
Hans Hagen & Taco Hoekwater VOORJAAR 2008 69

The MetaPost Library

Introduction
If MetaPost support had not been as tightly integrated into ConTEXt as it is, at
least half of the projects Pragma ADE has been doing in the last decade could not
have been done at all. Take for instance backgrounds behind text or graphic mark-
ers alongside text. These are probably the most complex mechanisms in ConTEXt:
positions are stored, and positional information is passed on to MetaPost, where
intersections between the text areas and the running text are converted into graph-
ics that are then positioned in the background of the text. Underlining of text
(sometimes used in the educational documents that we typeset) and change bars
(in the margins) are implemented using the same mechanism because those are
basically a background with only one of the frame sides drawn.

You can probably imagine that a 300 page document with several such graphics
per page takes a while to process. A nice example of such integrated graphics is
the LuaTEX reference manual, that has an unique graphic at each page: a stylized
image of a revolving moon.

Most of the running time integrating such graphics seemed to be caused by the
mechanics of the process: starting the separate MetaPost interpreter and having
to deal with a number of temporary files. Therefore our expectations were high
with regards to integrating MetaPost more tightly into LuaTEX. Besides the speed
gain, it also true that the simpler the process of using such use of graphics becomes,
the more modern a TEX runs looks and the less problems new users will have with
understanding how all the processes cooperate.

This article will not discuss the application interface of the MPlib library in de-
tail, for that there is the LuaTEX manual. In short, using the embedded MetaPost
interpreter in LuaTEX boils down to the following:

Open an instance using mplib.new, either to process images with a format to
be loaded, or to create such a format. This function returns a library object.
Execute sequences of MetaPost commands, using the object's execute method.
This returns a result.
Check if the result is valid and (if it is okay) request the list of objects. Do
whatever you want with them, most probably convert them to some output
format. You can also request a string representation of a graphic in PostScript
format.

There is no need to close the library object. As long as you didn't make any fatal
errors, the library recovers well and can stay alive during the entire LuaTEX run.

Support for MPlib depends on a few components: integration, conversion and
extensions. This article shows some of the code involved in supporting the library.
Let's start with the conversion.



70 MAPS 36 Hans Hagen & Taco Hoekwater

Conversion
The result of a MetaPost run traditionally is a PostScript language description of the
generated graphic(s). When pdf is needed, that PostScript code has to be converted
to the target format. This includes embedded text as well as penshapes used for
drawing. To demonstrate, here is a simple example graphic:

draw fullcircle
scaled 2cm
withpen pencircle xscaled 1mm yscaled .5mm rotated 30
withcolor .75red ;

Notice how the pen is not a circle but a rotated ellipse. Later on it will become
clear what the consequences of that are for the conversion.

How does this output look in PostScript? If the preamble is left out it looks like
this:

%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: -30 -30 30 30
%%HiResBoundingBox: -29.624 -29.28394 29.624 29.28394
%%Creator: MetaPost 1.003
%%CreationDate: 2008.05.15:1534
%%Pages: 1
% <<stripped preamble was here>>
%%Page: 1 1
0.75 0 0 R 2.55513 hlw rd 1 lj 10 ml

q n 28.34645 0 m
28.34645 7.51828 25.35938 14.72774 20.04356 20.04356 c
14.72774 25.35938 7.51828 28.34645 0 28.34645 c
-7.51828 28.34645 -14.72774 25.35938 -20.04356 20.04356 c
-25.35938 14.72774 -28.34645 7.51828 -28.34645 0 c
-28.34645 -7.51828 -25.35938 -14.72774 -20.04356 -20.04356 c
-14.72774 -25.35938 -7.51828 -28.34645 0 -28.34645 c
7.51828 -28.34645 14.72774 -25.35938 20.04356 -20.04356 c
25.35938 -14.72774 28.34645 -7.51828 28.34645 0 c p
[0.96077 0.5547 -0.27734 0.4804 0 0] t S Q

