
R.F. Smith VOORJAAR 2008 39

Revision control for TEX documents
An overview
Abstract
Revision control is the management of multiple
versions of the same unit of information. Originating
in formalized processes in engineering, it was first
automated for managing source code for computer
software. Since TEX documents are like source code,
they lend themselves well to being managed by a
revision control system.
Systems like RCS and git are very suitable for single
writers working on their own projects.
More elaborate systems like CVS and subversion are
more suited for groups cooperating on projects. It
takes more effort to master them.
For most single users, git is the best alternative for
multi-file projects, followed by RCS for working on
single TEX files.

Keywords
revision control, RCS, CVS, subversion, git

Introduction
What is revision control
Revision control is keeping a history of the develop-
ment of a unit of information.

The first revision control systems were procedures
used by draftsmen to differentiate between several ver-
sions of drawings or blueprints. Engineering draw-
ings are customarily equipped with a table in the lower
right corner, stating the date of a revision, a revision
number and a description of the changes since the pre-
vious version. While these procedures are helpful, one
also had to make a copy of the master drawing before
it was changed to keep a full history of the evolution
of the drawing.

With the rise of software engineering, similar proce-
dures for tracking the development of computer source
code were automated. Programs were written to facil-
itate storing and retrieving different versions of (plain
text) source code files. Changes are usually saved as
differences (or diffs) with respect to the previous ver-
sion, to conserve space.

Since TEX files are plain text files, they lend them-
selves very well to being managed by revision control
systems.

Newer and more sophisticated revision control sys-
tems can also handle binary files, like PDF and JPG
files efficiently, making them suitable for complex TEX
projects.

Modern revision control systems enable several peo-
ple to work together on a project. This article however
will focus on a single person using revision control,
since that is envisioned as the most common scenario.

This article focuses on software that is freely avail-
able. There are several proprietary systems available
but they are usually quite expensive and therefore out
of reach of most single users. And as the freely avail-
able systems mentioned here are used to manage most
of the largest open-source software projects in exis-
tence, they are good enough.

Why use revision control
Revision control is primarily useful for maintaining
documents that are long-lived and frequently edited.
By using a revision control system one can:

2 Undo edits, especially deletions.
2 Track the history of a document; what has changed

and why was it changed. And for documents edited
by more than one person; who made the change.

2 Work on a single project from multiple machines
or with more persons.

2 Merge different versions of a document.

Most editors offer an undo option. But this is usually
limited to the edits done in the current session. With
a revision control system one can easily restore a doc-
ument or project to an earlier state.

And while it is possible to record the history of a
document e.g. in a comment at the start of a file, this
requires a lot of discipline and is easily forgotten. Be-
sides, sometimes the record is just not enough; you
may want to retrieve an earlier version of a document
or project.

A simple system
Probably the most simple system of revision control
is regularly copying a file you are working on un-
der a different name, e.g. with the date in the file-

40 MAPS 36 R.F. Smith

name. So if you are working on a file called foo.tex
you could store a copy of it at the end of the day as
foo-YYYYMMDD.tex. The date is embedded in the file-
name to make it unambiguous and unique. If your
project has lots of files, you can wrap them up in a
similarly named zip-file or tarball.

This system has the advantage of being simple, since
it does not rely on auxiliary programs. As with any
other revision control system, it does depend on oper-
ator discipline. It is usable on all operating systems.

However, for large projects this system can use an
awful lot of storage. One of the author’s projects is
around 24 MiB1 in size. Copying that every day would
waste a lot of disk space. And it does not facilitate sev-
eral persons working on a single document or project.
Nor does it make it easy to see what has changed be-
tween different versions.

RCS
This system was developed in the 1980s by Walter
Tichy at Purdue University, as a free and better replace-
ment for the proprietary SCCS.2 This set of programs
deals with single text files. It does not handle binary
files well, and it has no concept of a project. It is there-
fore primarily suited for projects with a limited number
of text files. RCS originated as a command-line set of
programs for UNIX. It has been ported to almost every
UNIX-like system available. A Windows version is also
available.3

In the following examples the command-line ver-
sions of the RCS tools will be used. These examples
are not meant to be a replacement for the manual
pages that come with the RCS suite, or for the plethora
of HOWTO documents available on the Internet.4,5 A
quick search with your favorite search engine for “RCS
HOWTO” will turn up a lot of links.

These examples are meant to give you a taste of how
a revision control system works. Other systems have
different but functionally similar commands.

