
Hans Hagen VOORJAAR 2008 43

The luafication of TEX and ConTEXt

Introduction
Here I will present the current stage of LuaTEX around
beta stage 2, and discuss the impact so far on ConTEXt
MkIV that we use as our testbed. I’m writing this
at the end of February 2008 as part of the series of
regular updates on LuaTEX. As such, this report is part
of our more or less standard test document (mk.tex).
More technical details can be found in the reference
manual that comes with LuaTEX. More information on
MkIV is available in the ConTEXt mailing lists, Wiki,
and mk.pdf.

For those who never heard of LuaTEX: this is a new
variant of TEX where several long pending wishes are
fulfilled:

combine the best of all TEX engines
add scripting capabilities
open up the internals to the scripting engine
enhance font support to OpenType
move on to Unicode
integrate MetaPost

There are a few more wishes, like converting the code
base to c but these are long term goals.

The project started a few years ago and is conducted
by Taco Hoekwater (Pascal and c coding, code base
management, reference manual), Hartmut Henkel
(pdf backend, experimental features) and Hans Hagen
(general overview, Lua and TEX coding, website). The
code development got a boost by a grant of the Oriental
TEX project (project lead: Idris Samawi Hamid) and
funding via the tug. The related MPlib project by the
same team is also sponsored by several user groups.
The very much needed OpenType fonts are also a
user group funded effort: the Latin Modern and TEX
Gyre projects (project leads: Jerzy Ludwichowski,
Volker RW Schaa and Hans Hagen), with development
(the real work) by: Bogusław Jackowski and Janusz
Nowacki.

One of our leading principles is that we focus on
opening up. This means that we don’t implement
solutions (which also saves us many unpleasant and
everlasting discussions). Implementing solutions is up
to the user, or more precisely: the macro package
writer, and since there are many solutions possible,
each can do it his or her way. In that sense we follow

the footsteps of Don Knuth: we make an extensible
tool, you are free to like it or not, you can take it
and extend it where needed, and there is no need to
bother us (unless of course you find bugs or weird side
effects). So far this has worked out quite well and
we’re confident that we can keep our schedule.

We do our tests of a variant of ConTEXt tagged MkIV,
especially meant for LuaTEX, but LuaTEX itself is in no
way limited to or tuned for ConTEXt. Large chunks of
the code written for MkIV are rather generic and may
eventually be packaged as a base system (especially
font handling) so that one can use LuaTEX in rather
plain mode. To a large extent MkIV will be functionally
compatible with MkII, the version meant for traditional
TEX, although it knows how to profit from X ETEX. Of
course the expectation is that certain things can be
done better in MkIV than in MkII.

Status
By the end of 2007 the second major beta release of
LuaTEX was published. In the first quarter of 2008 Taco
would concentrate on MPlib, Hartmut would come up
with the first version of the image library while I could
continue working on MkIV and start using LuaTEX in
real projects. Of course there is some risk involved in
that, but since we have a rather close loop for critical
bug fixes, and because I know how to avoid some dark
corners, the risk was worth taking.

What did we accomplish so far? I can best describe
this in relation to how ConTEXt MkIV evolved and will
evolve. Before we do this, it makes sense to spend
some words on why we started working on MkIV in
the first place.

When the LuaTEX project started, ConTEXt was
about 10 years in the field. I can safely say that we
were still surprised by the fact that what at first sight
seems unsolvable in TEX somehow could always be
dealt with. However, some of the solutions were rather
tricky. The code evolved towards a more or less stable
state, but sometimes depended on controlled process-
ing. Take for instance backgrounds that can span pages
and columns, can be nested and can have arbitrary
shapes. This feature has been present in ConTEXt for
quite a while, but it involves an interplay between TEX
and MetaPost. It depends on information collected in
a previous run as well as processing of graphics.



44 MAPS 36 Hans Hagen

This means that by now ConTEXt is not just a bunch
of TEX macros, but also closely related to MetaPost.
It also means that processing itself is by now rather
controlled by a wrapper, in the case of MkII called
TEXexec. It may sound complicated, but the fact that
we have implemented workflows that run unattended
for many years and involve pretty complex layouts and
graphic manipulations demonstrates that in practice
it’s not as bad as it may sound.