P
%%EOF

The most prominent code here concerns the path. The numbers in brackets define
the transformation matrix for the pen we used. The pdf variant looks as follows:

q
0.750 0.000 0.000 rg 0.750 0.000 0.000 RG
10.000000 M
1 j
1 J
2.555120 w
q
0.960769 0.554701 -0.277351 0.480387 0.000000 0.000000 cm
22.127960 -25.551051 m
25.516390 -13.813203 26.433849 0.135002 24.679994 13.225878 c
22.926120 26.316745 18.644486 37.478783 12.775526 44.255644 c
6.906565 51.032505 -0.067572 52.867453 -6.613036 49.359793 c



The MetaPost Library VOORJAAR 2008 71

-13.158495 45.852096 -18.739529 37.288899 -22.127960 25.551051 c
-25.516390 13.813203 -26.433849 -0.135002 -24.679994 -13.225878 c
-22.926120 -26.316745 -18.644486 -37.478783 -12.775526 -44.255644 c
-6.906565 -51.032505 0.067572 -52.867453 6.613036 -49.359793 c
13.158495 -45.852096 18.739529 -37.288899 22.127960 -25.551051 c
h S
Q
0 g 0 G
Q

The operators don't look much different from the PostScript, which is mostly due
to the fact that in the PostScript code, the preamble defines shortcuts like c for
curveto. Again, most code involves the path. However, this time the numbers are
different and the transformation comes before the path.

In the case of pdf output, we could use TEX itself to do the conversion: a generic
converter is implemented in supp-pdf.tex, while a converter optimized for ConTEXt
MkII is defined in the files whose names start with meta-pdf. But in ConTEXt MkIV
we use Lua code for the conversion instead. Thanks to Lua's powerful lpeg parsing
library, this gives cleaner code and is also faster. This converter currently lives in
mlib-pdf.lua.

Now, with the embeddedMetaPost library, conversion goes different still because
now it is possible to request the drawn result and associated information in the form
of Lua tables.

figure={
["boundingbox"]={
["llx"]=-29.623992919922,
["lly"]=-29.283935546875,
["urx"]=29.623992919922,
["ury"]=29.283935546875,

},
["objects"]={
{
["color"]={ 0.75, 0, 0 },
["linecap"]=1,
["linejoin"]=1,
["miterlimit"]=10,
["path"]={
{
["left_x"]=28.346450805664,
["left_y"]=-7.5182800292969,
["right_x"]=28.346450805664,
["right_y"]=7.5182800292969,
["x_coord"]=28.346450805664,
["y_coord"]=0,

},
{
["left_x"]=25.359375,
["left_y"]=14.727737426758,
["right_x"]=14.727737426758,
["right_y"]=25.359375,
["x_coord"]=20.043563842773,
["y_coord"]=20.043563842773,

},
{
["left_x"]=7.5182800292969,

["left_y"]=28.346450805664,
["right_x"]=-7.5182800292969,
["right_y"]=28.346450805664,
["x_coord"]=0,
["y_coord"]=28.346450805664,

},
{
["left_x"]=-14.727737426758,
["left_y"]=25.359375,
["right_x"]=-25.359375,
["right_y"]=14.727737426758,
["x_coord"]=-20.043563842773,
["y_coord"]=20.043563842773,

},
{
["left_x"]=-28.346450805664,
["left_y"]=7.5182800292969,
["right_x"]=-28.346450805664,
["right_y"]=-7.5182800292969,
["x_coord"]=-28.346450805664,
["y_coord"]=0,

},
{
["left_x"]=-25.359375,
["left_y"]=-14.727737426758,
["right_x"]=-14.727737426758,
["right_y"]=-25.359375,
["x_coord"]=-20.043563842773,
["y_coord"]=-20.043563842773,

},
{
["left_x"]=-7.5182800292969,

["left_y"]=-28.346450805664,
["right_x"]=7.5182800292969,
["right_y"]=-28.346450805664,
["x_coord"]=0,
["y_coord"]=-28.346450805664,

