
NUMMER 36 • VOORJAAR 2008

R E D A C T I E
Taco Hoekwater, hoofdredacteur
Wybo Dekker
Frans Goddijn

N E D E R L A N D S T A L I G E TEX G E B R U I K E R S G R O E P

N E D E R L A N D S T A L I G E TEX G E B R U I K E R S G R O E P

Voorzitter
Hans Hagen

ntg-president@ntg.nl

Secretaris
Willi Egger

ntg-secretary@ntg.nl

Penningmeester
Wybo Dekker

ntg-treasurer@ntg.nl

Bestuursleden
Karel Wesseling

k.h.wesseling@planet.nl

Taco Hoekwater
taco@elvenkind.com

Postadres
Nederlandstalige TEX

Gebruikersgroep
Maasstraat 2

5836 BB Sambeek
Postgiro
1306238

t.n.v. NTG, Deil
BIC-code: PSTBNL21

IBAN-code: NL05PSTB0001306238
E-mail bestuur

ntg@ntg.nl

E-mail MAPS redactie
maps@ntg.nl

WWW
www.ntg.nl

Copyright © 2008 NTG

De Nederlandstalige TEX Gebruikersgroep (NTG) is een vereniging die tot doel
heeft de kennis en het gebruik van TEX te bevorderen. De NTG fungeert als een fo-
rum voor nieuwe ontwikkelingen met betrekking tot computergebaseerde document-
opmaak in het algemeen en de ontwikkeling van ‘TEX and friends’ in het bijzonder.
De doelstellingen probeert de NTG te realiseren door onder meer het uitwisselen van
informatie, het organiseren van conferenties en symposia met betrekking tot TEX en
daarmee verwante programmatuur.
De NTG biedt haar leden ondermeer:

2 Tweemaal per jaar een NTG-bijeenkomst.
2 Het NTG-tijdschrift MAPS.
2 De ‘TEX Live’-distributie op DVD/CDROM inclusief de complete CTAN software-

archieven.
2 Verschillende discussielijsten (mailing lists) over TEX-gerelateerde onderwerpen,

zowel voor beginners als gevorderden, algemeen en specialistisch.
2 De FTP server ftp.ntg.nl waarop vele honderden megabytes aan algemeen

te gebruiken ‘TEX-producten’ staan.
2 De WWW server www.ntg.nl waarop algemene informatie staat over de NTG,

bijeenkomsten, publicaties en links naar andere TEX sites.
2 Korting op (buitenlandse) TEX-conferenties en -cursussen en op het lidmaatschap

van andere TEX-gebruikersgroepen.

Lid worden kan door overmaking van de verschuldigde contributie naar de NTG-giro
(zie links); vermeld IBAN- zowel als SWIFT/BIC-code en selecteer shared cost. Daar-
naast dient via www.ntg.nl een informatieformulier te worden ingevuld. Zonodig
kan ook een papieren formulier bij het secretariaat worden opgevraagd.
De contributie bedraagt ¤ 40; voor studenten geldt een tarief van ¤ 20. Dit geeft
alle lidmaatschapsvoordelen maar geen stemrecht. Een bewijs van inschrijving is ver-
eist. Een gecombineerd NTG/TUG-lidmaatschap levert een korting van 10% op beide
contributies op. De prijs in euro’s wordt bepaald door de dollarkoers aan het begin
van het jaar. De ongekorte TUG-contributie is momenteel $65.

MAPS bijdragen kunt u opsturen naar maps@ntg.nl, bij voorkeur in LaTEX- of
ConTEXt formaat. Bijdragen op alle niveaus van expertise zijn welkom.

Productie. De Maps wordt gezet met behulp van een LaTEX class file en een ConTEXt
module. Het pdf bestand voor de drukker wordt aangemaakt met behulp van pdf-
tex 1.40.3-2.2 (Web2C 7.5.6) draaiend onder Linux 2.6. De gebruikte fonts zijn Bit-
stream Charter, schreefloze en niet-proportionele fonts uit de Latin Modern collectie,
en de Euler wiskunde fonts, alle vrij beschikbaar.

TEX is een door professor Donald E. Knuth ontwikkelde ‘opmaaktaal’ voor het let-
terzetten van documenten, een documentopmaaksysteem. Met TEX is het mogelijk
om kwalitatief hoogstaand drukwerk te vervaardigen. Het is eveneens zeer geschikt
voor formules in mathematische teksten.
Er is een aantal op TEX gebaseerde producten, waarmee ook de logische struc-
tuur van een document beschreven kan worden, met behoud van de letterzet-
mogelijkheden van TEX. Voorbeelden zijn LaTEX van Leslie Lamport, AMS-TEX van
Michael Spivak, en ConTEXt van Hans Hagen.

Inhoudsopgave

Redactioneel, Taco Hoekwater 1

Announcement: TUG conference 2008, Taco Hoekwater 2

Typesetting CJK and other exotic characters using LaTEX and X ELaTEX, Wilfred van Rooijen 3

Met X ETEX meertalig, Jelle Huisman 13

What is it about all those *TEXs, Piet van Oostrum 18

Book Review: Fonts & Encodings by Yannis Haralambous, Ulrik Vieth 22

On reading Fonts & Encodings, Luigi Scarso 24

Latin Modern Nederlands, Hans Hagen 25

Theorems in ConTEXt, Aditya Mahajan 27

Exam Papers, Hans van der Meer 33

Revision control for TEX documents, Roland Smith 39

The luafication of TEX and ConTEXt, Hans Hagen 43

DHZ Boek, Frans Goddijn 51

Notes on Self-publishing, David Walden 53

Announcement: ConTEXt User Meeting 2008, Mojca Miklavec 65

MetaPost library project, Taco Hoekwater & Hans Hagen 66

The MetaPost Library, Hans Hagen & Taco Hoekwater 69

Reshaping Euler, Hans Hagen, Taco Hoekwater, Volker RW Schaa 82

Blocks and Arrows with MetaPost, Hans van der Meer 85

Taco Hoekwater VOORJAAR 2008 1

Redactioneel

Deze Maps is, voorzover ik kan nagaan, de eerste
waarin ConTEXt niet alleen in het aantal gezette
bladzijden, maar ook in het aantal aangeleverde
artikelen, een voorsprong neemt op LaTEX. Gelukkig
maar, want het is ook de eerste Maps helemaal zonder
Siep Kroonenberg, waardoor de LaTEX sectie van de
redactie wat onderbezet is.

Al een paar jaar staat onder het kopje Productie in
de colofon van de Maps iets als ‘het pdf bestand voor
de drukker wordt aangemaakt met behulp van pdftex
. . . ’. Voor de Maps die nu voor u ligt is dat eigenlijk
een leugen, want meerdere artikelen in deze Maps zijn
geproduceerd met andere TEX-varianten zoals X ETEX
en LuaTEX. We hebben dan ook een heel gevarieerd
aanbod deze keer.

Meteen al het eerste artikel in deze Maps, dat van
Wilfred van Rooijen (Typesetting CJK and other exo-
tic characters), is zelfs helemaal niet door de redac-
tie getypeset. Toen de eerste versie van dat artikel
binnenkwam was onmiddellijk (en pijnlijk) duide-
lijk dat de Maps--productie nog niet klaar is voor
CJK typesetting. Wilfred was zo vriendelijk de defi-
nitieve pdf-bestanden zelf voor ons klaar te maken.
Jelle Huisman’s artikel (Met X ETEX meertalig) is wel-
iswaar op de redactie gezet, en zelfs met pdftex,
maar dat kon alleen omdat Jelle alle voorbeelden
had aangeleverd als pdf-bestanden. En die pdf-
bestanden zijn uiteraard gegeneerd met X ETEX.
Een vaak gestelde beginnersvraag is ‘Wat is nu het
verschil tussen LaTEX en MikTEX, of tussen pdfTEX
en ConTEXt?’ Het artikel van Piet van Oostrum
(What is it about all those *TEXs) schept orde in
het oerwoud van termen met ‘TEX’ in de naam.
Daaropvolgend kunt u twee verschillende recensies
lezen van de Engelse vertaling van Yannis Hara-
lambous’ boek over Fonts en Encodings. De eerste
is van de hand van Ulrik Vieth, de tweede van Lui-
gi Scarso. Vanwege de zeer grote verschillen tus-
sen deze twee artikelen vonden we het de moeite
waard beide af te drukken.
Hans Hagen’s artikel over de ‘lange ij’ (Latin Mo-
dern Nederlands) is gezet met LuaTEX, omdat de

benodigde OpenType trickery alleen in LuaTEX en
X ETEX mogelijk is, niet in pdfTEX.
In Theorems in ConTEXt laat Aditya Mahajan ons
zien welke recente uitbreidigen in ConTEXt zijn
toegevoegd voor theorems en proeven.
Hans van der Meer is in deze Maps vertegenwoor-
digd met twee artikelen. De eerste daarvan (Exam
Papers) introduceert zijn module voor de productie
en het onderhoud van examens.
Documentbeheer is het onderwerp van het artikel
van Roland Smith (Revision control for TEX docu-
ments).
De nieuwste versie van ConTEXt heeft uitgebreide
ondersteuning voor het gebruik van LuaTEX. Hans
Hagen’s tweede artikel (The luafication of TEX and
ConTEXt) geeft een inleiding in de daardoor toege-
voegde functionaliteit.
Iets heel anders komt aan bod in de volgende twee
artikelen: Frans Goddijn (DHZ Boek) en David Wal-
den (Notes on Self-publishing) verhalen allebei over
het zelf publiceren van boeken en wat daar alle-
maal bij komt kijken.
De volgende twee artikelen zijn beide samenwer-
kingen tussen Taco en Hans over de ontwikkelin-
gen rond MetaPost. De eerste (MetaPost library pro-
ject) beschrijft de theorie en doelen van het MPlib
project, de tweede (The MetaPost Library) beschrijft
de toepassing daarvan in ConTEXt MkIV. Dat laat-
ste artikel is gezet met LuaTEX.
Nog meer van Hans en Taco, nu samen met Volker
Schaa, vindt u in het voorlaatste artikel van deze
Maps (Reshaping Euler). De Euler fonts zijn door
Hermann Zapf herontworpen ter ere van Knuth’s
70ste verjaardag.
Tenslotte: Blocks and Arrows with MetaPost is het
tweede artikel van Hans van der Meer, over het
gebruik van MetaPost voor het tekenen van dia-
grammen.

En dat was het dan weer voor deze Maps. Namens de
redactie wens ik u veel leesplezier, en wellicht tot ziens
op de NTG-dag in Purmerend op 26 juni.

Taco Hoekwater

TEX Users Group 2008 Conference

University College Cork
Cork, Ireland
21–24 July 2008
http://tug2008.ucc.ie/

�

TEX’s 30th birthday
Interfaces to TEX

Workshops
Presentations

Hosted by the Human Factors Research Group (http://hfrg.ucc.ie)

Wilfred van Rooijen VOORJAAR 2008 3

Typesetting CJK and other exotic
characters using LaTEX and X ELaTEX
Anything goes (well, almost...)
Abstract
This paper tries to illustrate some of the particularities
of typesetting CJK characters using several flavors of
LaTEX. Special attention is given to Japanese. A short
introduction is given about the nature of the character
scripts and the special demands those alphabets put
on character and font encodings. Typesetting Japanese
using p(te)TEX, LaTEX, Lambda, and X ELaTEX is
discussed. Special discussion is given to X ELaTEX, and
the possibilities of including annotation markup and
vertical typesetting in Japanese texts using X ELaTEX.
It will be shown that although typesetting vertical
material is possible with X ETEXv0.997, more
development work will be needed in this area to create
a dependable vertical typesetting system.

Keywords
X ETEX, X ELaTEX, CJK, unicode, horizontal and vertical
typesetting, Japanese

This paper is the result of a question that was
asked recently on the Dutch LaTEXmailing list. The
question was whether and how it would be pos-
sible to typeset Japanese with LaTEX. In 2002, I
did an internship in Japan, and remembered that I
had to install pTEX, which was a patched version of
(then) teTEX 2.2, and then some trickery was nec-
essary to have the correct fonts show up in the fi-
nal PostScript file. Thinking that life must have be-
come easier in the meantime, I set out on a mission
to see what the different flavours of LaTEX can do in
scope of the CJK languages1. This paper is a (not
very technical) summary of my experiences. The
major focus is on Japanese, but examples in all CJK
languages are provided. The paper will start with
a bit of history to explain the origins of the Chi-
nese character script, which provides insight into
the considerable difficulties that (used to) exist in
using CJK on computers. Then we’ll discuss a bit
about character and font encoding, which will be
followed by a listing of possibilities of incorporat-
ing CJK texts into a LaTEX document. The paper
will be concluded by some examples using X ETEX

which should be reproducible by anybody who has
a recent version of TEXLive, Adobe Acrobat reader,
and an internet browser.

History of Japanese characters
This short introduction follows that of [1]. Chi-
nese characters originated in the Yangtze River
region of China, between 2000‒1500 BC. Start-
ing as simple pictographs, the characters evolved
to also express abstract concepts. Several pic-
tographs could be combined into one character to
express complex ideas, and provide different nu-
ances in meaning. The well known square-formed
characters (known in Japanese as kaisho, 楷書) de-
veloped around 200 AD. A more or less formalized
system evolved where each character has a main
part expressing the base meaning of the charac-
ter (Japanese: 部首, ‘radical’), adorned with other
radicals to express pronunciation and nuance of
meaning. It should come as no surprise that such
a system can easily lead to a large number of dif-
ferent characters. Around 200 AD, there were an
estimated 50.000 characters.

Chinese characters entered Japan between the
third and fourth century AD, mainly by Chinese
and Korean monks and scholars. In fact, the word
kanji (漢字) literally means ‘letters of the Han Dy-
nasty’ (206 BC ‒220 AD). In Japan, kanji were ini-
tially only used to write Chinese texts, but over
time kanji came to be used for Japanese texts as
well. This lead to the development of different pro-
nunciations for the same character. For example,
the kanji 国 is pronounced ‘kuni’ in Japanese read-
ing (kun yomi (訓読み), litt. ‘reading for meaning’),
and ‘KOKU’ in Chinese reading (on yomi (音読み),
litt. ‘reading for sound’). Usually, kanji appearing
by themselves are read in kun yomi, and in combi-
nation kanji are read in on yomi: 母国 BOKOKU, 母
haha, 国 kuni.

The fundamental differences between Chinese

4 MAPS 36 Wilfred van Rooijen

and Japanese are that Japanese is an inflected,
polysyllabic, non-tonal language, whereas Chinese
is the opposite. Over time, it became necessary
in order to write Japanese to come up with a way
of expressing the inflected parts of verbs, for in-
stance. From around the seventh century AD a
system developed to express these inflected parts
by standard kanji used phonetically: man’yōgana2.
The man’yōgana eventually led to the kana (仮
名, ‘assumed names’), which are purely phonetic.
The modern descendants of kana are hiragana and
katakana. In modern Japanese, the non-inflectio-
nal part of a verb is written with kanji, and the in-
flected part is written in hiragana: 見る ‘to see’, 見
ない ‘to not see’. Katakana is used to write for-
eign words in Japanese transcription: ソースコード
‘source code’.

In Chinese it is possible to distiguish between
homophonic kanji by their tonality, but in Japanese
that is not possible. As a result, many different
kanji obtained an identical pronunciation. Over
time in China the pronunciation of standard Chi-
nese changed. The Japanese incorporated many
of the ‘newer’ pronunciations of the existing kanji
into their vocabulary, so that finally each charac-
ter may have many different pronunciations (ex-
amples are 下, ‘below’, which has ten pronuncia-
tions, and 生 ‘life’, with nine), and there are many
characters sharing the same pronunciation. My
electronic dictionary lists 323 kanji with pronunci-
ation ‘kō’, and 267 under ‘shō’. Because there are
so many homophonic kanji, many television pro-
grams are subtitled.

Much debate rages over the total number of
kanji. The famous Dai Kan-Wa Jiten (大漢和辞典)3
‘Great Chinese - Japanese Dictionary’), published
since 1955, contains a total of 49.964 kanji (al-
though most of those differ only in their radicals).
After 1945, the Japanese ministry of education
tried to standardize a list of kanji and produced
the ‘tōyō kanji’ list, litt. ‘temporary use kanji’, with
1850 kanji, 881 of which are known as ‘kyōiku
kanji’ which are taught in the first six years of
school. In 1981, the list was revised to become
the ‘jōyō kanji’ list (general use kanji) with 1945
kanji, 996 of which are taught. Adherence to this
list is not strictly enforced, and especially in schol-
arly works, literature and poetry many non-jōyō
kanji can be found. For example, Kodansha’s es-
sential kanji dictionary [2] lists 1945 kanji, while
the Compact Nelson [3] lists 3068 kanji, and my
electronic dictionary lists 6355.

Traditional and simplified Chinese
In China simplified characters have been used for
many centuries, but those were not used in print
widely. From 1949, the Communist government
began assembling official lists of simplified kanji
for everyday use in print. The current official list
of simplified Chinese contains 2249 characters.
This list is also the official list for Singapore and
Malaysia. However, in the parts of China not in-
fluenced by communism (Taiwan, Hong Kong and
Macau) the traditional characters have been in use
continuously, of which no definitive number ex-
ist. As an illustration of simplified resp. traditional
characters, consider the words ‘China’ and ‘univer-
sity’: 中国 vs. 中國, ⼤学 vs. ⼤學.

Korea: hangul, chosŏn'gŭl and hanja
In Korea Chinese characters were also introduced
very early on. The typical hangul alphabet (한글)
was officially introduced in 1443 by King Sejong
the Great. In its base form, hangul is a purely
phonetic alphabet, with each symbol representing
one sound. However, this system is complicated
by the fact that several symbols can be assem-
bled into one character to represent one syllabic
block. For example, the word ‘hangul’ is composed
of two syllabic blocks 한 + 글, which are each
composed of three symbols: 한 + 글 = ’ㅎㅏ
ㄴ’ + ’ㄱㅡㄹ’, ‘h’ ‘a’ ‘n’ + ‘g’ ‘u’ ‘l’. There
are 11.172 valid combinations in hangul. Apart
from hangul, Chinese characters, known as hanja,
are also still used on a small scale, for instance in
proper names, official paperwork etc. In North-
Korea the same hangul alphabet is used, although
it is called chosŏn’gŭl (조선글), and no hanja are
used.

Character encoding and font encoding
A computer can only handle information in the
form of a stream of bits, and thus for a computer
to handle characters, one needs a one-to-one map-
ping, mapping each character to a unique numer-
ical representation. This numerical value is sub-
sequently transformed into a sequence of bits in
a prescribed manner. The number of characters
that can be encoded depends on the number of
bits that is used for the mapping (encoding). Tra-
ditional ASCII uses 7 bits for encoding, allowing a
total of 128 possible characters, which is too lim-
ited to express even the simplest character lists
in the CJK languages. For this reason, different
encoding schemes were developed for CJK. For

CJK with LaTEX and X ELaTEX VOORJAAR 2008 5

Japanese, EUC-JP, JIS and SJIS were developed.
EUC (Extended Unix Code) is a multi-byte encod-
ing; each character is encoded using either 1, 2 or
3 bytes, and each byte is capable of representing
94 characters (several bits per byte are required
to distinguish whether the byte is part of a one-,
two- or three-byte character, and hence not all bits
are available to encode characters). Besides EUC-
JP, there are EUC-CN (Chinese), EUC-KR (Korean)
and EUC-TW (Taiwanese). EUC-JP is the norm for
Unix(-like) operating systems.

JIS (Japanese Industrial Standards) consists of
6879 kanji and a specification for encoding into
one or two bytes. A maximum of 94 × 94 = 8836
positions are available in JIS. A competing encod-
ing is Shift-JIS (SJIS), originally developed by Mi-
crosoft (and others). SJIS differs from JIS in how
the numerical values of characters are translated
to one or two bytes. Because of the nature of
SJIS, it is difficult to detect SJIS encoding automat-
ically, often resulting in a messy screen, known in
Japanese as文字化け(mojibake), ‘characters in dis-
guise’. Individual vendors use the space not taken
by the JIS character set to add their own charac-
ters to SJIS. For example, mobile phone operators
use this space to encode emoticons, amongst other
things. Microsoft uses their own extended SJIS in
Windows (Codepage 932)4.

Unicode5 is an encoding standard with enough
room to encode millions of different characters in
one large set of assigned code points. Unicode pro-
vides three different ways to translate characters
code points into a form capable of transmission:
UTF-8 (Unicode Transformation Format 8) trans-
lates the code points into 8 bit units: a sequence
of 1, 2, 3 or 4 bytes; UTF-16 translates into 16 bit
units; and UTF-32 translates into 32-bit units. The
total number of possible code points is 1114112
(220 + 216).

Other encodings, unicode and han unification
For Chinese, Taiwanese, Hong Kong-ese, and Ko-
rean different encoding schemes were developed
(Big5 for traditional Chinese, BG for mainland Chi-
nese, KS for Korean). This makes it virtually im-
possible to typeset more than one of the CJK lan-
guages within the same file, because different char-
acters would resolve to the same numerical pre-
sentation, and it would depend on the font encod-
ing which character is actually displayed. Only uni-
code encodes all the characters separately, making
it possible to use all kinds of alphabets indiscrim-
inately in the same file. To reduce the number of
CJK characters in unicode, the so-called ‘han uni-

Figure 1. An example showing the combined use of
horizontal and vertical typesetting in a Japanese news
paper article.

fication’ is implemented, where several variants of
the same character common to the CJK languages
are mapped to the same unicode position. This
leads to occasional protest, for instance when a
character historically used for a proper name is
designated as a variant of another character. The
specific variant can then no longer be encoded sep-
arately in unicode, and cannot be typeset on a com-
puter.

LaTEX and CJK
To typeset a text, the computer will read the in-
put stream, and interprets a given sequence of bits
as representing a certain character, based on the
character encoding used. The corresponding char-
acter in the font set should then be displayed. If
one has a font with the same font encoding as the
input encoding, this implies a one-to-one mapping.
If on the other hand a unicode font set is used with,
say, SJIS encoding of the file, the SJIS characters
from the input stream have to be translated to uni-
code values in order to display the correct char-
acter on the screen using the unicode font. Tra-
ditional LaTEX has several problems here because
of built-in limitations: EUC or (S)JIS input has to be
read, and a translation provided to typeset the cor-

6 MAPS 36 Wilfred van Rooijen

Figure 2. An example showing various features of
Japanese typesetting: Latin text is set sideways in
vertical typesetting. The `equation' is also set sideways.
The two punctuation marks �and �are set in burasage.

rect characters at the correct location, and the re-
sulting DVI stream has to be correctly translated to
a PS file (provided that an adequate PS font is avail-
able with glyphs for the kanji). Legacy TEX only al-
lows for 256 character (1-byte) encodings. Several
patches and packages have been developed over
the years to circumvent these problems, as will be
discussed later.

Specific typographic rules exist for CJK. In the
case of Japanese, texts can be either read hori-
zontally from left to right (LTR), or vertically from
right to left (RTL). Almost all printed material in
Japanese is set vertically: news papers, magazines,
manga etc. Publications in the ‘hard’ sciences are
usually set horizontally because of the presence
of equations. Advertisements in printed matter,
tabloids etc commonly feature both horizontal and
vertical typesetting. Legacy TEX will only allow
LTR typesetting. e-TEX allows LTR and RTL. X ETEX
is the only flavor capable of setting texts vertically
(although this depends on the specifics of the font
used, as will be shown later). In figure 1 an illus-
tration provided showing mixed use of horizontal
and vertical typesetting in one news paper article.

A common misconception is that CJK languages
do not have kerning. Although it is essentially true
that all characters are thought of as being written
on a square grid, there are characters that do not
necessarily occupy a full character position (the
punctuation marks「,」,。and 、for instance). Also,
some characters are ‘denser’ than other characters
and need a bit more room around them for legibil-

Figure 3. An example of ruby, or furigana. The first two
characters are glossed for pronunciation. The punctuation
mark marks a grammatical rule. The last ruby denote a
highly uncommon pronunciation.

ity6. Most CJK fonts do not support kerning, but
professional DTP software does. Another specific
feature is that punctuation marks are allowed to
protrude into the margins (burasage). See figure 2
for an illustration.

Another feature of Japanese is ‘ruby’: hiragana
characters printed above kanji (in horizontal texts)
or to the right of kanji (in vertical texts) to indicate
pronunciation7 as illustrated in figure 3. Of course,
ruby is most commonly encountered in publica-
tions for young readers, but you see it occasionally
on name tags and official paperwork.

Japanese fonts are usually available as Gothic
and Mincho. Gothic is comparable to sans-serif,
mincho is comparable to a serif font, and is most
commonly used for printing. For manga etc, a
‘hand-written’ style is usual, while for poetry the
‘cursive’ style is commonly used. In cursive, the
brush does not leave the paper when writing a
character, yielding highly stylized and abstracted
characters (in extreme cases denoted as ‘grassy’).
Please refer to the figures for some illustrations of
the different styles of kanji.

漢字は難しい。時々全然読めない。
Figure 4. Mincho typeface (Kozuka Mincho Pro-VI)

漢字は難しい。時々全然読めない。
Figure 5. Gothic typeface (Kozuka Gothic Pro)

漢字は難しい。時々全然読めない。
Figure 6. Manga style hand-written typeface
(YOzFontN04)

漢字は難しい。時々全然読めない。
Figure 7. Cursive typeface (HakusyuSeigyosyoKyo)

CJK with LaTEX and X ELaTEX VOORJAAR 2008 7

漢字は難しい。時々全然読めない。
Figure 8. Highly cursive, `grassy' typeface
(HakusyuSousyuKyo)

国会議事堂前
Figure 9. Typeface `tensho', used on seals and stamps
(HakusyuTensyoKyokan). Note that even for Japanese
this type of writing is not always easy to read (国会議事
堂前).

Integrating CJK characters into LaTEX
documents
As it turns out, there are several ways of incorpo-
rating CJK into LaTEX documents, and all of these
have their strong and weak points. This part of the
paper is really what the original question was all
about: ”I want to include some Japanese text in my
LaTEX document, how do I achieve this?”. And as is
to be expected, not all methods are equally appli-
cable for given circumstances. I hope to give some
insight into the various possibilities, and provide
some guidance to when to use which method. The
discussion of X ETEX’s capabilities will be put off un-
til the next section.

pTEX, pteTEX, and pTEXlive
In Japan a patched version of TEX was developed
called pTEX. pTEX is capable of reading and type-
setting EUC-JP, (S)JIS and UTF-8 encoded files.
Nowadays, inclusion of the patches is automated in
the pteTEX and pTEXlive distributions8. Patching is
required of TEX and dvips, although nowadays only
patches for dvipdfmx are available. The user is re-
quired to install an adequate font for Japanese, like
Cyberbit or Sazanami.

The pTEX distributions are the most complete
way of typesetting Japanese with LaTEX, support-
ing burasage, ruby, and full vertical typesetting.
The drawback is that only Japanese can be type-
set. pteTEX is included in many linux distributions
for the Japanese market, like VineLinux and Tur-
boLinux, and pTEXLive is available as a small set
of patches whose inclusion into a regular TEXLive
distribution is automated.

Traditional LaTEX and the CJK package
Another option is to use the CJK package, available
in TEXlive 2007. This package allows typesetting
of Chinese, Japanese, Korean and Thai. The CJK
package uses a pre-processor based on the Mule
package of XEmacs (cjk-enc.el) to translate an in-

Figure 10. Example showing gothic and cursive kanji
styles used together. This is from a leaflet advertising
new books to be published. Notice that contrary to
popular belief latin numerals can be used in vertical
typesetting. Also notice that horizontal and vertical
typesetting are often mixed.

put file in a given encoding (EUC-JP, Big5, BG, ...) to
some canonical form, and then heavily uses trans-
lations from the input encoding to font encoding to
typeset all the characters. Because the CJK pack-
age functions within legacy LaTEX, the font encod-
ing (in NFSS) plays an important role. If only one
of the CJK languages is used, the input file can be
encoded in a relevant encoding (SJIS for Japanese,
for instance), and pre-processed ‘on the fly’ using
the sjis(pdf)latex, bg5(pdf)latex, . . . scripts
which are available in TEXlive 2007. If more than
one CJK language is used in one file, the file should
be encoded in UTF-8, preprocessed with (X)Emacs
Mule, and then through LaTEX. Switching between
the languages and the corresponding font families
has to be done by the user using the corresponding
commands in the input file. Because of the way the
CJK package typesets the material, it is quite slow,

8 MAPS 36 Wilfred van Rooijen

and according to the manual, should only be used
to typeset some CJK material in a given document,
but is not very efficient to typeset large documents
in the CJK languages. Personally, I consider the
CJK package to be very useful (it does fully support
ruby, for instance), but only relevant for the some-
what advanced user, mainly because of the selec-
tion of relevant font families (leading to all kinds
of issues with .fd and .map files).

Traditional LaTEX and the UCS package
Legacy LaTEX is perfectly capable of reading uni-
code input files with the UCS package. However,
as discussed above, being capable of reading an
input stream and subsequently putting the correct
character in the output are two different things.
If LaTEX is to typeset a Japanese unicode input, a
translation still has to be made from the unicode
input into some font encoding for NFSS to access
the glyphs. For example, to properly typeset some
Japanese text, \usepackage[utf8x] {inputenc} and
\usepackage[C42,T1]{fontenc} are required to in-
struct LaTEX to read UTF-8 input, translate to C42
(NFSS SJIS) for the CJK characters, and use T1 for
the non-CJK characters (the legacy CJK fonts in
LaTEX do usually not include the ‘latin’ part of the
font set, so a ‘T1-capable’ font like latin modern is
used instead). If the options for fontenc are set cor-
rectly, TEXLive 2007 will run correctly (but note
that if C40 is chosen instead of C42, the required
kanji fonts are not included in TEXLive).

After some experimenting with UCS, I found that
it will only typeset one of the CJK languages in a
given document. I also found that line breaking is
not performed, because legacy LaTEX uses whites-
pace or hyphenation for points where a line can
be broken, neither of which are present in a CJK
text. Ruby is not supported, although a package
could probably be written. The UCS manuals and
documentation are very sparse.

Omega, Lambda and dvipdfmx
My next attempt was to useΩ (Omega, an extended
version of TEX) and Λ (Lambda, ‘latex for omega’)
to typeset CJK material. Lambda can read unicode
input and typeset LTR and RTL languages. Native
Lambda does not support the CJK languages, so
a patch (Omega-j) is needed9. For the CJK lan-
guages, the resulting DVI file can be converted to
PDF with dvipdfmx, but only after some tweak-
ing (see http://oku.edu.mie-u.ac.jp/~okumura/tex-
faq/ japanese/ for details). Technically, Lambda
and Omega have the possibilities of fully support-
ing Japanese, including vertical typesetting and

burasage, although I was not capable of reproduc-
ing the vertical typesetting example I found in one
of the manuals, and setting up the burasage re-
quires manual tweaking of OTP files (which I con-
sider to be too much hassle). Ruby is not sup-
ported, although a package could probably be writ-
ten. But perhaps the biggest drawback is that
Lambda and Omega are no longer being devel-
oped.

X ETEX and X ELaTEX: anything goes!
The most natural way of typesetting each and any
character with LaTEX would be to use unicode en-
coding for the input, and a unicode encoded font
for the output. This is what X ETEX10 is capable of
doing. X ETEX is an extension of TEX, and was origi-
nally written specifically for Mac OS. It is currently
available on linux (TEXlive 2007, v0.996) andWin-
dows (MikTEX, W32TEX, v0.997). X ELaTEX is latex
for X ETEX. The two strong points of X ETEX are that it
is fully capable of handling unicode input, and it in-
teracts directly with (unicode encoded) OpenType
fonts installed on the computer. The direct inter-
action with the OpenType fonts installed on the
system means that if one has a CJK-capable font
available, typesetting CJK in X ELaTEX becomes very
easy: simply type the text into your favorite editor,
run xelatex and behold the result. The direct in-
teraction with the system fonts also implies that
some of the finer details of typesetting are taken
out of TEX, and are instead left to the peculiarities
of the font in question and the font rendering soft-
ware available on the system. While this may be
unacceptable to the professional typesetter, it is a
major improvement for the (advanced) LaTEX user,
because there is no longer a need to deal with set-
ting up all those .tfm, .fd and .map files that make
font selection in LaTEX a hassle.

To use X ETEX to typeset any type of character,
one only needs:

1. An editor capable of reading and writing
UTF-8 encoded files (for most recent linux
distributions, UTF-8 is the default encoding,
and gedit, XEmacs and other editors support it)

2. An OpenType font which has glyphs for the
particular characters you want to appear in the
output.

Since X ETEX reads unicode directly and uses
unicode encoded fonts, an input file to typeset
Japanese in X ELaTEX could be as simple as the fol-
lowing example:

CJK with LaTEX and X ELaTEX VOORJAAR 2008 9

\documentclass[]{article}
\usepackage{fontspec}
\begin{document}
\fontspec[Mapping=tex-text]{Kozuka Mincho Pro-
VI R}
Kozuka Mincho Pro-VI R: This is English.これは日本語で
す。
\fontspec[Mapping=tex-text]{Sazanami Mincho}
Sazanami Mincho: This is English. これは日本語です。
\end{document}

In this example, the fontspec package is used.
This package provides a very simple interface to
select a particular OpenType font for the docu-
ment. It also provides options to use special font
features. Note that this example shows that it is not
necessary to load any other packages to typeset
the Japanese characters if this input file is saved in
UTF-8 encoding.

Prerequisites to use exotic characters in
XeLaTeX
To typeset a particular text using ‘exotic’ charac-
ters, the first thing that is needed is an OpenType
font with glyphs for the characters you wish to
obtain in the output. For Japanese, a good op-
tion is the Adobe Acrobat Reader Japanese Lan-
guage pack11. This will install two .otf fonts,
Kozuka Gothic and Kozuka Mincho (on linux sys-
tems, the files are named KozGoPro-Medium.otf
and KozMinProVI-Regular.otf). Another option is
the Cyberbit font12, or the Sazanami fonts13.