With the arrival of LuaTEX we not only have a
rigourously updated TEX engine, but also get MetaPost
integrated. Even better, the scripting language Lua
is not only used for opening up TEX, but is also used
for all kind of management tasks. As a result, the
development of MkIV not only concerns rewriting
whole chunks of ConTEXt, but also results in a set of
new utilities and a rewrite of existing ones. Since
dealing with MkIV will demand some changes in the
way users deal with ConTEXt I will discuss some of
them first. It also demonstrates that LuaTEX is more
than just TEX.

Utilities
There are two main scripts: luatools and mtxrun.
The first one started as a replacement for kpsewhich
but evolved into a base tool for generating (tds) file
databases and generating formats. In MkIV we replace
the regular file searching, and therefore we use a
different database model. That’s the easy part. More
tricky is that we need to bootstrap MkIV into this
alternative mode and when doing so we don’t want
to use the kpse library because that would trigger
loading of its databases. To discuss the gory details
here might cause users to refrain from using LuaTEX
so we stick to a general description.

When generating a format, we also generate a
bootstrap Lua file. This file is compiled to bytecode
and is put alongside the format file. The libraries
of this bootstrap file are also embedded in the for-
mat.
When we process a document, we instruct LuaTEX
to load this bootstrap file before loading the for-
mat. After the format is loaded, we re-initialize
the embedded libraries. This is needed because
at that point more information may be available
than at loading time. For instance, some function-
ality is available only after the format is loaded and
LuaTEX enters the TEX state.
File databases, formats, bootstrap files, and run-
time-generated cached data is kept in a tds tree
specific cache directory. For instance, OpenType
font tables are stored on disk so that next time
loading them is faster.

Starting LuaTEX and MkIV is done by luatools. This
tool is generic enough to handle other formats as
well, like mptopdf or Plain. When you run this script
without argument, you will see:

version 1.1.1 - 2006+ - PRAGMA ADE / CONTEXT

--generate generate file database
--variables show configuration variables
--expansions show expanded variables
--configurations show configuration order
--expand-braces expand complex variable
--expand-path expand variable (resolve

paths)
--expand-var expand variable (resolve

references)
--show-path show path expansion of ...
--var-value report value of variable
--find-file report file location
--find-path report path of file
--make or --ini make luatex format
--run or --fmt= run luatex format
--luafile=str lua inifile (default is

<progname>.lua)
--lualibs=list libraries to assemble

(optional)
--compile assemble and compile lua

inifile
--verbose give a bit more info
--minimize optimize lists for format
--all show all found files
--sort sort cached data
--engine=str target engine
--progname=str format or backend
--pattern=str filter variables
--lsr use lsr and cnf directly

For the Lua based file searching, luatools can be seen
as a replacement for mktexlsr and kpsewhich and as
such it also recognizes some of the kpsewhich flags.
The script is self contained in the sense that all needed
libraries are embedded. As a result no library paths
need to be set and packaged. Of course the script has
to be run using LuaTEX itself. The following commands
generate the file databases, generate a ConTEXt MkIV
format, and process a file:

luatools --generate
luatools --make --compile cont-en
luatools --fmt=cont-en somefile.tex

There is no need to install Lua in order to run this
script. This is because LuaTEX can act as such with
the advantage that the built-in libraries are available



The luafication of TEX and ConTEXt VOORJAAR 2008 45

version 1.0.2 - 2007+ - PRAGMA ADE / CONTEXT

--script run an mtx script
--execute run a script or program
--resolve resolve prefixed arguments
--ctxlua run internally (using preloaded libs)
--locate locate given filename

--autotree use texmf tree cf.\ environment settings
--tree=pathtotree use given texmf tree (def: ’setuptex.tmf’)
--environment=name use given (tmf) environment file
--path=runpath go to given path before execution
--ifchanged=filename only execute when given file has changed
--iftouched=old,new only execute when given file has changed

--make create stubs for (context related) scripts
--remove remove stubs (context related) scripts
--stubpath=binpath paths where stubs wil be written
--windows create windows (mswin) stubs
--unix create unix (linux) stubs

--verbose give a bit more info
--engine=str target engine
--progname=str format or backend

--edit launch editor with found file
--launch (--all) launch files (assume os support)

--intern run script using built-in libraries

Figure 1. mtxrun help information

too, for instance the Lua file system lfs, the zip file
manager zip, the Unicode libary unicode, md5, and
of course some of our own.

luatex a Lua--enhanced TEX engine
texlua a Lua engine enhanced with some libraries
texluac a Lua bytecode compiler enhanced with

some libraries

In principle luatex can perform all tasks but because
we need to be downward compatible with respect
to the command line and because we want Lua
compatible variants, you can copy or symlink the two
extra variants to the main binary.