},
{
["left_x"]=14.727737426758,
["left_y"]=-25.359375,
["right_x"]=25.359375,
["right_y"]=-14.727737426758,
["x_coord"]=20.043563842773,
["y_coord"]=-20.043563842773,

},
},
["pen"]={
{
["left_x"]=2.4548797607422,
["left_y"]=1.4173278808594,
["right_x"]=-0.70866394042969,
["right_y"]=1.2274475097656,
["x_coord"]=0,
["y_coord"]=0,

},
["type"]="elliptical",

},
["type"]="outline",
},

},
}



72 MAPS 36 Hans Hagen & Taco Hoekwater

This means that instead of parsing PostScript output, we now can operate on a
proper datastructure and get code like the following:

function convertgraphic(result)
if result then
local figures = result.fig
if figures then
for fig in ipairs(figures) do
local llx, lly, urx, ury = unpack(fig:boundingbox())
if urx > llx then
startgraphic(llx, lly, urx, ury)
for object in ipairs(fig:objects()) do
if object.type == "..." then
...
flushgraphic(...)
...

else
...

end
end
finishgraphic()

end
end

end
end

end

Here result is what the library returns when one or more graphics are processed.
As you can deduce from this snippet, a result can contain multiple figures. Each
figure corresponds with a beginfig ... endfig. The graphic operators that the
converter generates (so called pdf literals) have to be encapsulated in a proper box
so this is why we have:

startgraphic: start packaging the graphic
flushgraphic: pipe literals to TEX
finishgraphic: finish packaging the graphic

It does not matter what number you passed to beginfig, the graphics come out in
the natural order.

Little over half a dozen different object types are possible. The example MetaPost
draw command from above results in an outline object. This object contains not
only path information but also carries rendering data, like the color and the pen.
So, in the end we will flush code like 1 M which sets the miterlimit to one or .5
g which sets the color to 50% gray, in addition to a path.

Because objects are returned in a way that closely resembles a MetaPost's inter-
nals, some extra work needs to be done in order to calculate paths with elliptical
pens. An example of a helper function in somewhat simplified form is shown next:

function pen_characteristics(object)
local p = object.pen[1]
local wx, wy, width
if p.right_x == p.x_coord and p.left_y == p.y_coord then
wx = abs(p.left_x - p.x_coord)
wy = abs(p.right_y - p.y_coord)

else -- pyth: sqrt(a^2 +b^2)



The MetaPost Library VOORJAAR 2008 73

wx = pyth(p.left_x - p.x_coord, p.right_x - p.x_coord)
wy = pyth(p.left_y - p.y_coord, p.right_y - p.y_coord)

end
if wy/coord_range_x(object.path, wx) >=

wx/coord_range_y(object.path, wy) then
width = wy

else
width = wx

end
local sx, sy = p.left_x, p.right_y
local rx, ry = p.left_y, p.right_x
local tx, ty = p.x_coord, p.y_coord
if width ~= 1 then
if width == 0 then
sx, sy = 1, 1

else
rx, ry, sx, sy = rx/width, ry/width, sx/width, sy/width

end
end
if abs(sx) < eps then sx = eps end
if abs(sy) < eps then sy = eps end
return sx, rx, ry, sy, tx, ty, width

end

If sx and sy are 1, there is no need to transform the path, otherwise a suitable trans-
formation matrix is calculated and returned. The function itself uses a few helpers
that make the calculations even more obscure. This kind of code does not fall in
the category trivial and as already mentioned, these basic algorithms were derived
from the MetaPost sources. Even so, these snippets demonstrate that interfacing
using Lua does not look that bad.

In the actual MkIV code things look a bit different because it does a bit more
and uses optimized code. There you will also find the code dealing with the actual
transformation, of which these helpers are just a portion.