After creating a new file, it has to be put under con-
trol of RCS. This is done with the ci command:
$ ci foo.tex
RCS/foo.tex,v <-- foo.tex
enter description, terminated with single ’.’
NOTE: This is NOT the log message!
>> Test file.
>> .
initial revision: 1.1
done

RCS now asks you to give a description of the file. After
giving that, the file is checked in.

A file called foo.tex,v has now been created that
contains the revision history of the file foo.tex. If

a subdirectory named RCS exists, the revision history
file will be put there. Otherwise it will be put in the
same directory as the original file. The initial check-in
is given the revision number 1.1.

To edit the file, it has to checked out and locked with
the co command:
$ co -l foo.tex
RCS/foo.tex,v --> foo.tex
revision 1.1 (locked)
done

RCS uses locking to make sure that only one person is
editing a file at a given time. This can prove awkward
in an environment where multiple persons are work-
ing on a project. You cannot check in your changes
while someone else has locked the file. And you might
undo his changes by checking in yours! Other systems
handle this better.

Having checked out the file, you can now use your
favorite editor to edit it. Some editors like emacs and
vim are aware of RCS files and have special menus or
commands that enable you to check files in and out
from the editor.

You can use the rcsdiff command to check what
has changed in the working file with respect to the last
checked in version:
$ rcsdiff -u foo.tex
==
RCS file: RCS/foo.tex,v
retrieving revision 1.1
diff -u -r1.1 foo.tex
--- foo.tex 2007/07/24 16:00:50 1.1
+++ foo.tex 2007/07/24 18:15:08
@@ -1,3 +1,7 @@
-bla
+
+foo
+
+bar
+

\bye

The -u option of the rcsdiff command selects the
so-called “unified diff” format. In the author’s opinion
this is the easiest to read, because it provides some con-
text to the changes. As you can see, RCS uses lines as
the smallest unit. So if one letter changes in a line, the
whole line is seen as changed. Lines that are removed
are preceded with a “-” in unified diff format, while
added lines are preceded with a “+”. The line-based
difference mechanism used by RCS is what makes it
difficult to use with binary files, since non-text files
usually do not have meaningful regular line breaks.

If you are finished editing for the day, or if you feel
that you have reached a stage in your document that

Revision control for TEX documents VOORJAAR 2008 41

you want to save, you check in the changes:
$ ci -u foo.tex
RCS/foo.tex,v <-- foo.tex
new revision: 1.2; previous revision: 1.1
enter log message, terminated with single ’.’
>> This is the log message.
>> .
done

Using the -u option of the ci command enables you
to go on editing directly. Without it you would have to
check out and lock the file again.

CVS
CVS6 was developed from RCS by Dick Grune in the
mid-1980s to handle projects consisting of multiple
files in directory trees instead of single files.7

Unlike RCS, it can use a client-server architecture
and it separates the place where the revision history is
stored (called the repository) from the working direc-
tory. The server (and the repository) do not have to
reside on the same machine as the client (and working
directory), making collaboration over a network eas-
ier.

The downside is that it is more complicated to work
with than RCS. CVS cannot attach a revision to moving
or renaming a file or directory. CVS uses a centralized
server if multiple persons are working together on a
project. For most single-user TEX projects, this will be
an overweight solution. The added features of CVS
come at the price of added complexity. And since it is
based on RCS, it still doesn’t handle binary files well.

Many open source software projects use CVS to
maintain their code.

Subversion
Advertised as “CVS done right”, subversion8 aims to be
a compelling replacement for CVS. This system solves
a lot of the problems of CVS; it handles binary files
and it can handle file and directory renames. But like
CVS it is probably overkill for a small project. And it
shares with CVS a steep learning curve, and the need
for separate repositories.

Git
Git9 was developed when the developers of the Linux
kernel lost access to the proprietary BitKeeper sys-
tem10. Development was started in April 2005 with
version 1.0 being released in December 2005. The
Linux kernel development has been managed with git
since June 2005.

Unlike RCS, git tracks a directory tree of files. It

also handles binary files. But like RCS, a git-managed
directory is completely self-contained. It does not re-
quire external repositories. It has few dependencies,
stores its data in compressed form and is quite fast. For
instance, the complete revision history of the 24 MiB
project mentioned before which spans two years and
99 revisions is only 12 MiB. It is also a distributed sys-
tem. Every directory (repository) is self-sufficient, but
synchronizing between them is easy. So it is both easy
to work with for a stand-alone user, and for a group of
people working on the same project.

