
78 MAPS 34 Siep Kroonenberg

Epspdf
Easy conversion between PostScript en Pdf
Abstract
This article introduces epspdf, a converter between
eps, PostScript and pdf which can be run either via a
graphical interface or from the command-line.

Keywords
Pdf, PostScript, eps, Ruby, Tk, cropping, page
selection, Ghostscript, pdftops

Introduction
When preparing a LaTEX document, it is often con-
venient to have graphics available both in eps- and in
pdf format. Epspdf1 improves on previous solutions
by having both a CLI or command-line interface and
a GUI, by converting both ways, using pdftops from
the xpdf suite2, and by various new options, which
were made possible by round-tripping between Post-
Script and pdf.

Sample applications
Case 1: Converting a Powerpoint slide to pdf and
eps. A.U. Thor writes a paper in LaTEX and creates his
illustrations with PowerPoint. He likes to turn these
into pdf graphics, so that he can process his paper with
pdflatex.

From PowerPoint, he ‘prints’ to an eps file (see the
appendix). The Windows Print dialog is rather insist-
ent on giving the eps file an extension ‘.prn’. He loads
the graphic in epspdftk, where the .prn file is accur-
ately identified as eps. He checks the ‘Compute tight
boundingbox’ option, selects pdf output format, and
clicks ‘Convert and save’. Some annoying black boxes
flit across his screen, but soon a message ‘Conversion
completed’ appears. He presses the ‘View’ button and
Adobe Reader displays what he hoped to see.

He might as well replace the eps with one with a
good boundingbox, so he converts the pdf back to eps.
It may save epspdf some work if he first unchecks the
boundingbox checkbox.

When viewing the resulting eps with GSview, there
is once more a lot of whitespace around the figure.
Hunting around in the GSview menus, he finds ‘EPS
Clip’ and ‘Show Bounding Box’ in the Options menu,
and with either option checked, he sees that all is well.

Case 2: Converting multiple slides from a Power-
Point presentation to pdf graphics. A.U. Thor, en-
couraged by his previous success, adds several new
graphics to his PowerPoint file. Since epspdftk can
handle multi-page documents, he prints the entire doc-
ument to a PostScript file, which he loads in epspdftk.

He notices that the box with file info doesn’t tell him
the number of pages. For general PostScript files, there
is no sure-fire quick way to get this information.

He checks ‘Convert all pages’ and sets Output format
to pdf. After conversion, the info box does give him the
number of pages.

He writes the first page to a pdf file with a tight
boundingbox, reloads the complete pdf, then writes
the second page to a pdf, and then wonders whether
the command-line might not be more convenient.

He reads the epspdf webpage and manual, browses

Figure 1. Main window of epspdftk (MS
Windows)



Epspdf NAJAAR 2006 79

Figure 2. Configuration screen (Mac OS X)

the epspdf directory and comes up with a batchfile
epspdf.bat containing the following line:

"C:\Program Files\epspdf\bin\ruby.exe"
"C:\Program Files\epspdf\app\epspdf.rb"
%1 %2 %3 %4 %5 %6 %7 %8 %9

(everything on one line) and types

epspdf -b -p 3 ppt_slides.pdf figure3.pdf

Then he outdoes himself in cleverness and does
the remainder with one command (everything on one
line):

for %f in (4 5 6) do
epspdf -b -p %f ppt_slides.pdf figure%f.pdf

Case 3: Creating cropped typeset samples. Mrs. TeX-
HeX writes a paper for the MAPS about her adventures
with LaTEX. She wants to display typeset examples
with her own fonts and formatting, not with those of
the MAPS. So she creates a LaTEX document containing
one sample per page, and makes sure, with a preamble
command \pagestyle{empty}, that each sample is
the only content on its page. She compiles the doc-
ument to a pdf and extracts the samples with a tight
boundingbox, in the same way as in the previous ex-
ample.

Case 4: Embedding fonts into an existing pdf. Ed
Itor is collecting papers in pdf format for a conference
proceedings. The printshop tells him that one of the
submitted pdf files doesn’t have all its fonts embedded,
which is a no-no, even though the font is just Courier
and Ed Itor doesn’t quite understand the fuss.

