
Hans van der Meer VOORJAAR 2008 85

Blocks and Arrows with MetaPost

Abstract
Typesetting of blocks and arrows in ConTEXt with
MetaPost.

Keywords
MetaPost, ConTeXt, color, drawing, block, arrow, label.

Introduction
There were a number of reasons for the development of
my own package for drawing blocks and arrows. The
first is the past experience with the use of LaTEX for
these. Its pictures always have a touch of imperfection
caused by the restricted set of line and arrow directions
available. Using home made sets of arrowheads
and lines in more directions than in the LaTEX-fonts,
alleviates this problem somewhat but not enough.
Drawing with MetaFont gives a lot more satisfaction,
albeit with more effort. So it was decided to develop
macros for block and arrow-drawing with a sufficient
level of sophistication.

Blocks
As an appetizer figure 1 shows a catalogue of the
shapes preprogrammed in the package. After the
presentation of the drawing API it will be told how
one can easily add its own shapes.

rectangle slant

round oval

diamond hexagon

roundrect

Figure 1. Block catalogue

All shapes are drawn from the path of a unit figure
(x = 0 · · · 1, y = 0 · · · 1) and should be sized by
setting their width and height. The following shapes
are present:

rectangle – unit square scaled in the x and the y-
direction;

slant – square with a parametrized horizontal
shearing;
round – parametrized superellipse;
oval – basically a unit circle;
diamond – a lozenge;
hexagon – six corners regularly spaced;
roundrect – square with parametrically curved ver-
tical sides.

The shapes in figure 1 are placed with the following
macro call, where rectangle, slant, etc. are substituted
for shape:

Block.shape (center, width, height, labeltext);

The rectangle is the default shape when calling Block
without the shape modifier. The parameter center
gives the distance from the origin over which the center
of the shape is displaced. The parameters width and
height scale the shape to the dimensions required.
Finally labeltext is a string typeset in the center.1

Some of these shapes are parametrized; in the
macro call above this parameter is given default value
0. Figure 2 shows the effect of various parameter
values on the slant and the roundrect shapes. These
figures are drawn with a more elaborate version of the
previous macro:

VarBlock.shape (param, rotation, center, width,
height, labeltext, outline);

p = 0.2 p = 0.4

p = 0.2 p = 0.6

Figure 2. Parametrized shapes

There are some extra parameters here. The shape pa-
rameter is param, the rotation is an angle (degrees,
counterclockwise) rotating the shape around its center
before being shifted in place, and outline is a boolean
governing the drawing of the frame around the shape.
The programmed default is taken for param = 0, but
as we will see this can be easily changed by altering
the shape definition. Figure 3 illustrates the rotation
of a shape with various angles.



86 MAPS 36 Hans van der Meer

0◦ 30◦ 45◦ 90◦

Figure 3. Rotated shapes

The outline parameter makes it possible to omit
the framelines, leaving the colored shape only. Note in
figure 4 the small difference in size between the two
shapes, caused by the centering of the linedrawing
on the boundary of the shape.2 In order to facilitate
drawing of shapes without outline one can use macro
OBlock in the same manner as Block:3

OBlock.shape(center, width, height, labeltext);

Block OBlock

Figure 4. Outline parameter

The coloring of pictures is based on a set of four
different colors; the management of those is explained
in section “Color management”. The distinct colors
are:

1. the color for linedrawing
2. the color for the interior of shapes
3. the color for the labeltext
4. the color for the general background

In the example of figure 5 two sets of colors are used.

text text

Figure 5. Different coloring

The rectangular frames around the figures are drawn
by a simplified shape drawer. There are three macros:

Frame (width, height, gap);
Framed (width, height, gap, framepen);
Framed (width, height, gap, framepen) modifier;

The first macro produces a rectangular block of size
(gap+width+gap)× (gap+height+gap) filled
with the general backgroundcolor. The second one
uses the pen parameter framepen to surround the
block with framelines in the color for linedrawing.
The third gives the possibility to individually modify
the surrounding framelines in linestyle and color. The
gap is an enlargement on all sides of the block; it
was introduced in order to prevent lines drawn at the
borders of the drawing area from spilling partly over
into the surroundings. The resulting frame is placed
at position (−gap,−gap).