To install extra fonts on a (recent) linux sys-
tem, simply put the (.otf, .ttf) file in $HOME/.fonts
and run fc-cache -fv to update the system font
database. To use a given font in your document,
you need to know the name of the font to enter in
the \fontspec{} command. A list of available fonts
on your linux system can be obtained by running
fc-list, which will give a list of font names and ca-
pabilities. For example, running ‘fc-list | grep
Koz’ yields:

Kozuka Mincho ProVI, 小 塚 明 朝 Pro-
VI,Kozuka Mincho ProVI R,小塚明朝 ProVI
R:style=R,Regular
Kozuka Gothic Pro, 小 塚 ゴ シッ ク
Pro,Kozuka Gothic Pro M,小塚ゴシック Pro
M:style=M,Regular

while ‘fc-list | grep Cyber’ results in

Bitstream Cyberbit:style=Roman

The fonts in the Acrobat Reader Japanese Lan-

guage Pack are not by default stored in a sys-
temwide font directory. I have copied the fonts
to my $HOME/.fonts directory for use in this pa-
per. Recent installations of OpenOffice provide
a.o. the Baekmuk fonts (for Korean) and the AR
(Arphic) family of Chinese fonts. Free OpenType
fonts are available for many languages, and an in-
ternet search will reveal candidate fonts for your
language of choice. Unicode supports many con-
temporary languages, as well as other scripts, like
medieval variant alphabets, Ancient Greek Linear-
B, and cuneiform etc. All these can be set with
X ELaTEX if one has an adequate font available. Es-
pecially useful fonts are Code2000 and Code2001,
which have glyphs for many character sets, for ex-
ample cuneiform using Code2001: 𐏃𐎹𐏃𐎨𐎠𐏐
𐎱𐎽𐎻𐎹𐎫𐏐 𐏃𐎹𐎠𐏐 𐎠𐎶𐎠𐎧𐎶𐏐 𐎫𐎢-
𐎶𐎠𐏐 𐎧𐏁𐎠𐎹𐎰𐎡𐎹𐎠𐏐 𐎠𐏃𐏐. For lan-
guages not endorsed in the unicode standard, a
‘private range’ is left available in unicode for indi-
vidual use; candidates for the private range are for
instance Klingon (
) and Elvish
(Tengwar): , set with Code
2000). Note that line breaking etc is not (yet) prop-
erly defined for these languages, hence underfull
and overfull hboxes result.

To enter Japanese or Chinese into a computer
requires a special input method. This kind of soft-
ware will not be decribed here in detail. For Win-
dows, the IME (InputMethod Editor) allows switch-
ing between latin and Japanese input. On linux,
canna and SCIM or UIM do the same. As a sub-
situte, go to http:// babel.altavista.com/ and
type in some words, then have it translated to the
character types you like to try (Japanese, Simpli-
fied or Traditional Chinese, Korean, as long as your
font is capable of displaying the characters). Copy-
paste the result in your editor, save as UTF-8, run
xelatex, and enjoy your PDF output.

Specific support for Japanese typography
In X ETEX v0.996 there is no specific support for
the Japanese language. Most notably, support for
ruby is lacking. With a simple patch, the existing
package nruby.sty allows simple ruby support.
Burasage is not (yet) supported. Babel support is
not (yet) fully available for the CJK languages. Bib-
tex seems to work with UTF-8 input files with CJK
characters (the reference list for this paper is made
with bibtex).

For X ETEX v0.997 (available through svn) the
package zhspacing.sty is under development to
bring specific support for inter-character spacing

10 MAPS 36 Wilfred van Rooijen

in CJK, line breaks in CJK texts, spacing between
CJK and non-CJK text, and support for CJK char-
acters as elements in mathematical equations (su-
perscript, subscript etc).

Support for vertical typesetting
X ETEX does not support vertical typesetting per se,
but it is still possible to typeset material vertically.
To achieve this, one has to have an OpenType font
with the ‘vrt2’ property. Glyphs in such a font can
be rotated. If one puts some CJK text with rotated
glyphs inside a \rotatebox, vertical typesetting is
obtained. It should be noted that vertical typeset-
ting is not very stable at this moment. Several man-
uals give examples of vertical typesetting (e.g. the
fontspec and zhspacing documentation), but Your
Mileage May Vary depending on your system. In
my case, Texlive 2007 with X ETEX v0.996 yielded
incorrect typesetting in vertical mode.

I was advised to upgrade to v0.997, because of
better support for vertical typesetting. After some
trial and error, I was able to typeset some material
vertically, as illustrated in figure 11, which was set
with the following source:

\begin{figure}
\begin{center}
\rotatebox{-90}{
\begin{minipage}{0.35\textwidth}

\fontspec[Script=CJK,RawFeature=vertical]{KozukaMin-
cho Pro-VI}
三一 \ruby{坂上是則}{さかのうえのこれのり}
\\[2\baselineskip]

\fontspec[Script=CJK,RawFeature=vertical]
{YOzFontKA04}
朝ぼらけ

\\[0.5\baselineskip]
\ruby{有明}{ありあけ}の月と　見るまでに

\\[0.5\baselineskip]
\ruby{吉野}{よしの}の里に　ふれる\ruby{白雪}{しらゆき}

\end{minipage}
}
\end{center}
\end{figure}

To obtain the result of figure 11, the text is set
in a minipage with rotated glyphs. The entire mini-
page is put inside a \rotatebox. The ruby is pro-
vided by the nruby package. The line spacing is not
optimal with ruby, so some extra space is added

三
一

さ
か
の
う
え
の
こ
れ
の
り

坂
上
是
則

朝

有
明

月

見

吉
野

里

白
雪

Figure 11. From the `Hyakunin Isshu', the `Hundred
poems by the famous poets' [4], Poem 31, by Sakanoue
no Korenori: At the firsrt light, it is not really the late
moon shining, that casts its light on Yoshino, but the
whiteness of the snow. Set with YOzFontKA04.

manually here. Without the minipage, incorrect
line breaking would occur. X ETEX has some rudi-
mentary support built in for line breaking in CJK
languages using the \XeTeXlinebreaklocale=”ja”
command, but to get an acceptable result the pack-
age zhspacing should be used. Also, the combina-
tion of a rotatebox and minipage implies that sec-
tioning commands are not available, and if more
than one page of text has to be set, a simple over-
full box will result, instead of the text being set on
the next page. At the time of writing, a discussion
was going on as to the best solution to this prob-
lem.

Some more examples of X ELaTEX
capabilities
Here follows some material in Hindi, Chinese, Viet-
namese, and Japanese.

Hindi, using Raghindi font (raghu.ttf)
अमरीकी में मंदी की आशंका को देखते हुए अमरीकी
केंद्रीय बैंक फ़ेडरल रिज़र्व ने ब्याज दरों में आधे
फ़ीसदी की कटौती की है. फ़ेडरल रिज़र्व ने दो
दिनों की बैठक के बाद ब्याज दरों को 3.5 फ़ीसदी
से घटाकर तीन फ़ीसदी कर दिया है. पिछले सप्ताह
ही केंद्रीय बैंक ने दुनिया के शेयर बाज़ारों को
संभालने के लिए ब्याज दरों में कटौती की घोषणा
की थी. माना जा रहा है कि इस क़दम से अमरीकी
अर्थव्यवस्था को मंदी की संभावना से उबरने में

CJK with LaTEX and X ELaTEX VOORJAAR 2008 11

मदद मिलेगी. इसके पहले 2007 के अंतिम तीन
महीनों में अमरीकी अर्थव्यवस्था के आँकड़े जारी
किए गए थे जिसमें अर्थव्यवस्था की मंदी के संकेत
मिले थे. अक्तूबर और दिसंबर के बीच अमरीकी
अर्थव्यवस्था की विकास की दर में 0.6 फ़ीसदी की
गिरावट आई. विशेष क़दम विशेषज्ञों का कहना
है कि फ़ेडरल रिज़र्व ने ये विशेष क़दम इसलिए
उठाया है ताकि जल्द ही फिर कटौती की कोई
ज़रूरत न रहे.

Chinese, AR PL ShanHeiSun Uni font
美国联邦储备局9天内第⼆次削减利率，试图避免
美国经济进⼊衰退。美国央行经过两天的会议后将
利率从3.5%降到3% 。上周美国联邦储备局削减利
率，那次降息成为25年以来削减幅度最⼤的⼀次。
美联邦储备局试图通过⼤幅度降息平息全球股市震
荡。美国联邦储备局希望降息能够减少信贷紧缩和
房屋市场衰退对美国经济的冲击。美国央行的联邦
公开市场委员会(FOMC)表示，金融市场仍然受到很
⼤压⼒，商业和家庭信贷会进⼀步紧缩 ，另外最
新的数据显示房屋市场进⼀步收缩，劳务市场出现
疲软。股市上扬降息半个百分点已经超过了⼀些经
济学家的预测，所以降息会鼓舞金融市场。

Vietnamese, Bitstream Cyberbit font
Ngân Hàng Trung Ương Hoa Kỳ đã cắt giảm lãi xuất
chính nửa phần trăm để xuống còn là 3% trong một
nỗ lực nhằm vực dậy nền kinh tế của nướcMỹmà hiện
đang rơi vào một cơn đình đốn. Tổng thống Bush nói
rằng "nền kinh tế của Hoa Kỳ đang phải giáp mặt với
các khó khăn ngắn hạn, và ông vững tin vào triển vọng
xán lạn về lâu về dài". Đây là lần thứ nhì trong vòng
tám ngày, Ngân Hàng Trung Ương đã cắt lãi xuất và
cũng là lần đầu tiên từ 25 năm nay, Ngân Hàng mới
áp dụng một biện pháp nhanh gọn đến như thế.

Korean, Baekmuk Gulim font
‘단군 이래 최대 소송’으로 일컬어지는 삼성자
동차 채권 환수 소송에서 삼성측이 약 3조1500
억원을 물어내라는 판결이 내려졌다.서울중앙지
법 민사합의21부(김재복 부장판사)는 31일 삼성
자동차 채권단인 서울보증보험 등 14개 금융기관
이이건희 회장과 삼성그룹의 28개 계열사를 상
대로 낸 약 5조원의 약정금 청구 소송에서 원고
일부 승소 판결을 내렸다.재 판부는 “채권단의
주장에 상당부분 일리가 있다”며 “삼성측은 채
권단과 약정한 2조 4500억원을 모두 갚아야 한
다”고 판결했다. 재판부는 “채권단이 맡고 있
는 주식을 삼성측이 팔아서 1조 6338억여원까지
만들고 나머지 부족한 부분은 이건희 회장이 개
인적으로 갖고 있는 삼성생명 주식을 팔아서 2조

4500억원을 채우라”고 판결했다. 재판부는 그
러나 연체이자는 1조 6338억여원에 해당하는 이
자만 지급하면 된다고 판결했다. 이자가 2001년
부터 계산되기 때문에 약 7000억원에 달한다. 따
라서 삼성은 원금과 이자를 합쳐 약 3조 1500억
원을 채권단에 지급해야 할 것으로 보인다.

Japanese, with vertical typesetting

歴
史
的
寒
波
、
影
響
は
１
億
人
超
に
温
首
相
も
動
く
　
２
０
０
８
年
０
１
月
３
０
日
１
９
時
５
５
分
　
中
国
の
中
南
部
を
襲
っ
た
歴
史

的
な
寒
波
で
中
国
政
府
は
３
０
日
、
影
響
を
被
っ
た
人
が
１
億
人
を
超
え
た
こ
と
を
明
ら
か
に
し
た
。
旧
正
月
（
２
月
７
日
＝
春
節
）

の
帰
省
ラ
ッ
シ
ュ
を
直
撃
し
た
災
害
に
政
府
は
危
機
感
を
強
め
、
温
家
宝
（
ウ
ェ
ン
・
チ
ア
パ
オ
）
首
相
を
湖
南
、
広
東
両
省
に
急

派
し
た
。
石
炭
が
運
べ
ず
、
火
力
発
電
所
が
広
範
囲
で
停
止
。
日
系
企
業
に
も
影
響
が
出
て
い
る
。
胡
錦
濤
（
フ
ー
・
チ
ン
タ
オ
）

主
席
は
２
９
日
、
輸
送
と
発
電
の
復
旧
に
全
力
を
挙
げ
る
よ
う
指
示
。
温
首
相
は
同
日
朝
、
被
害
が
大
き
い
湖
南
省
の
長
沙
駅
で
帰
省

客
に
「
復
旧
に
そ
れ
ほ
ど
時
間
は
か
か
ら
な
い
。
家
で
年
越
し
で
き
る
」
と
拡
声
機
で
励
ま
し
た
。
　
３
０
日
は
広
州
市
の
農
産
物
市

場
で
販
売
員
に
「
値
上
が
り
し
て
い
ま
せ
ん
か
」
と
質
問
し
た
。
白
菜
は
数
日
で
７
割
上
昇
、
羊
肉
も
２
日
で
５
割
値
上
が
り
し
て
い

る
。
　
そ
の
直
前
に
訪
ね
た
広
州
駅
周
辺
で
は
８
０
万
人
が
足
止
め
。
当
局
は
出
稼
ぎ
労
働
者
２
６
０
０
万
人
に
、
「
帰
省
せ
ず
、
広

東
で
年
越
し
を
」
と
呼
び
掛
け
る
一
方
、
「
足
止
め
客
に
宿
舎
と
食
事
を
確
保
す
る
」
と
強
調
。
上
海
市
、
福
建
省
な
ど
も
同
様
の
状

況
だ
。
　
上
海
で
は
３
０
日
ま
で
６
日
間
連
続
で
雪
が
降
っ
た
。
空
の
便
は
国
際
、
国
内
線
で
計
１
０
０
０
便
以
上
が
欠
航
、
遅
延
。

長
距
離
列
車
も
連
日
５
０
〜
６
０
本
が
運
休
か
遅
延
し
て
い
る
。
主
な
高
速
道
も
閉
鎖
、
上
海
は
一
時
「
陸
の
孤
島
」
状
態
に
な
っ

た
。
　
上
海
駅
前
で
は
２
９
日
午
後
、
暖
か
い
構
内
に
入
ろ
う
と
す
る
客
と
警
官
が
も
み
合
い
に
。
店
員
、
孫
海
蓉
さ
ん
（
１
６
）
は

「
上
海
の
ア
パ
ー
ト
を
引
き
払
っ
た
の
で
列
車
に
乗
れ
な
い
と
泊
ま
る
場
所
も
な
い
」
と
話
し
た
。
　
日
系
企
業
が
集
中
す
る
江
蘇
省

無
錫
市
な
ど
で
は
、
発
電
用
の
石
炭
不
足
に
よ
る
電
力
供
給
カ
ッ
ト
で
工
場
の
生
産
に
支
障
が
出
た
。
広
州
で
も
、
部
品
が
届
か
ず
、

日
系
乗
用
車
メ
ー
カ
ー
３
社
に
影
響
が
出
て
い
る
。

12 MAPS 36 Wilfred van Rooijen

Concluding remarks
There are several ways of incorporating CJK mate-
rial in a LaTEX document. The most complete sup-
port for typesetting Japanese, including all bells
and whistles for that language, are found in the
pTEXLive distribution, which specifically supports
Japanese. To include a ‘small amount’ of CJK mate-
rial in a LaTEX document, there is the CJK package
to do all three CJK languages, with all bells and
whistles. The UCS package provides a theoretical
possibility of incorporating CJK by enabling LaTEX
to read unicode input, but restrictions apply (only
one CJK language per document), and without ex-
tra definitions of line breaking etc., application is
limited and troublesome. One could use Lambda
and Omega, but the versions supplied in TEXLive
2007 are not CJK capable and need to be patched.
Most importantly, Ω is no longer being developed
further, making this an unattractive option.

The most user-friendly option I found is X ETEX
and the associatedmacro-package X ELaTEX in com-
bination with fontspec. As long as one has an
OpenType font available on the system with the
appropriate glyphs, character sets can be used in-
discriminately in one document, as long as glyphs
are available in the font. The current version of
X ETEX on TEXLive 2007 is v0.996, and not all bells
and whistles work equally well on all systems, as I
found out. CJK typesetting is improved in v0.997,
although some issues remain for vertical typeset-
ting.

References
[1] K.G. Henshall. A guide to remembering Japa-

nese characters. Charles E. Tuttle, Co., thir-
teenth edition, 1998.

[2] Kodansha’s essential kanji dictionary. Kodan-
sha international, 1991, 2002.

[3] The compact Nelson Japanese - English char-
acter dictionary. Charles E. Tuttle, Co., 1999,
2004.

[4] 出井光哉. プラス英訳百人一首. 風塵社, 1991.

Fonts used in this document
Various fonts are used throughout this article. All
these fonts are freely available on the internet. To
enable the reader to experiment, these are the font
names and where they can be found. I downloaded
all these fonts and installed them in $HOME/.fonts,
and used ‘fc-cache -fv’ to make them available in
XeLaTeX.

The main font throughout is ‘Kozuka Mincho
Pro-VI R’ (Acrobat Japanese Language Package)
The ‘YOzFont’ fonts are available at http://
yozvox.web.infoseek.co.jp/446F776E6C6F61
64.html
The ‘Hakusyu’ fonts are available at http://
www.linkclub.or.jp/~ma3ki/lc-hp/font.html
Code2000 and Code2001 are available at
http://www.code2000.net
The ‘Raghindi’ font used for Hindi can be found
at http://tdil.mit.gov.in/download/Raghu.htm
For Korean, the Baekmuk Gulim font is part of
OpenOffice; for Chinese, the AR PL ShanHeiSun
Uni is part of OpenOffice.

For the reader wanting to experiment with the
possibilities of X ELaTEXand CJK, some simple input
files are available on the NTG website (go to http://
www.ntg.nl/maps/36/xetex/).

Footnotes
1. Chinese, Japanese, Korean
2. Named after the man’yōshū, ”Collection of Ten Thou-
sand Leaves”, a collection of poems written between 600
and 759 AD in standardized, phonetic kanji
3. http://www.taishukan.co.jp/kanji/daikanwa.html
4. I don’t know whether this applies to XP / Vista
5. http://www.unicode.org/
6. See for an example http:// www.lukew.com/ ff/ en-
try.asp?111
7. Ruby is also known as furigana, ‘guiding kana’, and
kanbun, ‘kana letters’
8. http://www.nn.iij4u.or.jp/tutimura/
9. See http:// zoonek.free.fr/ LaTeX/ Omega-Japanese/
doc.html for an example
10. http://scripts.sil.org/xetex
11. http://www.adobe.com/products/acrobat/acrrasian
fontpack.html
12. http://http.netscape.com.edgesuite.net/pub/commu
nicator/extras/fonts/windows/
13. http://sourceforge.jp/projects/efont/files/

Wilfred van Rooijen
wvanrooijen@yahoo.com

Jelle Huisman VOORJAAR 2008 13

Met X ETEX meertalig
Talen en fonts in TEX

Abstract
Dit artikel is een bewerking van de lezing die ik op de NTG voorjaarsbĳeenkomst van 8
juni 2007 heb gehouden. Dit artikel begint met wat achtergrondinformatie over talen,
schriften en fonts. Het tweede deel van het artikel geeft een aantal voorbeelden van
meertalig TEX-gebruik met behulp van X ETEX.

Keywords
talen, schrift, fonts, X ETEX

Talen
Als we TEX gebruiken doen we dat voor het overbrengen van informatie die in
een bepaalde code weergegeven is. Deze code (meestal noemen we die code ‘taal’)
omvat zowel de natuurlijke taal die we als mensen in het sociale verkeer gebruiken,
als de kunstmatige, specialistische talen die bijvoorbeeld wiskundigen gebruiken
om een n-dimensionale ruimte mee te beschrijven. In dit artikel beperk ik mij tot
natuurlijke, levende talen, de talen die door mensen op dit moment gesproken
worden. Hoeveel talen zijn er? Ik ga gemakshalve voorbij aan de lastige definitie-
kwestie van taal versus dialect en aan taalvariatie die het tellen van talen soms
lastig maakt. Volgens de Ethnologue1 worden er op dit moment ongeveer 6912
talen gesproken. Het woord ‘ongeveer’ staat voor: het aantal is niet precies want er
worden nog steeds nieuwe talen ontdekt, terwijl er ook talen uitsterven. Dat er toch
een getal staat komt omdat de gegevens uit een database komen waarin nu eenmaal
6912 records zitten van evenzoveel talen waarvan in elk geval een minimum aantal
gegevens beschikbaar zijn. Een van de dingen die het meeste opvalt als het gaat om
de aantallen is de enorme onbalans tussen de hoeveelheid talen en de hoeveelheid
sprekers van die talen. Er zijn 10 talen met meer dan 100 miljoen sprekers: Chinees,
Spaans, Engels, Arabisch, Hindi, Portugees, Bengaals, Russisch, Japans en Duits. In
totaal zijn er 347 talen (ongeveer 5% van het totale aantal talen) met meer dan één
miljoen sprekers. Deze talen worden gesproken door 94% van de wereldbevolking.
De overige 95% van de talen worden gesproken door slechts 6% van de wereldbe-
volking. Zo’n 3900 van die talen heeft minder dan 10.000 spekers. Als de sprekers
van die talen hun taal niet kunnen gaan schrijven is de kans groot dat zulke talen
uitsterven en de cultuur, waarvan die taal een integraal onderdeel is, verloren gaat.
Er zijn verschillende redenen waarom talen (nog) niet geschreven worden. Een
belangrijke oorzaak is de orale cultuur waarin informatieoverdracht door middel
van vertelde verhalen de norm is en schriftelijke communicatie de uitzondering,
of zelfs gewoon niet bestaat. Een van de belangrijkste technische obstakels is de
digitale kloof die het schrijven met behulp van een computer voor veel mensen
onmogelijk maakt. Dat kan komen doordat er geen (vrije) fonts beschikbaar zijn
of doordat het gebruikte schrift dermate complex is dat een ‘standaard-oplossing’
geen oplossing is. Daarnaast is de beperkte beschikbaarheid of de afwezigheid van
lees- en schrijfonderwijs in de moedertaal voor sprekers van veel minderheidstalen
een extra barrière.

14 MAPS 36 Jelle Huisman

Taal, schrift en font
Een paar keer is het al gegaan over ‘taal’, ‘schrift’ en ‘font’, maar wat is wat precies
en wat is het verschil tussen het een en het ander? Een taal is niet hetzelfde als een
schrift en een schrift is niet hetzelfde als een font. Toen mensen eenmaal hun taal
gingen schrijven gebruikten ze karakters om de spraakklanken op papier vast te
leggen. Deze karakters vormen samen met bijvoorbeeld de leestekens een ‘schrift’
of schriftsoort. Wij gebruiken voor de Nederlandse taal het Latijnse schrift, maar we
zouden het ook best in het Cyrillisch of het Arabisch(-e schrift) kunnen schrijven.
Op dezelfde manier kan een Arabische (taal) tekst in het Latijnse schrift geschreven
worden. De combinatie van een schrift en een taal heet in het jargon een schrift-
systeem (writing system). Dit is een combinatie van alle karakters, samen met de
regels die beschrijven hoe die karakters gebruikt moeten worden in die specifieke
taal. De minderheidstalen van de wereld maken vaak gebruik van het schrift van de
meerderheidstaal in hun omgeving. Omdat er in zo’n minderheidstaal bijvoorbeeld
andere klanken voorkomen, is het soms nodig om symbolen of accenttekens aan
het schrift toe te voegen die in de meerderheidstaal niet nodig zijn. Ook kan het
zijn dat bepaalde karakters of tekens op een andere manier gebruikt worden dan
in de meerderheidstaal. Om die reden is er vaak per taal een verschillend ‘schrift-
systeem’ te beschrijven, zelfs al zijn de (meeste) tekens hetzelfde. Voor zover we
weten zijn er minstens zo’n 150 verschillende schriften. Zestig daarvan worden
niet meer gebruikt (denk daarbij aan het spijkerschrift of aan Egyptische hiërogly-
fen.) Negentig schriften worden op dit moment wel gebruikt. Ongeveer 50 daarvan
zijn opgenomen in Unicode, de internationale standaard voor schrift-gebruik, 40
(nog) niet. Een font is een stukje software waarin onder andere de vorm van de
verschillende karakters staat beschreven. Verder kunnen fonts informatie bevatten
over hoe een karakter in een bepaald schriftsysteem gebruikt moet worden. Met
name voor schriften als het Arabisch en de Aziatische schriften zijn deze ‘rende-
ring smarts’ onmisbaar voor de juiste weergave van de gebruikte karakters. Een
font kan dus verschillende schriftsystemen ondersteunen. Tenslotte is er nog het
onderscheid tussen een karakter en een glyph. Het begrip karakter staat voor een
abstract betekenisdragend element, zoals dat bijvoorbeeld in de Unicode tabel is
beschreven. Het karakter ‘a’ is ‘Latijn kleine letter a’ in Unicode-termen. Een glyph
is de specifieke vorm die de kleine letter ‘a’ krijgt in een bepaald font. Op een ab-
stract niveau is het hetzelfde (een karakter ‘a’) maar op het niveau van de weergave
ziet het er verschillend uit. Vergelijk bijvoorbeeld de ‘a’ in het woord meertalig in
de titel boven dit artikel met de ‘a’ in het woord ‘talen’ in de ondertitel. Dit zijn
verschillende glyphs voor hetzelfde karakter.

Schrĳven wereldwĳd
In de loop van de tijd zijn steeds meer mensen hun taal gaan schrijven. Er zijn
verschillende routes om het fonetische materiaal (de spraakklanken) om te zetten
in codes op papier (of in klei, of op papyrus of op boomschors). Ons eigen Romeinse
(of Latijnse) schrift is een voorbeeld van een alfabetisch schrift waarbij iedere klank
ongeveer een karakter heeft. Met behulp van een paar extra tweeklanken (eu, ui)
of accenttekens kunnen we de gesproken taal redelijk goed weergeven. Nu zit er
in de manier waarop wij onze taal schrijven een behoorlijke redundantie. “Drm s
ht gd mglk m d klnkrs wg t ltn. Zekr ls je mt wt leeshulpn knt werkn”. Arabisch
en Hebreeuws zijn voorbeelden van zo’n manier van schrijven. Het gebruik van
klinkertekens als een soort leeshulp om de vastgestelde tekst duidelijk te maken
laat overigens wel zien dat het toch ook weer niet zo gek is om de klinkers toch op
te schrijven.

Met X ETEX meertalig VOORJAAR 2008 15

Voorbeeld 1: arabisch schrift

r.1 يبرعلا
r.2 ҨҞ͇Ǩʒ̈

Het Arabisch is een schrift waarin de karakters afhankelijk van de plaats in het
woord een verschillende vorm hebben. Daarnaast smelten opeenvolgende karakters
samen tot zogenaamde ligaturen. Het bovenstaande voorbeeld laat dat zien: regel
1 bevat de afzonderlijke karakters, regel 2 de ’aan elkaar geschreven’ vorm.

Overigens is het Arabische schrift ook een voorbeeld van het feit dat schrift
niet alleen te maken heeft met techniek, maar ook met cultuur en geschiedenis.
Het Arabische schrift kent een lange, rijke traditie van vormen en variatie in de
kalligrafie (het met de hand geschreven schrift.) Een van de debatten in de wereld
van Arabische fontontwerpers gaat over de vraag of er voor het Arabisch een
zelfstandige typografie (door een machine geschreven schrift) mogelijk en wenselijk
is. Sommigen menen dat fonts de traditionele kalligrafische vormen en variaties
tot in de details moeten volgen. Volgens anderen is er ruimte voor een duidelijke
eigen stijl in de fonts die nu ontworpen worden.

Voorbeeld 2 : aziatische schriften
Helemaal aan het andere uiterste van het spectrum zitten benaderingen van schrift
die niet uitgaan van de vorm (de klanken) maar van de betekenis (de abstracte
concepten), zoals bijvoorbeeld pictogrammen. Schriftsoorten zoals het Japans of
Chinees vallen in deze categorie. Weer een andere benadering komt voor in ver-
schillende Zuid-Oost Aziatische talen, zoals bijvoorbeeld het Khmer. Hier is de basis
voor het schriftsysteem een medeklinker-klinker-groep. Dit komt ongeveer overeen
met de lettergrepen. Er is dus een karakter voor de ‘da’, voor ‘do’, voor ‘ro’, etcetera.
Als je met zo’n schrift de klankencombinatie ‘door’ wilt weergeven schrijf je dus:
‘doro’. Voor ons gevoel lijkt het alsof de letters o en r van plaats zijn veranderd, in
werkelijkheid zijn ze voor dit schrift op de goede plek geschreven, iedere Khmer-
lezer begrijpt dat hier ‘door’ staat. Hieronder staat nog een voorbeeld van deze
‘reordering’, nu in het Devanagari schrift.

ब + %◌ + र + म = �बम@
b + i + r + ma = birma

Model voor complex schrift
Als we kijken hoe ons eigen Romeinse schrift in de computer verwerkt wordt, dan
is er sprake van een redelijk overzichtelijk, eenvoudig model: er is een één-op-één
relatie tussen de toetsaanslag en het geheugen en tussen het geheugen en de uitvoer
(beeldscherm/printer.) Om de diversiteit aan complexe, niet-Romeinse schriften
goed te kunnen verwerken is een ingewikkelder model nodig. Aan de invoerkant
moet er vaak gewerkt worden met Input Method Editors. Dit zijn hulpmiddelen die
het mogelijk maken om karakters uit een schrift met duizenden karakters te kiezen.
Dit kan bijvoorbeeld door middel van een apart invoerscherm of door speciale
software die een fonetische transcriptie omzet in de gewenste karakters. In het
geheugen worden de gegevens opgeslagen als een verzameling Unicode-karakters.
Ook aan de uitvoerkant moet een computer om weten te gaan met speciale eisen
die een complex schrift stelt, zoals bijvoorbeeld de volgordeverandering in het
Devanagari-voorbeeld hierboven.

16 MAPS 36 Jelle Huisman

Enter X ETEX
X ETEX is een uitbreiding aan de standaard TEX engine die alle systeemfonts een-
voudig toegankelijk maakt voor de gebruikers. X ETEX werkt op Mac OS X, Linux
en Windows en zit standaard in TEXLive 2007. Voor de meeste gebruikers is de
belangrijkste reden om X ETEX te gebruiken de toegankelijkheid van de systeemf-
onts. Alle OT, TT en PS fonts die in een willekeurig tekstverwerkingsprogramma
te gebruiken zijn, werken ook met X ETEX. Daarbij kunnen de font-setup troubles
die zo kenmerkend zijn voor TEX achterwege blijven. Ook kunnen slimme fonts
gebruikt worden in combinatie met speciale layout-engines die er voor zorgen dat
de gebruikte fonts zich gedragen volgens de regels die gelden voor het betreffende
schriftsysteem. Voorbeelden hiervan zijn AAT (Apple’s Advanced Typography)2 op
de Mac, of het gebruik van de ICU-library3 en SIL’s Graphite techniek4. X ETEX is in
de TEXwereld enthousiast ontvangen. In LaTEX zijn er verschillende packages ge-
maakt die X ETEX ondersteunen, waarvan het fontspec-package wel de belangrijkste
is. Verder herkennen veel gebruikte packages zoals graphics, hyperref en PStricks
het gebruik van X ETEX automatisch. Ook ConTEXt kan prima met X ETEX overweg5.
Waar luaTEX met behulp van de ingebouwde scriptingtaal Lua de TEX-engine toe-
gankelijk maakt voor bijvoorbeeld OT support, gaat X ETEX een andere weg: het
maakt gebruik van libraries op besturingssysteemniveau zoals fontconfig (voor het
vinden van de fonts) en de al genoemde AAT, ICU en Graphite.

Voorbeeld 3 : Typografische features in OT fonts
Hier volgen een paar voorbeelden van hoe X ETEX typografische features van Open-
Type fonts toegankelijk maakt. De tekst "Hallo Wereld! 0123456789" kunnen we in
het font Garamond Premiere Pro zetten (voorbeeld 1). Met de aanduiding +smcp
worden de letters als klein kapitalen gezet (voorbeeld 2) en met de code +sups
selecteren we de optie superscript, wat voor dit font blijkbaar niet werkt voor
hoofdletters en leestekens.

standaard:"GaramondPremrPro"HalloWereld! 0123456789
var1: "GaramondPremrPro:+smcp"HW! 0123456789
var2: "GaramondPremrPro:+sups"HW! ⁰¹²³⁴⁵⁶⁷⁸⁹
Een ander voorbeeld van stylistische variaties, deze keer met Apple’s AAT tech-

niek, laat het volgende set met variaties van het Apple Chancery font zien.

“˅˥˥ˤe ˇˢanЉeryˁˈeϳign ˇom˥ˤexiŖ=˗im˥ˤe ˈƘ-
ϳign ːeveˤ” at 16˥t.
“ūɐɐɌɅ CɈɁɎɃɅɒə:LɅɔɔɅɒ CɁɓɅ=SɍɁɌɌ CɁɐɓ” Ɂɔ
16ɐɔ.
“ǒppǠe CǞancery:Design CompǠeǣity=ƱǠourisǞeǺ
ŷet Ư” at 16pt.
“ȉpple Chancery:Design ComplexiŖ=Flourisheϳ
ŷet B” at 16pt.
“ūpple Chancery:Design ComplexiŖ=Flourisheϳ
ŷet C” at 16pt.

Met X ETEX meertalig VOORJAAR 2008 17

Voorbeeld 4 : Taal en schrift features in X ETEX
Met de Unicode ondersteuning kan X ETEX het ideaal van ‘iedere taal en ieder schrift’
ook voor TEX-gebruikers een stapje dichterbij brengen. Hier volgen een paar voor-
beelden van taal- en schrift-specifieke features.

Speciale karakters zoals de Bengaalse klinker O worden geschreven met twee
los van elkaar staande tekens die samen de medeklinker insluiten. Het voorbeeld
hieronder geeft eerst de afzonderlijke karakters zonder speciale weergave, daarna
de juiste, samengevoegde weergave die te activeren is met de code: ’script=beng’.

zonder 'script' aanduiding

<LETTER KA> :ক <VOWEL O> :ো→ কো
met 'script=beng'

<LETTER KA> :ক <VOWEL O> :ে◌া→ েকা
Het font Charis SIL6 is een voorbeeld van een font met speciale taalspecifieke

coderingen. In het onderstaande voorbeeld van een tekst in het Vietnamees is het
verschil in de plaatsing van de accenttekens te zien. Deze speciale plaatsing is van
belang voor de juiste weergave van het Vietnamees.

