nothing (a sort of...) if typeset

– side effect is that \endstr stops assignments (as \relax do)

– \ifx\endstr\relax is false, so we can distinguish them

– but be careful: \if\endstr\relax is true

\relax ex machina II – Bernd Raichle

Question: Is the following TEX input correct, i.e, will TEX abort with an error
message or not?

\hbox \relax \relax {haha}
\hbox to \hsize \relax \relax {hehe}
\moveright .25\hsize \relax \relax \hbox{hihi}

70 MAPS 34 Paweł Jackowski

\toks0 = \relax \relax {hoho}
\toksdef\tlist = 2 \tlist = \relax \relax {huhu}

\setbox0 = \relax \hbox \relax {haha}

\global \relax \global \relax \long \relax \def\foo{oh!}

$$ \halign{\kern 20pt #\cr
\noalign \relax \relax {aha}\cr
oho\cr} \relax $$

$ \left\relax(1\mathord\relax {+} 2ˆ\relax{3} \right\relax)$

a\leaders \hbox \relax {\TeX} \relax \hskip .5\hsize b

bla \vadjust \relax \relax {foo} bla.

B\accent 127\relax \relax \relax \relax a%
\discretionary \relax {k-} \relax {k} \relax {ck}%
er.

Answer: Every token above is not needed. Nonetheless these tokens do not
cause any error, they are allowed and ignored at the shown places.

If you browse through the TEX source code file tex.web you will propably have
seen the web chunk named @<Get the next non-blank non-relax non-
call token@>. This web chunk is used in the procedure scan_left_brace,
in box_end for leaders, in scan_box, in scan_math, in scan_delimiter, in
prefixed_command, in assignments of \toks or \toksdef tokens after the
equal sign, in do_assignments. These procedures are used to scan the input for
some TEX primitive constructs. The effect is that spaces and \relax tokens can
be inserted at various places without harm because they are ignored.

Read only first line of an input file – Bernd Raichle

You have a TEX input file with more than one line:

test file 1 -- line 1 \count0=42
test file 1 -- line 2 \count0=31415
test file 1 -- line 3 \count0=1
... more lines ...

You can use the following trick, if you want to process only the first line of this
file:

\endinput \input testfile

This will produce the following output:

test file 1 -- line 1

Background: The primitive \endinput does not close the current file imme-
diately. It sets a TEX internal flag that indicates that if the next end-of-line is

Enjoy TEX pearls diving! NAJAAR 2006 71

processed the current file is closed. Thus all the tokens after the \endinput
until the end of the line are processed. If you start reading a new file after
\endinput this file will become the current file and it will be closed after the
first end of line is seen.

\immediate\openout0=\jobname.out
\immediate\write0{test file 1 -- line 1 \count0=42}
\immediate\write0{test file 1 -- line 2 \count0=31415}
\immediate\write0{test file 1 -- line 3 \count0=1}
\immediate\closeout0
...
\endinput\input zz.out (\the\count0) \end

As a result we get:

... test file 1 – line 1 (42)

\input file inside a macro definition – Bernd Raichle

If you have a file and want to read its contents in a macro definition, TEX does
not allow to simply use

\edef\foo{\input file }

because at the end of a file TEX checks if you are inside an incomplete \if
statement or \def macro definition and outputs the error message

! File ended while scanning text/definition of ...

Nonetheless there is a non-trivial way to avoid this error message:

\immediate\openout15=bt-pp-r4.tex
\immediate\write15{Another TeX}
\immediate\write15{Pearl\string\noexpand}
\immediate\closeout15

\edef\foo{Yet \input bt-pp-r4.tex !}
\message{\meaning\foo}

The primitive \noexpand does all the magic and you will get

macro:->Yet Another TeX Pearl!

without any error message.

Question: Why has \noexpand this effect?

If you are using ε-TEX, you can set its new special token list \everyeof to
\noexpand to achieve this effect without changing the file.

72 MAPS 34 Paweł Jackowski

4 endless lines – Taco Hoekwater

The end of a line in an \input-ed file normally creates a space in the output,
TEX appends a character with the current value of \endlinechar to each that
character is later converted to a space.

\immediate\write18
{echo -n Y >bla.tex}

X\input bla Z
% gives XY Z

If you do not want that space, for instance because you want to typeset the of
the file in-line, then there are a number of options. Two are usable writing, and
two others during type reading.