The second script, mtxrun, can be seen as a
replacement for the Ruby script texmfstart, a utility
whose main task is to launch scripts (or documents
or whatever) in a tds tree. The mtxrun script makes
it possible to get away from installing Ruby and
as a result a regular TEX installation can be made

independent of scripting tools.
The help information is shown in figure 1. It

gives an impression of what the script does: running
other scripts, either within a certain tds tree or not,
and either conditionally or not. Users of ConTEXt
will probably recognize most of the flags. As with
texmfstart, arguments with prefixes like file: will be
resolved before being passed to the child process.

The first option, --script is the most important
one and is used like:

mtxrun --script fonts --reload
mtxrun --script fonts --pattern=lm

In MkIV you can access fonts by filename or by font
name, and because we provide several names per font
you can use this command to see what is possible.
Patterns can be Lua expressions, as demonstrated
in figure 2.



46 MAPS 36 Hans Hagen

mtxrun --script font --list --pattern=lmtype.*regular

lmtypewriter10-capsregular LMTypewriter10-CapsRegular lmtypewriter10-capsregular.otf
lmtypewriter10-regular LMTypewriter10-Regular lmtypewriter10-regular.otf
lmtypewriter12-regular LMTypewriter12-Regular lmtypewriter12-regular.otf
lmtypewriter8-regular LMTypewriter8-Regular lmtypewriter8-regular.otf
lmtypewriter9-regular LMTypewriter9-Regular lmtypewriter9-regular.otf
lmtypewritervarwd10-regular LMTypewriterVarWd10-Regular lmtypewritervarwd10-regular.otf

Figure 2. Example of a mtxrun --script font run.

A simple

mtxrun --script fonts

gives:

version 1.0.2 - 2007+ - PRAGMA ADE / CONTEXT
| font tools

--reload generate new font database
--list list installed fonts
--save save open type font in raw table

--pattern=str filter files
--all provide alternatives

In MkIV font names can be prefixed by file: or
name: and when they are resolved, several attempts
are made, for instance non-characters are ignored. The
--all flag shows more variants.

Another example is:

mtxrun --script context --ctx=somesetup
somefile.tex

Again, users of TEXexec may recognize part of this and
indeed this is its replacement. Instead of TEXexec we
use a script named mtx-context.lua. Currently we
have the following scripts and more will follow:

The babel script is made in cooperation with
Thomas Schmitz and can be used to convert babelized
Greek files into proper utf. More of such conversions
may follow. With cache you can inspect the content
of the MkIV cache and do some cleanup. The chars
script is used to construct some tables that we need in
the process of development. As its name says, check
is a script that does some checks, and in particular it
tries to figure out if TEX files are correct. The already
mentioned context script is the MkIV replacement of
TEXexec, and takes care of multiple runs, preloading
project specific files, etc. The convert script will
replace the Ruby script pstopdf.

A rather important script is the already mentioned
fonts. Use this one for generating font name
databases (which then permits a more liberal access
to fonts) or identifying installed fonts. The unzip
script indeed unzips archives. The update script is
still somewhat experimental and is one of the building
blocks of the ConTEXt minimal installer system by
Mojca Miklavec and Arthur Reutenauer. This update
script synchronizes a local tree with a repository and
keeps an installation as small as possible, which for
instance means: no OpenType fonts for pdfTEX, and
no redundant Type1 fonts for LuaTEX and X ETEX.

The (for the moment) last two scripts are watch
and web. We use them in (either automated or
not) remote publishing workflows. They evolved out
of the eXaMpLe framework which is currently being
reimplemented in Lua.