Unicode cung cấpmột con số duy nhất chomỗi
Unicode cung cêpmột con sи duy nhêt chomмi

In het kader van dit korte artikel is het onmogelijk om een overzicht te geven
van alle verschillende soorten schriften en manieren om daar TEXnisch mee om te
gaan. Hopelijk maken deze paar voorbeelden in elk geval duidelijk dat er op dit
gebied veel mogelijk is.

Noten
1. Raymond G. Gordon, ed., Ethnologue: Languages of the World, 15th edition, 2005. Zie
voor de digitale versie: www.ethnologue.com
2. Zie ook: developer.apple.com/textfonts/
3. Zie ook: www.icu-project.org/
4. Zie ook: scripts.sil.org/RenderingGraphite
5. In elk geval meestal, zie ook: wiki.contextgarden.net/XeTeX
6. Zie ook: scripts.sil.org/CharisSILfont

Jelle Huisman
SIL International
jelle_huisman (at) sil (dot) org

18 MAPS 36 Piet van Oostrum

What is it about all those *TEXs

Abstract
This short article describes the different ‘layers’ in a
TEX system, the differences between TEX engines,
extensions, macro packages, and distributions. I hope
to take away some of the confusions that people new
to TEX and less technically inclined people have when
they are confronted with terms like pdftex, texlive,
tetex, miktex, pdflatex and so on.

Keywords
TEX, LaTEX, miktex, tetex, TEXLive, etex, pdftex,
pdfetex

Introduction
When you want to use TEX on your computer you
are quite soon confronted with a lot of software parts
which have names that end on ‘tex’. If you are lucky
you have a computer which has TEX pre-installed. Oth-
erwise you will have to choose what to install. You
might get a DVD with one install-button that installs a
complete system for you, but more often you will have
to choose which components you want to install. And
if your TEX installation has become outdated you may
come to the point that you have to install a new system.
Sometimes it is just an upgrade of the existing instal-
lation but there comes a point when that is no longer
supported and then you have to decide what to choose.
Now this choice can be quite confusing. Do you have
to use ‘MiKTEX’ or ‘TEXLive’, ‘TeXShop’ or ‘TeXnicCen-
ter? And what are these things? Why doesn’t installing
TeXShop on a Mac give you a working TEX system? And
if you want to process your files do you choose ‘latex’
or ‘miktex’? We will see that the last question is the
wrong one but for new users it seems a logical thing to
ask. Below I will try to put some order into all these
terms so that you will be able to place the different
things in their proper place and to know which ques-
tions have meaning.

The beginning
In the beginning there was TEX. This is the original
program designed and programmed by Donald Knuth.
You prepared your input according to the specifications
in The TEX Book. This style of TEX documents is called

‘plain TEX’. You would run tex from the command line
(there were no graphical user interfaces in that time)
on this input and a DVI file would be produced. There
was a program to preview the DVI file and one or more
programs to send it to a suitable printer. And there
was a companion program metafont but that was only
used by some font freaks. And that was it.

Further developments
After the original TEX implementation several new de-
velopments have occurred.

2 Different syntax forms for your input document.
Plain TEX is quite simple but out of the box it
doesn’t support more advanced features, like cross
references, automatically numbered sections and
so on. You can program these yourself but it is
tedious and it makes exchange of documents with
other authors more difficult. It would be nice if you
could use the work that others have done. Such
collections of definitions and pre-programmed
features are called ‘macro packages’. The most
well known of these are LaTEX and ConTEXt. Please
note that these macros do not require changes
to the TEX program but are a kind of additional
input files for TEX, extending the input language
TEX understands with new – usually higher-level –
commands.

2 Extensions of the TEX program. There are several
limitations in the TEX program that make it hard
for writers of macro packages to program some
advanced features. Another wish people had is to
produce PDF files directly rather than, or better,
in addition to, the arcane DVI format. Or to make
easier use of the fonts that are present in modern
operationg systems. For a good programmer it
is not very difficult to enhance the TEX program
to overcome these difficulties. However, Knuth
does want TEX to be stable, so he doesn’t change
it anymore. He allows others to make changed
versions, however, as long as they are not called
TEX. Therefore all kinds of extensions of TEX have
appeared under names such as eTEX (additional
facilities for macro programmers), pdfTEX (PDF
output as an option), or XeTEX (support for

*TEX VOORJAAR 2008 19

operating systems fonts).
2 Engines. Most of the macro packages can be

combined with most of the (extended) programs
mentioned above. Often the combinations are pre-
packaged in such a way that they can be executed
as a specific program. We call such a program
an ‘engine’. (Some people might use the word
‘engine’ only for the above mentioned programs
without reference to a preloaded macro package.)
An engine can be for example latex, pdftex or
pdflatex.

2 Additional programs. Having only TEX and
metafont wasn’t sufficient. Many other support-
ing programs have been added, such as programs
to manipulate bibliographies, picture processing,
support of different languages, and so on. Well
known ones are bibtex for bibliography process-
ing and makeindex for the sorting and formatting
of alphabetical indices.

2 Graphical user interfaces to make working with TEX
and the additional programs easier. Nowadays
most computer users do not feel comfortable with
command line interfaces. Therefore there are
graphical programs, sometimes called IDE’s (in-
tegrated development environments). With these
you can edit your input documents, often with
syntax coloring. And they contain menus and but-
tons for seamlessly activating the major programs
that are part of a TEX processing cycle, including
viewing errors, previewing the document and
printing it. Examples are TeXShop, TeXnicCenter,
and Texmaker

2 Many other additions are useful, for example
support for many fonts, additional macro packages
as additions to LaTEX, ConTEXt and others, and so
on. Together such a TEX system easily contains
tens of thousands of files. Managing these files
and keeping up with new releases of them and
keeping them consistent is a major job. Therefore
there are distributions which consist of a carefully
selected and tested collection of files and programs
that together form a working environment for the
processing of TEX documents.

In the rest of this article I will deal with the above men-
tioned parts in a ‘top-down’ manner, i.e., starting with
the things the user will encounter first, and then dig-
ging down to a more detailed view of how these things
are built up internally. As we go into more details some
of the above information will be repeated below.

Distributions
A distribution is a complete collection of TEX-related
programs of all thinkable sorts, macro packages, doc-

umentation files, supporting programs, etc. They usu-
ally come on a CDROM or DVD (most don’t fit on a
CDROM anymore these days) or can be downloaded
from the Internet.

If you install a distribution you have in principle a
working and very complete TEX system, but usually not
a GUI. The advantage of installing a complete distribu-
tion rather than collecting the parts yourself is that it
most probably has been thoroughly checked and all the
parts have versions that are supposed to work together.

Popular distributions are:

2 MiKTEX. Built and distributed by Christian Schenk
for MS-Windows. Some parts of it have been
ported to GNU/Linux and Mac OS X. This is
probably the most popular distribution for MS-
Windows. The great advantage of MiKTEX is that
it has an advanced ‘package manager’. This is a
part that automatically installs missing parts if
they are needed. So you can choose to install
a rather small subset of MiKTEX initially, and let
the package manager automatically download and
install additional needed parts. Of course you must
be connected to the Internet for this to happen.
The package manager can also be used to upgrade
outdated parts or install new parts manually.

2 teTEX. This used to be a large distribution for Unix-
like systems packaged by Thomas Esser. Many
GNU/Linux systems still have this as their default
distribution. However, it is no longer maintained.
It has been replaced by:

2 TEXLive. This distribution was originally based
on teTEX but the choice of what it included was
different from teTEX. It also supports MS-Windows,
GNU/Linux and Mac OS X, and is therefore a good
choice when portability is important. It is released
on a CDROM/DVD set and freely distributed
(about yearly) to the members of most TEX user
groups, like NTG. It can also be downloaded from
the Internet.

2 MacTEX is a distribution for Mac OS X which is a
subset of TEXLive that can be downloaded from the
Internet.

GUI’s
A GUI (Graphical User Interface) is a program or col-
lection of programs to make your life as a TEX user eas-
ier. They contain an editor for entering and modifying
the TEX input file(s), often with syntax highlighting.
And they usually have buttons to run the proper en-
gine on the file, display it on your screen, print it, and
run supporting programs like bibliography and index
processing.

They usually don’t include the TEX programs and

20 MAPS 36 Piet van Oostrum

macro packages but suppose that you have installed
these from a distribution. So for example installing
TeXShop in your Mac doesn’t help you very much if you
don’t also install a complete TEX system like TEXLive or
MacTEX.

Popular GUI’s are TeXnicCenter and WinShell on
MS-Windows, TeXShop on Mac OS X and TeXmaker
for GNU/Linux as well as MS-Windows and Mac OS X.
On Unix and GNU/Linux systems many people use the
Emacs editor as a GUI for TEX.

Macro packages
We have already mentioned the macro packages
plain, LaTEX and ConTEXt. A macro package consists
of a collection of command definitions and some such,
and are contained in one of more text files. For effi-
ciency reasons they are preprocessed and stored in a
binary file called a ‘format file’ or ‘fmt’ file. A TEX pro-
gram (in the extended sense) can easily load a format
file, either by specifying it as a command parameter
or by ‘cloning’ the engine program file and giving it a
name corresponding to the name of the format file. So
for example the program latex was the TEX engine
with the LaTEX format preloaded, and pdflatex is the
pdfTEX engine preloaded with the LaTEX format.

Even if you have written your own macro package
it is easy to generate preloaded engines and give them
a required program file name.

XeTEX can also be loaded with a LaTEX format and
the resulting program is called xelatex.

Engines
The TEX program that translates your input file to a
DVI or PDF file we have called the TEX engine. The
program file that contains the original engine is usually
just called tex (or tex.exe on MS-Windows systems).
The TEX engine doesn’t change very much as Knuth has
decided that he will not make any more enhancements
to it despite the limitation the program has. And as it
is mature bugfixes are also rare.

Other people, however wanted to add new features.
This is allowed by the license, but the resulting pro-
gram must not be called ‘TEX’. Such a program is also
an engine, but then not for TEX but for an extension
of TEX. Strictly speaking they should therefore not be
called TEX-engines, although in sloppy speaking this is
often done.

The most important extensions of TEX are (or
were):

2 eTEX. This extension of TEX adds typesetting
for languages that are written right-to-left, like
Hebrew and Arabic. Left-to-right and right-

to-left typesetting can be intermixed. It also
expands the number of ‘registers’ that TEX has for
storing numbers, dimensions and so, which, with
complicated packages sometimes were exhausted.
There are also some other extensions. LaTEX and
ConTEXt nowadays are dependent on some of these
extensions.

2 pdfTEX. This is an extension that adds direct PDF
output besides DVI output. It was developed in a
PHD research by Hàn Thế Thành. It also contains
microtypographics extensions which were the main
subject of his thesis.

2 pdfeTEX. This used to be a combination of eTEX
and pdfTEX, but now pdfTEX contains the eTEX ex-
tensions itself thereby obviating a separate pdfeTEX
engine. And as this contains all the possibilities
of the original TEX and eTEX, it has become the
default engine for most TEX applications. Only
plain TEX uses the original engine from Knuth.

2 XeTEX adds the possibility of using your operating
system’s fonts in a simple way, and it supports
Unicode input and the use of OpenType fonts.
It incorporates the eTEX extensions and some of
the pdfTEX extensions. It has a dvi backend but
works closely with dvipdfmx to produce PDF. The
program file is usually called xetex.

2 luaTEX. This is a relatively new extension, still in
development, which adds the Lua programming
language to the pdfTEX engine. This gives an
enormous flexibility. It also supports OpenType
fonts. It is meant to become the successor of
pdfTEX. The program file is called luatex.

2 Others. There are other engines, such as Omega
and Aleph but they are experimental and often
buggy and therefore not much used. Aleph
functionality is being merged into luatex.

The engines are the first layer on which a TEX system
is built. Most people use a preloaded engine, how-
ever, which is a combination of a TEX (extension) pro-
gram and a macro package. We will take an engine
preloaded with LaTEX as an example.

Nowadays always the pdfTEX engine is used (as de-
scribed in the previous section including the eTEX ex-
tensions). Both the program latex and the program
pdflatex are engines consisting of pdftex preloaded
with the LaTEX macro package. The difference is that
the program latex is parametrised to generate DVI
output and pdflatex to generate PDF output. But
note that both can also produce the other output if the
document source would choose so.

The program context is the pdftex engine
preloaded with the ConTEXt format, but it can also use
other engines, such as XeTEX. ConTEXt comes in dif-

*TEX VOORJAAR 2008 21

ferent language flavors, like cont-en for the English
version and cont-nl for the Dutch version. context
is usually not called directly, however, but by means of
the program texexec.

Summary
engines:

tex, pdftex, xetex, luatex

macro packages:
Plain, LaTEX, ConTEXt

engines with preloaded macro packages:
tex, latex, pdflatex, xelatex, context

GUI’s:
TeXnicCenter, WinShell, TeXShop, Texmaker

distributions:
MiKTEX, teTEX (obsolete), TEXLive, MacTEX.

I would appreciate to get feedback to be able to im-
prove on this overview. If you have additions or feel
that some things are unclear please email me at the
address below.

Piet van Oostrum
piet@vanoostrum.org

22 MAPS 36 Ulrik Vieth

Book Review: Fonts & Encodings
by Yannis Haralambous
Keywords
fonts, encodings, book review

Yannis Haralambous is well known in the international
TEX community, not only as a co-founder of the Omega
project, but also for his numerous contributions as
a developer of fonts for various languages. It only
seems fitting that Yannis has undertaken the job of
writing a comprehensive book on the topic of fonts
and encodings.

The original edition, entitled Fontes & Codages,
appeared in 2004, but only in French. Now, a long-
awaited English translation as Fonts & Encodings,
prepared by P. Scott Horne, has recently become
available published by O’Reilly Media Inc.

Contents
Amounting to a little bit more than 1000 pages the
book matches the size of The LaTEX Companion,
2nd edition. It appears quite impressive, not only
regarding its sheer size, but also regarding the broad
range of topics covered as well as the depth of the
coverage and the level of detail. In some cases the
author has spent dozens of pages documenting some
arcane details of font formats, which have so far been
lacking a comprehensive or accessible documentation
from other sources.

The book consists of a main body of 14 chapters of
some 600 pages, followed by an appendix of 7 chapters
amounting to another 400 pages.

As the author makes clear in the introduction,
various groups of readers may benefit from different
parts of the book without having to read all of it:
Some chapters are mostly encoding-specific, dealing
with characters on the input side, some are mostly
font-specific dealing with glyphs on the output side,
while other chapters find themselves in the middle
ground, having to deal with font and encoding topics
simultaneously. Some chapters are accessible to
end users interested in installing and using fonts,
while others are only of interest to font designers or
developers of font-related software.

The first part of the book starts with encoding-
specific topics. Chapter 1 provides an overview of
the history of encodings before Unicode, ranging from
7-bit ASCII and various 8-bit ISO encodings to 16-bit

East-Asian encodings. Chapters 2–4 cover the Unicode
standard, starting with an overview of the symbols
and scripts included in the standard and moving on
towards more and more complex implementation de-
tails. Chapter 5 completes this part with a presentation
of some useful tools for using Unicode input on various
system platforms.

The second part covers the topic of font man-
agement on various system platforms and operates
somewhere in the gray area between fonts and encod-
ings. Chapters 6–8 each cover similar topics for the
Macintosh, Windows and Unix/X11 platforms. While
the description of the Macintosh platform is rather
detailed in discussing the differences of font handling
between MacOS 9 and MacOS X, the description of the
Unix/X11 platform only covers some very basic and
old-fashioned X11 tools. Here, one could have wished
for some more extensive coverage of font management
in modern Linux desktop environments such as KDE or
Gnome.

The following two chapters discuss platform-
independent usage of fonts in TEX/Omega systems and
on the Web. Chapter 9 starts with an overview of
high-level font selection in LaTEX/NFSS2, followed by
a detailed description of low-level font installation for
dvips. The remainder of the chapter then discusses
numerous examples of creating virtual fonts using
fontinst to implement specific effects needed in various
scripts. Chapter 10 concludes this part with a coverage
of fonts on the Web using either (X)HTML/CSS or
alternatively SVG.

The final part of the book covers font-specific
topics. Chapter 11 covers various classifications
of of Latin typefaces and simultaneously provides a
nicely-illustrated overview of the history of the most
important typeface designs. Chapters 12–13 than
discuss creating, editing and optimizing PostScript,
TrueType, and OpenType fonts using tools such as Font-
Lab or FontForge. Chapter 14 finally introduces the
concepts of advanced typographic features provided in
OpenType or AAT fonts and discusses ways of enriching
fonts using these facilities.

The appendix of the book mostly consists of the
detailed descriptions of font formats. Starting from
bitmap fonts and TEX-related font formats and moving
on to PostScript, TrueType, OpenType and AAT fonts,

Fonts & Encodings VOORJAAR 2008 23

practically all relevant font formats are covered in
detail in Appendix A–E.

Finally, Appendix F discusses the principles of font
design in MF and derived systems such as MP, MetaFog
and MetaType 1.

Commentary
Considering the size of the book, it is understandable
that several years have passed from the time of
writing the manuscript to the publication of the English
translation. Unfortunately, because of this, some
chapters of the book are in risk of becoming out-of-date
rather quickly. For most of the material, we have to
assume that the English edition of 2007 only represents
the state of the art of 2003.

For many chapters serving as a reference, such a
delay is not much of a problem, as the descriptions of
encodings or font file formats remain unchanged and
permanently valid. On the other hand, however, it is
regrettable that especially the chapter about TEX has
completely missed or overlooked some very important
developments of the last few years.

As one example, when describing the details of
font installation, the author only covers TEX/Omega
with dvips, while PDFTEX isn’t mentioned in this
context, even though most of the description would
be applicable to both systems in TEX Live systems. (In
fact, PDFTEX isn’t mentioned anywhere at all in the
book, perhaps because it didn’t support Omega at that
time and was therefore seen as line of development
that was irrelevant to the author.)

As another example, Hàn Thế Thành, author of
PDFTEX is only mentioned once in the context of
Vietnamese fonts, while his significant achievements
regarding the implementation of micro-typographic
features of PDFTEX have been neglected completely.
This is even more surprising as the author spends
some pages discussing an example where the effect
of margin kerning, which would have been accessible
in PDFTEX, is simulated in a rather cumbersome way
using virtual fonts created by fontinst.

Regarding examples of extensions of Computer
Modern fonts, the author suggests the CM-Super fonts,
while the (by now) much more popular Latin Modern
fonts are only mentioned in passing as an example of
a MetaType 1 application.

Finally, when it comes to discussing ways of using
advanced typographic features of OpenType or AAT
fonts in TEX, the author only offers some hints about
his own research work in the Omega 2 project
(which hasn’t progressed beyond the prototype stage),
while the (by now) readily-available newcomer X ETEX
remains unmentioned.

To be fair, one has to admit that the success and
importance of these recent developments in the TEX
world could not have been foreseen at the time of
writing in 2003. Nevertheless, it could have been
possible to include some additions and/or revisions
by the time of the English translation of 2007.

It is rather unfortunate that the opportunity for
updates was missed here, which would have made
the book much more useful and valuable for TEX
users interested in making use of the very latest of
developments in font technology.

Despite these shortcomings, the book remains a
valuable resource for TEX users and software develop-
ers, who are deeply interested in font technology and
encodings. There is no other book providing a similar
coverage in the broad range of topics and the deep
level of detail in a single volume. To get anywhere
near it, one would have to collect dozens of references
from a variety sources and one would still be left with
some gaps to fill.

In summary, this book is certainly recommendable.
Nevertheless, some additions and/or revisions would
be very desirable for future editions.

As as final remark, the reviewer would like to
mention a little curiosity: Like some other modern
textbooks, this book also features a separate index
of persons besides the usual general-purpose index.
However, unlike other books, the author seems to have
been rather liberal as to which kinds of persons are
referenced in the index.

This way, authors of font software and tools not only
find themselves in the glorious company of some the
most famous font designers of history, but also in the
vicinity of rather questionable political figures (e. g.
Lenin, Hitler, Mao) as well as some fictional or literary
characters (e. g. Sherlock Holmes, James Bond, James
T. Kirk), which are only mentioned in passing in some
light-hearted comments.

While the reviewer (who at one time was also
contributor of fontinst) wishes to express thanks for
the opportunity of being included in this rather unique
selection of people, he also wishes to express serious
doubts, whether it is really helpful to the reader to
include fictional characters in the person index in the
same way as technical people. This practice is certainly
debatable and probably should be reconsidered for
future works of this kind.

Yannis Haralambous, translated by P. Scott Horne, Fonts
& Encodings, O’Reilly Media, 1016+xx pp., first edition:
September 2007, ISBN: 0-596-10242-5, US$ 59.99

Ulrik Vieth

24 MAPS 36 Luigi Scarso

On reading Fonts & Encodings

Abstract
Stated briefly: “Should I buy this book ?”

YES.

In fact I suppose you are reading this article because
you are in a someway involved with TEX, or LaTEX, or
ConTEXt. Maybe for fun, or for daily works, like me
(well, I am bit lucky, for me it is fun and work).

If so, then you cannot disagree with these simple
facts:

1. Unicode is becoming the standard for electronic
text interchange, but others/old encodings are still
present due to legacy systems;

2. today, and more than some years ago, one can
choose his/her Operating System (OS), and, with-
out make any tort to anyone, today we have Mac-
intosh, Windows and Linux, a quite diffused play-
ing field.

3. today we are using the WEB, or WEB-Applications
(i.e. spreadsheets online, rich text editor online),
not only to see correct texts but also to cut-and-
paste text from the WEB into our own texts.

So we quite often must match (or fight with) text-OS-
WEB, and occasionally we jump onto the encoding-
font-mess (What is the encoding of this text? Do I
have the right glyphs?).

This book covers these subjects in the ten chapters
(from 1 to 10, but chapter 9 is dedicated to fonts in
TEX which anyway fits well in between) and, of course,
one can also find here the relations between Unicode
and typography, especially in chapter 3 and chapter 4,
a prelude to the rest of the book.

Even if useful, these first ten chapters are only an
exercise, and maybe a bit difficult.

So, why not take a breath with something more
relaxing and read a chapter about “The History and
Classifications of Latin Typefaces” (chapter 11)?

And, after viewing some glyphs, maybe you want
to draw something on your own, and hence go on
with chapter 12, and chapter 13 and chapter 14, and
maybe you will find that “Fonts, Encodings & Tools” is
not really an inappropriate title.

Well, and now? What’s next?
Nothing.
The book is over.
Really.
So if you want to stop here, no problem. You have

read almost half a book, but it is complete.
If you do go on, be warned: it is technical material,

as it must be. In the following 7 appendices (almost
600 pages, a bit less than half of total pages) you will
read about fonts from bitmap to PostScript to TrueType
to OpenType to MetaFont ending with Bézier curve,
with no compromises to readability: editing/creating
fonts is not for infants, expecially today.

But, having said that, I must admit that it is also a
pleasure to read these appendices; and, in the end, the
final surprise is a bibliography with 358 entries.

Of course, one cannot ignore that sometimes some
notes are. . .well, funny, and some non-tecnichal opin-
ions may be not so condivisible as they seems; also
it seems that the book talks about a Fontforge from
2004 (a bit outdated), and, well, TTX is not so robust
(I have found some OpenType fonts with OS/2 =
3 that break TTX). Instead, one should download
last source from http://fonttools.sourceforge.net/cvs
-snapshots/zip which appears to be more stable.

And nothing at all is said about pdfTEX or luaTEX
(but there is a wiki, see http://luatex.bluwiki.com/go
/Luatex).

But even so, I enjoyed reading this book.

Thank you very much, Mr. Yannis Haralambous.

Luigi Scarso

Hans Hagen VOORJAAR 2008 25

Latin Modern Nederlands

De Latin Modern-fonts zijn inmiddels geen onbe-
kende meer en zijn al aardig geïntegreerd in de
TEX-distributies. Deze fonts zijn de uitkomst van het
Latin Modern-project dat door de TEX gebruikers-
groepen, waaronder de NTG, wordt gefinancierd. De
doelen van dit project laten zich als volgt samenvatten:

het combineren van de tot dan toe gebruikte Ty-
pe1-fonts in slechts een font (voor pdfTEX)
het voorzien in de behoefte aan een OpenType font
(voor X ETEX en LuaTEX)
het opschonen van de shapes en corrigeren van
bekende bugs
het aanvullen van het repertoire aan Latin glyphs

De fontset vervangt in TEX-distributies de traditionele
Computer Modern-fonts en biedt daarbij wat extra
monospaced varianten. Over de jaren heen waren
nogal wat aanvullingen ontstaan op CM en geen ervan
was compleet zodat schrijvers van macropakketten
zich nog wel eens van rommelige constructies moesten
bedienen om de gewenste karakters in de uitvoer te
krijgen.

Aansluitend is het TEXGyre-project gestart, dat
dezelfde doelen verwezenlijkt voor tien veel gebruikte
fonts in de TEX-distributies. In de wandelgangen wordt
daarbij vaak gesproken over het ‘lm-ineren' van fonts,
wat dan zowel duidt op het synchroniseren van de
beschikbare glyphs als het verminderen van het aantal
fontfiles. Wat geldt voor LM, dat geldt ook voor Gyre.

Het verder opwerken en completeren van de
standaard LM-fonts resulteert in regelmatige updates
van de resulterende files. Eind januari is versie 1.05
uitgebracht. In deze versie zijn weer wat extra glyphs
beschikbaar (vooral ten behoeve van transliteraties)
maar de meest drastische wijzigingen zitten in de
OpenType varianten:

nieuwe filenamen zodat in andere applicaties dan
TEX-gebruik handiger is
een meer robuuste ondersteuning van features zo-
als ligaturen
een andere systematiek van interne naamgeving

Er is door een groep betrokkenen zo goed en kwaad
als dat kan gekeken in hoeverre de verschillen-
de besturingssystemen en grafische applicaties fonts
presenteren en de huidige interne naamgeving is

het best mogelijke compromis. Natuurlijk kunnen
TEX-macropaketten er hun eigen laag overheen leggen
en veel voor de gebruiker verbergen.

Er is verrassend veel tijd gaan zitten in een voor de
Nederlandstaligen specifiek probleem: de ij. Om een
of andere reden vinden we het vanzelfsprekend als
we in een font een fi, fl, ffl en ffi ligatuur aantreffen.
Overigens, zulke ligaturen zijn vooral bedoeld om
dichtlopen door inkt te voorkomen en niet zozeer es-
thetisch. Als gevolg vanmeer moderne druktechnieken
vinden we in hedendaagse fonts minder vaak zulke
ligaturen. Echter, wat te denken van onze zogenaamde
‘lange ij'. Op school leren we deze combinatie van een i
en een j als een karakter te schijven en het zal dan
ook niemand verbazen dat er in Unicode twee slots
zijn gereserveerd: 0x0132 voor IJ en 0x0133 voor ij.
Zowel in Unicode als in de glyphname worden dit
ligaturen genoemd,maar demeeste Nederlandstaligen
zullen het als een letter zien. Het is de vraag of bij het
opdreunen van het alfabet op school kinderen denken
aan deze ij of aan de zogenaamde griekse y.

Hoe dan ook, met de komst van OpenType zullen we
de ligatuur vaker zien verschijnen. De reden hiervoor is
niet dat plotseling iedereen het gereserveerde Unicode
slot gaat gebruiken (we blijven gewoon i+j intypen),
maar dat fonts ingebouwde regels hebben voor het
vervangen van combinaties van karakters. Dit is niet
nieuw, denk maar aan de fi ligatuur die opduikt als
we een f en een i intypen. Echter, waar deze ligatuur
in vrijwel alle talen opduikt, is de ij ligatuur alleen
in het Nederlands van belang. Dit betekent dat in
bijvoorbeeld Latin Modern, waar we een ij-ligatuur
hebben, de OpenType-fonts extra slim moeten zijn
als het onze taal betreft. Vergelijk de voorbeelden
in figuur 1 maar eens.

In een OpenType font zijn features gekoppeld aan
een script (zoals latin) en een taal (zoals Nederlands).
Beiden hebben standaard de waarde ‘default'. Een van
de beslissingen die een fontontwerper (of degene die
het font technisch afhandelt) moet nemen is waar
precies zo'n ligatuur moet worden ondergebracht: is
het een ‘required' ligature (rlig), een ‘discretionary'
ligature (dlig), een gewone ligatuur (liga) of misschien
een ‘historic' (hlig)? De praktijk leert dat fonts op dit
vlak niet consistent zijn, iets wat niet verwonderlijk is,
omdat de OpenType-standaard minder open is dan de
naam suggereert. We zullen er mee moeten leren leven
dat weliswaar veel font-gerelateerde zaken (om er een

26 MAPS 36 Hans Hagen

script taal liga feature resultaat

dflt dflt disabled fijn ijs eten in de file
dflt dflt enabled fijn ijs eten in de file
latn dflt enabled fijn ijs eten in de file
latn nld enabled fĳn ĳs eten in de file
latn eng enabled fijn ijs eten in de file

Figuur 1.

te noemen: installatie) eenvoudiger worden maar dat
de eindgebruiker nog steeds voor beslissingen wordt
gesteld.

In Latin Modern is onze ij beschikbaar als liga-
tuur waarvan de i en de j wat dichter bij elkaar
staan dan normaal. Hier zou dus ook taal- en
context-afhankelijke kerning kunnenworden gebruikt.

Wat is dat, een context-afhankelijkheid? Ook in het
geval van een ligatuur moeten we bij vervanging van
de i en j door een ij kijken naar meer dan alleen deze
twee letters. Immers, wat verwacht men in het woord
fijn? Een fi+j+n, of een f+ij+n. In Latin Modern
zijn regels opgenomen die inhouden dat in geval van
een f gevolgd door een i, gevolg door een j eerst de
laatste twee karakters worden vervangen door een ij.
Vervolgens hebben we een f gevolgd door een ij en
dat is geen paar dat tot een ligatuur leidt. Dit soort
truukjes kan alleen door X ETEX en LuaTEX worden

uitgevoerd, op basis van de in het font opgeslagen
informatie. Let wel: op zich zou je dit soort regels
kunnen vastleggen onafhankelijk van het font (en dus
ook kunnen toepassen bij gebruik van Type1-fonts)
maar in dit geval liggen de regels vast in het OpenType
font.

Gezien het aantal talen en gezien de taalspecieke
font gerelateerde (al dan niet historische) zaken, kan
men zich voorstellen dat fonts en fontontwerpen er
niet eenvoudiger op worden. Ook kunnen we uitzien
naar bugs in fonts, incomplete feature-specificaties,
beperkte omvang van het aantal regels, enzovoort. Het
is verder de vraag of en wanneer we gaan afwijken van
zulke regels, immers, TEX-gebruikers hebben vaak zo
hun eigen idee over wat mooi en wenselijk is. Hoe dan
ook, het blijft opletten geblazen.

Hans Hagen

Aditya Mahajan VOORJAAR 2008 27

Theorems in ConTEXt

Abstract
This article explains some of the recent advancements in ConTEXt enumeration
mechanism that handles most of the requirements of theorem-like constructions.

Keywords
ConTEXt, theorems, enumerations

Introduction
In mathematics writing important results are usually presented in such a way that
they stand out from the surrounding text and can be referenced later on. The-
orems, lemmas, corollaries, and proofs are most common examples. In ConTEXt,
enumerations can be used to define such theorem-like environments and this article
explains how to do that.

The basics
A typical theorem looks like this.

Theorem 1 (Pythagoras Theorem) The square on the hypotenuse is equal to the
sum of the squares on the other two sides.

It consists of a name (theorem), a number (in this case 1), an optional title (Pythago-
ras Theorem), and a body. We want to be able to configure the blank space before
and after the theorem, the style of the name, number, title, and the body. Some
attributes are shared amongst all theorem-like environments, others are specific to
a particular environment. All common features can be set up using \setupenu-
merations. For example, in this document I have set

\setupenumerations
[before={\blank[big]},

after={\blank[big]},
location=serried,
width=broad,
distance=0.5em,
headstyle=bold,
titlestyle=bold,
way=bytext,
conversion=numbers]

The before and after keys are for setting up what goes before and after the
enumerations. In this example, we use it to set up the blank spaces; later on I
will show an example to use these keys to do fancy stuff. The location key sets
up where the head and the title will be located. There are various options which
are documented in the ConTEXt manuals. I use serried with width set to broad
and distance equal to 0.5em. This gives the typical style in which theorems are
typeset. The keys headstyle and titlestyle set the style for head (theorem
name and number) and title. There are also headcolor and titlecolor to set
up colors. If you really want to fine tune the appearances of head and title, you
can use the headcommand and titlecommand keys to use a custom command. The

28 MAPS 36 Aditya Mahajan

way key configures the numbering; we can use bytext, bychapter, bysection,
bypage, etc. The conversion key sets up the numbering; we can use Characters,
numbers, Roman, or a customized conversion.

Once we have set up the style common for all enumerations, we can set up
individual theorem-like environments.

\defineenumeration
[theorem]
[text=Theorem,

title=yes,
style=italic,
list=all,

listtext={Theorem }]

This defines an environment (\starttheorem . . .\stoptheorem) with the name
“Theorem”, an optional title and italic body style. It also sets a list all to store
theorems, with the listtext as “Theorem ” (notice the space). This enables us to
place a list of theorems later on. This environment can be used as

\starttheorem[thm:pythagoras]{Pythagoras Theorem}
The square on the hypotenuse is equal to
the sum of the squares on the other two sides.

\stoptheorem

The \starttheorem command takes two optional arguments. The first optional
argument is in square brackets and sets up the key for referencing: we can use
\in[thm:pythagoras] to get the number of the theorem. The second argument
is in curly brackets and sets the title of the theorem; the title is typeset according
to titlestyle and titlecolor keys and is surrounded by titleleft and tit-
leright, which by default are set to (and). If we want a theorem without a title,
we can leave out the second optional argument. For example, to get this

Theorem 2 The square on the hypotenuse is equal to the sum of the squares on the
other two sides.

we type

\starttheorem
The square on the hypotenuse is equal to the sum of the squares
on the other two sides.