As is the case with Framed one can have a modifier
on the framelines following calls to Block, OBlock
and VarBlock too. The right side of figure 6 has
been done with modifier dashed evenly withcolor
0.7yellow.4

text text

Figure 6. Trailing modifier

Defining shapes
It is quite easy to define shapes yourself and call them
up with Block.shape. Lets have a look at how shapes
are done. Shape drawing is effected by macro Form
that expects to receive a path of the shape in one of its
parameters; it rotates and shifts the path as required,
fills the resulting path, places the labeltext and possibly
surrounds it with framelines. All this is done in the
same way for all shapes.

The path of the shape is constructed by helper
macro varblock@#. For example Block.oval uses
a predefined string blockf.oval which contains the
path expression for a circle fitting within the square
bounded by x = 0 · · · 1, y = 0 · · · 1. That expression,
possibly parametrized with the shape parameter, is
scanned and processed, the resulting path being scaled
to its proper width and height. Afterwards the string
blockl.oval is scanned for any postprocessing action
that might be needed. The round shape (actually a
superellipse) needs such postprocessing; for the others
this is just a noop i.e. an empty string.

All that is needed therefore is the definition of these
two strings. As an example a fourpointed star is
developed; its four points ending at the midpoints
of the sides of the unit rectangle, the intersections
between them parametrically placed on the diagonals
(see figure 7).



Blocks and Arrows with MetaPost VOORJAAR 2008 87

(0.5− p, 0.5− p) (0.5 + p, 0.5− p)

(0.5− p, 0.5 + p) (0.5 + p, 0.5 + p)

(0, 0.5) (1, 0.5)

(0.5, 0)

(0.5, 1)

Figure 7. Plan of fourpointed star

In the code for the fourpointed star below note the
numeric variable p_. The expansion of VarBlock
assigns param to this variable.5

% Define path for fourstar.
vardef unitfourstar =

(0.5,0)
-- (0.5+p_,0.5-p_) -- (1,0.5)
-- (0.5+p_,0.5+p_) -- (0.5,1)
-- (0.5-p_,0.5+p_) -- (0,0.5)
-- (0.5-p_,0.5-p_) -- cycle

enddef;
% Define scan strings for fourstar.
string blockf.fourstar, blockl.fourstar;
blockf.fourstar :=

"if p_ = 0: p_ := 0.12 fi; unitfourstar";
blockl.fourstar := "";

This code is used in the placement of the two stars in
figure 8 with:

Block.fourstar (.., "star");
VarBlock.fourstar (0.05, 45, .. , "", true);

star

Figure 8. Fourpointed stars

Labels
Besides the standard label macro in plain one can use
the Label macro instead. The differences are subtle,
the most important one being the typesetting of the
labeltext. In Label the text is placed with ConTEXt-
macro textext into a hbox whose depth is forced to
zero. The reason for this is seen in the top boxes
of figure 9, which are typeset with the original label

macro: the baselines in the two boxes differ because of
their different depths. At the bottom the Label macro
has put both texts neatly on the same baseline. The
effect is clearly seen in the position of the e’s and d’s
with respect to the dashed line. A second refinement
is the fact that the labeltext can be both in the form of
apicture or a string. Since the Label macro is used in
the typesetting of shapes, this applies there too.

based depth

based depth

Figure 9. Label placement

Arrows
Uneasiness grew over the shape of the arrows provided
by the plain macros. This is illustrated in figure 10.
The shape of the arrowheads on the left could be
called somewhat more refined than those on the right.
Moreover the plain macros distort the arrowhead at
the end of a curved line, bending their flanks with the
curve. It is, of course, a matter of taste to find this
appalling. But more objectively stated, plain makes
it impossible to consistently draw arrowheads in the
same shape. A suitable alternative has given by David
Salomon and is implemented here.6

custom plain

Figure 10. Arrow shapes compared

Figure 11 shows the geometry of the arrowhead. There
are several parameters that can be varied:

l is the total length of the arrowhead, in the figure
the distance between the two red bars;
r is the ratio that determines the distance from the
tip to the point where the arrowhead is affixed to
the incoming line (absolute length is r× l);
α is the opening angle at the tip and determines
the distance between the wingtips;
β gives the curvature of the flanks (here 10◦), the
straight gray line is the one drawn for β = 0◦;
γ gives the curvature of the tailtips (here 2◦), the
straight gray line is the one drawn for γ = 0◦.