As you can see, the LuaTEX project and its ConTEXt
companion MkIV project not only deal with TEX itself
but also facilitates managing the workflows. And the
next list is just a start.

context controls processing of files by MkIV
babel conversion tools for LaTEX files
cache utilities for managing the cache
chars utilities used for MkIV development
check TEX syntax checker
convert helper for some basic graphic conversion
fonts utilities for managing font databases
update tool for installing minimal ConTEXt trees
watch hot folder processing tool
web utilities related to automate workflows

There will be more scripts. These scripts are normally
rather small because they hook into mtxrun which
provides the libraries. Of course existing tools remain
part of the toolkit. Take for instance ctxtools, a
Ruby script that converts font encoded pattern files
to generic utf encoded files.

Those who have followed the development of
ConTEXt will notice that we moved from utilities
written in Modula to tools written in Perl. These were



The luafication of TEX and ConTEXt VOORJAAR 2008 47

later replaced by Ruby scripts and eventually most of
them will be rewritten in Lua.

Macros
I will not repeat what is said already in the MkIV
related documents, but stick to a summary of what
the impact on ConTEXt is and will be. From this you
can deduce what the possible influence on other macro
packages can be.

Opening up TEX started with rewriting all io related
activities. Because we wanted to be able to read from
zip files, the web and more, we moved away from
the traditional kpse based file handling. Instead MkIV
uses an extensible variant written in Lua. Because
we need to be downward compatible, the code is
somewhat messy, but it does the job, and pretty quickly
and efficiently too. Some alternative input media
are implemented and many more can be added. In
the beginning I permitted several ways to specify a
resource but recently a more restrictive url syntax
was imposed. Of course the file locating mechanisms
provide the same control as provided by the file readers
in MkII.

An example of reading from a zip file is:

\input zip:///archive.zip?name=blabla.tex
\input zip:///archive.zip?name=/path/blabla.tex

In addition one can register files, like:

\usezipfile[archive.zip]
\usezipfile[tex.zip][texmf-local]
\usezipfile[tex.zip?tree=texmf-local]

The last two variants register a zip file in the tds
structure where more specific lookup rules apply. The
files in a registered file are known to the file searching
mechanism so one can give specifications like the
following:

\input */blabla.tex
\input */somepath/blabla.tex

In a similar fashion one can use the http, ftp and
other protocols. For this we use independent fetchers
that cache data in the MkIV cache. Of course, in more
structured projects, one will seldom use the \input
command but use a project structure instead.

Handling of files rather quickly reached a stable
state, and we seldom need to visit the code for fixes.
Already after a few years of developing the first code
for LuaTEX we reached a state of ‘Hm, when did I write
this?’. When we have reached a stable state I foresee
that much of the older code will need a cleanup.

Related to reading files is the sometimes messy area
of input regimes (file encoding) and font encoding,
which itself relates to dealing with languages. Since
LuaTEX is utf-8 based, we need to deal with file
encoding issues in the frontend, and this is what Lua
based file handling does. In practice users of LuaTEX
will swiftly switch to utf anyway but we provide regime
control for historic reasons. This time the recoding
tables are Lua based and as a result MkIV has no regime
files. In a similar fashion font encoding is gone: there
is still some old code that deals with default fallback
characters, but most of the files are gone. The same
will be true for math encoding. All information is now
stored in a character table which is the central point
in many subsystems now.

It is interesting to notice that until now users
have never asked for support with regards to input
encoding. We can safely assume that they just
switched to utf and recoded older documents. It
is good to know that LuaTEX is mostly pdfTEX but
also incorporates some features of Omega. The main
reason for this is that the Oriental TEX project needed
bidirectional typesetting and there was a preference
for this implementation over the one provided by ε-
TEX. As a side effect input translation is also present,
but since no one seems to use it, that may as well go
away. In MkIV we refrain from input processing as
much as possible and focus on processing the node
lists. That way there is no interference between user
data, macro expansion and whatever may lead to the
final data that ends up in the to-be-typeset stream. As
said, users seem to be happy to use utf as input, and
so there is hardly any need for manipulations.