If you compare the PostScript and the pdf code you will notice that the paths
looks different. This is because the use and application of a transformation matrix
in pdf is different from how it is handled in PostScript. In pdf more work is assumed
to be done by the pdf generating application. This is why in both the TEX and the
Lua based converters you will find transformation code and the library follows the
same pattern. In that respect pdf differs fundamentally from PostScript.

Within the TEX based converter there was the problem of keeping the needed cal-
culations within TEX's accuracy, which fortunately permits larger values that Meta-
Post can produce. This plus the parsing code resulted in a not-that-easy to follow
bunch of TEX code. The Lua based parser is more readable, but since it also operates
on PostScript code it is kind of unnatural too, but at least there are less problems
with keeping the calculations sane. The MPlib based converter is definitely the
cleanest and least sensitive to future changes in the PostScript output. Does this
mean that there is no ugly code left? Alas, as we will see in the next section, deal-
ing with extensions is still somewhat messy. In practice users will not be bothered
with such issues, because writing a converter is a one time job by macro package
writers.



74 MAPS 36 Hans Hagen & Taco Hoekwater

Extensions
In MetaFun, which is the MetaPost format used with ConTEXt, a few extensions are
provided, like:

cmyk, spot and multitone colors
including external graphics
lineair and circulair shades
texts converted to outlines
inserting arbitrary texts

Until now, most of these extensions have been implemented by using specially
coded colors and by injecting so called specials (think of them as comments) into
the output. On one of our trips to a TEX conference, we discussed ways to pass
information along with paths and eventually we arrived at associating text strings
with paths as a simple and efficient solution. As a result, recently MetaPost was
extended by withprescript and withpostscript directives. For those who are
unfamiliar with these new scripts, they are used as follows:

draw fullcircle withprescript "hello" withpostscript "world" ;

In the PostScript output these scripts end up before and after the path, but in the
pdf converter they can be overloaded to implement extensions, and that works rea-
sonably well. However, at the moment there cannot be multiple pre- and postscripts
associated with a single path inside the MetaPost internals. This means that for the
moment, the scripts mechanism is only used for a few of the extensions. Future ver-
sions of MPlib may provide more sophisticated methods for carrying information
around.

The MkIV conversion mechanism uses scripts for graphic inclusion, shading and
text processing but unfortunately cannot use them formore advanced color support.

A nasty complication is that the color spaces in MetaPost don't cast, which means
that one cannot assign any color to a color variables: each colorspace has it's own
type of variable.

color one ; one := (1,1,0) ; % correct
cmykcolor two ; two := (1,0,0,1) ; % correct
one := two ; % error
fill fullcircle scaled 1cm withcolor .5[one,two] ; % error

In ConTEXt we use constructs like this:

\startreusableMPgraphic{test}
fill fullcircle scaled 1cm withcolor \MPcolor{mycolor} ;

\stopreusableMPgraphic

\reuseMPgraphic{test}

Because withcolor is clever enough to understand what color type it receives, this
is ok, but how about:

\startreusableMPgraphic{test}
color c ; c := \MPcolor{mycolor} ;
fill fullcircle scaled 1cm withcolor c ;

\stopreusableMPgraphic



The MetaPost Library VOORJAAR 2008 75

Here the color variable only accepts an rgb color and because in ConTEXt there
is mixed color space support combined with automatic colorspace conversions, it
doesn't know in advance what type it is going to get. By implementing color spaces
other than rgb using special colors (as before) such typemismatches can be avoided.

The two techniques (coding specials in colors and pre/postscripts) cannot be
combined because a script is associated with a path and cannot be bound to a
variable like c. So this again is an argument for using special colors that remap
onto cmyk spot or multi-tone colors.

Another area of extensions is text. In previous versions of ConTEXt the text pro-
cessing was already isolated: text ended up in a separate file and was processed
in an separate run. More recent versions of ConTEXt use a more abstract model
of boxes that are preprocessed before a run, which avoids the external run(s). In
the new approach everything can be kept internal. The conversion even permits
constructs like:

for i=1 upto 100 :
draw btex oeps etex rotated i ;

endfor ;

but since this construct is kind of obsolete (at least in the library version of Meta-
Post) it is better to use:

for i=1 upto 100 :
draw textext("cycle " & decimal i) rotated i ;

endfor ;

Internally a trial pass is done so that indeed 100 different texts will be drawn. The
throughput of texts is so high that in practice one will not even notice that this
happens.