Because of its lightweight nature, directory track-
ing and handling of binaries, the author now prefers it
over using RCS.

An example of working with git follows. In this arti-
cle it is impossible to showcase the complete function-
ality of git, since there are more than a hundred and
forty git commands. Manual pages for all the git com-
mands, as well as several tutorials and HOWTOs are
included in the git distribution6.

To create a git repository, change to the directory
whose contents you want to monitor, and type:
$ git-init-db
Initialized empty Git repository in .git/

This creates a .git subdirectory that git uses to store
all data.

The git status command shows the state of the
repository.
$ git status
On branch master
#
Initial commit
#
Untracked files:
(use "git add <file>..." to include
in what will be committed)
#
Makefile
rc.tex
nothing added to commit but untracked
files present (use "git add" to track)

Now one has to point out which files you want to mon-
itor:
$ git add Makefile rc.tex
$ git status
On branch master
#
Initial commit
#
Changes to be committed:
(use "git rm --cached <file>..." to unstage)
#
new file: Makefile

42 MAPS 36 R.F. Smith

new file: rc.tex
#

To save this initial state of the files, commit them:
git commit -a \
-m "Initial check-in of Makefile and rc.tex."
Created initial commit 9d3de62:
Initial check-in of Makefile and rc.tex.
2 files changed, 357 insertions, 0 deletions
create mode 100644 Makefile
create mode 100644 rc.tex

The -a flag indicates that all changes should be com-
mitted, while the -m flag is followed by the commit
message.

With the git log command one can list the com-
mits:
$ git log
commit 9d3de6265ad4fc0df2ca108b7918f6283dc18d59
Author: Roland Smith <rsmith@slackbox.xs4all.nl>
Date: Thu Jul 26 19:03:57 2007 +0200

Initial check-in of Makefile and rc.tex.

Every commit is identified by a SHA1 hash of its con-
tents. This is also used to check against data corrup-
tion. Next is the name and e-mail address of the person
who checked in this commit. The date of the commit
and the commit message are also listed.

If one compiles the TEX file, some extra files are cre-
ated that git doesn’t know about:
$ git status
On branch master
Changed but not updated:
#
modified: rc.tex
#
Untracked files:
#
rc.aux
rc.log
rc.pdf
no changes added to commit

Normally, we would like git to ignore those files. So we
add them to the text file .git/info/exclude, and git
will ignore them from now on.

The command git diff is used here to show the
changes in the monitored files since the last commit.
A small piece of the diff is shown below. It uses the
so-called unified diff output style.
$ git diff
diff --git a/rc.tex b/rc.tex
index e3eaefe..3aac05d 100644
--- a/rc.tex
+++ b/rc.tex

@@ -1,5 +1,5 @@
% -*- latex -*-

-% Time-stamp: <2007-07-26 19:01:53 rsmith>
+% Time-stamp: <2007-07-26 19:20:47 rsmith>

% Copyright © 2007 R.F. Smith <rsmith@xs4all.nl>
%
%%

@@ -292,10 +292,11 @@ to work with for a stand-al
the same project.

Because of its lightweight nature, directory
tracking and handling of binaries, the

-author now prefers it over using RCS.
+author now prefers it over using RCS. An
+example of working with git follows.
...

By supplying git diff with one or two commit-id’s,
you can also show the differences between the named
commit and the working files, or between two named
commits.

Conclusion
For documents that consist of a single or a small num-
ber of TEX files and other text files, RCS is probably the
best solution because of its simplicity.

For larger projects, git is a better option. Especially
if they contain binary files in e.g. PDF or JPG format that
need to be controlled. Or if you want to collaborate
with others on a project.

Systems like CVS or subversion will probably appeal
to larger organizations that require centralized devel-
opment.

Notes
1. http://en.wikipedia.org/wiki/MiB
2. http://en.wikipedia.org/wiki/Revision_
Control_System
3. http://www.codeproject.com/tools/cs-rcs.asp
4. http://www.madboa.com/geek/rcs/
5. http://www.athabascau.ca/html/depts/
compserv/webunit/HOWTO/rcs.htm
6. http://www.nongnu.org/cvs/
7. http://en.wikipedia.org/wiki/Concurrent_
Versions_System
8. http://subversion.tigris.org/
9. http://git.or.cz/
10. http://en.wikipedia.org/wiki/Git_(software)

Roland Smith
rsmith@xs4all.nl