Related to processing input is verbatim: a feature
that is always somewhat complicated by the fact that
one wants to typeset a manual about TEX in TEX and
therefore needs flexible escapes from illustrative as
well as real TEX code. In MkIV verbatim as well as all
buffering of data is dealt with in Lua. It took a while
to figure out how LuaTEX should deal with the concept
of a line ending, but we got there. Right from the start
we made sure that LuaTEX could deal with collections
of catcode settings (those magic states that characters
can have). This means that one has complete control
at both the TEX and Lua end over the way characters
are dealt with.

In MkIV we also have some pretty printing features,
but many languages are still missing. Cleaning up
the premature verbatim code and extending pretty
printing is on the agenda for the end of 2008.

Languages also are handled differently. A major
change is that pattern files are no longer preloaded but
read in at runtime. There is still some relation between
fonts and languages, no longer in the encoding but in
dealing with OpenType features. Later we will do a



48 MAPS 36 Hans Hagen

more drastic overhaul (with multiple name schemes
and such). There are a few experimental features, like
spell checking.

Because we have been using utf encoded hy-
phenation patterns for quite some time now, and
because ConTEXt ships with its own files, this transition
probably went unnoticed, apart maybe from a faster
format generation and less startup time.

Most of these features started out as an experiment
and provided a convenient way to test the LuaTEX
extensions. In MkIV we go quite far in replacing TEX
code by Lua, and how far one goes is a matter of taste
and ambition. An example of a recent replacement
is graphic inclusion. This is one of the oldest
mechanisms in ConTEXt and it has been extended
many times, for instance by plugins that deal with
figure databases (selective filtering from pdf files made
for this purpose), efficient runtime conversion, color
conversion, downsampling and product dependent
alternatives.

One can question if a properly working mechanism
should be replaced. Not only is there hardly any
speed to gain (after all, not that many graphics are
included in documents), a Lua–TEX mix may even look
more complex. However, when an opened-up TEX
keeps evolving at the current pace, this last argument
becomes invalid because we can no longer give that
TEXie code to Lua. Also, because most of the graphic
inclusion code deals with locating files and figuring out
the best quality variant, we can benefit much from Lua:
file handling is more robust, the code looks cleaner,
complex searches are faster, and eventually we can
provide way more clever lookup schemes. So, after
all, switching to Lua here makes sense. A nice side
effect is that some of the mentioned plugins now take
a few lines of extra code instead of many lines of TEX.
At the time of writing this, the beta version of MkIV
has Lua based graphic inclusion.

A disputable area for Luafication is multipass data.
Most of that has already been moved to Lua files
instead of TEX files, and the rest will follow: only
tables of contents still use a TEX auxiliary file. Because
at some point we will reimplement the whole section
numbering and cross referencing, we postponed that
till later. The move is disputable because in the
end, most data ends up in TEX again, which involves
some conversion. However, in Lua we can store
and manipulate information much more easily and
so we decided to follow that route. As a start,
index information is now kept in Lua tables, sorted
on demand, depending on language needs and such.
Positional information used to take up much hash
space which could deplete the memory pool, but now
we can have millions of tracking points at hardly any
cost.

Because it is a quite independent task, we could
rewrite the MetaPost conversion code in Lua quite
early in the development. We got smaller and cleaner
code, more flexibility, and also gained some speed.
The code involved in this may change as soon as we
start experimenting with MPlib. Our expectations are
high because in a bit more modern designs a graphic
engine cannot be missed. For instance, in educational
material, backgrounds and special shapes are all over
the place, and we’re talking about many MetaPost runs
then. We expect to bring down the processing time
of such documents considerably, if only because the
MetaPost runtime will be close to zero (as experiments
have shown us).

While writing the code involved in the MetaPost
conversion a new feature showed up in Lua: lpeg, a
parsing library. From that moment on lpeg was being
used all over the place, most noticeably in the code that
deals with processing xml. Right from the start I had
the feeling that Lua could provide a more convenient
way to deal with this input format. Some experiments
with rewriting the MkII mechanisms did not show the
expected speedup and were abandoned quickly.