Dealing with text is yet another example of using lpeg. The following snippet
of code sheds some light on how text in graphics is dealt with. Actually this is a
variation on a previous implementation. That one was slightly faster but looked
more complex. It was also not robust for complex texts defined in macros in a
format.

local P, S, V, Cs = lpeg.P, lpeg.S, lpeg.V, lpeg.Cs

local btex = P("btex")
local etex = P(" etex")
local vtex = P("verbatimtex")
local ttex = P("textext")
local gtex = P("graphictext")
local spacing = S(" \n\r\t\v")^0
local dquote = P('"')

local found = false

local function convert(str)
found = true
return "textext(\"" .. str .. "\")"

end
local function ditto(str)
return "\" & ditto & \""

end
local function register()



76 MAPS 36 Hans Hagen & Taco Hoekwater

found = true
end

local parser = P {
[1] = Cs((V(2)/register + V(3)/convert + 1)^0),
[2] = ttex + gtex,
[3] = (btex + vtex) * spacing *

Cs((dquote/ditto + (1-etex))^0) * etex,
}

function metapost.check_texts(str)
found = false
return parser:match(str), found

end

If you are unfamiliar with lpeg it may take a while to see what happens here: we
replace the text between btex and etex by a call to textext, a macro. Special
care is given to embedded double quotes.

When text is found, the graphic is processed two times. The definition of tex-
text is different for each run. The first run we have:

vardef textext(expr str) =
image (

draw unitsquare
withprescript "tf"
withpostscript str ;

)
enddef ;

After the first run the result is not really converted, but just the outlines with the
tf prescript are filtered. In the loop over the object there is code like:

local prescript = object.prescript
if prescript then
local special = metapost.specials[prescript]
if special then
special(object.postscript,object)

end
end

Here, metapost is just the namespace used by the converter. The prescript tag tf
triggers a function:

function metapost.specials.tf(specification,object)
tex.sprint(tex.ctxcatcodes,format("\\MPLIBsettext{%s}{%s}",
metapost.textext_current,specification))

if metapost.textext_current < metapost.textext_last then
metapost.textext_current = metapost.textext_current + 1

end
...

end

Again, you can forget about the details of this function. Important is that there is a
call out to TEX that will process the text. Each snippet gets the number of the box
that holds the content. The macro that is called just puts stuff in a box:



The MetaPost Library VOORJAAR 2008 77

\def\MPLIBsettext#1#2%
{\global\setbox#1\hbox{#2}}

In the next processing cycle of the MetaPost code, the textext macro does some-
thing different :

vardef textext(expr str) =
image (

_tt_n_ := _tt_n_ + 1 ;
draw unitsquare

xscaled _tt_w_[_tt_n_]
yscaled (_tt_h_[_tt_n_] + _tt_d_[_tt_n_])
withprescript "ts"
withpostscript decimal _tt_n_ ;

)
enddef ;

This time the by then known dimensions of the box that is used to store the snippet
are used. These are stored in the _tt_w_, _tt_h_ and _tt_d_ arrays. The arrays
are defined by Lua using information about the boxes, and passed to the library
before the second run. The result from the second MetaPost run is converted, and
again the prescript is used as trigger:

function metapost.specials.ts(specification,object,result)
local op = object.path
local first, second, fourth = op[1], op[2], op[4]
local tx, ty = first.x_coord , first.y_coord
local sx, sy = second.x_coord - tx, fourth.y_coord - ty
local rx, ry = second.y_coord - ty, fourth.x_coord - tx
if sx == 0 then sx = 0.00001 end
if sy == 0 then sy = 0.00001 end
metapost.flushfigure(result)
tex.sprint(tex.ctxcatcodes,format(