\stoptheorem

We can also set up the proof environment using enumerations. A typical proof
looks like

Proof I have discovered a truly marvelous proof of this, which this margin is too
narrow to contain. �

Normally proofs do not have a number or a title, and have a symbol � at the end
to indicate the end of the proof. Proofs can be set up as

\defineenumeration
[proof]
[text=Proof,

number=no,
headstyle=italic,

title=no, %this is the default
closesymbol={\mathematics{\square}},

style=normal]

Theorems in ConTEXt VOORJAAR 2008 29

The number=no makes the proofs not numbered, the closesymbol key sets the
close symbol (�) which is placed at the end of the environment and is pushed to the
right edge of the line. The current algorithm for placing the close symbol is fairly
simple and does not give the correct result in all cases. Sometimes (e.g., when
the proof ends with an itemize environment) one has to manually tell ConTEXt
where to place the close symbol by putting a \placeclosesymbol command at
the appropriate place. This command is equivalent to the \qedhere command of
the amsthm package in LaTEX. The closesymbolcommand key can be used to set a
customized command to place the close symbol. The above proof was keyed in as

\startproof
I have discovered a truly marvelous proof of this, which this margin
is too narrow to contain.

\stopproof

Sharing numbers
Suppose we want to define a corollary environment, which shares the same number
as theorem. So, if we key in

\startcorollary
The sum of angles of a quadrilateral is $360ˆ{\circ}$.

\stopcorollary

we will get

Corollary 3 The sum of angles of a quadrilateral is 360◦.

In order to share the numbering with theorems, we need to define corollary as

\defineenumeration
[corollary]
[text=Corollary,

number=theorem,
list=all,

listtext={Corollary }]

The number=theorem key tells ConTEXt to use the same number for theorems
and corollaries. Notice that the number key is smart: number=no means that the
enumeration will not be numbered, number=theorem means that the enumeration
will have the same number as theorems.

Framed and shaded theorems
In LaTEX, ntheorem package provides a means to get shaded and framed theorems.
In ConTEXt, the enumerations provide enough hooks to make this possible. Suppose
we want all axioms to be framed with a random frame. First let us define the fancy
text background

\definetextbackground
[axiomframe]
[mp=background:random,

location=paragraph,
rulethickness=1pt,

width=broad,
leftoffset=1em,

rightoffset=1em,
before={\testpage[3]\blank[3*big]},
after={\blank[3*big]}

]

30 MAPS 36 Aditya Mahajan

where background:random is defined as

\startuseMPgraphic{background:random}
path p;
for i = 1 upto nofmultipars :
p = (multipars[i]
topenlarged 10pt
bottomenlarged 10pt) randomized 4pt ;

fill p withcolor lightgray ;
draw p withcolor \MPvar{linecolor}
withpen pencircle scaled \MPvar{linewidth};

endfor;
\stopuseMPgraphic

Now, we want hook this frame to the definition of an axiom. We can use

\defineenumeration
[axiom]
[text=Axiom,

before={\startaxiomframe},
after={\stopaxiomframe},
title=yes,

stopper=,
location=top,

list=all,
listtext={Axiom }]

after which

\startaxiom {Playfair’s axiom}
Exactly one line can be drawn through any point not on a given line
parallel to the given line.

\stopaxiom

gives

Axiom 1 (Playfair’s axiom)

Exactly one line can be drawn through any point not on a given line parallel
to the given line.

We can use all the fancy features of framed texts to get fancy backgrounds for
enumerations.

Sharing styles
Suppose we spent a lot of effort in defining a fancy style for axioms. Now, suppose
we want to define two new enumerations, postulate and proposition, with the same
style. We want postulate and axioms to share numbering, but we want propositions
to be numbered on their own. We could copy the entire style of axiom for defining
postulates and propositions, but ConTEXt provides an easier method. We can define
postulates as

\defineenumeration
[postulate]
[axiom]
[text=Postulate,

Theorems in ConTEXt VOORJAAR 2008 31

list=all,
listtext={Postulate }]

and then use \startpostulate . . .\stoppostulate to get

Postulate 2 (Parallel Postulate)

If two lines are drawn which intersect a third in such a way that the sum of
the inner angles on one side is less than two right angles, then the two lines
inevitably must intersect each other on that side if extended far enough.

Notice that postulates have the same style as axioms, and they also share the
numbering with axioms. Now, if we do not want to share the number, but still want
to share the style we can say

\defineenumeration
[proposition]
[axiom]
[text=Proposition,

number=proposition,
list=all,

listtext={Proposition }]

and then use \startproposition . . .\stopproposition to get

Proposition 1

To construct an equilateral triangle on a given finite straight line.

Notice that the proposition has got a number of its own. We could have also used
the number key to share the number with an already defined enumeration.

List of things
Often we want to display a list of theorems. For example, here is a list of all
theorems used in this article.

Theorem 1 Pythagoras Theorem 27
Theorem 2 28
Corollary 3 29
Axiom 1 Playfair’s axiom 30
Postulate 2 Parallel Postulate 31
Proposition 1 31

We get this by keying in

\placelist[enumeration:all][width=6em,criterium=all]

Observe that we had used list=all in all the enumerations we defined. We
also set the listtext to appropriate strings. The list of theorems in stored in
enumeration:all list, and can be recalled by \placelist. The criterium=all
is needed so that we can place the theorems from all sections, not just from the
current section.

32 MAPS 36 Aditya Mahajan

Conclusion
Enumerations take care of most of the features needed for typesetting theorems.
There are a few things that need improvement. It would be nice to have an
automated placement of close symbol that works correctly with formulas and item-
izations. The ntheorem package in LaTEX shows how it can be done using a two
pass mechanism. I personally am not too happy with the way lists work; it would
be nice if the list text was equal to text by default (rather than the name of the
enumeration which starts with a lowercase letter) and list width was calculated
automatically.

Aditya Mahajan
adityam@umich.edu

Hans van der Meer VOORJAAR 2008 33

Exam Papers
Posing Questions To Students

Abstract
Exam is a module for consistent production and
maintenance of student examinations. Provided for are
various types of questions such as with long and small
answers, yes/no questions and multiple choice.

Keywords
examination, multiple choice, ConTeXt

Introduction
The ConTEXt hvdm-exm module is a means for easy
and consistent typesetting of exams and collections of
exam questions. It especially facilitates questions with
short answers and multiple choice. Many aspects of
the typesetting are configurable.

This module is an adapted and upgraded version of
my previous LaTEX package called the exam package.
Its last version 3.30 of 1997/03/14 should still be
available on CTAN (macros/latex/contrib/exams)
but is no longer maintained by me. Changing
to ConTEXt proved an efficient route to enhanced
behaviour.

Exam structure
Exams can be typeset in two different formats. First of
course in the format as presented to students undergo-
ing the examination; this version can be typeset with
nothing more than the bare examination questions.
The other extreme is a collection of all questions with
answers, annotations and points awarded. In between
these is a lot of flexibility.

Customization may be done by setting various
parameters, either specific to the macros in this module
or through those inherent to the ConTEXt macros on
top of which they are built. As a last resort one
can redefine macros at will; there is a fair amount
of modularisation to facilitate this.

A small builtin vocabulary of common language
dependent terms is used. Defining them for another
language allows one to typeset these terms automat-
ically if that is ConTEXt’s current active language.
Looking at the code it will be apparent what is needed
for additional languages.

All typesetting of exams, either for an examination
or for the whole collection, has the following simple

overall structure:

\startexam[options]
\setexamdirectory[first series]
\question[options]{file-1}
\question[options]{file-2}
...
\setexamdirectory[second series]
\question[options]{file-3}
\question[options][buffer]{\getbuffer}
...

\stopexam

Each question resides in its own file, but these may be
put in different directories. With \setexamdirectory
the reading directory is switched. One can intersperse
the typesetting with all sort of text material. As an
alternative to file reading, the questions can also come
from ConTEXt buffers; this makes their inclusion in
expository texts easy. The last question in the example
above uses text defined between ConTEXt’s simple
\startbuffer . . . \stopbuffer construct. If its
second parameter is buffer the argument within the
braces is interpreted as the callup of a buffer instead
of a filename. The questions themselves are defined
with:

\startquestion[options]
... text question followed by answer ...

\stopquestion

At the end of the exam a titlepage is made. Typesetting
this after the questions makes for easy production of
a summary with data such as the number of questions
and the total number of points to be earned. For
old hands: typesetting the titlepage after the contents
was already seen in the early days of TEX processing,
when program text was done with the webmac macro
package.

Filenames may omit the .tex suffix, as is usual in
the TEX world. Without an explicit \setexamdirec-
tory the file is taken from the current directory.

More often then not — at least in my experience —
one mistypes the name of some file in a long series of
them. Instead of aborting the production run, or worse

34 MAPS 36 Hans van der Meer

forgoing the mistake silently, there is a prominent
message drawing attention to the mistake. Below is
the warning that missing-file.tex wasn’t located:

FILE missing-file UNKNOWN

Examples
Following are some examples of the capabilities of the
module.

Short answer. First a simple question where a short
answer has to be given. The definition is here:

\startquestion[%
date=23-07-2006,
score=2,
subject={Short answer}]

What is the most famous question?
\shortanswer To be or not to be.\par
\stopquestion

The arguments of the \startquestion serve the
following purpose. The date field is for the creation
date of the question. The score is the maximum
attainable number of points that can be earned by
giving a correct answer (though this value may be
overridden at production of the exam, if so required).
The subject provides a short description for the
question. The body of the question contains its text,
followed by the predeterminded answer. Being a fairly
short answer the \shortanswer form is chosen; note
the \par that must finish it. If called with option
showanswer=no (a natural choice for the production
of a student copy) the typeset question looks like this:

Problem 1: What is the most famous question?
Answer: .

The answer has to be filled in on the dotted line.
Setting the option to showanswer=yes in the option
field of \startexam lets the dotted line disappear and
the answer appears instead.

Problem 1: What is the most famous question?
Answer: To be or not to be.

There is an option (not demonstrated here) for show-
ing the scorebox: in the margin a square is placed,
containing the maximum score set for the question.
The size of the square is easily changed by redefinition:

\def\scoreboxsize{dimension}.
Below one can observe the extra information at the

top of the question for the series=yes option.

Short answer ∗∗∗ file = buffer : 23-07-2006
Problem 1: What is the most famous question?
Answer: To be or not to be.

In the next examples the output is given twice,
with respectively showanswer=no and yes. Further-
more the parameters date, score and subject of the
\startquestion are omitted from the accompanying
code as shown.

Standard answer. Opposed to the short answer
stands the standard answer. The body of the answer is
enclosed in the pair \startanswer . . . \stopanswer.
Enough vertical room must be reserved to allow the
student to give a complete answer. That space is
specified on the definition of the question in the first
option argument; it can however be overriden when
necessary. Omitting it takes the last default that has
been set with option answerspace. In case answers
are produced, the vertical space parameter is ignored
and the answer will be typeset in its natural height.

\startquestion
\annotation Short question, long answer.\par
Elaborate on the question
\quotation{To be or not to be}.
\startanswer[2cm]
... sample answer text ...
\stopanswer
\annotation A second note.\par
\stopquestion

Problem 2: Elaborate on the question “To be or not
to be”.

Answer:

In the next printout, containing the answer, the
notes option has been set to show the \annotation
macro. Annotions are useful as a form of comment,
being neither part of the question nor of the answer.
Annotations are collected and typeset together at the
end of the question--answer body. If more than one
annotation is present, they are automatically itemized
(see also the note in example 6).

Exam Papers VOORJAAR 2008 35

Problem 2: Elaborate on the question “To be or not
to be”.

Answer: This is a famous quote from Hamlet,
a play of the English writer William

Shakespeare. One really has to suspect that nowadays
not many students have seen even one of Shake-
speare’s plays, let alone having read one. Most might
not even know when or where William Shakespeare
is supposed to have been born.

Notes
1. Short question, long answer.
2. A second note.

There is a third possibility in the way a long answer is
treated; it is illustrated in the code below. The option
parameter of \startanswer is given the value force.
As a result the answer block is typeset, regardless
whether answer showing is on or off. This is useful
in those cases where a template must be filled in by
the student. The \ifanswers..\fi macro allows one
to show or hide the answer parts.

\startquestion
Finish the following ..
\startanswer[force]
\startitemize[2]
\item this .. \ifanswers Hamlet\fi
\item of .. \ifanswers William Shakespeare\fi
\item .. at \ifanswers Stratford-on-Avon\fi
\stopitemize
\stopanswer
\stopquestion

Problem 3: Finish the following three statements
on the quotation “To be or not to be”.

Answer:
− this is a famous quote from
− of the English writer
− supposed to be born at

Problem 3: Finish the following three statements
on the quotation “To be or not to be”.

Answer:
− this is a famous quote from Hamlet
− of the English writer William Shakespeare
− supposed to be born at Stratford-on-Avon

Alternating answer. For questions that can be
answered simply by crossing out or underlining one of
two alternatives (such as yes/no, right/wrong) there
is the \altanswer construct. Its two arguments carry

the alternatives. In answer mode the correct one is
underlined; its position being the first one by default,
to be changed with the option. The coding is:

\startquestion
Was something rotten in the state of Denmark?
\altanswer[left]{\Yes}{\No}
\stopquestion

Problem 4: Was something rotten in the state of
Denmark?

Answer: yes or no

Problem 4: Was something rotten in the state of
Denmark?

Answer: yes or no

Boxed answer. Sometimes an answer is just one
thing to put inside a box. The \answerbox macro is
made for this type of question. The length of the box
can be specified in the optional argument; omitting
it defaults to the natural width of the answer text.
As with the long answer, here too one can change
the default width examwide; the relevant option is
boxwidth. The example:

\startquestion
Who posed that question?
\answerbox[3cm]{\quotation{Hamlet}}
\stopquestion

Problem 5: Who posed that question?

Answer:

Problem 5: Who posed that question?

Answer: “Hamlet”

Parametrized question. When calling up a question
it is possible to customize it by means of a parameter.
To choose for example between several alternative
formulations of essentially the same question. This
helps to vary successive exams, while still keeping
them similar. The parameter is given its default value
on the \startquestion with the parameter=value
option and can be redefined on the \question call. An
explanation of parameter usage might come in handy
and may find its place inside an annotation. In the
example below \question[parameter=2] is used to
select the second alternative whereas 1 is the default.

36 MAPS 36 Hans van der Meer

\startquestion[parameter=1]
Was something rotten in the state of
\ifx\parameter\parameterdefault

Denmark? \altanswer[left]{\Yes}{\No}
\else Britain? \altanswer[right]{\Yes}{\No}
\fi
\startannotation ... \stopannotation
\stopquestion

Problem 6: Was something rotten in the state of
Britain?

Answer: yes or no

Notes
The actual value 2 of \parameter is used; the default
\parameterdefault has value 1.

Multiple choice question. Finally an example of a
multiple choice question. In multiple choice there is
no inviting “Answer” prompt, because the intention
is obvious. When the necessary modules for random
generation (hvdm-rng) and list sorting (hvdm-lst)
are installed, one may automatically shuffle the items.
The itemlist appearance is determined by the setupmc
option; there one can give a \setupitemize to be
executed just before the typesetting of the itemlist.

\startquestion
Which person is found in \quote{Hamlet}?
\startmultiplechoice
\wrong Rosalind\par
\wrong Desdemona\par
\right Ophelia\par
\wrong Juliet\par
\stopmultiplechoice
\stopquestion

Problem 7: Which person is found in ‘Hamlet’?

� Rosalind
� Desdemona
� Ophelia
� Juliet

Macros and their parameters
A summary of the most important macros and their
arguments follows.

\setupexams[..,..=..,..]. Does the setup for
the subsequent \exam’s. The options are summarized
in the table. Because questions are put inside a
framedtext, their appearance can be influenced

with \setupframedtexts[]. Some framedtext
parameters can be set from the option list of \exam
and \question. These options are rulethickness,
offset, frameoffset, radius, corner, frame-
color, background, backgroundoffset, back-
groundscreen, backgroundcolor, background-
corner, backgroundradius.

\startexam[..,..=..,..]...\stopexam. Specify
an exam between this start and stop pair. The same
options as with \setupexams apply here. Special
values to mention are:
. language to choose the language in which to type-

set the fixed terms;
. marks to choose the marks for multiple choice,

customize these yourself by redefinition of
\rightmark, \wrongmark and \choosemark;

. numbering switches numbering on/off;

. prompt set this option to no in order to suppress
typesetting the “Answer” prompts for exams to be
answered on separate answer sheets;

. random for random processing and checking with
\ifrandom..\else..\fi when module hvdm-
rng is installed, for randomization of multiple
choice install hvdm-lst too;

. separator separation of questions with hairline,
nothing or placement on separate page;

. setupmc setup for multiplechoice itemlist;

. showanswer for typesetting the answers;

. showscore for showing the score values;

. standalone typesets each question apart as is
done in this text;

. series produces a catalogue of questions.

\setexamdirectory[path]. Set current directory
to the (possibly empty) value of the argument.

\setnumberstart[number]. Sets the initial value
for the numbering of questions. The numbering starts
at 1 by default, but one can imagine numbering
schemes where different topics each start at a round
number. The option value reset restarts the number-
ing at the beginning.

\question[..=..]{filename}. Callup question
from a file. The available options are those marked
Q in the table. It is possible to include frame
parameters in the option list for individual changes.
The number=# option allows one to have questions
individually numbered. Note however that the regular
number is still advanced by 1.

\question[..=..][buffer]{\getbuffer}. Get the
question from buffer instead of from file.

Exam Papers VOORJAAR 2008 37

after QE command execute after question
answerspace DQE dimension force set default answer space
before QE command execute before question
boxwidth QE dimension set default width answerbox
date DE text examination (E) or creation (D) date
frame QE on off put frame around question
hang QE number hang parameter on question and answer
introstyle QE stylecommand normal fontstyle of question, answer intro
language E 2-letter currentlanguage languagecode for fixed vocabulary
marks E square circle squarev circlev multiplechoice marks
notes QE yes no place annotations
numbering E yes no show question numbering
parameter QD any actual (Q) or default (D) parameter value
prompt QE yes no place answer part or always suppress
random QE yes no random processing turned on or off
score QD number the question score
separator E yes no page separator or pagebreak after question
series E yes no typeset catalogue of questions
setupmc QE \setupitemize format multiplechoice item list
showanswer E yes no show answers
showscore E yes no show score and possibly subscores
standalone E yes no typeset isolated question
style QE stylecommand normal fontstyle of question body
stopper QE char placed behind question and answer
subject E text field of the exam
width QE fit broad dimension width of question

Setups effective on question definition (D), question (Q) exam (E)

\startquestion[..=..]...\stopquestion. Put
the definition of a question fully inside this macro pair.
The most obvious pattern is to start with the text of the
question and let this follow by the answer. Typesetting
begins with the “Question” header and an optional
sequence number, any answer macro following then
triggers the “Answer” header. The options applicable
are summarized below.

date text empty creation date
subject text empty descriptive text
score number 0 points allotted
parameter any empty parameter default

When a question has more than one part, it is handy to
allot a fixed number of points to each subquestion. The
macro \subscore[#] places them in the margin when
showanswer=yes. It helps maintaining consistency by
reporting an error if the sum of the subscores does
not equal the score given to the question as a whole.
The number option makes it possible to number each
question individually or reset the numbering from a
given question on.

\shortanswer...\par. Answer text of one para-

graph to be placed on a dotted line. The closing \par
that may not be omitted.

\startanswer[length]...\stopanswer. Answer
text is put inside this pair. The optional length
parameter specifies the vertical amount of space to
reserve for the answer. If it is not given the default
value is used. Set the length parameter to force
in order to force typesetting of the answer block in
its natural height unless suppressed completely with
the prompt=no setting. The value given here always
prevails, because it is clearly something the designer
of the question had in mind. It is therefore advised
to use this parameter sparingly and preferably tune
these lengths on \startexam (global) and/or on the
\question (individual).

\answerbox[width]{...}. Answer to be placed
inside a box of given width. If width is not given
the default value is used. The default width can be
specified by the boxwidth parameter.

\altanswer[left,right]{1st}{2nd}. Two alternat-
ing answers. Defaults to the first alternative as the
correct one, any option value other than left or empty
switches this to the second argument. Redefine macro

38 MAPS 36 Hans van der Meer

\altanswerseparator for the separator between the
two possibilities.

\startmultiplechoice...\stopmultiplechoice
\right...\par, \wrong...\par. A multiple choice
item list should be put inside the start/stop pair. Place
the correct item after \right and the wrong items
after \wrong, closing them with \par; if you like a
synonym like \ok better, just define \ok as \right.
The symbols marking the items can be chosen with the
marks option on \startexam.

\annotation ... \par
\startannotation...\stopannotation. If put
inside the question, the annotations will be added at
the end of it according to the value of the notes option.
For example useful to explain \parameter usage. The

first format limits the contents to one paragraph; do
not forget the closing \par then.

\examtitlepage. Produces a standard titlepage.
Redefine this macro at will. Macros \thetitle,
\thedate, \thetotalquestions, \thetotalscore
are available for use; the latter two are filled in by
\stopexam.

\endefines. English language vocabulary. Others
may be added by defining a macro of the form
\xxdefines similar to \endefines. Showing the
vocabulary for a language can be done with \mean-
ing\xxdefines.

Hans van der Meer
hansm@science.uva.nl

R.F. Smith VOORJAAR 2008 39

Revision control for TEX documents
An overview
Abstract
Revision control is the management of multiple
versions of the same unit of information. Originating
in formalized processes in engineering, it was first
automated for managing source code for computer
software. Since TEX documents are like source code,
they lend themselves well to being managed by a
revision control system.
Systems like RCS and git are very suitable for single
writers working on their own projects.
More elaborate systems like CVS and subversion are
more suited for groups cooperating on projects. It
takes more effort to master them.
For most single users, git is the best alternative for
multi-file projects, followed by RCS for working on
single TEX files.

Keywords
revision control, RCS, CVS, subversion, git

Introduction
What is revision control
Revision control is keeping a history of the develop-
ment of a unit of information.

The first revision control systems were procedures
used by draftsmen to differentiate between several ver-
sions of drawings or blueprints. Engineering draw-
ings are customarily equipped with a table in the lower
right corner, stating the date of a revision, a revision
number and a description of the changes since the pre-
vious version. While these procedures are helpful, one
also had to make a copy of the master drawing before
it was changed to keep a full history of the evolution
of the drawing.

With the rise of software engineering, similar proce-
dures for tracking the development of computer source
code were automated. Programs were written to facil-
itate storing and retrieving different versions of (plain
text) source code files. Changes are usually saved as
differences (or diffs) with respect to the previous ver-
sion, to conserve space.

Since TEX files are plain text files, they lend them-
selves very well to being managed by revision control
systems.

Newer and more sophisticated revision control sys-
tems can also handle binary files, like PDF and JPG
files efficiently, making them suitable for complex TEX
projects.

Modern revision control systems enable several peo-
ple to work together on a project. This article however
will focus on a single person using revision control,
since that is envisioned as the most common scenario.

This article focuses on software that is freely avail-
able. There are several proprietary systems available
but they are usually quite expensive and therefore out
of reach of most single users. And as the freely avail-
able systems mentioned here are used to manage most
of the largest open-source software projects in exis-
tence, they are good enough.

Why use revision control
Revision control is primarily useful for maintaining
documents that are long-lived and frequently edited.
By using a revision control system one can:

2 Undo edits, especially deletions.
2 Track the history of a document; what has changed

and why was it changed. And for documents edited
by more than one person; who made the change.

2 Work on a single project from multiple machines
or with more persons.

2 Merge different versions of a document.

Most editors offer an undo option. But this is usually
limited to the edits done in the current session. With
a revision control system one can easily restore a doc-
ument or project to an earlier state.

And while it is possible to record the history of a
document e.g. in a comment at the start of a file, this
requires a lot of discipline and is easily forgotten. Be-
sides, sometimes the record is just not enough; you
may want to retrieve an earlier version of a document
or project.

A simple system
Probably the most simple system of revision control
is regularly copying a file you are working on un-
der a different name, e.g. with the date in the file-

40 MAPS 36 R.F. Smith

name. So if you are working on a file called foo.tex
you could store a copy of it at the end of the day as
foo-YYYYMMDD.tex. The date is embedded in the file-
name to make it unambiguous and unique. If your
project has lots of files, you can wrap them up in a
similarly named zip-file or tarball.

This system has the advantage of being simple, since
it does not rely on auxiliary programs. As with any
other revision control system, it does depend on oper-
ator discipline. It is usable on all operating systems.

However, for large projects this system can use an
awful lot of storage. One of the author’s projects is
around 24 MiB1 in size. Copying that every day would
waste a lot of disk space. And it does not facilitate sev-
eral persons working on a single document or project.
Nor does it make it easy to see what has changed be-
tween different versions.

RCS
This system was developed in the 1980s by Walter
Tichy at Purdue University, as a free and better replace-
ment for the proprietary SCCS.2 This set of programs
deals with single text files. It does not handle binary
files well, and it has no concept of a project. It is there-
fore primarily suited for projects with a limited number
of text files. RCS originated as a command-line set of
programs for UNIX. It has been ported to almost every
UNIX-like system available. A Windows version is also
available.3

In the following examples the command-line ver-
sions of the RCS tools will be used. These examples
are not meant to be a replacement for the manual
pages that come with the RCS suite, or for the plethora
of HOWTO documents available on the Internet.4,5 A
quick search with your favorite search engine for “RCS
HOWTO” will turn up a lot of links.

These examples are meant to give you a taste of how
a revision control system works. Other systems have
different but functionally similar commands.

After creating a new file, it has to be put under con-
trol of RCS. This is done with the ci command:
$ ci foo.tex
RCS/foo.tex,v <-- foo.tex
enter description, terminated with single ’.’
NOTE: This is NOT the log message!
>> Test file.
>> .
initial revision: 1.1
done

RCS now asks you to give a description of the file. After
giving that, the file is checked in.

A file called foo.tex,v has now been created that
contains the revision history of the file foo.tex. If

a subdirectory named RCS exists, the revision history
file will be put there. Otherwise it will be put in the
same directory as the original file. The initial check-in
is given the revision number 1.1.

To edit the file, it has to checked out and locked with
the co command:
$ co -l foo.tex
RCS/foo.tex,v --> foo.tex
revision 1.1 (locked)
done

RCS uses locking to make sure that only one person is
editing a file at a given time. This can prove awkward
in an environment where multiple persons are work-
ing on a project. You cannot check in your changes
while someone else has locked the file. And you might
undo his changes by checking in yours! Other systems
handle this better.

Having checked out the file, you can now use your
favorite editor to edit it. Some editors like emacs and
vim are aware of RCS files and have special menus or
commands that enable you to check files in and out
from the editor.

You can use the rcsdiff command to check what
has changed in the working file with respect to the last
checked in version:
$ rcsdiff -u foo.tex
==
RCS file: RCS/foo.tex,v
retrieving revision 1.1
diff -u -r1.1 foo.tex
--- foo.tex 2007/07/24 16:00:50 1.1
+++ foo.tex 2007/07/24 18:15:08
@@ -1,3 +1,7 @@
-bla
+
+foo
+
+bar
+

\bye

The -u option of the rcsdiff command selects the
so-called “unified diff” format. In the author’s opinion
this is the easiest to read, because it provides some con-
text to the changes. As you can see, RCS uses lines as
the smallest unit. So if one letter changes in a line, the
whole line is seen as changed. Lines that are removed
are preceded with a “-” in unified diff format, while
added lines are preceded with a “+”. The line-based
difference mechanism used by RCS is what makes it
difficult to use with binary files, since non-text files
usually do not have meaningful regular line breaks.

If you are finished editing for the day, or if you feel
that you have reached a stage in your document that

Revision control for TEX documents VOORJAAR 2008 41

you want to save, you check in the changes:
$ ci -u foo.tex
RCS/foo.tex,v <-- foo.tex
new revision: 1.2; previous revision: 1.1
enter log message, terminated with single ’.’
>> This is the log message.
>> .
done

Using the -u option of the ci command enables you
to go on editing directly. Without it you would have to
check out and lock the file again.

CVS
CVS6 was developed from RCS by Dick Grune in the
mid-1980s to handle projects consisting of multiple
files in directory trees instead of single files.7

Unlike RCS, it can use a client-server architecture
and it separates the place where the revision history is
stored (called the repository) from the working direc-
tory. The server (and the repository) do not have to
reside on the same machine as the client (and working
directory), making collaboration over a network eas-
ier.

The downside is that it is more complicated to work
with than RCS. CVS cannot attach a revision to moving
or renaming a file or directory. CVS uses a centralized
server if multiple persons are working together on a
project. For most single-user TEX projects, this will be
an overweight solution. The added features of CVS
come at the price of added complexity. And since it is
based on RCS, it still doesn’t handle binary files well.

Many open source software projects use CVS to
maintain their code.

Subversion
Advertised as “CVS done right”, subversion8 aims to be
a compelling replacement for CVS. This system solves
a lot of the problems of CVS; it handles binary files
and it can handle file and directory renames. But like
CVS it is probably overkill for a small project. And it
shares with CVS a steep learning curve, and the need
for separate repositories.

Git
Git9 was developed when the developers of the Linux
kernel lost access to the proprietary BitKeeper sys-
tem10. Development was started in April 2005 with
version 1.0 being released in December 2005. The
Linux kernel development has been managed with git
since June 2005.

Unlike RCS, git tracks a directory tree of files. It

also handles binary files. But like RCS, a git-managed
directory is completely self-contained. It does not re-
quire external repositories. It has few dependencies,
stores its data in compressed form and is quite fast. For
instance, the complete revision history of the 24 MiB
project mentioned before which spans two years and
99 revisions is only 12 MiB. It is also a distributed sys-
tem. Every directory (repository) is self-sufficient, but
synchronizing between them is easy. So it is both easy
to work with for a stand-alone user, and for a group of
people working on the same project.

Because of its lightweight nature, directory track-
ing and handling of binaries, the author now prefers it
over using RCS.

An example of working with git follows. In this arti-
cle it is impossible to showcase the complete function-
ality of git, since there are more than a hundred and
forty git commands. Manual pages for all the git com-
mands, as well as several tutorials and HOWTOs are
included in the git distribution6.

To create a git repository, change to the directory
whose contents you want to monitor, and type:
$ git-init-db
Initialized empty Git repository in .git/

This creates a .git subdirectory that git uses to store
all data.

The git status command shows the state of the
repository.
$ git status
On branch master
#
Initial commit
#
Untracked files:
(use "git add <file>..." to include
in what will be committed)
#
Makefile
rc.tex
nothing added to commit but untracked
files present (use "git add" to track)

Now one has to point out which files you want to mon-
itor:
$ git add Makefile rc.tex
$ git status
On branch master
#
Initial commit
#
Changes to be committed:
(use "git rm --cached <file>..." to unstage)
#
new file: Makefile

42 MAPS 36 R.F. Smith

new file: rc.tex
#

To save this initial state of the files, commit them:
git commit -a \
-m "Initial check-in of Makefile and rc.tex."
Created initial commit 9d3de62:
Initial check-in of Makefile and rc.tex.
2 files changed, 357 insertions, 0 deletions
create mode 100644 Makefile
create mode 100644 rc.tex

The -a flag indicates that all changes should be com-
mitted, while the -m flag is followed by the commit
message.

With the git log command one can list the com-
mits:
$ git log
commit 9d3de6265ad4fc0df2ca108b7918f6283dc18d59
Author: Roland Smith <rsmith@slackbox.xs4all.nl>
Date: Thu Jul 26 19:03:57 2007 +0200

Initial check-in of Makefile and rc.tex.

Every commit is identified by a SHA1 hash of its con-
tents. This is also used to check against data corrup-
tion. Next is the name and e-mail address of the person
who checked in this commit. The date of the commit
and the commit message are also listed.

If one compiles the TEX file, some extra files are cre-
ated that git doesn’t know about:
$ git status
On branch master
Changed but not updated:
#
modified: rc.tex
#
Untracked files:
#
rc.aux
rc.log
rc.pdf
no changes added to commit

Normally, we would like git to ignore those files. So we
add them to the text file .git/info/exclude, and git
will ignore them from now on.

The command git diff is used here to show the
changes in the monitored files since the last commit.
A small piece of the diff is shown below. It uses the
so-called unified diff output style.
$ git diff
diff --git a/rc.tex b/rc.tex
index e3eaefe..3aac05d 100644
--- a/rc.tex
+++ b/rc.tex

@@ -1,5 +1,5 @@
% -*- latex -*-

-% Time-stamp: <2007-07-26 19:01:53 rsmith>
+% Time-stamp: <2007-07-26 19:20:47 rsmith>

% Copyright © 2007 R.F. Smith <rsmith@xs4all.nl>
%
%%

@@ -292,10 +292,11 @@ to work with for a stand-al
the same project.

Because of its lightweight nature, directory
tracking and handling of binaries, the

-author now prefers it over using RCS.
+author now prefers it over using RCS. An
+example of working with git follows.
...

By supplying git diff with one or two commit-id’s,
you can also show the differences between the named
commit and the working files, or between two named
commits.

Conclusion
For documents that consist of a single or a small num-
ber of TEX files and other text files, RCS is probably the
best solution because of its simplicity.

For larger projects, git is a better option. Especially
if they contain binary files in e.g. PDF or JPG format that
need to be controlled. Or if you want to collaborate
with others on a project.

Systems like CVS or subversion will probably appeal
to larger organizations that require centralized devel-
opment.

Notes
1. http://en.wikipedia.org/wiki/MiB
2. http://en.wikipedia.org/wiki/Revision_
Control_System
3. http://www.codeproject.com/tools/cs-rcs.asp
4. http://www.madboa.com/geek/rcs/
5. http://www.athabascau.ca/html/depts/
compserv/webunit/HOWTO/rcs.htm
6. http://www.nongnu.org/cvs/
7. http://en.wikipedia.org/wiki/Concurrent_
Versions_System
8. http://subversion.tigris.org/
9. http://git.or.cz/
10. http://en.wikipedia.org/wiki/Git_(software)

Roland Smith
rsmith@xs4all.nl

Hans Hagen VOORJAAR 2008 43

The luafication of TEX and ConTEXt

Introduction
Here I will present the current stage of LuaTEX around
beta stage 2, and discuss the impact so far on ConTEXt
MkIV that we use as our testbed. I’m writing this
at the end of February 2008 as part of the series of
regular updates on LuaTEX. As such, this report is part
of our more or less standard test document (mk.tex).
More technical details can be found in the reference
manual that comes with LuaTEX. More information on
MkIV is available in the ConTEXt mailing lists, Wiki,
and mk.pdf.

