
Taco Hoekwater VOORJAAR 2007 9

Integrating the pool file
Taco Hoekwater

Abstract
This short article discusses the method that is used in
MetaPost and luaTEX to integrate the string pool file
into the program.
This method allows the redistribution of a single updated
executable in place of both a program and a data file,
and this makes updating those programs easier on both
the user and the developer (me).

How a pool file is created
The readers who regularly update their (pdf)TEX or
MetaPost executables will probably be familiar with
the concept of pool files already, but I will explain the
mechanics in some detail.

Programs written in the WEB language normally do
not contain the strings inside the executable proper,
but in a separate file, called the ‘pool file’.

The most important reason for the existence of this
file is that back when Knuth was working on TEX and
Metafont, there was not yet a standardized way to
handle strings inside the Pascal language, so he had
to invent his own solution for printing messages and
warnings.

In order to illustrate what is in a pool file, I will
show you the required steps. First, here is a bit of
WEB source from MetaPost:

...
if minx_val(h)>maxx_val(h) then

print("0 0 0 0")
else begin

ps_pair_out(minx_val(h),miny_val(h));
ps_pair_out(maxx_val(h),maxy_val(h));
end;

print_nl("%%Creator: MetaPost ");
print(metapost_version);
print_nl("%%CreationDate: ");

this excerpt is from one of the PostScript output
routines. Here, there are still recognizable strings
that are used as function arguments (as well as the
symbolic value metapost_version, that is actually a
macro resolving to a string).

The processor tangle converts this input into a
proper Pascal source file. While doing so, it resolves
all of the many WEB macros that are present in the

code. metapost_version is one of those, but also
the constructs like minx_val(h) and maxx_val(h).
It also removes the underscores from function names,
because traditional Pascal compilers did not allow _ to
appear in identifiers.

What we are focusing on now, is that it also collects all
of the double--quoted strings in the input. It puts all
of the unique multi--character strings into an internal
array, and replaces the actual string in its output with
the index number it has given the string inside that
array. Of course, functions like print() are written
in such a way that they expect numbers as arguments
instead of string values.

The Pascal output file looks like this:

...
if mem[h+2].int>mem[h+4].int then print(1279)
else begin pspairout(mem[h+2].int,mem[h+3].int);
pspairout(mem[h+4].int,mem[h+5].int);end;
printnl(1281);print(256);printnl(1282);

As you can see, this file is clearly intended for a
compiler only. The complete lack of indentation makes
it near impossible for a human to read the generated
code, but of course a Pascal compiler has no problem
with it.

Nowadays, creating an executable program from the
WEB source file happens in a few extra steps, and one
of these steps is a conversion from Pascal to C source
code, by means of the web2c system. You may find the
output of web2c easier to read, because it re-indents
the code for human reading:

...
if ( mem [h + 2 ].cint > mem [h + 4 ].cint )

print ( 1279 ) ;
else {

pspairout(mem [h + 2].cint,mem [h + 3].cint);
pspairout(mem [h + 4].cint,mem [h + 5].cint);

}
printnl ( 1281 ) ;
print ( 256 ) ;
printnl ( 1282 ) ;



10 MAPS 35 Taco Hoekwater

So, where did the strings go? tangle put the multi--
character strings into a separate file, in this case named
mp.pool. Each line of that file contains two digits
indicating the length of the string, followed by the
string itself. Around line 1000, you will find this:

...
070 0 0 0
20%%HiResBoundingBox:
20%%Creator: MetaPost
16%%CreationDate:
...

07 is the length in bytes of ‘0 0 0 0’, 20 is the
length of ‘%%HiResBoundingBox: ’, including the
trailing space character, etcetera. Single character
strings are not written to the pool file, because there
is no need: all single--character strings simply have an
assumed index value matching their contents, and the
first string in the pool file receives index number 256.

The Pascal source code (or C source code) is now
converted into an executable, and you end up with
mpost.exe as well as mp.pool. The pool file is stored
somewhere in the TEXMF tree, and one of the very first
things that the --ini version of MetaPost does, is that
it reads mp.pool to initialize its internal arrays. When
the user executes the dump command, MetaPost writes
all of the string items to the .mem file, from where it
will be retrieved by production runs of MetaPost.

There is nothing wrong with this system as such. In
fact, it has worked well for nearly 30 years. But it does
make updating executables a bit harder than desired:
users not only have to copy the actual program to a
folder in the path, but they also have to figure out
where to place the new and improved mp.pool file.

As the maintainer of MetaPost and luaTEX, both
programs that are updated frequently, I was getting
annoyed with having to explain to almost each updat-
ing user what a pool file was, why it was important,
and where it should go in their TEXMF tree.

How a pool file disappears again

So I decided to do something about it, and that was
how the makecpool program was born. The concept
is very simple: it converts the mp.pool into a C source
file named loadpool.c. In fact, it is so obvious that
the idea has been proposed a number of times already,
for instance by Fabrice Popineau. But somehow it has
never made it to the core TEX distribution yet.

The structure of the created file is straightforward:
there is one big static array, and a fairly simple C
function that replaces the Pascal procedure for pool
file reading. In abbreviated form, loadpool.c looks
like this:

/* This file is auto-generated by makecpool */

#include <stdio.h>
#include "mpdir/mplib.h"

static char *poolfilearr[] = {
"1.000",

...

"0 0 0 0",
"%%HiResBoundingBox: ",
"%%Creator: MetaPost ",
"%%CreationDate: ",

...

NULL };

int loadpoolstrings (integer spare_size) {
char *s;
strnumber g=0;
int i=0,j=0;
while ((s = poolfilearr[j++])) {

int l = strlen (s);
i += l;
if (i>=spare_size) return 0;
while (l-- > 0) strpool[poolptr++] = *s++;
g = makestring();
strref[g]= 127;

}
return g;

}

In the stage where the various C files are compiled
into mpost.exe, this file is included in the list, and in
that way the strings will be embedded in the program.
At run-time, the C function is called to put the strings
for the C array into the internal storage area instead
of the original file reader.

The result: there is only one single executable file
that can be freely distributed to the users. The source
code for makecpool is part of the MetaPost and luaTEX
distribution package.

Taco Hoekwater
taco(a)elvenkind.com


