
Hans Hagen NAJAAR 2008 3

The TEX–Lua mix

Abstract
An introduction to the combination of TEX and the
scripting language Lua.

Introduction
The idea of embedding Lua into TEX originates in some
experiments with Lua embedded in the SciTE editor.
You can add functionality to this editor by loading Lua
scripts. This is accomplished by a library that gives
access to the internals of the editing component.

The rst integration of Lua in pdfTEX was relatively
simple: from TEX one could call out to Lua and from
Lua one could print to TEX. My rst application was
converting math written in a calculator syntax to TEX.
Subsequent experiments dealt with MetaPost. At this
point integrationmeant as little as: having some script-
ing language as an addition to the macro language.
But, even in this early stage further possibilities were
explored, for instance in manipulating the nal output
(i.e. the pdf code). The rst versions of what by then
was already called LuaTEX provided access to some
internals, like counter and dimension registers and the
dimensions of boxes.

Boosted by the Oriental TEX project, the team start-
ed exploring more fundamental possibilities: hooks in
the input/output, tokenization, fonts and node lists.
This was followed by opening up hyphenation, break-
ing lines into paragraphs and building ligatures. At
that point we not only had access to some internals
but also could inuence the way TEX operates.

After that, an excursion was made to mplib, which
fullled a long standing wish for a more natural inte-
gration of MetaPost into TEX. At that point we ended
up with mixtures of TEX, Lua and MetaPost code.

As of mid-2008 we still need to open up more of
TEX, like page building, math, alignments and the
backend. Eventually LuaTEX will be nicely split up in
components, rewritten in c, and we may even end up
with Lua gluing together the components that make
up the TEX engine. At that point the interoperation
between TEX and Luamay be even richer than it is now.

In the next sections I will discuss some of the ideas
behind LuaTEX and the relationship between Lua and
TEX and how it presents itself to users. I will not discuss
the interface itself, which consists of quite a number
of functions (organized in pseudo-libraries) and the

mechanisms used to access and replace internals (we
call them callbacks).

TEX vs. Lua
TEX is a macro language. Everything boils down to
either allowing stepwise expansion or explicitly pre-
venting it. There are no real control features, like
loops; tail recursion is a key concept. There are only
a few accessible data structures, such as numbers,
dimensions, glue, token lists and boxes. What happens
inside TEX is controlled by variables, mostly hidden
from view, and optimized within the constraints of 30
years ago.

The original idea behind TEX was that an author
would write a specic collection of macros for each
publication, but increasing popularity among non-pro-
grammers quickly resulted in distributed collections of
macros, called macro packages. They started small but
grew and grew and by now have become pretty large.
In these packages there are macros dealing with fonts,
structure, page layout, graphic inclusion, etc. There is
also code dealing with user interfaces, process control,
conversion and much of that code looks out of place:
the lack of control features and string manipulation
is solved by mimicking other languages, the unavail-
ability of a oat datatype is compensated by misusing
dimension registers, and you can nd provisions to
force or inhibit expansion all over the place.

TEX is a powerful typographical programming lan-
guage but lacks some of the handy features of scripting
languages. Handy in the sense that you will need them
when you want to go beyond the original purpose
of the system. Lua is a powerful scripting language,
but knows nothing of typesetting. To some extent it
resembles the language that TEXwas written in: Pascal.
And, since Lua is meant for embedding and extending
existing systems, it makes sense to bring Lua into TEX.
How do they compare? Let's give some examples.

About the simplest example of using Lua in TEX is
the following:

\directlua { tex.print(math.sqrt(10)) }

This kind of application is probably what most users
will want and use, if they use Lua at all. However, we
can go further than that.

4 MAPS 37 Hans Hagen

Loops

In TEX a loop can be implemented as in the plain format
(editorial line breaks, but with original comment):

\def\loop#1\repeat{\def\body{#1}\iterate}
\def\iterate{\body\let\next\iterate
\else\let\next\relax\fi\next}

\let\repeat=\fi % this makes \loop..\if..\repeat
% skippable

This is then used as:

\newcount \mycounter \mycounter=1
\loop

...
\advance\mycounter 1
\ifnum\mycounter < 11

\repeat

The denition shows a bit how TEX programming
works. Of course such denitions can be wrapped in
macros, like:

\forloop{1}{10}{1}{some action}

and this is what often happens in more complex macro
packages. In order to use such control loops without
side effects, the macro writer needs to take measures
to permit, for instance, nested usage and avoid clash-
es between local variables (counters or macros) and
user-dened ones. Above we used a counter in the
condition, but in practice expressions will be more
complex and this is not that trivial to implement.