For those who never heard of LuaTEX: this is a new
variant of TEX where several long pending wishes are
fulfilled:

combine the best of all TEX engines
add scripting capabilities
open up the internals to the scripting engine
enhance font support to OpenType
move on to Unicode
integrate MetaPost

There are a few more wishes, like converting the code
base to c but these are long term goals.

The project started a few years ago and is conducted
by Taco Hoekwater (Pascal and c coding, code base
management, reference manual), Hartmut Henkel
(pdf backend, experimental features) and Hans Hagen
(general overview, Lua and TEX coding, website). The
code development got a boost by a grant of the Oriental
TEX project (project lead: Idris Samawi Hamid) and
funding via the tug. The related MPlib project by the
same team is also sponsored by several user groups.
The very much needed OpenType fonts are also a
user group funded effort: the Latin Modern and TEX
Gyre projects (project leads: Jerzy Ludwichowski,
Volker RW Schaa and Hans Hagen), with development
(the real work) by: Bogusław Jackowski and Janusz
Nowacki.

One of our leading principles is that we focus on
opening up. This means that we don’t implement
solutions (which also saves us many unpleasant and
everlasting discussions). Implementing solutions is up
to the user, or more precisely: the macro package
writer, and since there are many solutions possible,
each can do it his or her way. In that sense we follow

the footsteps of Don Knuth: we make an extensible
tool, you are free to like it or not, you can take it
and extend it where needed, and there is no need to
bother us (unless of course you find bugs or weird side
effects). So far this has worked out quite well and
we’re confident that we can keep our schedule.

We do our tests of a variant of ConTEXt tagged MkIV,
especially meant for LuaTEX, but LuaTEX itself is in no
way limited to or tuned for ConTEXt. Large chunks of
the code written for MkIV are rather generic and may
eventually be packaged as a base system (especially
font handling) so that one can use LuaTEX in rather
plain mode. To a large extent MkIV will be functionally
compatible with MkII, the version meant for traditional
TEX, although it knows how to profit from X ETEX. Of
course the expectation is that certain things can be
done better in MkIV than in MkII.

Status
By the end of 2007 the second major beta release of
LuaTEX was published. In the first quarter of 2008 Taco
would concentrate on MPlib, Hartmut would come up
with the first version of the image library while I could
continue working on MkIV and start using LuaTEX in
real projects. Of course there is some risk involved in
that, but since we have a rather close loop for critical
bug fixes, and because I know how to avoid some dark
corners, the risk was worth taking.

What did we accomplish so far? I can best describe
this in relation to how ConTEXt MkIV evolved and will
evolve. Before we do this, it makes sense to spend
some words on why we started working on MkIV in
the first place.

When the LuaTEX project started, ConTEXt was
about 10 years in the field. I can safely say that we
were still surprised by the fact that what at first sight
seems unsolvable in TEX somehow could always be
dealt with. However, some of the solutions were rather
tricky. The code evolved towards a more or less stable
state, but sometimes depended on controlled process-
ing. Take for instance backgrounds that can span pages
and columns, can be nested and can have arbitrary
shapes. This feature has been present in ConTEXt for
quite a while, but it involves an interplay between TEX
and MetaPost. It depends on information collected in
a previous run as well as processing of graphics.

44 MAPS 36 Hans Hagen

This means that by now ConTEXt is not just a bunch
of TEX macros, but also closely related to MetaPost.
It also means that processing itself is by now rather
controlled by a wrapper, in the case of MkII called
TEXexec. It may sound complicated, but the fact that
we have implemented workflows that run unattended
for many years and involve pretty complex layouts and
graphic manipulations demonstrates that in practice
it’s not as bad as it may sound.

With the arrival of LuaTEX we not only have a
rigourously updated TEX engine, but also get MetaPost
integrated. Even better, the scripting language Lua
is not only used for opening up TEX, but is also used
for all kind of management tasks. As a result, the
development of MkIV not only concerns rewriting
whole chunks of ConTEXt, but also results in a set of
new utilities and a rewrite of existing ones. Since
dealing with MkIV will demand some changes in the
way users deal with ConTEXt I will discuss some of
them first. It also demonstrates that LuaTEX is more
than just TEX.

Utilities
There are two main scripts: luatools and mtxrun.
The first one started as a replacement for kpsewhich
but evolved into a base tool for generating (tds) file
databases and generating formats. In MkIV we replace
the regular file searching, and therefore we use a
different database model. That’s the easy part. More
tricky is that we need to bootstrap MkIV into this
alternative mode and when doing so we don’t want
to use the kpse library because that would trigger
loading of its databases. To discuss the gory details
here might cause users to refrain from using LuaTEX
so we stick to a general description.

When generating a format, we also generate a
bootstrap Lua file. This file is compiled to bytecode
and is put alongside the format file. The libraries
of this bootstrap file are also embedded in the for-
mat.
When we process a document, we instruct LuaTEX
to load this bootstrap file before loading the for-
mat. After the format is loaded, we re-initialize
the embedded libraries. This is needed because
at that point more information may be available
than at loading time. For instance, some function-
ality is available only after the format is loaded and
LuaTEX enters the TEX state.
File databases, formats, bootstrap files, and run-
time-generated cached data is kept in a tds tree
specific cache directory. For instance, OpenType
font tables are stored on disk so that next time
loading them is faster.

Starting LuaTEX and MkIV is done by luatools. This
tool is generic enough to handle other formats as
well, like mptopdf or Plain. When you run this script
without argument, you will see:

version 1.1.1 - 2006+ - PRAGMA ADE / CONTEXT

--generate generate file database
--variables show configuration variables
--expansions show expanded variables
--configurations show configuration order
--expand-braces expand complex variable
--expand-path expand variable (resolve

paths)
--expand-var expand variable (resolve

references)
--show-path show path expansion of ...
--var-value report value of variable
--find-file report file location
--find-path report path of file
--make or --ini make luatex format
--run or --fmt= run luatex format
--luafile=str lua inifile (default is

<progname>.lua)
--lualibs=list libraries to assemble

(optional)
--compile assemble and compile lua

inifile
--verbose give a bit more info
--minimize optimize lists for format
--all show all found files
--sort sort cached data
--engine=str target engine
--progname=str format or backend
--pattern=str filter variables
--lsr use lsr and cnf directly

For the Lua based file searching, luatools can be seen
as a replacement for mktexlsr and kpsewhich and as
such it also recognizes some of the kpsewhich flags.
The script is self contained in the sense that all needed
libraries are embedded. As a result no library paths
need to be set and packaged. Of course the script has
to be run using LuaTEX itself. The following commands
generate the file databases, generate a ConTEXt MkIV
format, and process a file:

luatools --generate
luatools --make --compile cont-en
luatools --fmt=cont-en somefile.tex

There is no need to install Lua in order to run this
script. This is because LuaTEX can act as such with
the advantage that the built-in libraries are available

The luafication of TEX and ConTEXt VOORJAAR 2008 45

version 1.0.2 - 2007+ - PRAGMA ADE / CONTEXT

--script run an mtx script
--execute run a script or program
--resolve resolve prefixed arguments
--ctxlua run internally (using preloaded libs)
--locate locate given filename

--autotree use texmf tree cf.\ environment settings
--tree=pathtotree use given texmf tree (def: ’setuptex.tmf’)
--environment=name use given (tmf) environment file
--path=runpath go to given path before execution
--ifchanged=filename only execute when given file has changed
--iftouched=old,new only execute when given file has changed

--make create stubs for (context related) scripts
--remove remove stubs (context related) scripts
--stubpath=binpath paths where stubs wil be written
--windows create windows (mswin) stubs
--unix create unix (linux) stubs

--verbose give a bit more info
--engine=str target engine
--progname=str format or backend

--edit launch editor with found file
--launch (--all) launch files (assume os support)

--intern run script using built-in libraries

Figure 1. mtxrun help information

too, for instance the Lua file system lfs, the zip file
manager zip, the Unicode libary unicode, md5, and
of course some of our own.

luatex a Lua--enhanced TEX engine
texlua a Lua engine enhanced with some libraries
texluac a Lua bytecode compiler enhanced with

some libraries

In principle luatex can perform all tasks but because
we need to be downward compatible with respect
to the command line and because we want Lua
compatible variants, you can copy or symlink the two
extra variants to the main binary.

The second script, mtxrun, can be seen as a
replacement for the Ruby script texmfstart, a utility
whose main task is to launch scripts (or documents
or whatever) in a tds tree. The mtxrun script makes
it possible to get away from installing Ruby and
as a result a regular TEX installation can be made

independent of scripting tools.
The help information is shown in figure 1. It

gives an impression of what the script does: running
other scripts, either within a certain tds tree or not,
and either conditionally or not. Users of ConTEXt
will probably recognize most of the flags. As with
texmfstart, arguments with prefixes like file: will be
resolved before being passed to the child process.

The first option, --script is the most important
one and is used like:

mtxrun --script fonts --reload
mtxrun --script fonts --pattern=lm

In MkIV you can access fonts by filename or by font
name, and because we provide several names per font
you can use this command to see what is possible.
Patterns can be Lua expressions, as demonstrated
in figure 2.

46 MAPS 36 Hans Hagen

mtxrun --script font --list --pattern=lmtype.*regular

lmtypewriter10-capsregular LMTypewriter10-CapsRegular lmtypewriter10-capsregular.otf
lmtypewriter10-regular LMTypewriter10-Regular lmtypewriter10-regular.otf
lmtypewriter12-regular LMTypewriter12-Regular lmtypewriter12-regular.otf
lmtypewriter8-regular LMTypewriter8-Regular lmtypewriter8-regular.otf
lmtypewriter9-regular LMTypewriter9-Regular lmtypewriter9-regular.otf
lmtypewritervarwd10-regular LMTypewriterVarWd10-Regular lmtypewritervarwd10-regular.otf

Figure 2. Example of a mtxrun --script font run.

A simple

mtxrun --script fonts

gives:

version 1.0.2 - 2007+ - PRAGMA ADE / CONTEXT
| font tools

--reload generate new font database
--list list installed fonts
--save save open type font in raw table

--pattern=str filter files
--all provide alternatives

In MkIV font names can be prefixed by file: or
name: and when they are resolved, several attempts
are made, for instance non-characters are ignored. The
--all flag shows more variants.

Another example is:

mtxrun --script context --ctx=somesetup
somefile.tex

Again, users of TEXexec may recognize part of this and
indeed this is its replacement. Instead of TEXexec we
use a script named mtx-context.lua. Currently we
have the following scripts and more will follow:

The babel script is made in cooperation with
Thomas Schmitz and can be used to convert babelized
Greek files into proper utf. More of such conversions
may follow. With cache you can inspect the content
of the MkIV cache and do some cleanup. The chars
script is used to construct some tables that we need in
the process of development. As its name says, check
is a script that does some checks, and in particular it
tries to figure out if TEX files are correct. The already
mentioned context script is the MkIV replacement of
TEXexec, and takes care of multiple runs, preloading
project specific files, etc. The convert script will
replace the Ruby script pstopdf.

A rather important script is the already mentioned
fonts. Use this one for generating font name
databases (which then permits a more liberal access
to fonts) or identifying installed fonts. The unzip
script indeed unzips archives. The update script is
still somewhat experimental and is one of the building
blocks of the ConTEXt minimal installer system by
Mojca Miklavec and Arthur Reutenauer. This update
script synchronizes a local tree with a repository and
keeps an installation as small as possible, which for
instance means: no OpenType fonts for pdfTEX, and
no redundant Type1 fonts for LuaTEX and X ETEX.

The (for the moment) last two scripts are watch
and web. We use them in (either automated or
not) remote publishing workflows. They evolved out
of the eXaMpLe framework which is currently being
reimplemented in Lua.

As you can see, the LuaTEX project and its ConTEXt
companion MkIV project not only deal with TEX itself
but also facilitates managing the workflows. And the
next list is just a start.

context controls processing of files by MkIV
babel conversion tools for LaTEX files
cache utilities for managing the cache
chars utilities used for MkIV development
check TEX syntax checker
convert helper for some basic graphic conversion
fonts utilities for managing font databases
update tool for installing minimal ConTEXt trees
watch hot folder processing tool
web utilities related to automate workflows

There will be more scripts. These scripts are normally
rather small because they hook into mtxrun which
provides the libraries. Of course existing tools remain
part of the toolkit. Take for instance ctxtools, a
Ruby script that converts font encoded pattern files
to generic utf encoded files.

Those who have followed the development of
ConTEXt will notice that we moved from utilities
written in Modula to tools written in Perl. These were

The luafication of TEX and ConTEXt VOORJAAR 2008 47

later replaced by Ruby scripts and eventually most of
them will be rewritten in Lua.

Macros
I will not repeat what is said already in the MkIV
related documents, but stick to a summary of what
the impact on ConTEXt is and will be. From this you
can deduce what the possible influence on other macro
packages can be.

Opening up TEX started with rewriting all io related
activities. Because we wanted to be able to read from
zip files, the web and more, we moved away from
the traditional kpse based file handling. Instead MkIV
uses an extensible variant written in Lua. Because
we need to be downward compatible, the code is
somewhat messy, but it does the job, and pretty quickly
and efficiently too. Some alternative input media
are implemented and many more can be added. In
the beginning I permitted several ways to specify a
resource but recently a more restrictive url syntax
was imposed. Of course the file locating mechanisms
provide the same control as provided by the file readers
in MkII.

An example of reading from a zip file is:

\input zip:///archive.zip?name=blabla.tex
\input zip:///archive.zip?name=/path/blabla.tex

In addition one can register files, like:

\usezipfile[archive.zip]
\usezipfile[tex.zip][texmf-local]
\usezipfile[tex.zip?tree=texmf-local]

The last two variants register a zip file in the tds
structure where more specific lookup rules apply. The
files in a registered file are known to the file searching
mechanism so one can give specifications like the
following:

\input */blabla.tex
\input */somepath/blabla.tex

In a similar fashion one can use the http, ftp and
other protocols. For this we use independent fetchers
that cache data in the MkIV cache. Of course, in more
structured projects, one will seldom use the \input
command but use a project structure instead.

Handling of files rather quickly reached a stable
state, and we seldom need to visit the code for fixes.
Already after a few years of developing the first code
for LuaTEX we reached a state of ‘Hm, when did I write
this?’. When we have reached a stable state I foresee
that much of the older code will need a cleanup.

Related to reading files is the sometimes messy area
of input regimes (file encoding) and font encoding,
which itself relates to dealing with languages. Since
LuaTEX is utf-8 based, we need to deal with file
encoding issues in the frontend, and this is what Lua
based file handling does. In practice users of LuaTEX
will swiftly switch to utf anyway but we provide regime
control for historic reasons. This time the recoding
tables are Lua based and as a result MkIV has no regime
files. In a similar fashion font encoding is gone: there
is still some old code that deals with default fallback
characters, but most of the files are gone. The same
will be true for math encoding. All information is now
stored in a character table which is the central point
in many subsystems now.

It is interesting to notice that until now users
have never asked for support with regards to input
encoding. We can safely assume that they just
switched to utf and recoded older documents. It
is good to know that LuaTEX is mostly pdfTEX but
also incorporates some features of Omega. The main
reason for this is that the Oriental TEX project needed
bidirectional typesetting and there was a preference
for this implementation over the one provided by ε-
TEX. As a side effect input translation is also present,
but since no one seems to use it, that may as well go
away. In MkIV we refrain from input processing as
much as possible and focus on processing the node
lists. That way there is no interference between user
data, macro expansion and whatever may lead to the
final data that ends up in the to-be-typeset stream. As
said, users seem to be happy to use utf as input, and
so there is hardly any need for manipulations.

Related to processing input is verbatim: a feature
that is always somewhat complicated by the fact that
one wants to typeset a manual about TEX in TEX and
therefore needs flexible escapes from illustrative as
well as real TEX code. In MkIV verbatim as well as all
buffering of data is dealt with in Lua. It took a while
to figure out how LuaTEX should deal with the concept
of a line ending, but we got there. Right from the start
we made sure that LuaTEX could deal with collections
of catcode settings (those magic states that characters
can have). This means that one has complete control
at both the TEX and Lua end over the way characters
are dealt with.

In MkIV we also have some pretty printing features,
but many languages are still missing. Cleaning up
the premature verbatim code and extending pretty
printing is on the agenda for the end of 2008.

Languages also are handled differently. A major
change is that pattern files are no longer preloaded but
read in at runtime. There is still some relation between
fonts and languages, no longer in the encoding but in
dealing with OpenType features. Later we will do a

48 MAPS 36 Hans Hagen

more drastic overhaul (with multiple name schemes
and such). There are a few experimental features, like
spell checking.

Because we have been using utf encoded hy-
phenation patterns for quite some time now, and
because ConTEXt ships with its own files, this transition
probably went unnoticed, apart maybe from a faster
format generation and less startup time.

Most of these features started out as an experiment
and provided a convenient way to test the LuaTEX
extensions. In MkIV we go quite far in replacing TEX
code by Lua, and how far one goes is a matter of taste
and ambition. An example of a recent replacement
is graphic inclusion. This is one of the oldest
mechanisms in ConTEXt and it has been extended
many times, for instance by plugins that deal with
figure databases (selective filtering from pdf files made
for this purpose), efficient runtime conversion, color
conversion, downsampling and product dependent
alternatives.

One can question if a properly working mechanism
should be replaced. Not only is there hardly any
speed to gain (after all, not that many graphics are
included in documents), a Lua–TEX mix may even look
more complex. However, when an opened-up TEX
keeps evolving at the current pace, this last argument
becomes invalid because we can no longer give that
TEXie code to Lua. Also, because most of the graphic
inclusion code deals with locating files and figuring out
the best quality variant, we can benefit much from Lua:
file handling is more robust, the code looks cleaner,
complex searches are faster, and eventually we can
provide way more clever lookup schemes. So, after
all, switching to Lua here makes sense. A nice side
effect is that some of the mentioned plugins now take
a few lines of extra code instead of many lines of TEX.
At the time of writing this, the beta version of MkIV
has Lua based graphic inclusion.

A disputable area for Luafication is multipass data.
Most of that has already been moved to Lua files
instead of TEX files, and the rest will follow: only
tables of contents still use a TEX auxiliary file. Because
at some point we will reimplement the whole section
numbering and cross referencing, we postponed that
till later. The move is disputable because in the
end, most data ends up in TEX again, which involves
some conversion. However, in Lua we can store
and manipulate information much more easily and
so we decided to follow that route. As a start,
index information is now kept in Lua tables, sorted
on demand, depending on language needs and such.
Positional information used to take up much hash
space which could deplete the memory pool, but now
we can have millions of tracking points at hardly any
cost.

Because it is a quite independent task, we could
rewrite the MetaPost conversion code in Lua quite
early in the development. We got smaller and cleaner
code, more flexibility, and also gained some speed.
The code involved in this may change as soon as we
start experimenting with MPlib. Our expectations are
high because in a bit more modern designs a graphic
engine cannot be missed. For instance, in educational
material, backgrounds and special shapes are all over
the place, and we’re talking about many MetaPost runs
then. We expect to bring down the processing time
of such documents considerably, if only because the
MetaPost runtime will be close to zero (as experiments
have shown us).

While writing the code involved in the MetaPost
conversion a new feature showed up in Lua: lpeg, a
parsing library. From that moment on lpeg was being
used all over the place, most noticeably in the code that
deals with processing xml. Right from the start I had
the feeling that Lua could provide a more convenient
way to deal with this input format. Some experiments
with rewriting the MkII mechanisms did not show the
expected speedup and were abandoned quickly.

Challenged by lpeg I then wrote a parser and
started playing with a mixture of a tree based and
stream approach to xml (MkII is mostly stream based).
Not only is loading xml code extremely fast (we used
40 megaByte files for testing), dealing with the tree
is also convenient. The additional MkIV methods are
currently being tested in real projects and so far they
result in an acceptable and pleasant mix of TEX and
xml. For instance, we can now selectively process
parts of the tree using path expressions, hook in code,
manipulate data, etc.

The biggest impact of LuaTEX on the ConTEXt code
base is not the previously mentioned mechanisms but
one not yet mentioned: fonts. Contrary to X ETEX,
which uses third party libraries, LuaTEX does not
implement dealing with font specific issues at all. It
can load several font formats and accepts font data in a
well-defined table format. It only processes character
nodes into glyph nodes and it’s up to the user to
provide more by manipulating the node lists. Of
course there is still basic ligature building and kerning
available but one can bypass that with other code.

In MkIV, when we deal with Type1 fonts, we try
to get away from traditional tfm files and use afm
files instead (indeed, we parse them using lpeg). The
fonts are mapped onto Unicode. Awaiting extensions
of math we only use tfm files for math fonts. Of course
OpenType fonts are dealt with and this is where we
find most Lua code in MkIV: implementing features.
Much of that is a grey area but as part of the Oriental
TEX project we’re forced to deal with complex feature
support, so that provides a good test bed as well as

The luafication of TEX and ConTEXt VOORJAAR 2008 49

some pressure for getting it done. Of course there is
always the question to what extent we should follow
the (maybe faulty) other programs that deal with font
features. We’re lucky that the Latin Modern and TEX
Gyre projects provide real fonts as well as room for
discussion and exploring these grey areas.

In parallel to writing this, I made a tracing feature
for Oriental TEXer Idris so that he could trace what
happened with the Arabic fonts that he is making. This
was relatively easy because already in an early stage of
MkIV some debugging mechanisms were built. One of
its nice features is that on an error, or when one traces
something, the results will be shown in a web browser.
Unfortunately I have not enough time to explore such
aspects in more detail, but at least it demonstrates
that we can change some aspects of the traditional
interaction with TEX in more radical ways.

Many users may be aware of the existence of so-
called virtual fonts, if only because it can be a cause
of problems (related to map files and such). Virtual
fonts have a lot of potential but because they were
related to TEX’s own font data format they never got
very popular. In LuaTEX we can make virtual fonts at
runtime. In MkIV for instance we have a feature (we
provide features beyond what OpenType does) that
completes a font by composing missing glyphs on the
fly. More of this trickery can be expected as soon as
we have time and reason to implement it.

In pdfTEX we have a couple of font related goodies,
like character expansion (inspired by Hermann Zapf)
and character protruding. There are a few more
but these had limitations and were suboptimal and
therefore have been removed from LuaTEX. After
all, they can be implemented more robustly in Lua.
The two mentioned extensions have been (of course)
kept and have been partially reimplemented so that
they are now uniquely bound to fonts (instead of
being common to fonts that traditional TEX shares in
memory). The character related tables can be filled
with Lua and this is what MkIV now does. As a result
much TEX code could go away. We still use shape
related vectors to set up the values, but we also use
information stored in our main character database.

A likely area of change is math and not only as a
result of the TEX gyre math project which will result in
a bunch of Unicode compliant math fonts. Currently in
MkIV the initialization already partly takes place using
the character database, and so again we will end up
with less TEX code. A side effect of removing encoding
constraints (i.e. moving to Unicode) is that things get
faster. Later this year math will be opened up.

One of the biggest impacts of opening up is the
arrival of attributes. In traditional TEX only glyph
nodes have an attribute, namely the font id. Now
all nodes can have attributes, many of them. We use

them to implement a variety of features that already
were present in MkII, but used marks instead: color
(of course including color spaces and transparency),
inter-character spacing, character case manipulation,
language dependent pre and post character spacing
(for instance after colons in French), special font
rendering such as outlines, and much more. An
experimental application is a more advanced glue/
penalty model with look-back and look-ahead as well
as relative weights. This is inspired by the one good
thing that xml formatting objects provide: a spacing
and pagebreak model.

It does not take much imagination to see that
features demanding processing of node lists come with
a price: many of the callbacks that LuaTEX provides are
indeed used and as a result quite some time is spent in
Lua. You can add to that the time needed for handling
font features, which also boils down to processing
node lists. The second half of 2007 Taco and I
spent much time on benchmarking and by now the
interface between TEX and Lua (passing information
and manipulating nodes) has been optimized quite
well. Of course there’s always a price for flexibility
and LuaTEX will never be as fast as pdfTEX, but then,
pdfTEX does not deal with OpenType and such.

We can safely conclude that the impact of LuaTEX
on ConTEXt is huge and that fundamental changes take
place in all key components: files, fonts, languages,
graphics, MetaPost xml, verbatim and color to start
with, but more will follow. Of course there are also less
prominent areas where we use Lua based approaches:
handling url’s, conversions, alternative math input
to mention a few. Sometime in 2009 we expect to
start working on more fundamental typesetting related
issues.

Roadmap
On the LuaTEX website www.luatex.org you can find
a roadmap. This roadmap is just an indication of what
happened and will happen and it will be updated when
we feel the need. Here is a summary.

merging engines
Merge some of the Aleph codebase into pdfTEX
(which already has ε-TEX) so that LuaTEX in dvi
mode behaves like Aleph, and in pdf mode like
pdfTEX. There will be Lua callbacks for file search-
ing. This stage is mostly finished.
OpenType fonts
Provide pdf output for Aleph bidirectional func-
tionality and add support for OpenType fonts. Al-
low Lua scripts to control all aspects of font load-
ing, font definition and manipulation. Most of this
is finished.

50 MAPS 36 Hans Hagen

tokenizing and node lists
Use Lua callbacks for various internals, complete
access to tokenizer and provide access to node lists
at moments that make sense. This stage is com-
pleted.
paragraph building
Provide control over various aspects of paragraph
building (hyphenation, kerning, ligature building),
dynamic loading loading of hyphenation patterns.
Apart from some small details these objectives are
met.
MetaPost (MPlib)
Incorporate a MetaPost library and investigate op-
tions for runtime font generation and manipula-
tion. This activity is on schedule and integration
will take place before summer 2008.
image handling
Image identification and loading in Lua includ-
ing scaling and object management. This is nicely
on schedule, the first version of the image library
showed up in the 0.22 beta and some more fea-
tures are planned.
special features
Cleaning up of hz optimization and protruding
and getting rid of remaining global font properties.
This includes some cleanup of the backend. Most
of this stage is finished.
page building
Control over page building and access to inter-
nals that matter. Access to inserts. This is on the
agenda for late 2008.
TEX primitives
Access to and control over most TEX primitives
(and related mechanisms) as well as all registers.
Especially box handling has to be reinvented. This
is an ongoing effort.
pdf backend
Open up most backend related features, like anno-

tations and object management. The first code will
show up at the end of 2008.
math
Open up the math engine parallel to the develop-
ment of the TEX Gyre math fonts. Work on this will
start during 2008 and we hope that it will be fin-
ished by early 2009.
cweb
Convert the TEX Pascal source into cweb and start
using Lua as glue language for components. This
will be tested on MPlib first. This is on the long
term agenda, so maybe around 2010 you will see
the first signs.

In addition to the mentioned functionality we have a
couple of ideas that we will implement along the road.
The first formal beta was released at tug 2007 in San
Diego (usa). The first formal release will be at tug
2008 in Cork (Ireland). The production version will
be released at EuroTEX in the Netherlands (2009).

Eventually LuaTEX will be the successor to pdfTEX
(informally we talk of pdfTEX version 2). It can already
be used as a drop-in for Aleph (the stable variant
of Omega). It provides a scripting engine without
the need to install a specific scripting environment.
These factors are among the reasons why distributors
have added the binaries to the collections. Norbert
Preining maintains the linux packages, Akira Kakuto
provides Windows binaries as part of his distribution,
Arthur Reutenauer takes care of MacOSX and Christian
Schenk recently added LuaTEX to MikTEX. The LuaTEX
and MPlib projects are hosted at Supelec by Fabrice
Popineau (one of our technical consultants). And with
Karl Berry being one of our motivating supporters, you
can be sure that the binaries will end up someplace in
TEXLive this year.

Hans Hagen

Frans Goddijn VOORJAAR 2008 51

DHZ Boek

Abstract
Het wordt steeds makkelijker om zelf een boek te
produceren terwijl het voor uitgevers steeds minder
interessant wordt om in nieuwe auteurs te investeren.
Zelf publiceren ligt voor de hand maar als je het mooi
wil doen is het een uitdaging.

Keywords
Doe Het Zelf, Boek, Online drukker, POD

Jaren geleden werkte ik free-lance voor een kleine Arn-
hemse uitgeverij. Voor ongeveer vijfhonderd gulden
per stuk maakte ik boekjes drukklaar (typesetten in TEX
en het controleren op tikfouten) en een enkele keer
stelde ik zelf een klein boek met verhalen samen. De
lay-out was vrij simpel en soms maakte ik gebruik van
slimme vondsten voor bijvoorbeeld paginering (turf-
tekens en dobbelstenen in plaats van cijfers) die een
vriend voor me in TEX had uitgedokterd. Later ver-
zorgde ik met de hulp van Willi Egger het typesetten
van een bundel essays waarvan ik het auteursrecht heb
en dat bij een ‘grote’ uitgeverij uitverkocht was ger-
aakt. Op deze manier bleef het toch beschikbaar.

Al die tijd had ik niets te maken met het drukpro-
ces zelf, het ontwerp van de omslag, het aanvragen
van een ISBN-nummer en de distributie via het Cen-
traal Boekhuis. Publiciteit regelde ik in een enkel
geval wel zelf maar ik had er geen idee van wat zo’n
boek nu eigenlijk kost om het te produceren en wat
het oplevert. Ik wist dat de Arnhemse uitgever zijn
kosten zo afstemde dat hij de kosten grotendeels kon
dekken met een minimale verkoop, bijvoorbeeld van
200 bibliotheken die het boek uit een catalogus kon-
den bestellen.

Toen de essaybundel in een andere samenstelling
opnieuw in druk zou verschijnen bij de grote uitgev-
erij, wilde ik graag dat het er mooi uit zou zien, dus
ik ging akkoord op voorwaarde dat Willi Egger zou
worden ingehuurd voor het drukklaar maken. Hier
bleek dat ook een grote uitgeverij aan een Amster-
damse gracht op de kleintjes let, want veel geld was er
niet beschikbaar, men wilde graag een register maar er
was eigenlijk geen budget voor een literair-historisch
deskundige die zou aangeven welk notenapparaat er
moest komen en het bindwerk was uiteindelijk ook
niet precies wat je zou verwachten bij een uitgave met
de titel “Het voorbeeldige boek.” Willi heeft later in
zijn handbinderij nog wel voor ons ieder een exem-

plaar gebonden, chique, in een foudraal.
Intussen heb ik materiaal verzameld voor een nieuw

boek met tekst en foto’s. Zoals David Walden in zijn ar-
tikel schrijft, kun je energie stoppen in het vinden van
een uitgever die zijn know-how en zijn enthousiasme
wil inzetten om die dingen te laten doen die ik nu nog
niet zelf kan, maar je kunt ook gaan leren hoe je de
nodige stappen zelf zet.

Er kan nog een argument zijn om het zelf te doen.
Dat boek van mij is misschien maar voor een hand-
vol mensen de moeite waard en dan is het pas inter-
essant voor een uitgever als die het erg leuk vindt én
zich de verliezen kan veroorloven door kaskrakers in
het fonds.

In Het Parool van 16 april 2008 vertelt uitgever
Wouter van Oorschot hoe het gaat als je lang durft
te wachten tot het werk van een auteur gaat lopen:
“Dat soort uitgaven doe je door interne subsidiëring:
je zet een deel van je winst op bestsellers weg voor
de magere jaren, het andere deel investeer je in es-
says, verhalenbundels, poëze en debutanten, zoals je
weet niet de best renderende genres, om eens een
understatement te gebruiken.” Dan zegt hij het nog
voorzichtig.

Een uitgever is, zo blijkt uit een staatje bij het inter-
view, al snel 1000 Euro kwijt aan het nawoord, 1000
Euro aan ontwerpkosten, 2000 Euro voor het zetwerk.
Vierduizend exemplaren drukken kost 3000 Euro voor
de drukker, een kleine 6000 Euro aan papier en ruim
13.000 Euro voor de binder. Verdient dat lekker? Nou
nee. Als het boek 34 Euro kost in de winkel dan houdt
de uitgever daar 1,29 Euro aan over. Dan moeten er
wel bijna vierduizend exemplaren worden verkocht,
binnen twee jaar. Op die magere winst moet de uit-
gever dus ook nogeens jaren wachten. Het zou beter
zijn als het boek 58 Euro mocht kosten, maar dat vin-
den de boekenliefhebbers te duur, legt Van Oorschot
uit: “Het boek staat laag op de hitparade van niet-
primaire levensbehoeften. Eerst gaat men naar het
café. Dan koopt men audio-apparatuur, fototoestellen,
mobieltjes, iPods. En eens per jaar een nieuwe iPod,
omdat de vorige verouderd is. Dan gaat men nog eens
eten in een goed restaurant. En na nog van alles en
nog wat, dan pas overweegt men een boek te kopen.
Want boeken zijn dus o zo duur…”

Het wordt duidelijk welk risico een uitgever neemt
als hij boeken echt mooi wil maken en hoe praktisch

52 MAPS 36 Frans Goddijn

het is voor andere uitgevers om het simpel te houden
en boeken te maken die vlot verkopen en die goedkoop
kunnen worden geproduceerd voor lezers die het niet
zoveel uitmaakt hoe het eruit ziet.

Op internet zijn er bedrijven zoals www.blurb.com
en myphotobook.nl waar je via een web-interface je
foto’s en teksten simpelweg het boek binnensleept.
Een bevriende professioneel fotograaf (www.hans-
franz.nl) met een scherp oog voor afdrukkwaliteit
heeft er wat ervaring mee opgedaan. De produc-
tiekosten van zo’n boek kunnen gemakkelijk oplopen
tot 50 Euro per stuk, wat niet duur hoeft te zijn. Als
de fotograaf voor een enkele foto van een opdracht-
gever meer krijgt dan de lezer voor een heel fotoboek
betaalt, dan is dat boek niet echt duur te noemen. Het
is wel van belang een goeie producent te kiezen omdat
de kwaliteit van het fotografische drukwerk wisselt.