Luckily, when converting PostScript to pdf, Ghostscript
can embed standard PostScript fonts (Times etc.) even
if they are missing in the PostScript file. Ed Itor goes
to the Configure screen and verifies that ‘Intended use’
is set to to ‘prepress’. With this setting, converting to
PostScript and back to pdf does the trick.

Warning. It is quite possible that the original doc-
ument was created with slightly different versions of
the missing fonts than the ones included by Ghost-
script. Usually this will cause no problems, but one
might want to check the result anyway.

Some implementation details
The program is written in Ruby and Ruby/Tk, and uses
Ghostscript and pdftops from the xpdf suite for the real
work. The installation instructions in the download
and on the web page explain how to obtain these pro-
grams.

The program consists of several modules. The main
ones are a main library epspdf.rb which does double
duty as command-line program, and a Ruby/Tk GUI
main program. Conversions are organized as a series
of single-step conversion methods and an any-to-any
conversion method which strings together whatever
single-step methods are required to get from A to B.

I have included all conversions and options into the
program that easily fit into this scheme.

Configuration. Epspdf saves some conversion options
between sessions. Under Windows it uses the registry,
under Unix/Linux/Mac OS X a file .epspdfrc in the
user’s home directory. Besides some precooked op-
tions, advanced users can also enter custom options for
Ghostscript (GUI and CLI) and for pdftops (CLI only).

The Windows setup program. For Windows, epspdftk
is available as a Windows setup program. This includes
a Ruby/Tk subset, so there is no need for a full Ruby
and Tcl/Tk install. This Ruby/Tk subset is adapted
from one generated with RubyScript2Exe3.

But Windows users can also manually install from a
zipfile if they already have Ruby and Tcl/Tk.

Mac OS X. Under Mac OS X, epspdf mostly duplic-
ates functionality from the Preview application. How-
ever, when faced with problem files it is nice to have
an alternative converter. From the epspdf homepage
you can download a double-clickable and dockable
AppleScript applet for starting up epspdftk.

Appendix: exporting PostScript from Windows
programs
Using a printerdriver. Often, the only way to get EPS
or PostScript from a Windows program is by ‘printing’
to a PostScript file.



80 MAPS 34 Siep Kroonenberg

Figure 3. MS Publisher Imagesetter – printer settings

For this, you need to have a PostScript printer driver
installed. You can pick ‘FILE’ for printer port. A suit-
able driver which comes with Windows is Generic / MS
Publisher Imagesetter.

Pay attention to printer settings: in the Print dia-
log, click ‘Properties’, then ‘Advanced’ (on either tab).
In the ‘Advanced Document Settings’ tree, navigate to
first ‘Document Options’ then ‘PostScript Options’ (fig-
ure 3).

For ‘PostScript Output Option’ the default setting is
‘Optimize for speed’. Change that to ‘Optimize for Port-
ability’ or ‘Archive Format’, or, for single pages only,
‘Encapsulated PostScript’. These non-default options
presumably produce cleaner PostScript code, without
printer-specific hacks. Experiment with this and other
options if you run into problems (e.g. bad-looking
screen output, or part of a graphic getting cut off, or
conversion to bitmap).

What works best may depend on your Windows ver-
sion: under Windows 2000, Archive worked best for
me, but Taco Hoekwater warns me that this option was
unusable in older Windows versions.

Another setting here to pay attention to is ‘TrueType
Font Downloading Option’. Pick ‘Outline’, not ‘Auto-
matic’ or ‘Bitmap’.

Using a program. Other possibilities for generating
PostScript or pdf are the TpX and wmf2eps programs,
which both can read Windows wmf- and emf files and
also have options to write clipboard contents to an emf
file. Wmf2eps uses its own virtual PostScript printer
driver in the background. For faithful conversion, pick
wmf2eps; for subsequent editing, choose TpX. Both
programs are availbable from CTAN4.

URLs
1. http://tex.aanhet.net/epspdf/
2. http://www.foolabs.com/xpdf/
3. http://rubyforge.org/projects/
rubyscript2exe/
4. http://www.tug.org/ctan.html

Siep Kroonenberg
siepo at cybercomm dot nl