1. Writing a percent sign to the end of the line works

\immediate\write18
{echo -n Y\letterpercent >bla.tex}

X\input bla Z
% gives XYZ

2. Another option is ending the written line with \relax or a similar space-
gobbling command.

\immediate\write18
{echo -n Y\letterbackslash\letterbackslash relax >bla.tex}

X\input bla Z
% gives XY\relax Z

3. Temporarily setting \endlinechar to an impossible value like -1 is a possi-
bility

\immediate\write18
{echo -n Y >bla.tex}

X{\endlinechar=-1 \input bla }Z
% gives XYZ

4. Changing the catcode of the current \endlinechar to 9 (ignored) also works

\immediate\write18
{echo -n Y >bla.tex}

X{\catcode’\ˆˆM=9 \input bla }Z
% gives XYZ

Check if defined, no side effects – Bernd Raichle

LaTEX and other macro packages include a test if a control sequence is already
defined using
\csname...\endcsname. In principle the following definition is used:

\def\@ifundefined#1#2#3{%
\expandafter\ifx\csname #1\endcsname\relax#2\else#3\fi}

Enjoy TEX pearls diving! NAJAAR 2006 73

The use of \csname...\endcsname has the side effect that an undefined control
sequence will be defined as \relax and a simple test using \ifx<control
sequence>\undefined will fail.

To avoid this side effect, you can change the definition above introducing a group
“around” \csname:

\def\@ifundefined#1#2#3{%
\begingroup \expandafter\expandafter\expandafter \endgroup
\expandafter\ifx\csname #1\endcsname\relax#2\else#3\fi}

Note: This definition is not fully expandable, thus it will fail in expansion-only
contexts where the original definition will work.

If you are using ε-TEX, the new \ifcsname...\endcsname primitive can be used
instead.

During the presentation of this pearl at the BachoTeX 2006 pearls session, two
alternatives to this trick has been proposed. Worthy to note, that the macro
above use more \expandafter’s then actually needed. Once we say

\def\@ifundefined#1#2#3{%
\begingroup \expandafter
\ifx\csname#1\endcsname\relax\endgroup#2\else\endgroup#3\fi}

we get exactly the same effect in a bit more efficient way. But there is one more
sticky problem in all the constructions above; every control sequence defined as
\relax (and \relax itself) is treated as undefined. The solution seems to be

\def\@ifundefined#1#2#3{%
\begingroup \expandafter \endgroup \expandafter
\ifx\csname#1\endcsname\undefined#2\else#3\fi}

Here we expand \csname...\endcsname before \endgroup, but the condition
is fixed outside the group. Thus, \undefined instead of \relax can be used for
comparison.

Global assignments done locally – Bernd Raichle

Sometimes it is necessary to define a macro under a changed input regime, e.g,
using different category codes or another end line character. Usually this is done
inside a group to keep the changes locally and the macro or the token is defined
\global’ly.

In plain.tex you can find the following examples:

\catcode‘\@=11

1. Helper macro for \newif:

{\uccode‘1=‘i \uccode‘2=‘f
\uppercase{\gdef\if@12{}}} % ‘if’ is required

2. Definitions of \obeylines and \obeyspaces:

74 MAPS 34 Paweł Jackowski

{\catcode‘\ˆˆM=\active % these lines must end with %
\gdef\obeylines{\catcode‘\ˆˆM\active \letˆˆM\par}%
\global\letˆˆM\par} % this is in case ˆˆM appears in a \write

{\obeyspaces\global\let =\space}

3. Definition of \getf@ctor:

{\catcode‘p=12 \catcode‘t=12 \gdef\\#1pt{#1}} \let\getf@ctor=\\

4. Math definitions for primes and underscore:

% _ in math is either subscript or _
{\catcode‘\’=\active \gdef’{ˆ\bgroup\prim@s}}
{\catcode‘_=\active \global\let_=_}

By placing the begin and end of group tokens in a bit “unusual” way using a
temporary token register assignment or a macro definition, all these assignments
can be done locally:

1. Helper macro for \newif:

\begingroup \uccode‘1=‘i \uccode‘2=‘f
\uppercase{\endgroup\def\if@12{}}
% ‘i’+‘f’ as delimited arguments are required

2. Definitions of \obeylines and \obeyspaces:

\begingroup \endlinechar=-1 \catcode‘\ˆˆM=\active
\toks0={\endgroup

\def\obeylines{\catcode‘\ˆˆM\active \letˆˆM\par}%
\letˆˆM=\par % this is in case ˆˆM appears in a \write

}\the\toks0\relax
\begingroup \obeyspaces\def\x{\endgroup\let =\space}\x

3. Definition of \getf@ctor:

\begingroup \catcode‘P=12 \catcode‘T=12
% \lccode‘P=‘p \lccode‘T=‘t % is default setting
\lowercase{\endgroup\def\getf@ctor#1PT{#1}}
% ‘p’+‘t’ with catcode ‘other’

4. Math definitions for primes and underscore:

\begingroup \catcode‘\’=\active
\def\x{\endgroup\def’{ˆ\bgroup\prim@s}}\x

\begingroup \catcode‘_=\active
\def\x{\endgroup \let_=_}\x
% _ in math is either subscript or _

There is no advantage of a local definition for the shown plain.tex cases but if
you want to do similar definitions within a group, the shown technique can be
very helpful.

Enjoy TEX pearls diving! NAJAAR 2006 75

Note: If you want to define macros with arguments it is better to use a token reg-
ister assignment because you have to double the hash mark as macro parameter
character inside the macro definition text.