The original denition of the iterator can be written
a bit more efciently:

\def\iterate
{\body \expandafter\iterate \fi}

And indeed, in macro packages you will nd many
such expansion control primitives being used, which
does not make reading macros easier.

Now, get me right, this does not make TEX less
powerful, it's just that the language is focused on
typesetting and not on general purpose programming,
and in principle users can do without that: documents
can be preprocessed using another language, and doc-
ument specic styles can be used.

We have to keep in mind that TEX was written in
a time when resources in terms of memory and cpu
cycles were far less abundant than they are now. The
255 registers per class and (about) 3000 hash slots in

original TEX were more than enough for typesetting a
book, but in huge collections of macros they are not
all that much. For that reason many macro packages
use obscure names to hide their private registers from
users and instead of allocating new ones with mean-
ingful names, existing ones are shared. It is therefore
not completely fair to compare TEX code with Lua
code: in Lua we have plenty of memory and the only
limitations are those imposed by modern computers.

In Lua, a loop looks like this:

for i=1,10 do
...

end

But while in the TEX example, the content directly ends
up in the input stream, in Lua we need to do that
explicitly, so in fact we will have:

for i=1,10 do
tex.print("...")

end

And, in order to execute this code snippet, in LuaTEX
we will do:

\directlua 0 {
for i=1,10 do

tex.print("...")
end

}

So, eventually we will end up with more code than just
Lua code, but still the loop itself looks quite readable
and more complex loops are possible:

\directlua 0 {
local t, n = { }, 0
while true do

local r = math.random(1,10)
if not t[r] then

t[r], n = true, n+1
tex.print(r)
if n == 10 then break end

end
end

}

This will typeset the numbers 1 to 10 in randomized
order. Implementing a random number generator in
pure TEX takes a fair amount of code and keeping track
of already dened numbers inmacros can be donewith
macros, but neither of these is very efcient.

The TEX–Lua mix NAJAAR 2008 5

Basic typesetting
I already stressed that TEX is a typographical program-
ming language and as such some things in TEX are
easier than in Lua, given some access to internals:

\setbox0=\hbox{x}\the\wd0

In Lua we can do this as follows:

\directlua 0 {
local n = node.new('glyph')
n.font = font.current()
n.char = string.byte('x')
tex.box[0] = node.hpack(n)
tex.print(tex.wd[0]/65536 .. "pt")

}

One pitfall here is that TEX rounds off numbers differ-
ently than Lua. Both implementations can be wrapped
in a macro resp. function:

\def\measured#1%
{\setbox0=\hbox{#1}\the\wd0\relax}

Now we get:

\measured{x}

The same macro using Lua looks as follows:

\directlua 0 {
function measure(chr)

local n = node.new('glyph')
n.font = font.current()
n.char = string.byte(chr)
tex.box[0] = node.hpack(n)
tex.print(tex.wd[0]/65536 .. "pt")

end
}
\def\measured#1{\directlua0{measure("#1")}}

In both cases, special tricks are needed if you want to
pass for instance a # character to the TEX implementa-
tion, or a " to Lua; namely, using \# in the rst case,
and Lua's ``long strings'' marked with double square
brackets in the second.

This example is somewhat misleading. Imagine that
we want to pass more than one character. The TEX
variant is already suited for that, but the Lua function
will now look like:

\directlua 0 {
function measure(str)

if str == "" then

tex.print("0pt")
else

local head, tail = nil, nil
for chr in str:gmatch(".") do

local n = node.new('glyph')
n.font = font.current()
n.char = string.byte(chr)
if not head then

head = n
else

tail.next = n
end
tail = n

end
tex.box[0] = node.hpack(head)
tex.print(tex.wd[0]/65536 .. "pt")

end
end

}

And still it's not okay, since TEX inserts kerns between
characters (depending on the font) and glue between
words, and doing all of this in Lua takes more code.
So, it will be clear that although we will use Lua to
implement advanced features, TEX itself still has quite
a lot of work to do.

Typesetting stylistic variations
In the following examples we show code, but it is not
of production quality. It just demonstrates a new way
of dealing with text in TEX.

Occasionally a design demands that at some place
the rst character of each word should be uppercase,
or that the rst word of a paragraph should be in
small caps, or that each rst line of a paragraph has
to be in dark blue. When using traditional TEX the user
then has to fall back on parsing the data stream, and
preferably you should then start such a sentence with
a command that can pick up the text. For accentless
languages like English this is quite doable but as soon
as commands (for instance dealing with accents) enter
the stream this process becomes quite hairy.

The next code shows how ConTEXt MkII denes
the \Word and \Words macros that capitalize the rst
characters of a word or words. The spaces are really
important here because they signal the end of a word.