Een ISBN-nummer is wel van belang als het boek
bestelbaar moet zijn bij de boekhandel om de hoek of
online. Bij portal5.boekhuis.nl kan een ISBN-nummer
worden aangevraagd.

Als oude TEX gebruiker ben ik intussen wel verwend
met nette typografie en ook met de ervaring dat ik de
vormgeving in eigen hand heb. Ik deins ervoor terug
om teksten door een luik op internet een boek in te
werpen.

Nu kan ik twee kanten op: met TEX een PDF maken
en een drukker zoeken die daar iets van kan maken
met dezelfde prijs-kwaliteitsverhouding als het werk
van bijvoorbeeld myphotobook.nl, of de met TEX opge-
maakte pagina’s stuk voor stuk exporteren en in hun
vormgeving via Photoshop converteren naar TIFF of
JPG voor de web-interface van de drukker.

De komende tijd ga ik hiermee aan de slag. We
zullen zien.

Frans Goddijn
frans@goddijn.com

David Walden VOORJAAR 2008 53

Notes on Self-publishing∗

Abstract
This note summarizes what I have learned about
self-publishing.

Keywords
self-publishing, publishers, cost

Over the past couple of years I have gotten pretty deeply
into the world of self-publishing. Even before that I
drafted a book using a professional typesetting system,
although the traditional publisher of that book retypeset
it for actual publication.1

The purpose of this note is to summarize what I have
learned and some thoughts I have about self-publishing.
I originally drafted these notes in mid-2007, and I believe
what I say here was accurate then. However, technology
and publishing economics are changing rapidly; also I
am not a publishing expert. Thus, after reading these
notes, the reader should do enough additional research
to form his or her own views about the validity of the
various issues I raise relating to self-publishing.

Publisher options
Communications and transportation technology is
leading to disintermediation (elimination of middle
men) in many fields. Publishing is no exception. Let’s
look at the options an author has.

A traditional publisher
If you are an author and you want massive PR and
bookstore distribution for your sales, then you need
a traditional publisher.2 Except, they won’t give you
massive PR unless they think your book is going to be
wildly popular or you are already a wildly popular au-
thor. You should also seek a traditional publisher if
you want someone else to foot the development bill
(editing, illustration, permission, design and layout,
indexing, printing, and perhaps an advance for you).
Except, it is hard to get a traditional publisher inter-
ested in you (you probably need an agent or personal
contact). (Of course, the amount of effort to self pub-
lish is considerable; if your book has a decent chance
of being popular enough making a substantial profit,
putting that same amount of effort into finding a pub-

∗Copyright Dave Walden © 2007, 2008

lisher rather than into self-publishing may well result
in you finding a publisher.)

If you succeed in getting a traditional publisher, the
publisher is going to want you to sign a contract that
gives it the worldwide rights in all media, and your
work may well be tied up so you have to ask the pub-
lisher’s permission to reuse a chapter elsewhere. For
books on specialized topics (e.g., scientific, medical,
technical, or professional), the publisher may ask you
to promise to buy some minimum number of copies
(e.g., 1,000) to cover their costs.3 If the book is no
longer selling many copies (i.e., is essentially out of
print), you will have to ask the publisher to revert
the rights to you, and there is a possibility that the
publisher will refuse. With the possibility of print-on-
demand or POD (where one can order single copies of
a book to be digitally printed4), I suspect publishers
increasingly will use POD to keep books technically in
print, selling a few copies per year in the later years
when doing large lithographic print runs no longer
makes sense.5

Working with a traditional publisher, you may get
10 percent of the list price after returns (in the pub-
lishing industry in the United States it is apparently
traditional that book stores can send back for full credit
all the books they ordered even if they are damaged).
With certain types of books, the author’s percentage
may be after returns and on the wholesale price (i.e.,
45 percent of list price) with a proportional decrease
in the return to the author.6

A subsidy publisher
One alternative to a traditional publisher is “vanity” or
subsidized publishing where they make their money by
having you pay for their book development services,
you get a few books, and that’s the end of it; they typ-
ically don’t make their money by selling lots of copies
of your book. They may have a website where your
book is sold, but you won’t get a very big share of the
price. Also, they are the publisher of record, which ties
you up in various ways. With this option the odds are
against you making enough money to justify having
given up control. Nonetheless, it may be the right op-
tion for someone who just wants to create a few copies
of a book to give to family members and friends.7

54 MAPS 36 David Walden

Self-publishing
Another alternative to a traditional publisher is self-
publishing. People have always done self-publishing
when they thought they had something to say and
could not interest a regular publisher or when they
simply wanted a few copies printed and didn’t want
to get involved with a subsidy publisher. Googling for
“famous books that were self published” will show sev-
eral links to famous books that were originally (and
perhaps permanently) self-published.8

In self-publishing you acquire the book’s ISBN num-
ber yourself, and you do the development work your-
self or hire someone to do the various parts for you.
You control how the book is printed and by whom, the
distribution, and what limited rights you give to other
people as it is beneficial to you. Self-publishing can be
an excellent option in appropriate situations.

The rest of this article is about self-publishing.

Ease of printing in the digital age—
an example
Initial publication
In the fall of 2006, I self-published the book Break-
through Management (by Shoji Shiba and me —
www.walden-family.com/breakthrough). I chose to
self-publish primarily because I wanted to experiment
with the breakthrough technology of self-publishing
and digital printing; this seemed appropriate given
the topic of our book. Also, my approach to author-
ship, even for a traditional publisher, involves design-
ing the book and typesetting it for submission to the
publisher.9 Thus, I did not anticipate a lot more work
if I went the route of self-publishing. My co-author and
I also had an existing, highly targeted market — people
who already know my co-author and me and our previ-
ous writings, or who are introduced to my co-author at
one of the management classes he teaches throughout
the world.

In general, I was pleasantly surprised with how easy
it was to have a book printed that was prepared in
LaTEX.10

I sent the PDF output of LaTEX to the printer in
Delhi chosen by our publisher in India (where my co-
author was doing much teaching and which provided
the ISBN number for the book), and the book was
printed without any additional interaction by me ex-
cept to check a printer’s proof (which was fine). The
Indian print run was 1,000 copies using lithographic
printing because, purportedly, print-on-demand was
not available in India.

(Again, see the first paragraph of the section “Print-
ing options” on page 56 for the distinction between
offset and digital printing.)
In the United States, I wanted to use print-on-demand

where I would not have to invest in and find inventory
space for a print run of 1,000 copies. I requested by
email quotes from eight printers who advertised them-
selves as POD printers, using the general quote for-
mat suggested in Pete Masterson’s book, Book Design
and Production: A Guide for Authors and Publishers that
is aimed at small publishers and self-publishers. I re-
ceived several plausible quotes by return email.

One of the geographically closest printers (Ames On
Demand of Somerville, Massachusetts, about 60 miles
from my home on Cape Cod) also had nearly the best
price. I phoned him and asked him two questions: (1)
I told him I already had a ready-to-print PDF and won-
dered if I would have to make any adjustments to my
page layout (e.g., text block size) for him to print the
book on his presses; (2) Could he send me an exam-
ple of a photographic image that had been printed on
his presses (Xerox 6180 for the black and white text
and iGen3 for the color cover) so I could review the
reproduction quality of an image.

The printer suggested that I send him my PDF file
and he would send me back a proof. I was thinking
he would print a page with a photographic image and
send it to me. I was happily surprised when the over-
night delivery truck arrived two days later with a fin-
ished, bound proof of the whole book including my
cover art.11 Obviously this is an advantage of digital
printing. Since finished copies are being printed a page
at a time rather than on large offset sheets with mul-
tiple different pages on each sheet, it is easy for the
printer to run a complete copy of a book through his
digital printer (just like he would do successively for
hundreds of copies).

The proof sent by the printer looked great. I asked
him to slightly shift the title on the book spine (I sent
him an adjusted copy of the cover art), to slightly shift
the text block on the page to increase the inside mar-
gins and decrease the outside margins (he was able
to do this without me touching anything in LaTEX), to
bind the book using a matte rather than glossy coat-
ing, and to make a one line change to the back-of-the-
title page (I provided a single new PDF page which the
printer used to replace the previous page in my whole-
book PDF file). He did these things, a whole-finished-
book proof arrived at my home a few days later, and I
gave him the go ahead to print 250 copies of the book
(his quoted price was the same per book for volumes of
250, 500 and 1,000 books, so it was an easy decision to
print the minimum of the quoted number of copies).12

A few more days later, I picked up the printed copies at
the printer’s loading dock with my little pickup truck
(I did the pickup myself to save shipping costs).

The printer said he would keep my PDF files as he
had adjusted them and could print more copies at any
time.

Notes on Self-publishing VOORJAAR 2008 55

Reprinting
By the spring of 2007, the Breakthrough Management
book print runs of 1,000 copies in India and 250 copies
in the United States had been sold out. Also, a num-
ber of typographical errors in the book had been found
by that time. Therefore, I updated the LaTEX source
files for the book (which was possible with almost no
changes in pagination), and the Indian publisher ob-
tained a new 13-digit ISBN number for the book (as
of January 1, 2007, the world shifted from 10-digit to
13-digit ISBN numbers).

With the new 13-digit ISBN number in hand, in late
June of 2007 I updated the ISBN number and bar code
on the back cover part of the cover art work, and I sent
the new cover file and interior file to India for reprint-
ing there. Simultaneously, I reformatted the page sizes
of the cover and interior slightly to meet the require-
ments of Lightning Source Inc. (LSI), and sent the files
to them to print which in turn facilitates the books be-
ing sold via Amazon and the other Internet-based book
stores.

(NB: In the spring of 2008, there has been much
consternation among authors and self-publishers
about Amazon forcing use of its own print-on-
demand company, BookSurge; the web page www.-
writersweekly.com/amazon.php is dedicated to this is-
sue. I suppose that authors about to publish a new
book can avoid any problem of using LSI by just using
BookSurge for their printing, although there is some
discussion of it being more expensive. People already
using LSI for a book may have a bigger problem, al-
though presumably other on-line bookstores will con-
tinue to sell books printed by LSI. As of April 30, 2008,
Amazon was still selling my LSI-printed book.)

The printing from LSI was slightly less sharp than
that from Ames, and the photographic images were
a bit muddy in comparison to the Ames printing.
Nonetheless, this provides a useful alternative path for
people to buy the book (from the on-line book stores),
and I can order copies myself at the cost of printing
plus shipping to me or drop shipping to my customers.

I also asked LSI to make my book available through
their UK branch so that I can order books printed and
shipped from there if that will reduce the cost to get
books to European customers. This worked smoothly
without me having to pay anything more or upload
my files again. Within a day, the book was listed with
www.amazon.co.uk, and a few days later the book was
also shown on the Amazon UK website as being for sale
from other book stores which were undercutting the
Amazon UK pricing for the book.

Another couple of weeks later, the book was also
shown for sale at www.amazon.com in the United
States. It is also listed for sale by Amazon in other

countries (Austria, Canada, France, Germany, and
Japan) and by other book stores with an on-line pres-
ence such as Barnes & Noble and Powell’s Books.

In parallel with setting up to work with LSI, I sent
the new cover and interior files to Ames On Demand
where I continue to order books a carton (e.g., 25 or 30
books) at a time and mostly use these for filling bulk
orders that come from conferences in which my co-
author participates or companies at which he consults.

Financial details
I am not really involved in printing and selling our
book in India, except to give the files to the organi-
zation there for which my co-author consults.

The development cost of my 280 page book was
$1,450 for editing (a fixed price estimate based on the
editor looking over my draft manuscript), $1,310 for
illustration (at a hourly rate), $575 for proofreading
(at an hourly rate), and $150 for help setting up to use
the Minion Pro fonts. (I did the design and layout for
my current book myself because I wanted to learn how
to do it and wanted to experience “going all the way”
with LaTEX). All of those costs seemed pretty reason-
able to me, given the quality of service I received. I also
paid $50 for permissions (other permissions were ob-
tained gratis). In total my development cost was about
$3,800 (including some phone, fax, and postage costs
but excluding my time).

You can perhaps extrapolate from the figures in the
previous paragraph to possible costs for the various
functions for a book of a different size. My book had
well over a hundred, often complicated, line drawings;
yours may have none. My book also was highly tech-
nical with lots of references, etc., requiring lots of edit-
ing; your book may be simpler and thus less time con-
suming to edit. A simpler book would also be easier to
typeset.

One can get the ISBN numbers for approximately
$300 for a block of 10 in the United States — see
www.www.isbn.org.13

I already have a website, and it costs nothing more
to sell my book from it. For most books I sell from
my website, I get copies of the book in lots of 20 or
more from Ames On Demand for $5.68 per book plus
a 5 percent Massachusetts sales tax14 (they charge no
setup fees). This was a good price compared with
other quotes I received, and I liked their quality and
the fact that they are located near me.

When I sell the book via my website, www.walden-
family.com/breakthrough, I quote a price that includes
the list price of $30 and part of the shipping cost (e.g.,
a total price of $32.50). Buyers click on an appropri-
ate link to PayPal on my website and pay me either us-
ing PayPal or PayPal’s capability to accept credit card

56 MAPS 36 David Walden

payments. In these instances I typically absorb $2.50
(or a few dollars more) of the shipping costs. PayPal
also deducts their fee (something like $1.50 to collect
$32.50). I don’t attribute packing costs to each book,
but perhaps such consumables are another dollar per
book leaving a net profit of perhaps $20 per book after
printing, shipping, and collection costs. At that rate I
made back my development costs after selling about
200 books.

In those cases where a company or conference or-
ders a dozen or a few dozen books at time, I have
been giving significant discounts, for instance, selling
the books for $10 each and charging $5 each for ship-
ping. Even at this very discounted price, I still clear
about $4 per book (not counting my labor).

These bulk orders are the most work for me. The
buying organization often wants me to provide an in-
voice and wants to pay via an inter-bank transfer. I
have a prepared invoice form in Excel which I modify
appropriately for each order and send as a PDF email
attachment. The invoice specifies that the buyer must
pay all currency exchange, bank and customs fees and
will send me my price in US dollars exclusive of those
other items. The only additional cost I absorb is the
$10 fee my bank charges to receive a wire transfer (and
sometimes I bury that fee in my quote). I have a sep-
arate bank account to which wire transfers come and
I sweep money out of that account and into another
bank account as soon as the money arrives (I am a lit-
tle afraid of leaving a substantial amount of money in a
bank account that can be accessed for a wire transfer).
I must pack the books especially well for shipment in
heavy boxes (and in one case the books were returned
to me and I had to repack and reship them because of a
customs mixup in the destination country). I must fill
out a larger export form at my post office. And some-
times there is confusion at the sending bank about how
to wire money to my bank account, and I have to re-
peat my instructions to resolve the confusion. (Prob-
ably I would be justified in not discounting the book
price so much for such orders.)

I also arranged for the corrected printing of the book
to be available through Lightning Source in the US
and in the UK. They charged setup fees of about $130
($50 for me to submit my cover, $42 for me to sub-
mit the text of the book, $30 to send me a proof via
overnight shipping, and some small fee for a catalog
listing). For them, I priced the book at $30, 24 Euros,
and 17 GBP15 with a 55 percent discount. Thus, for
books sold via book stores (e.g., Amazon), I get about
$13.50 per book regardless of what price they sell the
book for (I also specified no returns), and LSI subtracts
the printing cost (about $4.55 per book) and sends me
the rest. I also am not involved in fulfilling these or-
ders in any way. The book store already has collected

the cost of shipping and passed it to LSI. My only in-
volvement is to note the money arriving some weeks
later in my PayPal account and then transferring it to
my bank account. Many buyers prefer to buy from a
real company like Amazon rather than an individual’s
website.

When I sell a book via my website but have the print-
ing done via Lightning Source, I pay about $5.10 per
book, plus a $1.50 handling fee per order, plus the
price of them drop shipping the book to the customer
(which appears to be more expensive than when I shop
books myself except intra-Europe). Thus, my net is
still probably about $15 per book. In this case, I have
to login to the Lightning Source website, provide the
shipping address and number of books, and provide
my credit card information for what they charge me;
doing this can take 5 or 10 minutes per order.

My bookkeeping is simple. I keep track of income
(minus financial fees), cost of goods sold (printing and
shipping books), and development costs in any given
year. For tax purposes, the net of the income and costs
either adds to or subtracts from the rest of my personal
income for the year.

Deal making
In the summer of 2007, I also began talking with a
group in Hungary about providing them translation
rights to the book, for which I still plan to act as pub-
lisher in name but with them paying for the transla-
tion, retypesetting, and printing, and doing local sell-
ing. I am also talking to a couple of people in Spain
about publishing a Spanish translation. I don’t know
if anything will really come of these discussions, but
being my own publisher gives me lots of deal-making
flexibility.

I also am considering an ebook edition of Break-
through Management, a decision I can make alone.16

Other issues relating to self-publishing
Printing options
There are several printing options: (a) traditional
lithography or offset printing where a sequence of
pages (for instance, 16 pages) is printed on a large
sheet of paper and the pages are cut apart and put
in order later in the process — this is the most eco-
nomical method of printing (in terms of cost per book)
with print runs of perhaps a thousand copies or more,
but it also may be necessary for shorter runs of books
that have lots of color or non-line-art that you want
to print well (line art works fine without lithographic
printing); (b) short run lithography which is not eco-
nomical on a per book basis but may be the way to go
if you need the quality even though you may think you
cannot sell more than a few hundred books; (c) digi-

Notes on Self-publishing VOORJAAR 2008 57

tal printing (e.g., sort of like your home laser printer
but faster) which can be done very well or not quite
as well depending on the care that is taken (I have
seen very fine black and white photos done with digi-
tal printing). Print-on-demand (POD), where you can
buy one to hundreds of copies at a time, typically uses
digital printing, and provides the major advantage that
you don’t have to pay up front for a thousand or more
books to be printed and then store them until they are
sold.

There are POD printers, e.g., lightningsource.com
and lulu.com,17 which will take your PDF file of the
text of your book and the PDF of your cover, charge
you a modest setup fee, store your book electronically
on their computers, and print one or many copies for
you at a relatively fixed price per copy, e.g., $6, when-
ever you order them. If I had a book without photo-
graphic or fine art images (e.g., a management book
or a novel), this would be a good option.18

Books printed by Lightning Source Inc. (LSI) also
reach wholesaler catalogs (particularly that of Ingram
which is a sister or parent company of LSI) such that
anyone can order the book from the wholesaler.19 You
set the list price and the discounted price, and LSI fills
orders as they come in, e.g., from a retailer such as
Amazon,20 and basically sends you the difference be-
tween your discounted sales price and their printing
cost. If you list the book at $30 and discount it to a
wholesale price of 50 percent, they will send you the
difference between $15 and the price they charge you
to print a copy for each one that is sold, which will
probably net you something like $10. Note that Ama-
zon, etc., will now list your book but the “brick and
mortar” book stores still will not carry it except to or-
der it when a customer prepays because they insist on
being able to return books they order for their book
shelves. If only few people order your book from Ama-
zon, Amazon will show a multi-day shipping period
which may discourage buyers, but if your book starts
to sell well and you offer a wholesale discount Amazon
thinks is appropriate (e.g., 55 percent), then Amazon
may begin to inventory it and list a shortened delivery
time.

The other alternative is just a regular printer (big
or small) who gives you the best terms when you ask
a few for quotes, but that will not connect you with
Amazon without additional steps.

Distribution
I use the word “distribution” in this paragraph in an
informal sense, not in the publishing jargon sense. (In
publishing, a distributor is a business that typically has
an exclusive contract with the publisher, i.e., you, to
find places that will sell your book.)

In the case where you use a regular printer, you can
sell the book yourself (e.g., as I do via my website), you
can consign it to someone else (e.g., your local histor-
ical society to sell your book on local history), or you
can join Amazon’s Advantage program where you ship
the books to them for inventory and they list and sell
the books and take a commission. In another Amazon
program (Marketplace), you inventory the book, they
list it, they sell it and send you the order, you fulfill the
order, and Amazon sends your share of what the cus-
tomer paid (e.g., minus their sales commission). (You
can also hire order fulfillment houses who will charge
you $3 or $4 per book, i.e., you initially send the ful-
fillment house an inventory of your books, you take in
the money when you sell a book, and you send them
the order plus their fee plus postage for them to mail
the book to your customer.)

You also can do combinations of the above. For
instance, as described in the section “Ease of print-
ing...” on page 54, I have Lightning Source print the
book which will be wholesaled by Ingram (the largest
commercial wholesaler in the United States) or Baker
and Taylor (the largest library wholesaler) and simul-
taneously have the book printed by another (perhaps
higher quality) printer or buy copies from Lightning
Source and sell them myself in one way or another.

Lightning Source’s branch in the UK is connected
with the big European wholesalers such as The
Bertram Group (www.bertrams.com) and Gardner’s
Book Service (www.gbsbooks.com). Amazon also has
branches in other countries and their Amazon Market-
place (where they list the book but you fulfill the or-
der) also permits you to sell and ship overseas.

Finally, since you control the book when you self-
publish, you have flexibility to deal with multiple en-
tities to “publish” the book rather than all rights being
tied up with a single traditional publisher, although
using multiple “publishing” paths may well not be
the best overall marketing strategy. Nonetheless, you
could let your local historical society be the “publisher”
for your local history book, changing the title page to
list them as publisher and having them get their own
ISBN number which you will put in your electronic file,
selling them copies wholesale, and letting them sell
the book locally or to people who order it from them.
Simultaneously, you could publish the book yourself
(using your own ISBN number) for web-based sales to
whomever orders the book from you.

Disintermediation and flexibility
The point of all this is that once you decide the tradi-
tional publisher is not for you and you prepare a ready-
to-print file for your book, then, in return for your ini-
tial investment, you can control everything and make

58 MAPS 36 David Walden

whatever deals you want, and modern printing and
distribution technology offers many options you can
use.

Of course, there are advantages in many situations
to working with a traditional publisher. The advan-
tages include access to the publisher’s editors, index-
ers, typesetters, art department and established distri-
bution channels, the publisher’s payment of the devel-
opment costs of the book, and not going against the
established model for how a book gets published. In
my view, the major disadvantages of going with a tra-
ditional publisher are (a) the publisher ties up all the
rights and the author loses control of his intellectual
property, and (b) it is often hard to get a traditional
publisher to take you on and let you produce the book
you want to produce.

In any case, my experience has made it clear to me
that it is now entirely feasible and relatively inexpen-
sive, in cases where one is willing to forego the advan-
tages of a traditional publisher, to self-publish. TEX,
LaTEX, ConTEXt, etc., are available for free for any-
one who already knows one of them or is interested
in learning to use one. (The visually oriented typeset-
ting program Scribus is also free.) PDFs (easily output
by all typesetting systems) appear to be a nearly uni-
versal way of transmitting ready-to-print manuscripts
to a printer; even when the printer uses traditional off-
set printing with many pages per large sheet of paper,
in my experience the printer takes care of whatever is
required to turn a sequence of pages in a PDF file into
many pages on a sheet. And capabilities like PayPal,
Amazon, rapid international shipping, and website-
based selling make it possible to sell a book world
wide.

Marketing, promotion, and good business
Of course, practically speaking, you still have to pro-
mote the book in order to get people to want to buy
it.

Marketing and promotion involve all of the things
that happen with traditional publishers. If you hope
to have the book reviewed, you must send out review
copies, typically in advance of publication. Parallel
short publications and presentations can help sales.
Sending out some sort of notice to targeting mailing
lists might help. Some authors have blogs that aug-
ment the content of their books. A YouTube video to
go along with the book is now possible. Having good
positive comments about your book on Amazon.com
should help. Having great success with a prior book
undoubtedly helps. And so on. Dan Poynter’s book
(see the next section) has good content on promotion
of self-published books.

A nice looking cover can also help sales. Yuri Rob-

bers has written an article (tug.org/pracjourn/2007-
1/robbers) that discusses some of the issues of book
cover design (you can ignore his discussion of how to
use the PStricks system to implement your book cover
design). Morris Rosenthal’s book (see next subsection)
recommends a simple cover that stands out in the small
size that will be displayed by the on-line book stores.

Probably you are no more likely to make money self-
publishing a book than you are to make money with a
book published by a traditional publisher. Most books
do not make a lot of money and most authors are not
rich. However, since you may be putting up your own
funds to develop and initially print a self-published
book and may incur other liabilities, you do have to
think about it in a businesslike way. You have to under-
stand the difference between fixed and variable costs
and the break even point. You probably don’t want
to invest in a big printing run before you have strong
evidence you are going to sell a lot of copies. If you ex-
pect to sell a material number of books at a profit, you
need to learn how normal businesses operate (e.g., ap-
proaches to limiting liability, registering as a business
in your state, collecting state sales tax, etc.) so you
don’t accidentally get into trouble.

If your book does become popular, you may make
more money publishing it yourself, and many people
apparently do make money self-publishing. Also, by
self-publishing and retaining all the rights, you are free
to later make a deal with a traditional mainstream pub-
lisher, if one becomes interested after seeing the pop-
ularity of you book.

Resources for learning more about self-publishing
While I think I have presented some relatively accu-
rate information about self-publishing, I am no ex-
pert. Here are a few useful books by experts on self-
publishing:21

2 Dan Poynter’s book The Self-Publishing Manual has
gone through many revisions; he also has a useful
website: www.parapublishing.com.

2 Pete Masterson’s book (mentioned above) on Book
Design and Production, A Guide for Authors and
Publishers is more about the nuts and bolts of
publishing (not the writing and promotion like
Poynter’s book); he also has a useful website
(www.aeonix.com) including lots of useful lists,
e.g., printers, book coaches, small publishers, etc.

2 Morris Rosenthal has a good small book on
Print-on-Demand Book Publshing; his website
(www.fonerbooks.com/contact.htm) also include
a reprint of his book’s text on the economics of
POD publishing versus traditional publishing.

2 Robert Bowie Johnson and Ron Pramschufer’s

Notes on Self-publishing VOORJAAR 2008 59

book Publishing Basics is a good, short, very basic
introduction to things. Pramschufer also has a
related business and useful website (where you
may be able to get this short book for free):
www.selfpublishing.com.

2 Aaron Shepard’s book Aiming at Amazon (available
from amazon.com) will be valuable reading for
anyone hoping to sell his or her book via Amazon
and similar companies.

2 Another interesting website is
www.gropenassoc.com — click on “Reference
Desk”; this is run by one of the three people who
moderates the Yahoo Self-Publishing discussion
group. Among other things, she recommends
several books on the business.

You can also hire people to help you with any of the as-
pects of self-publishing including hiring a “book coach”
to guide you through the process.

I think one of the best things to do to under-
stand self-publishing is to subscribe to the Yahoo Self-
publishing discussion group and read the messages
that go by for a few weeks. (They also have an on-
line archive of past messages.) All of the people whose
books I just listed and many other very knowledge-
able people participate in this list. When it comes
to discussing typesetting programs, the Yahoo Self-
publishing discussions focus on the commercial type-
setting and layout systems, e.g., InDesign and QuarkX-
Press. The free Scribus system is also mentioned from
time to time. Use of Microsoft Word for typesetting
and layout is frequently denigrated in this discussion
group, although Aaron Shepard has a book (Perfect
Pages, available from Amazon) on how to use Word for
these functions. The just mentioned systems all use a
graphical user interface.

I use LaTEX, based on TEX, as my typesetting sys-
tem. However, LaTEX uses a fundamentally different
paradigm (non-graphical) for specifying how the type-
setting will be done. Consequently, it is not a popu-
lar topic of discussion within the Yahoo Self-publishing
group, although its use is regularly encouraged by one
of the group’s three moderators (John Culleton22);
John himself does not use LaTEX, which he finds too
confining, and instead uses TEX itself and ConTEXt
which is also based on TEX.

Hiring people versus doing it yourself
Even though you are self-publishing a book, you can
hire some or all of the tasks done for you. What you
spend your own time learning to do and doing and
what you hire someone to do for you is always a trade-
off. However, I would not automatically assume that
a “professional” will always be able to do a better job

than you.
“Professionals” in many fields come with a distribu-

tion of skill levels. Being a professional alone is not a
guarantee of skill level; being a professional may only
mean someone spends full time working in the area
or makes a living from the area. Some professionals
are very expert, most are competent, and some ap-
parently are not really very good (for instance, I regu-
larly see books that seem badly designed or badly type-
set, including from big and well known “real” publish-
ers23). A competent professional typically can han-
dle many different situations in an efficient manner;
they also have developed an eye for seeing the issues.
However, competent professionals did not get that way
overnight. They surely gathered the skill to deal with a
variety of situations in an efficient manner over years
of implicit or explicit study and actually working on
a large number of different projects. They learned
new things with new projects. We can do the same
thing. And once we amateurs have gone past complete
novice-hood in one of the aspects of book publishing,
we may be as good as at least some of the profession-
als. In any case, amateur’s level of skill may be suffi-
cient for the book the self-publisher wants to produce,
versus the money the self-publisher want to spend for
professionals.

Having said that, I think some functions are proba-
bly harder to get “good enough” at. The more “crafty”
skills (e.g., typesetting24) are probably easier; the
more “arty” (e.g., book design) are probably harder.
The path to becoming an excellent editor is certainly
a long one, while the path to becoming good at do-
ing line drawings with a software package is relatively
short.

Typesetting, as one example
Let’s look at the particular question of whether one
should hire someone to do a self-published book’s type-
setting or should learn to do it oneself.

First, it seems to me that the issue of book design
and typesetting of the book is often too tightly cou-
pled when discussing this question. For the most part,
I see book design and typesetting as quite separable is-
sues, although of course they can be done by the same
person.25 I suspect most very basically designed books
will mostly require quite normal typesetting skills, and
the typical fiction book with just lots of text probably
doesn’t need more than a normal level of typesetting
skill.

Thus, deciding whether to typeset a book oneself or
hire a professional could involve answering the follow-
ing questions:

2 Are you already hiring a designer who perhaps
offers a good rate for the complete package

60 MAPS 36 David Walden

including typesetting?
2 Is typesetting interesting to you (or might it

become interesting)?
2 How much time versus money do you have?
2 How complicated is your project and do you

suspect you can learn enough to do a decent job
with your project?

Regarding the last point above, I’ll sketch how I devel-
oped a level of skill at typesetting.

2 I choose a typesetting system (LaTEX) that I
believed gave the most help in doing the various
typesetting functions for me in a standard way.
(In addition to being very powerful typesetting
systems, the most powerful in some domains,
the TEX-based systems are free and don’t require
more of a learning curve than the commercial
alternatives such as InDesign or Word.)

2 I then practiced using LaTEX by typesetting some
letters, an article, and a book chapter.

2 For my first book project, I chose a quite simple
design. As in many crafts, copying someone else’s
approach is an efficient place to start.

2 I felt confident that by selecting a sufficiently basic
design, I could learn what was necessary (and I
was willing to take the time to learn) to produce
an adequately typeset (not embarrassing) product.

2 I then drafted and incrementally revised my whole
book using LaTEX. With each revision I improved
the content of the book and made changes to my
book design as I learned more about LaTEX.26

2 Along the way, I also skimmed some books on the
craft of typesetting.27 Eventually, I skimmed a few
other typography books and manuals and began to
observe how books I bought or borrowed from the
library were typeset.

2 If I had to do it again, I would assume that I might
not be able to see some of the issues, and I would
try to find someone with an experienced eye to
glance over my output and give me feedback on
things that “must be fixed.” I would do this with
one chapter before typesetting the rest of the book.
(In a complicated way, I in essence did this, but
not explicitly.)

What I did myself, and didn’t do
Although I have done lots of editing, I don’t believe I
can do a good job of editing my own work; therefore,
in developing Breakthrough Management I hired an ex-
cellent editor with whom I had worked before. More
generally, it is probably always a good idea to have
someone else edit your own writing — more about
editing in a later subsection.

Although I can use Illustrator to create line draw-

ings, to save my time I hired an illustrator I had worked
with before to do initial versions of my hundred or so
line drawings. I did the corrections to them myself.

I know a decent amount about Photoshop and used
it to adjust photographic images for printing.

I hired a proofreader who was recommended to me,
as I could not do that fussy job well for a book length
document. Like editing, it is probably always a good
idea to have someone else do the proofreading, includ-
ing perhaps someone different than the editor.

If I had had an index, I would have hired an indexer
I have worked with before; indexing is a skill I don’t
have and am not interested in learning.

I did all the dealing with permissions, printers, etc.,
as I wanted to learn about these aspects of publishing.

I did my own typesetting, as I was confident I could
do a good enough job and I wanted the experience of
typesetting a book for publication.

I set up my own website for book sales, because I al-
ready have this skill (and strong biases about not using
certain website publishing tools) and because I wanted
to learn about selling via PayPal.

I am an experienced (albeit not professional) book-
keeper, so I do my own bookkeeping, invoicing, etc.,
using QuickBooks.

I designed my own book cover using Illustrator with
some inputs coming via Photoshop (see the figure on
page 62). As with typesetting, I felt confident (rightly
or wrongly) of my ability to incrementally develop a
decent cover, and I was interested in learning by doing.

In general, a cover is something for which I would
seek a number of reviews from other people. (In fact,
for a future book, I dream of programming my website
to randomly display different cover designs, including
different title options,28 to see which one results in the
most buying interest and then adopting that as the per-
manent cover for a new book.)

I initially did all of my own shipping, because I
wanted to learn about modes and costs for shipping.
More recently I have added an option for placing or-
ders for drop shipments to customers via orders to
Lightning Source.

In other words, I chose doing things myself where
I had or thought I could develop the skill rather than
paying to have them done; I hired things done I didn’t
feel I would do well or was uninterested in doing.

My original decision to self-publish the book was
based on there being a built-in market for it of people
who know of the work of my co-author and me, and
thus I concentrated on sales to the people who already
know us and did not attempt more general market-
ing. (As I refine these notes, it is dawning on me that
I should seek a deal with the publisher of the previous
books by my co-author and me (Four Practical Revo-
lutions in Management and A New American TQM) to

Notes on Self-publishing VOORJAAR 2008 61

cross market those books and our self-published Break-
through Management and another book we are writing
now for self-publication.)