88 MAPS 36 Hans van der Meer

l
r

α

β
γ

Figure 11. Arrowhead

With this geometry available, one can build many
different arrowheads; figure 12 presents some. As can
be seen, the heads may or may not have an outline. Be
aware that not all parameter value combinations lead
to pleasing looking shapes. Arrowshapes are defined
with the following macro:

defineArrow (l,r,alfa,beta,gamma,outline) name;

The first five parameters are those from figure 11.
The outline parameter is a boolean designating the
drawing of an open arrowhead when true. In an
open arrowhead interior and outline are filled with
the colors for filling and linedrawing, respectively;
false results in a solid head in the linedrawing color.
It is necessary to select pen and colorset before the
definition is executed, because these are used at that
point. The parameter name is a user chosen unique
designation by which the arrowhead later will be
retrieved for placement in the drawing. Nota bene:
this parameter must be a string. The heads thus
defined keep their coloring even when a different
colorset is selected later.

The arrows so defined are placed with the following
macros for single and doublesided arrows, respectively.
Here too the name must be a string:

drawArrow (name) path_expression;
drawdblArrow (name) path_expression;

The lines to the arrowheads adapt to the linecolor in
effect at definition time, but this can be overridden
with a modifier for both linestyle as well as color (see
the rightmost arrow in figure 12).

The first of the next three macros defines a solid
arrowhead for default usage.7 The next two draw these
default arrows, respectively single and doubleheaded;
they are illustrated in figure 13. The drawing is fully
in the current linedrawing color. However a modifier
may be applied to change linestyle and/or drawing

Figure 12. Arrowhead variations

color, as in the two arrows on the right. Changing the
color for subsequent drawing can also be effected by
changing the color for linedrawing.

defineDefaultArrow (l, r, alfa, beta, gamma);
arrowline path_expression;
dblarrowline path_expression;

Figure 13. Default arrow drawing

Color management
The coloring scheme introduced in section “Blocks”,
consists of four colors used in linedrawing, filling the
interior of shapes, drawing labeltext and the general
background. The color for filling may be given an
alpha mode and a factor for transparency. These colors
can all be set individually with the four macros:

setFrameColor color;
setFillColor color;
setTextColor color;
setBackgroundColor color;

In modifiers they can be applied with a shortcut for
withcolor color by using:

withFrameColor
withFillColor
withTextColor
withBackgroundColor

The alpha mode and fill can be changed through:

setFillMode mode;
setFillAlpha factor;

Sometimes one needs a different set of colors just
momentarily, then the following macros come in
handy. Their names speak for themselves. Note that



Blocks and Arrows with MetaPost VOORJAAR 2008 89

saving cannot be nested, resaving causes the previous
save to be lost; therefore do not forget to restore in
case.

saveColors;
restoreColors;

There exist the following macros for the definition of
a set of colors:

defineColors (line,fill,text,background) name;
defineColorsTransparent

(line,fill,text,background,mode,factor) name;
defineCurrentColors name;
defineDefaultColors

(line, fill, text, background);
defineDefaultColorsTransparent

(line, fill, text, background, mode, factor);
setDefaultColors;

As was done for arrow shapes, name defines a des-
ignator with which to call up the thus named set of
colors. Nota bene: this parameter must be a string. If
the transparency parameters are not explicitely given,
they assume default values of 1 for mode and factor,
leading to completely opaque colors. The third macro
eases entering a definition for the colors currently set,
the fourth and fifth define a default that can be called
up by the last one. Colorsets are set by the next two

macros; here too name must be a string. The second
one below is just a set followed by a save.

setColors name;
setSaveColors name;

Notes
1. This is not completely true; in section 4 it is mentioned
that a picture is allowed also.
2. In case one wants to combine shapes with and without
outlines, the individual widths and heights can be adjusted
by the size of the pen in the respective dimension. The
macros penX and penY provide these for the current pen.
3. For those inclined to perfection: compare the rectangles
in figures 4 and 6 for the use of a square pen in the former.
4. Be aware that a dashed modifier applies to a pencircle,
but has no effect with pensquare.
5. It arises because the formal parameters of the macro
definition cannot be used in the blockf string, which is
processed by scantokens. Also note the use of vardef in
the path definition macro, def will not work here.
6. David Salomon, Arrows for Technical Drawings, TUG-
boat, Volume 13 (1992), No.2, p. 146–149.
7. Be aware that the implementation of the definition code
thus not guarantee recycling of the memory for redefined
entries. One should there not redefine too enthousiastically.

Hans van der Meer
hansm@science.uva.nl