\def\doWord#1%
{\bgroup\the\everyuppercase\uppercase{#1}%
\egroup}

\def\Word#1%
{\doWord#1}

6 MAPS 37 Hans Hagen

\def\doprocesswords#1 #2\od
{\doifsomething{#1}{\processword{#1} % space!
\doprocesswords#2 \od}}

\def\processwords#1%
{\doprocesswords#1 \od\unskip}

\let\processword\relax

\def\Words
{\let\processword\Word \processwords}

The code here is not that complex. We split off each
word and feed it to a macro that picks up the rst
token (hopefully a character) which is then fed into
the \uppercase primitive. This assumes that for each
character a corresponding uppercase variant is dened
using the \uccode primitive. Exceptions can be dealt
with by assigning relevant code to the token register
\everyuppercase. However, such macros are far
from robust. What happens if the text is generated and
not input as is? What happens with commands in the
stream that do something with the following tokens?

A Lua-based solution could look as follows:

\def\Words#1{\directlua 0
for s in unicode.utf8.gmatch("#1", "([^])") do

tex.sprint(string.upper(
s:sub(1,1)) .. s:sub(2))

end
}

But there is no real advantage here, apart from the fact
that less code is needed. We still operate on the input
and therefore we need to look to a different kind of
solution: operating on the node list.

function CapitalizeWords(head)
local done = false
local glyph = node.id("glyph")
for start in node.traverse_id(glyph,head) do
local prev, next = start.prev, start.next
if prev and prev.id == kern

and prev.subtype == 0 then
prev = prev.prev

end
if next and next.id == kern

and next.subtype == 0 then
next = next.next

end
if (not prev or prev.id ~= glyph)

and next and next.id == glyph then
done = upper(start)

end
end

return head, done
end

A node list is a forward-linked list. With a helper
function in the node library we can loop over such lists.
Instead of traversing we can use a regular while loop,
but it is probably less efcient in this case. But how to
apply this function to the relevant part of the input?
In LuaTEX there are several callbacks that operate on
the horizontal lists and we can use one of them to plug
in this function. However, in that case the function is
applied to probably more text than we want.

The solution for this is to assign attributes to the
range of text which a function is intended to take care
of. These attributes (there can bemany) travel with the
nodes. This is also a reason why such code normally
is not written by end users, but by macro package
writers: they need to provide the frameworks where
you can plug in code. In ConTEXt we have several such
mechanisms and therefore in MkIV this function looks
(slightly simplied) as follows:

function cases.process(namespace,attribute,head)
local done, actions = false, cases.actions
for start in node.traverse_id(glyph,head) do
local attr = has_attribute(start,attribute)
if attr and attr > 0 then
unset_attribute(start,attribute)
local action = actions[attr]
if action then
local _, ok = action(start)
done = done and ok

end
end

end
return head, done

end

Here we check attributes (these are set on the TEX side)
and we have all kind of actions that can be applied,
depending on the value of the attribute. Here the
function that does the actual uppercasing is dened
somewhere else. The cases table provides us a name-
space; such namespaces need to be coordinated by
macro package writers.

This approach means that the macro code looks
completely different; in pseudo code:

\def\Words#1{{<setattribute><cases>
<somevalue>#1}}

Or alternatively:

\def\StartWords {\begingroup
<setattribute><cases><somevalue>}

The TEX–Lua mix NAJAAR 2008 7

\def\StopWords {\endgroup}

Because starting a paragraph with a group can have
unwanted side effects (such as \everypar being ex-
panded inside a group) a variant is:

\def\StartWords
{<setattribute><cases><somevalue>}

\def\StopWords {<resetattribute><cases>}

So, what happens here is that the user sets an attribute
using some high level command, and at some point
during the transformation of the input into node lists,
some action takes place. At that point commands,
expansion and the like can no longer interfere.

In addition to some infrastructure, macro pack-
ages need to carry some knowledge, just as with the
\uccode used in \uppercase. The upper function in
the rst example looks as follows:

local function upper(start)
local data, char = characters.data, start.char
if data[char] then
local uc = data[char].uccode
if uc and

fonts.tfm.id[start.font].characters[uc]
then
start.char = uc
return true

end
end
return false

end

Such code is really macro package dependent: LuaTEX
provides only the means, not the solutions. In ConTEXt
we have collected information about characters in a
data table in the characters namespace. There we
have stored the uppercase codes (uccode). The fonts
table, again ConTEXt specic, keeps track of all dened
fonts and before we change the case, we make sure
that this character is present in the font. Here id is the
number by which LuaTEX keeps track of the used fonts.
Each glyph node carries such a reference.

