
66 MAPS 36 Taco Hoekwater and Hans Hagen

MetaPost library project

Introduction
The purpose of this paper is to document the targets
and implementation milestones of the MetaPost library
project (MPlib). It is intended to serve both as a
guideline to the developers and as a monitoring tool
for the funding providers.

When it was circulated in the spring of 2007, the
MetaPost library proposal paper [1] mentioned two
main problem areas that are to be directly tackled by
the MPlib project:

current MetaPost cannot be used as a software
component
the handling of external text labels is becoming
outdated

The proposal paper identifies those problem areas and
presents a rough split in sub-tasks. The main goal of
that paper was to gain funding, and because of that,
but also because an in-depth analysis was still missing
at that moment in time, it was very short on details.

Immediately after funding was secured, a period
of analysis started. That initial information-gathering
stage is now finished, and the gained knowledge can
be used to further detail the objectives and stages of
the project.

Main objectives
The term ‘software component’ as used above is a
loosely defined term. In practice it means that the
current MetaPost code should be split into a core
library and a client application, with the latter being
as small as possible and the former allowing multiple
concurrent usage.

Besides the general goal of creating a reusable
component on one particular platform, the project
has to make sure that MetaPost maintains at least
the current level of portability, and that it keeps on
having 100% identical behaviour and output across all
computer platforms it runs on.

Regardless of implementation details, it is clear that
for simplified maintenance and portability, the current
code base has to be unified using a single programming
language. A literate programming language is desired:
we (the TEX community) should do its best to keep
the Knuthian tradition of programs that document
their implementation alive, whenever that is possible

without major extra effort.
Converting the MetaPost core into a library implies

adding an indirection layer to the already existing
input and output subsystems: component libraries
should not interact with the user directly unless
explicitly asked to do so. The new to-be-written
internal interface will serve to allow the configuration
of logging and error handling.

A well-defined and documented interface to the
internals of the program is needed to make it possible
to add new back-ends as alternatives to the already
existing Adobe Postscript generator.

Implementation language
After some consideration, we believe the best choice
for the implementation of the core library itself is the
C programming language. There are a number of
possible arguments to be made in favour of various
other languages, but it seems that C has the best overall
characteristics for the task at hand:

there already is a literate programming system
available for C that is very close to the current Pas-
cal--based implementation: cweb [2].
the C language is structurally very similar to pas-
cal, so that identical algorithms can be used in the
conversion of the existing code base.
both the run-time speed and compactness of com-
piled C code are very high.
C source code is itself very portable, and C libraries
binds easily to other applications and program-
ming languages.
the market penetration of C is very high, aiding
deployment.
some parts of the current MetaPost are already
written in C (although in a non-literate fashion).

Two specific applications of the MPlib core library are
planned as part of the current project:

a command-line C program
This program will replace the current mpost

executable, for redistribution in TEX distributions.
a Lua language binding.

This will allow the library to be easily integrated
into LuaTEX [3], and it will also serve as an exam-
ple of binding MPlib.



MetaPost library project VOORJAAR 2008 67

Tasks
From the previous paragraphs, a list of sub-tasks can
be derived.

1. Conversion and unification of the current sources
into cweb.

2. Integrating the hundreds of global variables that
are used by the current source into an single data
structure (instance).

3. The addition of a indirection layer for all the in-
put and output streams.

4. Adding an interface for configuration of error han-
dling.

5. Writing a Lua module to interface to the MetaPost
library.

6. Consolidating and documenting an interface to
the internal structures.

7. Designing and implementing a new high-quality
labelling system.

Conversion
There are two sub-tasks: the conversion of the
current Pascal Web code, and the conversion plus
documentation of the current C code, resulting in a
unified source.

Conversion of current Pascal code. Because all
of the Pascal code uses a pretty small subset of the
many possible variations on the basic Pascal language,
and because the cweb system itself is nearly identical
to Pascal Web, using a machine-assisted approach to
the translation is not only feasible but also the most
effective.

A Lua script will take care of the conversion from
Pascal to C while keeping the Web extensions intact.
The choice of the scripting language Lua [4] is based
on three considerations:

1. Efficiency of the conversion program is not rele-
vant, as it will be used only once.

Therefore, there is no reason to choose for a
compiled language like C, and scripting languages
allow for a much faster development cycle.

2. Lua has a module that allows script programs to be
written that use Parsing Expression Grammars [5,
6] to parse input.

This makes it very easy to write a proper parser
for web-based programs like MetaPost.

3. Familiarity with the language.
It would not be worth learning a different pro-

gramming language just to do this conversion
step, and of the languages Taco knows, Lua is best
suited to the task at hand.