"\\MPLIBgettext{%f}{%f}{%f}{%f}{%f}{%f}{%s}",
sx,rx,ry,sy,tx,ty,metapost.textext_current))

...
end

At this point the converter is actually converting the graphic and passing pdf literals
to TEX. As soon as it encounters a text, it flushes the pdf code collected so far and
injects some TEX code. The TEX macro looks like:

\def\MPLIBgettext#1#2#3#4#5#6#7%
{\ctxlua{metapost.sxsy(\number\wd#7,\number\ht#7,\number\dp#7)}%
\pdfliteral{q #1 #2 #3 #4 #5 #6 cm}%
\vbox to \zeropoint{\vss\hbox to \zeropoint
{\scale[sx=\sx,sy=\sy]{\raise\dp#7\box#7}\hss}}%

\pdfliteral{Q}}

Because text can be transformed, it needs to be scale back to the right dimensions,
using both the original box dimensions and the transformation of the unitquare
associated with the text.

local factor = 65536*(7200/7227)



78 MAPS 36 Hans Hagen & Taco Hoekwater

function metapost.sxsy(wd,ht,dp) -- helper for text
commands.edef("sx",(wd ~= 0 and 1/( wd /(factor))) or 0)
commands.edef("sy",(wd ~= 0 and 1/((ht+dp)/(factor))) or 0)

end

So, in fact there are the following two processing alternatives:

tex: calls a Lua function that processed the graphic
lua: parse the MetaPost code for texts and decide if two runs are needed

Now, if there was no text to be found, the continuation is:

lua: process the code using the library
lua: convert the resulting graphic (if needed) and check if texts are used

Otherwise, the next steps are:

lua: process the code using the library
lua: parse the resulting graphic for texts (in the postscripts) and signal TEX to
process these texts afterwards
tex: process the collected text and put the result in boxes
lua: process the code again using the library but this time let the unitsquare be
transformed c.c. the text dimensions
lua: convert the resulting graphic and replace the transformed unitsquare by
the boxes with text

The processor itself is used in the MkIV graphic function that takes care of the
multiple passes mentioned before. To give you an idea of how it works, here is how
the main graphic processing function roughly looks.

local current_format, current_graphic

function metapost.graphic_base_pass(mpsformat,str,preamble)
local prepared, done = metapost.check_texts(str)
metapost.textext_current = metapost.first_box
if done then

current_format, current_graphic = mpsformat, prepared
metapost.process(mpsformat, {

preamble or "",
"beginfig(1); ",
"_trial_run_ := true ;",
prepared,
"endfig ;"

}, true ) -- true means: trialrun
tex.sprint(tex.ctxcatcodes,

"\\ctxlua{metapost.graphic_extra_pass()}")
else

metapost.process(mpsformat, {
preamble or "",
"beginfig(1); ",
"_trial_run_ := false ;",
str,
"endfig ;"

} )
end



The MetaPost Library VOORJAAR 2008 79

end

function metapost.graphic_extra_pass()
metapost.textext_current = metapost.first_box
metapost.process(current_format, {

"beginfig(0); ",
"_trial_run_ := false ;",
table.concat(metapost.text_texts_data()," ;\n"),
current_graphic,
"endfig ;"

})
end

The box information is generated as follows:

function metapost.text_texts_data()
local t, n = { }, 0
for i = metapost.first_box, metapost.last_box do

n = n + 1
if tex.box[i] then

t[#t+1] = format(
"_tt_w_[%i]:=%f;_tt_h_[%i]:=%f;_tt_d_[%i]:=%f;",
n,tex.wd[i]/factor,
n,tex.ht[i]/factor,
n,tex.dp[i]/factor

)
else

break
end

end
return t

end

This is a typical example of accessing information available inside TEX from Lua, in
this case information about boxes.