Challenged by lpeg I then wrote a parser and
started playing with a mixture of a tree based and
stream approach to xml (MkII is mostly stream based).
Not only is loading xml code extremely fast (we used
40 megaByte files for testing), dealing with the tree
is also convenient. The additional MkIV methods are
currently being tested in real projects and so far they
result in an acceptable and pleasant mix of TEX and
xml. For instance, we can now selectively process
parts of the tree using path expressions, hook in code,
manipulate data, etc.

The biggest impact of LuaTEX on the ConTEXt code
base is not the previously mentioned mechanisms but
one not yet mentioned: fonts. Contrary to X ETEX,
which uses third party libraries, LuaTEX does not
implement dealing with font specific issues at all. It
can load several font formats and accepts font data in a
well-defined table format. It only processes character
nodes into glyph nodes and it’s up to the user to
provide more by manipulating the node lists. Of
course there is still basic ligature building and kerning
available but one can bypass that with other code.

In MkIV, when we deal with Type1 fonts, we try
to get away from traditional tfm files and use afm
files instead (indeed, we parse them using lpeg). The
fonts are mapped onto Unicode. Awaiting extensions
of math we only use tfm files for math fonts. Of course
OpenType fonts are dealt with and this is where we
find most Lua code in MkIV: implementing features.
Much of that is a grey area but as part of the Oriental
TEX project we’re forced to deal with complex feature
support, so that provides a good test bed as well as



The luafication of TEX and ConTEXt VOORJAAR 2008 49

some pressure for getting it done. Of course there is
always the question to what extent we should follow
the (maybe faulty) other programs that deal with font
features. We’re lucky that the Latin Modern and TEX
Gyre projects provide real fonts as well as room for
discussion and exploring these grey areas.

In parallel to writing this, I made a tracing feature
for Oriental TEXer Idris so that he could trace what
happened with the Arabic fonts that he is making. This
was relatively easy because already in an early stage of
MkIV some debugging mechanisms were built. One of
its nice features is that on an error, or when one traces
something, the results will be shown in a web browser.
Unfortunately I have not enough time to explore such
aspects in more detail, but at least it demonstrates
that we can change some aspects of the traditional
interaction with TEX in more radical ways.

Many users may be aware of the existence of so-
called virtual fonts, if only because it can be a cause
of problems (related to map files and such). Virtual
fonts have a lot of potential but because they were
related to TEX’s own font data format they never got
very popular. In LuaTEX we can make virtual fonts at
runtime. In MkIV for instance we have a feature (we
provide features beyond what OpenType does) that
completes a font by composing missing glyphs on the
fly. More of this trickery can be expected as soon as
we have time and reason to implement it.

In pdfTEX we have a couple of font related goodies,
like character expansion (inspired by Hermann Zapf)
and character protruding. There are a few more
but these had limitations and were suboptimal and
therefore have been removed from LuaTEX. After
all, they can be implemented more robustly in Lua.
The two mentioned extensions have been (of course)
kept and have been partially reimplemented so that
they are now uniquely bound to fonts (instead of
being common to fonts that traditional TEX shares in
memory). The character related tables can be filled
with Lua and this is what MkIV now does. As a result
much TEX code could go away. We still use shape
related vectors to set up the values, but we also use
information stored in our main character database.

A likely area of change is math and not only as a
result of the TEX gyre math project which will result in
a bunch of Unicode compliant math fonts. Currently in
MkIV the initialization already partly takes place using
the character database, and so again we will end up
with less TEX code. A side effect of removing encoding
constraints (i.e. moving to Unicode) is that things get
faster. Later this year math will be opened up.

One of the biggest impacts of opening up is the
arrival of attributes. In traditional TEX only glyph
nodes have an attribute, namely the font id. Now
all nodes can have attributes, many of them. We use

them to implement a variety of features that already
were present in MkII, but used marks instead: color
(of course including color spaces and transparency),
inter-character spacing, character case manipulation,
language dependent pre and post character spacing
(for instance after colons in French), special font
rendering such as outlines, and much more. An
experimental application is a more advanced glue/
penalty model with look-back and look-ahead as well
as relative weights. This is inspired by the one good
thing that xml formatting objects provide: a spacing
and pagebreak model.