The writer-editor relationship
Self-publishers frequently ask for recommendations
for good editors and reasonable prices to pay for edit-
ing. While these are necessary questions (of course
one wants a good editor at a reasonable price), these
are not a sufficient set of criteria. Of key importance
is the personality and way-of-working match between
the writer and the editor.

At the simplest level, does the writer want edits
marked with pencil or pen on paper or does the writer
want edits done electronically to the writer’s source
files? I have met editors who will only work on paper
and editors who will only work electronically; some
editors will work either way. In any case, the writer
needs the editor to work in whichever way the writer
prefers, unless the writer doesn’t care. (Personally, I
can accept editing of my electronic files if I am submit-
ting something to a journal that insists on such editing.
However, if I am paying the editor, I will find an editor
that is happy to do the editing on paper.)

I have worked with three kinds of editors: (1) de-
velopment editors who gave me general and overall
suggestions but did not do a detailed copy edit, (2)
copy editors who focus on the grammar, spelling and
punctuation but don’t really understand the content,
and (3) editors who can understand the content and
suggest improved ways and organizations for saying
what I want to say as well as making the grammar,
spelling, and punctuation adhere to a standard and be
consistent. I have also worked with editors who (at
least) gave the appearance of having respect for me
as the author and my way of saying things while help-
ing me improve my document, and I have worked with
editors who seemed to be saying that I was just a tech-
nical person (I write non-fiction) who couldn’t be ex-
pected to know proper grammar and punctuation. For
a large project where I am paying the editor, I want
the third type of editor and an editor who respects me
while finding a way to tell me some things I probably
don’t want to hear but which are good for me.

One way to find an editor to whom you are well
matched for a book length project is to try various ed-
itors on short projects (e.g., a paper for a journal). Al-
ternatively, you could ask a well recommended editor
to edit the preface and first chapter of your book (for
an hourly fee), explaining that your goal is for you both
to figure out if you are well matched to each other. Be
sure to include in your practice run some follow-up
discussion about some of the things the editor recom-
mends, so you learn how the editor reacts when you

don’t automatically accept his or her suggestions.
Regarding a quote, the best thing, I think, is to have

a complete manuscript available to show to the edi-
tor — as good a manuscript as the writer can do before
seeking editing help. From a complete manuscript (in-
cluding figures, captions, reference citations, etc.), the
editor should be able to estimate the number of hours
at an hourly rate or the total cost of the job, in terms of
the absolute length of the manuscript, the complexity
of the manuscript, and the quality of the writing.

Looking forward
My current assessment of self-publishing
I have found my experience of self-publishing Break-
through Management to be successful enough to do it
again. Among the self-publishing projects I am cur-
rently planning or executing are the following:

2 publishing and selling via the on-line book stores
a compendium of chapters on various aspects of
the technical history of the high tech company for
which I worked for many years; I am co-editing
this book and wrote several chapters

2 republishing and selling via my website (to rela-
tives primarily) an oral history of my mother that
my wife edited and which we privately printed
a number of years ago using Xerox-copy printing
and binding from a thesis binding company

2 ditto for an oral history of my mother-in-law
2 publishing and selling via the on-line book stores

a picture book about the salt marsh on which I
live and which I have converted to a book from
a narrated slide show my son and I developed a
number of years ago

A couple of other self-publishing book projects are also
in the works.

Disintermediation and the “publisher”
In this note I have been talking about the distinction
between a regular publisher and a self-publisher. Tech-
nically, as I understand things, the publisher is the
place that goes with the ISBN number.

Historically, the place that provided the ISBN num-
ber also was the publisher in a much larger sense: the
traditional publisher took a hand written or type writ-
ten manuscript, edited it, designed the book, typeset
it, proofread it, perhaps indexed it, had it printed and
bound, marketed it, sold it to wholesalers and perhaps
retailers, and also perhaps sold foreign rights. These
days much of that is outsourced at many publishers
and typically the author is expected to do much (or
perhaps all) of the marketing. The publisher still does

62 MAPS 36 David Walden

incur the financial risk of paying for all that work, ex-
cept in some cases where it expects the author to guar-
antee enough sales to cover its risk.

The subsidy publisher also traditionally has done
all that work except in many cases they don’t do any
marketing or sales except to the author and his or her
friends and family. The subsidy publishers also tradi-
tionally have not taken any financial risk, but rather
have made a profit by making the author pay for edit-
ing, typesetting, printing, etc., perhaps implicitly in a
fixed fee per book.

As noted earlier, there have also always been a few
self-publishers — people who felt they had something
important to say and pay in money or effort to create
a pile of books that could be sold or given away.

It seems clear to me that the boundary between pub-
lishing and self publishing is becoming more vague.
Sure, the entity that provides the ISBN number is tech-
nically the publisher, but with all the outsourcing this
may not mean much more than providing the ISBN
number for some traditional publishers. The whole
processing of publishing a book is no longer tightly tied

to the entity which provides the ISBN number. The in-
dividual who does all the earlier steps him- or herself,
or hires them done, is not very different from the tra-
ditional publisher except that the traditional publisher
has more books in its catalog, perhaps better financ-
ing, a reputation as being a legitimate publisher, and
thus connections to the world of reviewing.29

In the case of Breakthrough Management, I did ev-
erything myself or paid for it, but I arranged for a non-
profit organization in India to provide the ISBN num-
ber (it was mutually useful — for them to “publish”
my book and for me to have them associated with the
book). Am I any less the publisher in fact because the
Indian organization is the publisher in name? I don’t
think so. I did everything including providing ready-
to-print PDF files to the printer in India, and I have
reprinted the book in other countries without any ad-
ditional involvement of the Indian organization (but
still using its ISBN number, with its permission).

I can imagine that I could take my book to a tra-
ditional publisher and, if they like it, make a deal
with them whereby they have my ready-to-print files

Notes on Self-publishing VOORJAAR 2008 63

printed and add the book to their catalog in return for
appropriate payment of some kind. This happens reg-
ularly with foreign rights. For instance, I know that a
2007 Donna Leon mystery book was published in the
United States by the US publisher simply buying the
ready-to-print files from the original UK publisher and
changing the title page and ISBN number.

There is a lot of discussion in the self-publishing
world about discrimination against self-publishers. I
think this is wasted angst. If it makes sense for non-
economic or economic reasons to self-publish, do it. If
it makes sense to seek a traditional publisher, do that.
Or do a mix: publish books traditional publishers want
to publish with them and publish yourself other books
you want to publish. Who knows, a good enough self-
published book may be picked up by a traditional pub-
lisher, and you may be able to just sell the publisher
their ready-to-print files. I suspect that at some time
in the future traditional publishers will regularly ac-
quire ready-to-print books from their authors as au-
thors seek more control over their work and better fi-
nancial return, and have more options for skipping tra-
ditional publishers altogether. When Stephen King or
Tom Clancy decides to hire his own editors, designers,
typesetters, etc., and offer their books as ready-to-print
files to publishers, I’ll bet the publishers will not be able
to resist.

Acknowledgments
Some of these notes were originally published in my
“Travels in TEX Land column in issue 2007-1 of The
PracTEX Journal.30. The following people helped me
with to those sections: Journal guest editor Yuri Rob-
bers made many helpful suggestions. John Culleton22

reviewed the content on self-publishing for major er-
rors. Marion Gropen gave me many especially useful
suggestions for subtle improvement of various points.
Karl Berry reviewed one section for content and spot-
ted many typos throughout the paper. The anonymous
reviewers provided helpful corrections, as did TPJ ed-
itor Lance Carnes. For the current version of these
notes, Frans Goddijn pointed out a number of typos,
as did Wybo Dekker.

Biographical sketch
David Walden is retired after a career as an engineer,31

engineering manager, and general manager involved
with research and development of computer and other
high tech systems. These days he spends most of his
time writing (and now self-publishing). More history
is at www.walden-family.com/dave.

Notes
1. Four Practical Revolutions in Management, Shoji Shiba and
David Walden, Productivity Press, New York, NY, 2003 —
www.walden-family.com/4prim.
2. Dan O. Snow, coauthor with Dan Poynter of U-
PUBLISH.COM 4.0: A ‘Living Book’ to Help You Compete with
the Giants of Publishing has a different point of view. In an
email of February 24, 2007, Dan said, “[T]here are nearly
ten times more outlets for books than bookstores…and they
are easier to target, usually pay more, pay faster, and return
fewer (if any) unsold books.”
3. I know personally of a book where the publisher, John
Wiley & Sons, required the authors to purchase this sort of
minimum number of copies.
4. See the first paragraph of the section “Printing options” on
page 56 for the distinction between offset and digital print-
ing.
5. I suspect this is happening with my book Four Practical
Revolutions in Management.
6. The royalty percentage figures I use in this paragraph are
by way of example. Marion Gropen, who is an expert on the
publishing business, in a January 18, 2007, email said:

Royalty rates vary substantially with the type of
book. Small houses may pay different rates than the
norm; but for larger houses, the norms are practically
carved in stone. For example, a trade non-fiction hard-
back author gets 10 percent of list price (also known as
the suggested retail price) for the first 5,000 copies sold,
net of returns. The next 5,000 copies yield 12.5 percent
of list. And thereafter, the author gets 15 percent of list.
Advances are usually calculated to cover something like
the expected earnings for the first 6 months of the title’s
life, although this varies widely.

Mass market fiction tends to run from 5 percent of
list to 8 percent. Trade paperbacks are usually between
7 percent and 10 percent. The break points at which the
rates step up vary with formats and market segments.

Scientific, medical, technical, professional, and aca-
demic publishers generally pay upon net sales (gross
sales after discounts and returns). Again, rates and
breakpoints will vary depending upon format and mar-
ket segment.

7. I am sure that there have been some books published us-
ing a subsidy publisher which in fact sold lots of books, if the
book turned out to be sufficiently interesting to some class
of readers. For instance, I have always had the impression
that the early editions (ca. 1960) of Marshall Miles’ classic
and widely read book on contract bridge, How To Win At Du-
plicate Bridge, were published by a subsidy publisher.
8. www.bookmarket.com/selfpublish.html has a nice long
list.
9. It helps my motivation to keep writing to have successive
drafts of the book have the superficial appearance to being
pages from a finished book.
10. I use LaTEX as my typesetting system. Most of what I
say in the rest of this note would be just as true for a book
typeset with a graphically oriented typesetting system such
as InDesign, QuarkExpress, or the free Scribus.

I use LaTEX because it is arguably the most powerful type-
setting system available, because it is available without cost,

64 MAPS 36 David Walden

because it does not use an undocumented proprietary data
format that can be obsoleted by newer versions, and because
it does not have a corporate goal of selling a new version ev-
ery year or two that obsoletes prior versions.
11. I created my cover art using Adobe Illustrator (which
does get obsoleted periodically with the goal of selling new
versions).
12. In retrospect, I believe the printer’s quote would have
been the same for 20 copies.
13. You will have to Google for the ISBN agency for other
countries.
14. I don’t have a Massachusettes resale number which is
required to avoid paying state sales tax.
15. This was before the dollar got much less valuable com-
pared to the Euro and UK pound.
16. Also, on May 8, 2008, in Houston, Texas, at a meeting
of the World Alliance for Quality (an organization of sev-
eral dozen quality organizations), there was a call for break-
through projects that would help advance the state of qual-
ity worldwide. Sarita Nagpal (deputy directory of CII which
provided the ISBN number for our Breakthrough Manage-
ment book), my co-author Shoji Shiba, and I responded to
the call by offering to provide the PDF print files for the book
free of charge to member organizations so they can print it
locally and sell it at prices conducive to widespread circula-
tion in their geographic region. We will see how many orga-
nizations take us up on this offer of what I am calling “coop-
erative printing.” Obviously, most self-publishers will choose
not to give away potential book sales, but self-publishing al-
lows the freedom to take such an unconventional step.
17. lulu.com is not exactly self-publishing, but this is an in-
expensive easy way to get some books in print. For instance,
this is the approach TUG president Karl Berry has used to
make his Eplain and Fontname documents available in bound
hardcopy format. Lulu actually may have its printing done
by another company; I am not sure.
18. Purportedly, LSI’s print quality is improving over time as
they adopt improved technology.
19. However, my understanding is that self-published books
printed by LSI typically do not get in a hard copy Ingram
catalog that book stores look at as part of deciding what to
order.
20. But see NB on page 55.
21. In addition to following up with the resources listed
here, simply google on “self-publishing” and “print on de-
mand” to find pointers to a lot of additional resources.
22. tug.org/interviews/interview-files/john-culleton.html
23. Just after I wrote these words, I started reading the book
Girls Like Us: Carole King, Joni Mitchell, Carly Simon — and
the Journal of a Generation by Sheila Weller (Atria Division
of Simon & Shuster, Inc., 2008). On page 8 the right justifi-
cation looks obviously uneven because there is a lot of end-
of-line punctuation. Apparently the typesetter did not use
micro-typesetting (which my PDFLaTEX system easily pro-
vides) which pushes punctuation slightly into the right mar-
gin so the right justification looks more even.
24. In addition, the typesetting package I use, LaTEX, does
an excellent job (better than many books typeset by “real”
publishers) without me having to have so much skill at type-
setting. The skill with LaTEX tends to be in the area of mod-

ifying the standard templates to get different interior book
designs.
25. I also see cover art creation as quite separable (in terms
of who does the work) from the design of the interior of a
book, although again it can all be done by the same person.
26. I’m not sure how practical it is to draft a book in one
of the graphically-oriented typesetting systems. Maybe one
has to first draft the book in a text editor or word processor
such as Word. I deliberately avoided using Word for drafting.
In fact, an important reason for learning about LaTEX was
to avoid the clutches of Word. You can read about my ex-
perience with this book at tug.org/TUGboat/Articles/tb24-
2/tb77walden.pdf.
27. Robert Bringhurst, The Elements of Typographic Style,
version 3.1, Hartley & Marks Publishers, Vancouver, BC,
2005; James Felici, The Complete Manual of Typography,
Peachpit Press, Berkeley, CA, 2003.
28. www.lulu.com/titlescorer is fun to try.
29. Somewhere on Dan Poynter’s website he says something
along of lines that, “You are the publisher of a book if you
pay for or do the work to produce the book; if you do several
books, you are a small publisher of books; if you do many
books, you are a large publisher. In all cases you are a pub-
lisher.”
30. tug.org/pracjourn/2007-1/walden
31. He was a member of the small team that in 1969 devel-
oped ARPANET communications system which evolved into
the Internet.

David Walden

66 MAPS 36 Taco Hoekwater and Hans Hagen

MetaPost library project

Introduction
The purpose of this paper is to document the targets
and implementation milestones of the MetaPost library
project (MPlib). It is intended to serve both as a
guideline to the developers and as a monitoring tool
for the funding providers.

When it was circulated in the spring of 2007, the
MetaPost library proposal paper [1] mentioned two
main problem areas that are to be directly tackled by
the MPlib project:

current MetaPost cannot be used as a software
component
the handling of external text labels is becoming
outdated

The proposal paper identifies those problem areas and
presents a rough split in sub-tasks. The main goal of
that paper was to gain funding, and because of that,
but also because an in-depth analysis was still missing
at that moment in time, it was very short on details.

Immediately after funding was secured, a period
of analysis started. That initial information-gathering
stage is now finished, and the gained knowledge can
be used to further detail the objectives and stages of
the project.

Main objectives
The term ‘software component’ as used above is a
loosely defined term. In practice it means that the
current MetaPost code should be split into a core
library and a client application, with the latter being
as small as possible and the former allowing multiple
concurrent usage.

Besides the general goal of creating a reusable
component on one particular platform, the project
has to make sure that MetaPost maintains at least
the current level of portability, and that it keeps on
having 100% identical behaviour and output across all
computer platforms it runs on.

Regardless of implementation details, it is clear that
for simplified maintenance and portability, the current
code base has to be unified using a single programming
language. A literate programming language is desired:
we (the TEX community) should do its best to keep
the Knuthian tradition of programs that document
their implementation alive, whenever that is possible

without major extra effort.
Converting the MetaPost core into a library implies

adding an indirection layer to the already existing
input and output subsystems: component libraries
should not interact with the user directly unless
explicitly asked to do so. The new to-be-written
internal interface will serve to allow the configuration
of logging and error handling.

A well-defined and documented interface to the
internals of the program is needed to make it possible
to add new back-ends as alternatives to the already
existing Adobe Postscript generator.

Implementation language
After some consideration, we believe the best choice
for the implementation of the core library itself is the
C programming language. There are a number of
possible arguments to be made in favour of various
other languages, but it seems that C has the best overall
characteristics for the task at hand:

there already is a literate programming system
available for C that is very close to the current Pas-
cal--based implementation: cweb [2].
the C language is structurally very similar to pas-
cal, so that identical algorithms can be used in the
conversion of the existing code base.
both the run-time speed and compactness of com-
piled C code are very high.
C source code is itself very portable, and C libraries
binds easily to other applications and program-
ming languages.
the market penetration of C is very high, aiding
deployment.
some parts of the current MetaPost are already
written in C (although in a non-literate fashion).

Two specific applications of the MPlib core library are
planned as part of the current project:

a command-line C program
This program will replace the current mpost

executable, for redistribution in TEX distributions.
a Lua language binding.

This will allow the library to be easily integrated
into LuaTEX [3], and it will also serve as an exam-
ple of binding MPlib.

MetaPost library project VOORJAAR 2008 67

Tasks
From the previous paragraphs, a list of sub-tasks can
be derived.

1. Conversion and unification of the current sources
into cweb.

2. Integrating the hundreds of global variables that
are used by the current source into an single data
structure (instance).

3. The addition of a indirection layer for all the in-
put and output streams.

4. Adding an interface for configuration of error han-
dling.

5. Writing a Lua module to interface to the MetaPost
library.

6. Consolidating and documenting an interface to
the internal structures.

7. Designing and implementing a new high-quality
labelling system.

Conversion
There are two sub-tasks: the conversion of the
current Pascal Web code, and the conversion plus
documentation of the current C code, resulting in a
unified source.

Conversion of current Pascal code. Because all
of the Pascal code uses a pretty small subset of the
many possible variations on the basic Pascal language,
and because the cweb system itself is nearly identical
to Pascal Web, using a machine-assisted approach to
the translation is not only feasible but also the most
effective.

A Lua script will take care of the conversion from
Pascal to C while keeping the Web extensions intact.
The choice of the scripting language Lua [4] is based
on three considerations:

1. Efficiency of the conversion program is not rele-
vant, as it will be used only once.

Therefore, there is no reason to choose for a
compiled language like C, and scripting languages
allow for a much faster development cycle.

2. Lua has a module that allows script programs to be
written that use Parsing Expression Grammars [5,
6] to parse input.

This makes it very easy to write a proper parser
for web-based programs like MetaPost.

3. Familiarity with the language.
It would not be worth learning a different pro-

gramming language just to do this conversion
step, and of the languages Taco knows, Lua is best
suited to the task at hand.

Conversion of current C code. The main Meta-
Post program is written in Pascal Web, but some

(about 5000 lines, mostly the font inclusion) is written
directly in C code. This code is not currently not
written in a literate programming fashion, and it will
be worthwhile to do that conversion. This has to be
done by hand, but the amount of code is not that large
and it will help to create a more consistent distribution
and build process.

Single data structure
For a code library to be as widely usable as possible,
it should not use any non-local variables. Instead, a
code library normally defines a single function, that
will allocate and return a data structure that will from
then on be passed on from one library function to the
next until the application is done with it.

The current internals have to reworked extensively
to allow this: MetaPost as it stands uses about three
hundred global variables. Some of these are just for
internal communication between functions (a side--
effect of limitations in Pascal Web), and some are just
global constant values, but most are used to store the
internal state of the MetaPost engine.

Actions needed:

all of the globals have to be incorporated into a big
single structure.
nearly all functions have to be altered to use this
structure are the first argument.
the memory dump/undump code has to be rewritten
to handle this new data model correctly.

When this task is complete, the cweb code can
provisionally be split into a library and an application.

For the moment, the Knuthian heap-based memory
management and string pool handling will be con-
verted to C without functional changes, but at a later
moment these bits may be converted to use dynamic
memory allocation throughout.

Indirection layer
We envisage that it will be possible to register callback
functions that will make it possible to override default
behaviour that is very close or identical to the current
state.

The advantage of setting it up in this way is that
application programs that want to be compatible with
the way the old mpost executable can be quite small,
and for the moment at least, this seems desirable.

Error handling
To allow the user to configure the error handling,
first the existing error handling code has to be unified
so that all the possible errors pass through the same
interface. After that is done, it will be possible to add
a callback there to allow configurability.

68 MAPS 36 Taco Hoekwater and Hans Hagen

Lua module
At the base functionality level, this is a straightforward
process of interfacing C functions to Lua scripting, that
can handled almost totally in an automated fashion by
already existing tools like [7].

But optimization of the user interface so that it is
easy to use has to be done manually. Experiences has
shown that C libraries almost always are too low-level
for a scripting language, and the necessary glue code
has to be written by hand.

Because much of this glue code will itself depend on
user feedback, it follows that while a first version of
Lua module will probably be available at the time of the
first release of MPlib(summer 2008), the module will
probably not be finalized until quite time afterward.

Interface to the internal structures
While we are strictly dealing with the problem of how
to use MetaPost as a component, it is sufficient to just
have a ‘constructor’ function, a ‘destructor’ function,
and a ‘run’ function.

But that is not good enough if we want to alter the
program, for example by adding a new back-end. For
this, it is necessary to have access to at least some of
the actual internals of the program.

For such interfaces to be useful, a bit of internal
cleanup is needed:

Some of the interface structures are not as clean
cut as they could be (or should be, according to
current practice.

Some cleanup is needed to provide a clean
front.
most of the required documentation is already
present in the Pascal Web source, but not presented
in the best possible way.

This documentation should be copied out of the
source and placed in a separate manual.

Labelling system
When all of the above are complete, it is time to think
about a new external labelling system to replace btex
. . . etex.

New insights are expected to come from the use of

MPlib inside LuaTEX, so writing this section now would
be premature.

Time line
The development of MPlib is expected to progress
linearly through the first few point, up to first basic
‘Lua module’ implementation. After that, work will
continue more or less simultaneous on the remaining
items.

The stage ‘single data structure’ is expected to be
complete around end of February, and everything up
to the basic ‘Lua module’ will be presented at the Cork
TUG meeting in the summer of 2008.

References

[1] Hans Hagen and Taco Hoekwater. Metapost
library proposal. The Netherlands, 2007.

[2] Donald E. Knuth and Silvio Levy. The CWEB
System of Structured Documentation, Version 3.0.
Addison-Wesley, Reading, MA, USA, 1993.

[3] Hans Hagen and Taco Hoekwater.
http://www.luatex.org
The official LuaTEX website.

[4] Roberto Ierusalimschy, Waldemar Celes and Luiz
Henrique de Figueiredo.
http://www.lua.org
The official Lua website.

[5] Bryan Ford.
http://pdos.csail.mit.edu/˜baford/packrat/
This website explains the theory behind Parsing
Expression Grammars, and Packrat Parsing in
general.

[6] Roberto Ierusalimschy.
http://www.inf.puc-rio.br/˜roberto/lpeg.html
The homepage of the Lua module that implements
PEGs.

[7] Waldemar Celes.
http://www.techgraf.puc-rio.br/˜celes/tolua
The homepage of toLua, a program that generates
C/C++ to Lua bindings.

Taco Hoekwater and Hans Hagen

Hans Hagen & Taco Hoekwater VOORJAAR 2008 69

The MetaPost Library

Introduction
If MetaPost support had not been as tightly integrated into ConTEXt as it is, at
least half of the projects Pragma ADE has been doing in the last decade could not
have been done at all. Take for instance backgrounds behind text or graphic mark-
ers alongside text. These are probably the most complex mechanisms in ConTEXt:
positions are stored, and positional information is passed on to MetaPost, where
intersections between the text areas and the running text are converted into graph-
ics that are then positioned in the background of the text. Underlining of text
(sometimes used in the educational documents that we typeset) and change bars
(in the margins) are implemented using the same mechanism because those are
basically a background with only one of the frame sides drawn.

You can probably imagine that a 300 page document with several such graphics
per page takes a while to process. A nice example of such integrated graphics is
the LuaTEX reference manual, that has an unique graphic at each page: a stylized
image of a revolving moon.

Most of the running time integrating such graphics seemed to be caused by the
mechanics of the process: starting the separate MetaPost interpreter and having
to deal with a number of temporary files. Therefore our expectations were high
with regards to integrating MetaPost more tightly into LuaTEX. Besides the speed
gain, it also true that the simpler the process of using such use of graphics becomes,
the more modern a TEX runs looks and the less problems new users will have with
understanding how all the processes cooperate.

This article will not discuss the application interface of the MPlib library in de-
tail, for that there is the LuaTEX manual. In short, using the embedded MetaPost
interpreter in LuaTEX boils down to the following:

Open an instance using mplib.new, either to process images with a format to
be loaded, or to create such a format. This function returns a library object.
Execute sequences of MetaPost commands, using the object's execute method.
This returns a result.
Check if the result is valid and (if it is okay) request the list of objects. Do
whatever you want with them, most probably convert them to some output
format. You can also request a string representation of a graphic in PostScript
format.

There is no need to close the library object. As long as you didn't make any fatal
errors, the library recovers well and can stay alive during the entire LuaTEX run.

Support for MPlib depends on a few components: integration, conversion and
extensions. This article shows some of the code involved in supporting the library.
Let's start with the conversion.

70 MAPS 36 Hans Hagen & Taco Hoekwater

Conversion
The result of a MetaPost run traditionally is a PostScript language description of the
generated graphic(s). When pdf is needed, that PostScript code has to be converted
to the target format. This includes embedded text as well as penshapes used for
drawing. To demonstrate, here is a simple example graphic:

draw fullcircle
scaled 2cm
withpen pencircle xscaled 1mm yscaled .5mm rotated 30
withcolor .75red ;

Notice how the pen is not a circle but a rotated ellipse. Later on it will become
clear what the consequences of that are for the conversion.

How does this output look in PostScript? If the preamble is left out it looks like
this:

%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: -30 -30 30 30
%%HiResBoundingBox: -29.624 -29.28394 29.624 29.28394
%%Creator: MetaPost 1.003
%%CreationDate: 2008.05.15:1534
%%Pages: 1
% <<stripped preamble was here>>
%%Page: 1 1
0.75 0 0 R 2.55513 hlw rd 1 lj 10 ml

q n 28.34645 0 m
28.34645 7.51828 25.35938 14.72774 20.04356 20.04356 c
14.72774 25.35938 7.51828 28.34645 0 28.34645 c
-7.51828 28.34645 -14.72774 25.35938 -20.04356 20.04356 c
-25.35938 14.72774 -28.34645 7.51828 -28.34645 0 c
-28.34645 -7.51828 -25.35938 -14.72774 -20.04356 -20.04356 c
-14.72774 -25.35938 -7.51828 -28.34645 0 -28.34645 c
7.51828 -28.34645 14.72774 -25.35938 20.04356 -20.04356 c
25.35938 -14.72774 28.34645 -7.51828 28.34645 0 c p
[0.96077 0.5547 -0.27734 0.4804 0 0] t S Q

P
%%EOF

The most prominent code here concerns the path. The numbers in brackets define
the transformation matrix for the pen we used. The pdf variant looks as follows:

q
0.750 0.000 0.000 rg 0.750 0.000 0.000 RG
10.000000 M
1 j
1 J
2.555120 w
q
0.960769 0.554701 -0.277351 0.480387 0.000000 0.000000 cm
22.127960 -25.551051 m
25.516390 -13.813203 26.433849 0.135002 24.679994 13.225878 c
22.926120 26.316745 18.644486 37.478783 12.775526 44.255644 c
6.906565 51.032505 -0.067572 52.867453 -6.613036 49.359793 c

The MetaPost Library VOORJAAR 2008 71

-13.158495 45.852096 -18.739529 37.288899 -22.127960 25.551051 c
-25.516390 13.813203 -26.433849 -0.135002 -24.679994 -13.225878 c
-22.926120 -26.316745 -18.644486 -37.478783 -12.775526 -44.255644 c
-6.906565 -51.032505 0.067572 -52.867453 6.613036 -49.359793 c
13.158495 -45.852096 18.739529 -37.288899 22.127960 -25.551051 c
h S
Q
0 g 0 G
Q

The operators don't look much different from the PostScript, which is mostly due
to the fact that in the PostScript code, the preamble defines shortcuts like c for
curveto. Again, most code involves the path. However, this time the numbers are
different and the transformation comes before the path.

In the case of pdf output, we could use TEX itself to do the conversion: a generic
converter is implemented in supp-pdf.tex, while a converter optimized for ConTEXt
MkII is defined in the files whose names start with meta-pdf. But in ConTEXt MkIV
we use Lua code for the conversion instead. Thanks to Lua's powerful lpeg parsing
library, this gives cleaner code and is also faster. This converter currently lives in
mlib-pdf.lua.

Now, with the embeddedMetaPost library, conversion goes different still because
now it is possible to request the drawn result and associated information in the form
of Lua tables.

figure={
["boundingbox"]={
["llx"]=-29.623992919922,
["lly"]=-29.283935546875,
["urx"]=29.623992919922,
["ury"]=29.283935546875,

},
["objects"]={
{
["color"]={ 0.75, 0, 0 },
["linecap"]=1,
["linejoin"]=1,
["miterlimit"]=10,
["path"]={
{
["left_x"]=28.346450805664,
["left_y"]=-7.5182800292969,
["right_x"]=28.346450805664,
["right_y"]=7.5182800292969,
["x_coord"]=28.346450805664,
["y_coord"]=0,

},
{
["left_x"]=25.359375,
["left_y"]=14.727737426758,
["right_x"]=14.727737426758,
["right_y"]=25.359375,
["x_coord"]=20.043563842773,
["y_coord"]=20.043563842773,

},
{
["left_x"]=7.5182800292969,

["left_y"]=28.346450805664,
["right_x"]=-7.5182800292969,
["right_y"]=28.346450805664,
["x_coord"]=0,
["y_coord"]=28.346450805664,

},
{
["left_x"]=-14.727737426758,
["left_y"]=25.359375,
["right_x"]=-25.359375,
["right_y"]=14.727737426758,
["x_coord"]=-20.043563842773,
["y_coord"]=20.043563842773,

},
{
["left_x"]=-28.346450805664,
["left_y"]=7.5182800292969,
["right_x"]=-28.346450805664,
["right_y"]=-7.5182800292969,
["x_coord"]=-28.346450805664,
["y_coord"]=0,

},
{
["left_x"]=-25.359375,
["left_y"]=-14.727737426758,
["right_x"]=-14.727737426758,
["right_y"]=-25.359375,
["x_coord"]=-20.043563842773,
["y_coord"]=-20.043563842773,

},
{
["left_x"]=-7.5182800292969,

["left_y"]=-28.346450805664,
["right_x"]=7.5182800292969,
["right_y"]=-28.346450805664,
["x_coord"]=0,
["y_coord"]=-28.346450805664,

},
{
["left_x"]=14.727737426758,
["left_y"]=-25.359375,
["right_x"]=25.359375,
["right_y"]=-14.727737426758,
["x_coord"]=20.043563842773,
["y_coord"]=-20.043563842773,

},
},
["pen"]={
{
["left_x"]=2.4548797607422,
["left_y"]=1.4173278808594,
["right_x"]=-0.70866394042969,
["right_y"]=1.2274475097656,
["x_coord"]=0,
["y_coord"]=0,

},
["type"]="elliptical",

},
["type"]="outline",
},

},
}

72 MAPS 36 Hans Hagen & Taco Hoekwater

This means that instead of parsing PostScript output, we now can operate on a
proper datastructure and get code like the following:

function convertgraphic(result)
if result then

local figures = result.fig
if figures then

for fig in ipairs(figures) do
local llx, lly, urx, ury = unpack(fig:boundingbox())
if urx > llx then

startgraphic(llx, lly, urx, ury)
for object in ipairs(fig:objects()) do

if object.type == "..." then
...
flushgraphic(...)
...

else
...

end
end
finishgraphic()

end
end

end
end

end

Here result is what the library returns when one or more graphics are processed.
As you can deduce from this snippet, a result can contain multiple figures. Each
figure corresponds with a beginfig ... endfig. The graphic operators that the
converter generates (so called pdf literals) have to be encapsulated in a proper box
so this is why we have:

startgraphic: start packaging the graphic
flushgraphic: pipe literals to TEX
finishgraphic: finish packaging the graphic

It does not matter what number you passed to beginfig, the graphics come out in
the natural order.

Little over half a dozen different object types are possible. The example MetaPost
draw command from above results in an outline object. This object contains not
only path information but also carries rendering data, like the color and the pen.
So, in the end we will flush code like 1 M which sets the miterlimit to one or .5
g which sets the color to 50% gray, in addition to a path.

Because objects are returned in a way that closely resembles a MetaPost's inter-
nals, some extra work needs to be done in order to calculate paths with elliptical
pens. An example of a helper function in somewhat simplified form is shown next:

function pen_characteristics(object)
local p = object.pen[1]
local wx, wy, width
if p.right_x == p.x_coord and p.left_y == p.y_coord then

wx = abs(p.left_x - p.x_coord)
wy = abs(p.right_y - p.y_coord)

else -- pyth: sqrt(a^2 +b^2)

The MetaPost Library VOORJAAR 2008 73

wx = pyth(p.left_x - p.x_coord, p.right_x - p.x_coord)
wy = pyth(p.left_y - p.y_coord, p.right_y - p.y_coord)

end
if wy/coord_range_x(object.path, wx) >=

wx/coord_range_y(object.path, wy) then
width = wy

else
width = wx

end
local sx, sy = p.left_x, p.right_y
local rx, ry = p.left_y, p.right_x
local tx, ty = p.x_coord, p.y_coord
if width ~= 1 then

if width == 0 then
sx, sy = 1, 1

else
rx, ry, sx, sy = rx/width, ry/width, sx/width, sy/width

end
end
if abs(sx) < eps then sx = eps end
if abs(sy) < eps then sy = eps end
return sx, rx, ry, sy, tx, ty, width

end

If sx and sy are 1, there is no need to transform the path, otherwise a suitable trans-
formation matrix is calculated and returned. The function itself uses a few helpers
that make the calculations even more obscure. This kind of code does not fall in
the category trivial and as already mentioned, these basic algorithms were derived
from the MetaPost sources. Even so, these snippets demonstrate that interfacing
using Lua does not look that bad.