The trial_run flag is used at the MetaPost end, in fact the textextmacro looks
as follows:

vardef textext(expr str) =
if _trial_run_ :

% see first variant above
else :

% see second variant above
fi

enddef ;

This trickery is not new. We used it already in ConTEXt for some time, but until now
the multiple runs took way more time and from the perspective of the user this all
looked much more complex.

It may not be that obvious, but: in the case of a trial run (for instance when texts
are found), after the first processing stage, and during the parsing of the result,
the commands that typeset the content will be printed to TEX. After processing, the
command to do an extra pass is printed to TEX also. So, once control is passed back
to TEX, at some point TEX itself will pass control back to Lua and do the extra pass.



80 MAPS 36 Hans Hagen & Taco Hoekwater

The base function is called in:

function metapost.graphic(mpsformat,str,preamble)
local mpx = metapost.format(mpsformat or "metafun")
metapost.graphic_base_pass(mpx,str,preamble)

end

The metapost.format function is part of mlib-run. It loads the metafun format,
possibly after (re)generating it.

Now, admittedly all this looks a bit messy, but in pure TEX macros it would be
even more so. Sometime in the future, the postponed calls to \ctxlua and the
explicit \pdfliterals can and will be replaced by using direct node generation,
but that requires a rewrite of the internal LuaTEX support for pdf literals.

The snippets are part of the mlib-* files of MkIV. These files are tagged as ex-
perimental and will stay that way for a while yet.

Summarizing the impact of MPlib on extensions, we can conclude that some are
done better and some more or less the same. There are some conceptual problems
that prohibit using pre- and postscripts for everything (at least currently).

Integrating
The largest impact of MPlib is processing graphics at runtime. In MkII there are
two methods: real runtime processing (each graphic triggered a call to MetaPost)
and collective processing (between TEX runs). The first method slows down the TEX
run, the second method generates a whole lot of intermediate PostScript files. In
both cases there is a lot of file io involved.

In MkIV, the integrated library is capable of processing thousands of graphics per
second, including conversion. The preliminary tests (which involved no extensions)
involved graphics with 10 random circles drawn with penshapes in random colors,
and the thoughput was around 2000 such graphics per second on a 2.3 MHz Core
Duo:

In practice there will be some more overhead involved than in the tests. For
instance, in ConTEXt information about the current state of TEX has to be passed on
also: page dimensions, font information, typesetting related parameters, preamble
code, etc.

The whole TEX interface is written around one process function:

metapost.graphic(metapost.format("metafun"),"mp code")

optionally a preamble can be passed as the third argument. This one function is
used in several other macros, like:

\startMPcode ... \stopMPcode
\startMPpage ... \stopMPpage
\startuseMPgraphic {name} ... \stopuseMPgraphic
\startreusableMPgraphic{name} ... \stopreusableMPgraphic
\startuniqueMPgraphic {name} ... \stopuniqueMPgraphic



The MetaPost Library VOORJAAR 2008 81

\useMPgraphic{name}
\reuseMPgraphic{name}
\uniqueMPgraphic{name}

The user interface is downward compatible: in MkIV the same top-level commands
are provided as in MkII. However, the (previously required) configuration macros
and flags are obsolete.

This time, the conclusion is that the impact on ConTEXt is immense: The code
for embedding graphics is very clean, and the running time for graphics inclusion
is now negligible. Support for text in graphics is more natural now, and takes no
runtime either (in MkII some parsing in TEX takes place, and if needed long lines
are split; all this takes time).

In the styles that Pragma ADE uses internally, there is support for the generation
of placeholders for missing graphics. These placeholders are MetaPost graphics that
have some 60 randomly scaled circles with randomized colors. The time involved
in generating 50 such graphics is (on Hans' machine) some 14 seconds, while in
LuaTEX only half a second is needed.

Because LuaTEX needs more startup time and deals with larger fonts resources,
pdfTEX is generally faster, but now that we have MPlib, LuaTEX suddenly is the
winner.

Hans Hagen
Taco Hoekwater