It does not take much imagination to see that
features demanding processing of node lists come with
a price: many of the callbacks that LuaTEX provides are
indeed used and as a result quite some time is spent in
Lua. You can add to that the time needed for handling
font features, which also boils down to processing
node lists. The second half of 2007 Taco and I
spent much time on benchmarking and by now the
interface between TEX and Lua (passing information
and manipulating nodes) has been optimized quite
well. Of course there’s always a price for flexibility
and LuaTEX will never be as fast as pdfTEX, but then,
pdfTEX does not deal with OpenType and such.

We can safely conclude that the impact of LuaTEX
on ConTEXt is huge and that fundamental changes take
place in all key components: files, fonts, languages,
graphics, MetaPost xml, verbatim and color to start
with, but more will follow. Of course there are also less
prominent areas where we use Lua based approaches:
handling url’s, conversions, alternative math input
to mention a few. Sometime in 2009 we expect to
start working on more fundamental typesetting related
issues.

Roadmap
On the LuaTEX website www.luatex.org you can find
a roadmap. This roadmap is just an indication of what
happened and will happen and it will be updated when
we feel the need. Here is a summary.

merging engines
Merge some of the Aleph codebase into pdfTEX
(which already has ε-TEX) so that LuaTEX in dvi
mode behaves like Aleph, and in pdf mode like
pdfTEX. There will be Lua callbacks for file search-
ing. This stage is mostly finished.
OpenType fonts
Provide pdf output for Aleph bidirectional func-
tionality and add support for OpenType fonts. Al-
low Lua scripts to control all aspects of font load-
ing, font definition and manipulation. Most of this
is finished.



50 MAPS 36 Hans Hagen

tokenizing and node lists
Use Lua callbacks for various internals, complete
access to tokenizer and provide access to node lists
at moments that make sense. This stage is com-
pleted.
paragraph building
Provide control over various aspects of paragraph
building (hyphenation, kerning, ligature building),
dynamic loading loading of hyphenation patterns.
Apart from some small details these objectives are
met.
MetaPost (MPlib)
Incorporate a MetaPost library and investigate op-
tions for runtime font generation and manipula-
tion. This activity is on schedule and integration
will take place before summer 2008.
image handling
Image identification and loading in Lua includ-
ing scaling and object management. This is nicely
on schedule, the first version of the image library
showed up in the 0.22 beta and some more fea-
tures are planned.
special features
Cleaning up of hz optimization and protruding
and getting rid of remaining global font properties.
This includes some cleanup of the backend. Most
of this stage is finished.
page building
Control over page building and access to inter-
nals that matter. Access to inserts. This is on the
agenda for late 2008.
TEX primitives
Access to and control over most TEX primitives
(and related mechanisms) as well as all registers.
Especially box handling has to be reinvented. This
is an ongoing effort.
pdf backend
Open up most backend related features, like anno-

tations and object management. The first code will
show up at the end of 2008.
math
Open up the math engine parallel to the develop-
ment of the TEX Gyre math fonts. Work on this will
start during 2008 and we hope that it will be fin-
ished by early 2009.
cweb
Convert the TEX Pascal source into cweb and start
using Lua as glue language for components. This
will be tested on MPlib first. This is on the long
term agenda, so maybe around 2010 you will see
the first signs.

In addition to the mentioned functionality we have a
couple of ideas that we will implement along the road.
The first formal beta was released at tug 2007 in San
Diego (usa). The first formal release will be at tug
2008 in Cork (Ireland). The production version will
be released at EuroTEX in the Netherlands (2009).

Eventually LuaTEX will be the successor to pdfTEX
(informally we talk of pdfTEX version 2). It can already
be used as a drop-in for Aleph (the stable variant
of Omega). It provides a scripting engine without
the need to install a specific scripting environment.
These factors are among the reasons why distributors
have added the binaries to the collections. Norbert
Preining maintains the linux packages, Akira Kakuto
provides Windows binaries as part of his distribution,
Arthur Reutenauer takes care of MacOSX and Christian
Schenk recently added LuaTEX to MikTEX. The LuaTEX
and MPlib projects are hosted at Supelec by Fabrice
Popineau (one of our technical consultants). And with
Karl Berry being one of our motivating supporters, you
can be sure that the binaries will end up someplace in
TEXLive this year.

Hans Hagen