Conversion of current C code. The main Meta-
Post program is written in Pascal Web, but some

(about 5000 lines, mostly the font inclusion) is written
directly in C code. This code is not currently not
written in a literate programming fashion, and it will
be worthwhile to do that conversion. This has to be
done by hand, but the amount of code is not that large
and it will help to create a more consistent distribution
and build process.

Single data structure
For a code library to be as widely usable as possible,
it should not use any non-local variables. Instead, a
code library normally defines a single function, that
will allocate and return a data structure that will from
then on be passed on from one library function to the
next until the application is done with it.

The current internals have to reworked extensively
to allow this: MetaPost as it stands uses about three
hundred global variables. Some of these are just for
internal communication between functions (a side--
effect of limitations in Pascal Web), and some are just
global constant values, but most are used to store the
internal state of the MetaPost engine.

Actions needed:

all of the globals have to be incorporated into a big
single structure.
nearly all functions have to be altered to use this
structure are the first argument.
the memory dump/undump code has to be rewritten
to handle this new data model correctly.

When this task is complete, the cweb code can
provisionally be split into a library and an application.

For the moment, the Knuthian heap-based memory
management and string pool handling will be con-
verted to C without functional changes, but at a later
moment these bits may be converted to use dynamic
memory allocation throughout.

Indirection layer
We envisage that it will be possible to register callback
functions that will make it possible to override default
behaviour that is very close or identical to the current
state.

The advantage of setting it up in this way is that
application programs that want to be compatible with
the way the old mpost executable can be quite small,
and for the moment at least, this seems desirable.

Error handling
To allow the user to configure the error handling,
first the existing error handling code has to be unified
so that all the possible errors pass through the same
interface. After that is done, it will be possible to add
a callback there to allow configurability.



68 MAPS 36 Taco Hoekwater and Hans Hagen

Lua module
At the base functionality level, this is a straightforward
process of interfacing C functions to Lua scripting, that
can handled almost totally in an automated fashion by
already existing tools like [7].

But optimization of the user interface so that it is
easy to use has to be done manually. Experiences has
shown that C libraries almost always are too low-level
for a scripting language, and the necessary glue code
has to be written by hand.

Because much of this glue code will itself depend on
user feedback, it follows that while a first version of
Lua module will probably be available at the time of the
first release of MPlib(summer 2008), the module will
probably not be finalized until quite time afterward.

Interface to the internal structures
While we are strictly dealing with the problem of how
to use MetaPost as a component, it is sufficient to just
have a ‘constructor’ function, a ‘destructor’ function,
and a ‘run’ function.

But that is not good enough if we want to alter the
program, for example by adding a new back-end. For
this, it is necessary to have access to at least some of
the actual internals of the program.

For such interfaces to be useful, a bit of internal
cleanup is needed:

Some of the interface structures are not as clean
cut as they could be (or should be, according to
current practice.

Some cleanup is needed to provide a clean
front.
most of the required documentation is already
present in the Pascal Web source, but not presented
in the best possible way.

This documentation should be copied out of the
source and placed in a separate manual.

Labelling system
When all of the above are complete, it is time to think
about a new external labelling system to replace btex
. . . etex.

New insights are expected to come from the use of

MPlib inside LuaTEX, so writing this section now would
be premature.

Time line
The development of MPlib is expected to progress
linearly through the first few point, up to first basic
‘Lua module’ implementation. After that, work will
continue more or less simultaneous on the remaining
items.

The stage ‘single data structure’ is expected to be
complete around end of February, and everything up
to the basic ‘Lua module’ will be presented at the Cork
TUG meeting in the summer of 2008.

References

[1] Hans Hagen and Taco Hoekwater. Metapost
library proposal. The Netherlands, 2007.

[2] Donald E. Knuth and Silvio Levy. The CWEB
System of Structured Documentation, Version 3.0.
Addison-Wesley, Reading, MA, USA, 1993.

[3] Hans Hagen and Taco Hoekwater.
http://www.luatex.org
The official LuaTEX website.

[4] Roberto Ierusalimschy, Waldemar Celes and Luiz
Henrique de Figueiredo.
http://www.lua.org
The official Lua website.

[5] Bryan Ford.
http://pdos.csail.mit.edu/˜baford/packrat/
This website explains the theory behind Parsing
Expression Grammars, and Packrat Parsing in
general.

[6] Roberto Ierusalimschy.
http://www.inf.puc-rio.br/˜roberto/lpeg.html
The homepage of the Lua module that implements
PEGs.

[7] Waldemar Celes.
http://www.techgraf.puc-rio.br/˜celes/tolua
The homepage of toLua, a program that generates
C/C++ to Lua bindings.

Taco Hoekwater and Hans Hagen