\lccode builds a hash table – Hans Hagen

Wybo Dekker (NTG) asked on the TEX-NL list how to construct a macro where
in the name a ‘1’ would be replaced by an ‘A’. This involves a conversion and TEX
does not ship with that many straightforward conversion features. His approach
involved the \char primitive but failed for the (maybe not that obvious) reason
that this primitive results in a character node and in expansions (as in an \edef)
remains as it is: a reference to a specific character (slot) in the font used at the
moment when it is applied.

\Name{test}{1}{Hello}
\Name{test}{2}{World!}
\testA\ \testB % this should give: Hello World!

A rather convenient way to remap characters is using the \lccode or \uccode
primitives in combination with \lowercase or \uppercase. The following
solution is a bit optimized in the sense that we expand the temporary variable
before we end the group. An alternative is to define \temp globally and to
omit the first \expandafter. Watch how we apply \lowercase to the whole
definition; using the \lowercase inside an \edef would not work. Instead of
using a loop an dsome calculations, we directly assign the codes. The 0/J case is
an exception anyway.

\long\def\Name#1#2#3%
{\bgroup
\lccode‘1=‘A \lccode‘6=‘F
\lccode‘2=‘B \lccode‘7=‘G
\lccode‘3=‘C \lccode‘8=‘H
\lccode‘4=‘D \lccode‘9=‘I
\lccode‘5=‘E \lccode‘0=‘J
\lowercase{\def\temp{#2}}%
\expandafter\egroup\expandafter\def\csname#1\temp\endcsname

{#3}}

\Name{test}{1}{Hello}
\Name{test}{2}{World!}
\testA\ \testB

Of course we don’t need such a remapping at all, which is demonstrated by the
alternative posted by Piet van Oostrum at TEX-NL:

\long\def\Name#1#2#3%
{\expandafter\def\csname #1\ifcase#2\relax\or A\or B\or C\or

D\or E\or F\or G\or H\or I\or J\or K\fi\endcsname{#3}}

A better variant is the following. This one takes care of the zero case:

\long\def\Name#1#2#3%
{\expandafter\def\csname #1\ifcase#2 J\or A\or B\or C\or D\or

E\or F\or G\or H\or I\else#2\fi\endcsname{#3}}

76 MAPS 34 Paweł Jackowski

The next one is even better because it also takes care of non digits:

\long\def\Name#1#2#3%
{\expandafter\def\csname#1\ifx#20J\else\ifcase0#2\or A\or B\or

C\or D\or E\or F\or G\or H\or I\else#2\fi\fi\endcsname{#3}}

Now we can say:

\Name{test}{0}{zero}
\Name{test}{1}{one}
\Name{test}{x}{xxx}
\testJ \testA \testx

Sigma tweak – Bogusław Jackowski & Piotr Strzelczyk

A sum operator that adjusts its width automatically to the widest subscript or
superscript – perhaps completely useless ;-)

Note: pdfTEX is required for clippling; you may wish to use other tools for this
purpose

defining the parts of the symbol:

\def\SIGMAleft{\copy0 }
\def\SIGMAright{\copy1 }
\def\SIGMAcenter{\copy2 }

preparing the parts of the symbol:

\setbox0\hbox{\tenex \char88\kern-.6em}
\setbox1\hbox{\kern-.8em\tenex \char88}
\setbox2\hbox{\hbox{\kern-.8em\tenex \char88\kern-.6em}}

clipping:

\pdfxform0 \setbox0\hbox{\pdfrefxform\pdflastxform}
\pdfxform1 \setbox1\hbox{\pdfrefxform\pdflastxform}
\pdfxform2 \setbox2\hbox{\pdfrefxform\pdflastxform}

assembling:

\def\SIGMA{%
\mathop{\hbox{\SIGMAleft \kern-.1em
\xleaders\SIGMAcenter\hfill
\kern-.1em\SIGMAright}}\limits}
% with \nolimits behaves ‘‘traditionally’’

usage:

$ \SIGMAˆ{\rm a}\quad
\SIGMAˆ{\rm sum}\quad
\SIGMAˆ{\rm operator}\quad
\SIGMAˆ{\rm that\ adjusts}\quad

Enjoy TEX pearls diving! NAJAAR 2006 77

\SIGMAˆ{\rm its\ width\ automatically}
_{\rm to\ the\ widest\ subscript\ or\ superscript}

$

As a result we get:

a∑∑ sum∑∑ operator∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑ that adjusts∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑ its width automatically∑∑
to the widest subscript or superscript

The final pearl is added by your Maps editors. While Hans and I were at TUG,
Paweł became the proud father of Kasia Jackowska. In Paweł’s words:

“7th November at 14:35pm our daughter was born. 3475g, 54cm and
needless to say, the most beautiful allovertheworld.”

Our congratulations to the proud parents and grandparents!

Deus ex machina – Paweł Jackowski

A \futurelet Gust member. An example of \expandafter.