In the actual MkIV code things look a bit different because it does a bit more
and uses optimized code. There you will also find the code dealing with the actual
transformation, of which these helpers are just a portion.

If you compare the PostScript and the pdf code you will notice that the paths
looks different. This is because the use and application of a transformation matrix
in pdf is different from how it is handled in PostScript. In pdf more work is assumed
to be done by the pdf generating application. This is why in both the TEX and the
Lua based converters you will find transformation code and the library follows the
same pattern. In that respect pdf differs fundamentally from PostScript.

Within the TEX based converter there was the problem of keeping the needed cal-
culations within TEX's accuracy, which fortunately permits larger values that Meta-
Post can produce. This plus the parsing code resulted in a not-that-easy to follow
bunch of TEX code. The Lua based parser is more readable, but since it also operates
on PostScript code it is kind of unnatural too, but at least there are less problems
with keeping the calculations sane. The MPlib based converter is definitely the
cleanest and least sensitive to future changes in the PostScript output. Does this
mean that there is no ugly code left? Alas, as we will see in the next section, deal-
ing with extensions is still somewhat messy. In practice users will not be bothered
with such issues, because writing a converter is a one time job by macro package
writers.

74 MAPS 36 Hans Hagen & Taco Hoekwater

Extensions
In MetaFun, which is the MetaPost format used with ConTEXt, a few extensions are
provided, like:

cmyk, spot and multitone colors
including external graphics
lineair and circulair shades
texts converted to outlines
inserting arbitrary texts

Until now, most of these extensions have been implemented by using specially
coded colors and by injecting so called specials (think of them as comments) into
the output. On one of our trips to a TEX conference, we discussed ways to pass
information along with paths and eventually we arrived at associating text strings
with paths as a simple and efficient solution. As a result, recently MetaPost was
extended by withprescript and withpostscript directives. For those who are
unfamiliar with these new scripts, they are used as follows:

draw fullcircle withprescript "hello" withpostscript "world" ;

In the PostScript output these scripts end up before and after the path, but in the
pdf converter they can be overloaded to implement extensions, and that works rea-
sonably well. However, at the moment there cannot be multiple pre- and postscripts
associated with a single path inside the MetaPost internals. This means that for the
moment, the scripts mechanism is only used for a few of the extensions. Future ver-
sions of MPlib may provide more sophisticated methods for carrying information
around.

The MkIV conversion mechanism uses scripts for graphic inclusion, shading and
text processing but unfortunately cannot use them formore advanced color support.

A nasty complication is that the color spaces in MetaPost don't cast, which means
that one cannot assign any color to a color variables: each colorspace has it's own
type of variable.

color one ; one := (1,1,0) ; % correct
cmykcolor two ; two := (1,0,0,1) ; % correct
one := two ; % error
fill fullcircle scaled 1cm withcolor .5[one,two] ; % error

In ConTEXt we use constructs like this:

\startreusableMPgraphic{test}
fill fullcircle scaled 1cm withcolor \MPcolor{mycolor} ;

\stopreusableMPgraphic

\reuseMPgraphic{test}

Because withcolor is clever enough to understand what color type it receives, this
is ok, but how about:

\startreusableMPgraphic{test}
color c ; c := \MPcolor{mycolor} ;
fill fullcircle scaled 1cm withcolor c ;

\stopreusableMPgraphic

The MetaPost Library VOORJAAR 2008 75

Here the color variable only accepts an rgb color and because in ConTEXt there
is mixed color space support combined with automatic colorspace conversions, it
doesn't know in advance what type it is going to get. By implementing color spaces
other than rgb using special colors (as before) such typemismatches can be avoided.

The two techniques (coding specials in colors and pre/postscripts) cannot be
combined because a script is associated with a path and cannot be bound to a
variable like c. So this again is an argument for using special colors that remap
onto cmyk spot or multi-tone colors.

Another area of extensions is text. In previous versions of ConTEXt the text pro-
cessing was already isolated: text ended up in a separate file and was processed
in an separate run. More recent versions of ConTEXt use a more abstract model
of boxes that are preprocessed before a run, which avoids the external run(s). In
the new approach everything can be kept internal. The conversion even permits
constructs like:

for i=1 upto 100 :
draw btex oeps etex rotated i ;

endfor ;

but since this construct is kind of obsolete (at least in the library version of Meta-
Post) it is better to use:

for i=1 upto 100 :
draw textext("cycle " & decimal i) rotated i ;

endfor ;

Internally a trial pass is done so that indeed 100 different texts will be drawn. The
throughput of texts is so high that in practice one will not even notice that this
happens.

Dealing with text is yet another example of using lpeg. The following snippet
of code sheds some light on how text in graphics is dealt with. Actually this is a
variation on a previous implementation. That one was slightly faster but looked
more complex. It was also not robust for complex texts defined in macros in a
format.

local P, S, V, Cs = lpeg.P, lpeg.S, lpeg.V, lpeg.Cs

local btex = P("btex")
local etex = P(" etex")
local vtex = P("verbatimtex")
local ttex = P("textext")
local gtex = P("graphictext")
local spacing = S(" \n\r\t\v")^0
local dquote = P('"')

local found = false

local function convert(str)
found = true
return "textext(\"" .. str .. "\")"

end
local function ditto(str)

return "\" & ditto & \""
end
local function register()

76 MAPS 36 Hans Hagen & Taco Hoekwater

found = true
end

local parser = P {
[1] = Cs((V(2)/register + V(3)/convert + 1)^0),
[2] = ttex + gtex,
[3] = (btex + vtex) * spacing *

Cs((dquote/ditto + (1-etex))^0) * etex,
}

function metapost.check_texts(str)
found = false
return parser:match(str), found

end

If you are unfamiliar with lpeg it may take a while to see what happens here: we
replace the text between btex and etex by a call to textext, a macro. Special
care is given to embedded double quotes.

When text is found, the graphic is processed two times. The definition of tex-
text is different for each run. The first run we have:

vardef textext(expr str) =
image (

draw unitsquare
withprescript "tf"
withpostscript str ;

)
enddef ;

After the first run the result is not really converted, but just the outlines with the
tf prescript are filtered. In the loop over the object there is code like:

local prescript = object.prescript
if prescript then

local special = metapost.specials[prescript]
if special then

special(object.postscript,object)
end

end

Here, metapost is just the namespace used by the converter. The prescript tag tf
triggers a function:

function metapost.specials.tf(specification,object)
tex.sprint(tex.ctxcatcodes,format("\\MPLIBsettext{%s}{%s}",

metapost.textext_current,specification))
if metapost.textext_current < metapost.textext_last then

metapost.textext_current = metapost.textext_current + 1
end
...

end

Again, you can forget about the details of this function. Important is that there is a
call out to TEX that will process the text. Each snippet gets the number of the box
that holds the content. The macro that is called just puts stuff in a box:

The MetaPost Library VOORJAAR 2008 77

\def\MPLIBsettext#1#2%
{\global\setbox#1\hbox{#2}}

In the next processing cycle of the MetaPost code, the textext macro does some-
thing different :

vardef textext(expr str) =
image (

_tt_n_ := _tt_n_ + 1 ;
draw unitsquare

xscaled _tt_w_[_tt_n_]
yscaled (_tt_h_[_tt_n_] + _tt_d_[_tt_n_])
withprescript "ts"
withpostscript decimal _tt_n_ ;

)
enddef ;

This time the by then known dimensions of the box that is used to store the snippet
are used. These are stored in the _tt_w_, _tt_h_ and _tt_d_ arrays. The arrays
are defined by Lua using information about the boxes, and passed to the library
before the second run. The result from the second MetaPost run is converted, and
again the prescript is used as trigger:

function metapost.specials.ts(specification,object,result)
local op = object.path
local first, second, fourth = op[1], op[2], op[4]
local tx, ty = first.x_coord , first.y_coord
local sx, sy = second.x_coord - tx, fourth.y_coord - ty
local rx, ry = second.y_coord - ty, fourth.x_coord - tx
if sx == 0 then sx = 0.00001 end
if sy == 0 then sy = 0.00001 end
metapost.flushfigure(result)
tex.sprint(tex.ctxcatcodes,format(

"\\MPLIBgettext{%f}{%f}{%f}{%f}{%f}{%f}{%s}",
sx,rx,ry,sy,tx,ty,metapost.textext_current))

...
end

At this point the converter is actually converting the graphic and passing pdf literals
to TEX. As soon as it encounters a text, it flushes the pdf code collected so far and
injects some TEX code. The TEX macro looks like:

\def\MPLIBgettext#1#2#3#4#5#6#7%
{\ctxlua{metapost.sxsy(\number\wd#7,\number\ht#7,\number\dp#7)}%
\pdfliteral{q #1 #2 #3 #4 #5 #6 cm}%
\vbox to \zeropoint{\vss\hbox to \zeropoint

{\scale[sx=\sx,sy=\sy]{\raise\dp#7\box#7}\hss}}%
\pdfliteral{Q}}

Because text can be transformed, it needs to be scale back to the right dimensions,
using both the original box dimensions and the transformation of the unitquare
associated with the text.

local factor = 65536*(7200/7227)

78 MAPS 36 Hans Hagen & Taco Hoekwater

function metapost.sxsy(wd,ht,dp) -- helper for text
commands.edef("sx",(wd ~= 0 and 1/(wd /(factor))) or 0)
commands.edef("sy",(wd ~= 0 and 1/((ht+dp)/(factor))) or 0)

end

So, in fact there are the following two processing alternatives:

tex: calls a Lua function that processed the graphic
lua: parse the MetaPost code for texts and decide if two runs are needed

Now, if there was no text to be found, the continuation is:

lua: process the code using the library
lua: convert the resulting graphic (if needed) and check if texts are used

Otherwise, the next steps are:

lua: process the code using the library
lua: parse the resulting graphic for texts (in the postscripts) and signal TEX to
process these texts afterwards
tex: process the collected text and put the result in boxes
lua: process the code again using the library but this time let the unitsquare be
transformed c.c. the text dimensions
lua: convert the resulting graphic and replace the transformed unitsquare by
the boxes with text

The processor itself is used in the MkIV graphic function that takes care of the
multiple passes mentioned before. To give you an idea of how it works, here is how
the main graphic processing function roughly looks.

local current_format, current_graphic

function metapost.graphic_base_pass(mpsformat,str,preamble)
local prepared, done = metapost.check_texts(str)
metapost.textext_current = metapost.first_box
if done then

current_format, current_graphic = mpsformat, prepared
metapost.process(mpsformat, {

preamble or "",
"beginfig(1); ",
"_trial_run_ := true ;",
prepared,
"endfig ;"

}, true) -- true means: trialrun
tex.sprint(tex.ctxcatcodes,

"\\ctxlua{metapost.graphic_extra_pass()}")
else

metapost.process(mpsformat, {
preamble or "",
"beginfig(1); ",
"_trial_run_ := false ;",
str,
"endfig ;"

})
end

The MetaPost Library VOORJAAR 2008 79

end

function metapost.graphic_extra_pass()
metapost.textext_current = metapost.first_box
metapost.process(current_format, {

"beginfig(0); ",
"_trial_run_ := false ;",
table.concat(metapost.text_texts_data()," ;\n"),
current_graphic,
"endfig ;"

})
end

The box information is generated as follows:

function metapost.text_texts_data()
local t, n = { }, 0
for i = metapost.first_box, metapost.last_box do

n = n + 1
if tex.box[i] then

t[#t+1] = format(
"_tt_w_[%i]:=%f;_tt_h_[%i]:=%f;_tt_d_[%i]:=%f;",
n,tex.wd[i]/factor,
n,tex.ht[i]/factor,
n,tex.dp[i]/factor

)
else

break
end

end
return t

end

This is a typical example of accessing information available inside TEX from Lua, in
this case information about boxes.

The trial_run flag is used at the MetaPost end, in fact the textextmacro looks
as follows:

vardef textext(expr str) =
if _trial_run_ :

% see first variant above
else :

% see second variant above
fi

enddef ;

This trickery is not new. We used it already in ConTEXt for some time, but until now
the multiple runs took way more time and from the perspective of the user this all
looked much more complex.

It may not be that obvious, but: in the case of a trial run (for instance when texts
are found), after the first processing stage, and during the parsing of the result,
the commands that typeset the content will be printed to TEX. After processing, the
command to do an extra pass is printed to TEX also. So, once control is passed back
to TEX, at some point TEX itself will pass control back to Lua and do the extra pass.

80 MAPS 36 Hans Hagen & Taco Hoekwater

The base function is called in:

function metapost.graphic(mpsformat,str,preamble)
local mpx = metapost.format(mpsformat or "metafun")
metapost.graphic_base_pass(mpx,str,preamble)

end

The metapost.format function is part of mlib-run. It loads the metafun format,
possibly after (re)generating it.

Now, admittedly all this looks a bit messy, but in pure TEX macros it would be
even more so. Sometime in the future, the postponed calls to \ctxlua and the
explicit \pdfliterals can and will be replaced by using direct node generation,
but that requires a rewrite of the internal LuaTEX support for pdf literals.

The snippets are part of the mlib-* files of MkIV. These files are tagged as ex-
perimental and will stay that way for a while yet.

Summarizing the impact of MPlib on extensions, we can conclude that some are
done better and some more or less the same. There are some conceptual problems
that prohibit using pre- and postscripts for everything (at least currently).

Integrating
The largest impact of MPlib is processing graphics at runtime. In MkII there are
two methods: real runtime processing (each graphic triggered a call to MetaPost)
and collective processing (between TEX runs). The first method slows down the TEX
run, the second method generates a whole lot of intermediate PostScript files. In
both cases there is a lot of file io involved.

In MkIV, the integrated library is capable of processing thousands of graphics per
second, including conversion. The preliminary tests (which involved no extensions)
involved graphics with 10 random circles drawn with penshapes in random colors,
and the thoughput was around 2000 such graphics per second on a 2.3 MHz Core
Duo:

In practice there will be some more overhead involved than in the tests. For
instance, in ConTEXt information about the current state of TEX has to be passed on
also: page dimensions, font information, typesetting related parameters, preamble
code, etc.

The whole TEX interface is written around one process function:

metapost.graphic(metapost.format("metafun"),"mp code")

optionally a preamble can be passed as the third argument. This one function is
used in several other macros, like:

\startMPcode ... \stopMPcode
\startMPpage ... \stopMPpage
\startuseMPgraphic {name} ... \stopuseMPgraphic
\startreusableMPgraphic{name} ... \stopreusableMPgraphic
\startuniqueMPgraphic {name} ... \stopuniqueMPgraphic

The MetaPost Library VOORJAAR 2008 81

\useMPgraphic{name}
\reuseMPgraphic{name}
\uniqueMPgraphic{name}

The user interface is downward compatible: in MkIV the same top-level commands
are provided as in MkII. However, the (previously required) configuration macros
and flags are obsolete.

This time, the conclusion is that the impact on ConTEXt is immense: The code
for embedding graphics is very clean, and the running time for graphics inclusion
is now negligible. Support for text in graphics is more natural now, and takes no
runtime either (in MkII some parsing in TEX takes place, and if needed long lines
are split; all this takes time).

In the styles that Pragma ADE uses internally, there is support for the generation
of placeholders for missing graphics. These placeholders are MetaPost graphics that
have some 60 randomly scaled circles with randomized colors. The time involved
in generating 50 such graphics is (on Hans' machine) some 14 seconds, while in
LuaTEX only half a second is needed.

Because LuaTEX needs more startup time and deals with larger fonts resources,
pdfTEX is generally faster, but now that we have MPlib, LuaTEX suddenly is the
winner.

Hans Hagen
Taco Hoekwater

82 MAPS 36 Hans Hagen, Taco Hoekwater, Volker RW Schaa

Reshaping Euler
A collaboration with Hermann Zapf

Keywords
fonts, euler, update

It is no secret that over the last few years Hermann
Zapf has been reshaping some of his designs, most
notably Palatino and Optima. Some three years ago,
when Volker and Hans were talking to Hermann,
they discovered he would like to improve the Euler
fonts as well. These fonts were developed a few
decades ago using the technology of those days, in
close cooperation between Don Knuth and Hermann
Zapf.

The glyphs were drawn on paper about 6cm height
and these drawings were digitized using pinpoints
on paper with a raster. The resulting points were
translated to Metafont and some additional math
shapes were added afterwards. Later, when the fonts
became popular with TEXies, virtual fonts were created
using Euler and AMS Math fonts.

The resulting bitmap fonts were fine for the bitmap-
oriented TEX backends of those days. Later, when
bitmaps became outdated, the bitmaps became out-
lines, and the artifacts introduced in the digitization
became somewhat more prominent especially when
the fonts were scaled).

The reasons why Hermann wanted to reshape Euler
were manifold. First, he wanted to improve some
details related to drawing with a broad pen. Then,
the slope as well as the descenders of some glyphs
needed to be adapted. The strokes had to be made
more consistent too. Finally, the characters that were
not Euler (but had been added afterwards) had to be
redrawn: first the core characters, later (in principle)
all characters that TEXies use. This last effort is still
on the agenda and part of making Euler Unicode
compliant.

When we met Hermann on a subsequent occasion,
the topic of reshaping Euler came up again, and we
decided to go ahead with an active project. Taco was
willing to join in and we decided to improve the fonts
by just editing the Type 1 fonts.

Because the project would take more than a year (at
that time Hermann was still working at Linotype on his
other projects), we decided to make this redesign into

a present for Don Knuth’s 70th birthday. At that point
the old Euler was 25 years old.

The following graphics display some of the changes.
Some are more prominent than others. Even small
corrections help improve the overall look and feel
because they influence our perception of black on
white. (It may help to have a magnifier at hand.)

In figure 1 we take a first look at some of the
reshaping. The gray area is the bounding box, the
white shape is the new font, the outline is the old one.

BBΣΣΓΓ
subtle

corrections
direction
changes

vertical
strokes

Figure 1. New Euler Roman Medium (a)

In figure 2 we see more drastic changes: shortened
strokes. The bounding box is kept unchanged since
we made it an initial goal for the new shapes to work
well with the existing metric files; that way, New Euler
would be a drop-in replacement for the existing fonts
and could be used with no fear of changing line breaks.

ννττ ..
Figure 2. New Euler Roman Medium (b)

As with Palatino Nova and Optima Nova, Hermann
did not hesitate to go even further than this. Figure 3
demonstrates this clearly. A nice side effect of
harmonizing the font is that we can now use Euler for
running text, although the text font is not yet released
(due to too many holes in the usual text encoding
vectors).

Reshaping Euler VOORJAAR 2008 83

ffgg
Figure 3. New Euler Roman Medium (c)

Some of the changes result directly from looking
at the fonts in a larger size (see figure 4). The
redesign started by printing the outlines of the fonts
at sizes up to 12cm but finally Hermann decided to
focus on the 6cm variant. The corrected outlines
were mailed, faxed and/or presented in person. Many
such corrections concerned the way corners are cut off.
In that respect some of the original characters didn’t
qualify as Euler at all, for instance < symbols, but by
cutting some corners and adapting the strokes they
became eulerized.

MM<<
bend in corners wrong cut-offs

Figure 4. New Euler Roman Medium (d)

When the discussions about reshaping started,
the changes mostly concerned small corrections and
descenders, but once we had the proper work-cycle
in place Hermann went a bit further. Of course the
descenders have been lowered too, as is demonstrated
in Figure 5.

JJQQ
Figure 5. New Euler Roman Medium (e)

As usual, TEX math fonts have interesting ways of
combining characters in fonts and so we have old style

digits in the Fraktur font. The elegance of New Euler
is well demonstrated by these numerals (see figure 6).

006688 **
eufm: 0 eufm: 6 eufm: 8 eufm: *

Figure 6. New Euler Fraktur Medium

Most characters have been changed, some much
more than others. In the symbol font, the aleph now
better matches the rest (it was rather fat) and the
script L is less upright (see figure 7).

ℵℵLL
eusm: Aleph eusm: Script L

Figure 7. New Euler Symbol Medium

As intended, New Euler is metric compatible with
Old Euler, and of course the smaller sizes and the bold
variants have been adapted too. By the end of 2007
all the medium variants at 10pt were done, and Taco
had to go into overdrive. We were quite lucky that he
has mastered FontForge so well (figure ??), and so we
could start 2008 with a complete set of fonts.

The fonts were presented to Don Knuth on January
10, 2008 on an eight-page leporello hand-made by
Willy Egger, with each page showing one of the aspects
of the reshaping, all of which kept us pretty busy
during the holidays (figure 8).

Does the project end here? No, this is just the first
stage. Hermann is willing to participate in extending
the Euler fonts with the Unicode math characters that
make sense.

An important aspect of the project is to get the old
fonts replaced by the new ones. We’re very happy
that Barbara Beeton has managed to convince the AMS
folks to accept the new font as a formal substitute for
the existing ones. And of course, the TEX distribution
wizard Karl Berry will take care of getting the fonts in
the right places and rooting out traces of old ones.

84 MAPS 36 Hans Hagen, Taco Hoekwater, Volker RW Schaa

Figure 8. Presenting New Euler

Figure 9. Editing Euler in FontForge

For quite some time Don Knuth has been asking
users to get rid of the old Computer Modern delta, so
in closing let’s quote him from his web site on behalf
of Hermann:

If you see that your system produces
the symbol δ instead of δ for the
Greek lowercase delta, you should tell
your system administrator immediately
to upgrade your obsolete version of the
Euler fonts.

And don’t tell us that you don’t see the difference. And,
as you may expect, this quote was typeset in Euler Text.

Hans Hagen, Taco Hoekwater, Volker RW Schaa

Hans van der Meer VOORJAAR 2008 85

Blocks and Arrows with MetaPost

Abstract
Typesetting of blocks and arrows in ConTEXt with
MetaPost.

Keywords
MetaPost, ConTeXt, color, drawing, block, arrow, label.

Introduction
There were a number of reasons for the development of
my own package for drawing blocks and arrows. The
first is the past experience with the use of LaTEX for
these. Its pictures always have a touch of imperfection
caused by the restricted set of line and arrow directions
available. Using home made sets of arrowheads
and lines in more directions than in the LaTEX-fonts,
alleviates this problem somewhat but not enough.
Drawing with MetaFont gives a lot more satisfaction,
albeit with more effort. So it was decided to develop
macros for block and arrow-drawing with a sufficient
level of sophistication.

Blocks
As an appetizer figure 1 shows a catalogue of the
shapes preprogrammed in the package. After the
presentation of the drawing API it will be told how
one can easily add its own shapes.

rectangle slant

round oval

diamond hexagon

roundrect

Figure 1. Block catalogue

All shapes are drawn from the path of a unit figure
(x = 0 · · · 1, y = 0 · · · 1) and should be sized by
setting their width and height. The following shapes
are present:

rectangle – unit square scaled in the x and the y-
direction;

slant – square with a parametrized horizontal
shearing;
round – parametrized superellipse;
oval – basically a unit circle;
diamond – a lozenge;
hexagon – six corners regularly spaced;
roundrect – square with parametrically curved ver-
tical sides.

The shapes in figure 1 are placed with the following
macro call, where rectangle, slant, etc. are substituted
for shape:

Block.shape (center, width, height, labeltext);

The rectangle is the default shape when calling Block
without the shape modifier. The parameter center
gives the distance from the origin over which the center
of the shape is displaced. The parameters width and
height scale the shape to the dimensions required.
Finally labeltext is a string typeset in the center.1

Some of these shapes are parametrized; in the
macro call above this parameter is given default value
0. Figure 2 shows the effect of various parameter
values on the slant and the roundrect shapes. These
figures are drawn with a more elaborate version of the
previous macro:

VarBlock.shape (param, rotation, center, width,
height, labeltext, outline);

p = 0.2 p = 0.4

p = 0.2 p = 0.6

Figure 2. Parametrized shapes

There are some extra parameters here. The shape pa-
rameter is param, the rotation is an angle (degrees,
counterclockwise) rotating the shape around its center
before being shifted in place, and outline is a boolean
governing the drawing of the frame around the shape.
The programmed default is taken for param = 0, but
as we will see this can be easily changed by altering
the shape definition. Figure 3 illustrates the rotation
of a shape with various angles.

86 MAPS 36 Hans van der Meer

0◦ 30◦ 45◦ 90◦

Figure 3. Rotated shapes

The outline parameter makes it possible to omit
the framelines, leaving the colored shape only. Note in
figure 4 the small difference in size between the two
shapes, caused by the centering of the linedrawing
on the boundary of the shape.2 In order to facilitate
drawing of shapes without outline one can use macro
OBlock in the same manner as Block:3

OBlock.shape(center, width, height, labeltext);

Block OBlock

Figure 4. Outline parameter

The coloring of pictures is based on a set of four
different colors; the management of those is explained
in section “Color management”. The distinct colors
are:

1. the color for linedrawing
2. the color for the interior of shapes
3. the color for the labeltext
4. the color for the general background

In the example of figure 5 two sets of colors are used.

text text

Figure 5. Different coloring

The rectangular frames around the figures are drawn
by a simplified shape drawer. There are three macros:

Frame (width, height, gap);
Framed (width, height, gap, framepen);
Framed (width, height, gap, framepen) modifier;

The first macro produces a rectangular block of size
(gap+width+gap)× (gap+height+gap) filled
with the general backgroundcolor. The second one
uses the pen parameter framepen to surround the
block with framelines in the color for linedrawing.
The third gives the possibility to individually modify
the surrounding framelines in linestyle and color. The
gap is an enlargement on all sides of the block; it
was introduced in order to prevent lines drawn at the
borders of the drawing area from spilling partly over
into the surroundings. The resulting frame is placed
at position (−gap,−gap).

As is the case with Framed one can have a modifier
on the framelines following calls to Block, OBlock
and VarBlock too. The right side of figure 6 has
been done with modifier dashed evenly withcolor
0.7yellow.4

text text

Figure 6. Trailing modifier

Defining shapes
It is quite easy to define shapes yourself and call them
up with Block.shape. Lets have a look at how shapes
are done. Shape drawing is effected by macro Form
that expects to receive a path of the shape in one of its
parameters; it rotates and shifts the path as required,
fills the resulting path, places the labeltext and possibly
surrounds it with framelines. All this is done in the
same way for all shapes.

The path of the shape is constructed by helper
macro varblock@#. For example Block.oval uses
a predefined string blockf.oval which contains the
path expression for a circle fitting within the square
bounded by x = 0 · · · 1, y = 0 · · · 1. That expression,
possibly parametrized with the shape parameter, is
scanned and processed, the resulting path being scaled
to its proper width and height. Afterwards the string
blockl.oval is scanned for any postprocessing action
that might be needed. The round shape (actually a
superellipse) needs such postprocessing; for the others
this is just a noop i.e. an empty string.

All that is needed therefore is the definition of these
two strings. As an example a fourpointed star is
developed; its four points ending at the midpoints
of the sides of the unit rectangle, the intersections
between them parametrically placed on the diagonals
(see figure 7).

Blocks and Arrows with MetaPost VOORJAAR 2008 87

(0.5− p, 0.5− p) (0.5 + p, 0.5− p)

(0.5− p, 0.5 + p) (0.5 + p, 0.5 + p)

(0, 0.5) (1, 0.5)

(0.5, 0)

(0.5, 1)

Figure 7. Plan of fourpointed star

In the code for the fourpointed star below note the
numeric variable p_. The expansion of VarBlock
assigns param to this variable.5

% Define path for fourstar.
vardef unitfourstar =

(0.5,0)
-- (0.5+p_,0.5-p_) -- (1,0.5)
-- (0.5+p_,0.5+p_) -- (0.5,1)
-- (0.5-p_,0.5+p_) -- (0,0.5)
-- (0.5-p_,0.5-p_) -- cycle

enddef;
% Define scan strings for fourstar.
string blockf.fourstar, blockl.fourstar;
blockf.fourstar :=

"if p_ = 0: p_ := 0.12 fi; unitfourstar";
blockl.fourstar := "";

This code is used in the placement of the two stars in
figure 8 with:

Block.fourstar (.., "star");
VarBlock.fourstar (0.05, 45, .. , "", true);

star

Figure 8. Fourpointed stars

Labels
Besides the standard label macro in plain one can use
the Label macro instead. The differences are subtle,
the most important one being the typesetting of the
labeltext. In Label the text is placed with ConTEXt-
macro textext into a hbox whose depth is forced to
zero. The reason for this is seen in the top boxes
of figure 9, which are typeset with the original label

macro: the baselines in the two boxes differ because of
their different depths. At the bottom the Label macro
has put both texts neatly on the same baseline. The
effect is clearly seen in the position of the e’s and d’s
with respect to the dashed line. A second refinement
is the fact that the labeltext can be both in the form of
apicture or a string. Since the Label macro is used in
the typesetting of shapes, this applies there too.

based depth

based depth

Figure 9. Label placement

Arrows
Uneasiness grew over the shape of the arrows provided
by the plain macros. This is illustrated in figure 10.
The shape of the arrowheads on the left could be
called somewhat more refined than those on the right.
Moreover the plain macros distort the arrowhead at
the end of a curved line, bending their flanks with the
curve. It is, of course, a matter of taste to find this
appalling. But more objectively stated, plain makes
it impossible to consistently draw arrowheads in the
same shape. A suitable alternative has given by David
Salomon and is implemented here.6

custom plain

Figure 10. Arrow shapes compared

Figure 11 shows the geometry of the arrowhead. There
are several parameters that can be varied:

l is the total length of the arrowhead, in the figure
the distance between the two red bars;
r is the ratio that determines the distance from the
tip to the point where the arrowhead is affixed to
the incoming line (absolute length is r× l);
α is the opening angle at the tip and determines
the distance between the wingtips;
β gives the curvature of the flanks (here 10◦), the
straight gray line is the one drawn for β = 0◦;
γ gives the curvature of the tailtips (here 2◦), the
straight gray line is the one drawn for γ = 0◦.

88 MAPS 36 Hans van der Meer

l
r

α

β
γ

Figure 11. Arrowhead

With this geometry available, one can build many
different arrowheads; figure 12 presents some. As can
be seen, the heads may or may not have an outline. Be
aware that not all parameter value combinations lead
to pleasing looking shapes. Arrowshapes are defined
with the following macro:

defineArrow (l,r,alfa,beta,gamma,outline) name;

The first five parameters are those from figure 11.
The outline parameter is a boolean designating the
drawing of an open arrowhead when true. In an
open arrowhead interior and outline are filled with
the colors for filling and linedrawing, respectively;
false results in a solid head in the linedrawing color.
It is necessary to select pen and colorset before the
definition is executed, because these are used at that
point. The parameter name is a user chosen unique
designation by which the arrowhead later will be
retrieved for placement in the drawing. Nota bene:
this parameter must be a string. The heads thus
defined keep their coloring even when a different
colorset is selected later.

The arrows so defined are placed with the following
macros for single and doublesided arrows, respectively.
Here too the name must be a string:

drawArrow (name) path_expression;
drawdblArrow (name) path_expression;

The lines to the arrowheads adapt to the linecolor in
effect at definition time, but this can be overridden
with a modifier for both linestyle as well as color (see
the rightmost arrow in figure 12).

The first of the next three macros defines a solid
arrowhead for default usage.7 The next two draw these
default arrows, respectively single and doubleheaded;
they are illustrated in figure 13. The drawing is fully
in the current linedrawing color. However a modifier
may be applied to change linestyle and/or drawing

Figure 12. Arrowhead variations

color, as in the two arrows on the right. Changing the
color for subsequent drawing can also be effected by
changing the color for linedrawing.

defineDefaultArrow (l, r, alfa, beta, gamma);
arrowline path_expression;
dblarrowline path_expression;

Figure 13. Default arrow drawing

Color management
The coloring scheme introduced in section “Blocks”,
consists of four colors used in linedrawing, filling the
interior of shapes, drawing labeltext and the general
background. The color for filling may be given an
alpha mode and a factor for transparency. These colors
can all be set individually with the four macros:

setFrameColor color;
setFillColor color;
setTextColor color;
setBackgroundColor color;

In modifiers they can be applied with a shortcut for
withcolor color by using:

withFrameColor
withFillColor
withTextColor
withBackgroundColor

The alpha mode and fill can be changed through:

setFillMode mode;
setFillAlpha factor;

Sometimes one needs a different set of colors just
momentarily, then the following macros come in
handy. Their names speak for themselves. Note that

Blocks and Arrows with MetaPost VOORJAAR 2008 89

saving cannot be nested, resaving causes the previous
save to be lost; therefore do not forget to restore in
case.

saveColors;
restoreColors;

There exist the following macros for the definition of
a set of colors:

defineColors (line,fill,text,background) name;
defineColorsTransparent

(line,fill,text,background,mode,factor) name;
defineCurrentColors name;
defineDefaultColors

(line, fill, text, background);
defineDefaultColorsTransparent

(line, fill, text, background, mode, factor);
setDefaultColors;

As was done for arrow shapes, name defines a des-
ignator with which to call up the thus named set of
colors. Nota bene: this parameter must be a string. If
the transparency parameters are not explicitely given,
they assume default values of 1 for mode and factor,
leading to completely opaque colors. The third macro
eases entering a definition for the colors currently set,
the fourth and fifth define a default that can be called
up by the last one. Colorsets are set by the next two

macros; here too name must be a string. The second
one below is just a set followed by a save.

setColors name;
setSaveColors name;

Notes
1. This is not completely true; in section 4 it is mentioned
that a picture is allowed also.
2. In case one wants to combine shapes with and without
outlines, the individual widths and heights can be adjusted
by the size of the pen in the respective dimension. The
macros penX and penY provide these for the current pen.
3. For those inclined to perfection: compare the rectangles
in figures 4 and 6 for the use of a square pen in the former.
4. Be aware that a dashed modifier applies to a pencircle,
but has no effect with pensquare.
5. It arises because the formal parameters of the macro
definition cannot be used in the blockf string, which is
processed by scantokens. Also note the use of vardef in
the path definition macro, def will not work here.
6. David Salomon, Arrows for Technical Drawings, TUG-
boat, Volume 13 (1992), No.2, p. 146–149.
7. Be aware that the implementation of the definition code
thus not guarantee recycling of the memory for redefined
entries. One should there not redefine too enthousiastically.

Hans van der Meer
hansm@science.uva.nl