In this example, eventually we end up with more
code than in TEX, but the solution is muchmore robust.
Just imagine what would happen when in the TEX
solution we would have:

\Words{\framed[offset=3pt]{hello world}}

It simply does not work. On the other hand, the Lua
code never sees TEX commands, it only sees the two
words represented by glyph nodes and separated by
glue.

Of course, there is a danger when we start opening
TEX's core features. Currently macro packages know
what to expect, they know what TEX can and cannot
do, and macro writers have exploited every corner of
TEX, even the darkest ones. while the dirty tricks in The
TEX-book had an educational purpose, those of users
sometimes have obscene traits. If we just stick to the
trickery introduced for parsing input, converting this
into that, doing some calculations, and the like, it will
be clear that Lua is more than welcome. It may hurt to
throw away thousands of lines of impressive code and
replace it by a few lines of Lua but that's the price the
user pays for abusing TEX. Eventually ConTEXt MkIV
will be a decent mix of Lua and TEX code, and hopefully
the solutions programmed in those languages are as
clean as possible.

Of course we can discuss until eternity whether Lua
is the best choice. Taco, Hartmut and I are pretty
condent that it is, and in the couple of years that we
have been working on LuaTEX nothing has proved us
wrong yet. One can fantasize about concepts, only to
nd out that they are impossible to implement or hard
to agree on; we just go ahead using trial and error.
We can talk over and over how opening up should be
done, which is what the team does in a nicely closed
and efcient loop, but at some points decisions have
to be made. Nothing is perfect, neither is LuaTEX, but
most users won't notice it as long as it extends TEX's
life and makes usage more convenient.

Groups
Users of TEX and MetaPost will have noticed that both
languages have their own grouping (scope) model.
In TEX grouping is focused on content: by grouping
the macro writer (or author) can limit the scope to
a specic part of the text or have certain macros live
within their own world.

.1. \bgroup .2. \egroup .1.

Everything done at 2 is local unless explicitly told
otherwise. This means that users can write (and share)
macros with a small chance of clashes. In MetaPost
grouping is available too, but variables explicitly need
to be saved.

.1. begingroup; save p; path p; .2. endgroup .1.

After using MetaPost for a while this feels quite natural
because an enforced local scope demands multiple
return values which is not part of the macro lan-
guage. Actually, this is another fundamental difference
between the languages: MetaPost has (a kind of)
functions, which TEX lacks. In MetaPost you can write

8 MAPS 37 Hans Hagen

draw origin
for i=1 upto 10: ..(i,sin(i)) endfor;

but also:

draw some(0) for i=1 upto 10: ..some(i) endfor;

with

vardef some (expr i) =
if i > 4 : i = i - 4 fi ;
(i,sin(i))

enddef ;

The condition and assignment in no way interfere with
the loop where this function is called, as long as some
value is returned (a pair in this case).

In TEX things work differently. Take this:

\count0=1
\message{\advance\count0 by 1 \the\count0}
\the\count0

The terminal will show:

\advance \count 0 by 1 1

At the end the counter still has the value 1. There are
quite a few situations like this, for instance when data
such as a table of contents has to be written to a le.
You cannot write macros where such calculations are
done, hidden away, and only the result is seen.

The nice thing about the way Lua is presented to the
user is that it permits the following:

\count0=1
\message{\directlua0{%
tex.count[0] = tex.count[0] + 1}%
\the\count0}

\the\count0

This will report 2 to the terminal and typeset a 2 in the
document. Of course this does not solve everything,
but it is a step forward. Also, compared to TEX and
MetaPost, grouping is done differently: there is a
local prex that makes variables (and functions are
variables too) local in modules, functions, conditions,
loops, etc. The Lua code in this article contains such
locals.

An example: XML
In practice most users will use a macro package and so,
if a user sees TEX, he or she sees a user interface, not the
code behind it. As such, they will also not encounter

the code written in Lua that handles, for instance, fonts
or node list manipulations. If a user sees Lua, it will
most probably be in processing actual data. Therefore,
in this section I will give an example of two ways to
deal with xml: one more suitable for traditional TEX,
and one inspired by Lua. It demonstrates how the
availability of Lua can result in different solutions for
the same problem.

MkII: stream-based processing
In ConTEXt MkII, the version that deals with pdfTEX
and X ETEX, we use a stream-based xml parser, written
in TEX. Each < and & triggers a macro that then parses
the tag and/or entity. This method is quite efcient in
terms of memory but the associated code is not simple
because it has to deal with attributes, namespaces and
nesting.

The user interface is not that complex, but involves
quite a few commands. Take for instance the following
xml snippet:

<document>
<section>

<title>Whatever</title>
<p>some text</p>
<p>some more</p>

</section>
</document>

When using ConTEXt commands, we can imagine the
following denitions:

\defineXMLenvironment[document]
{\starttext} {\stoptext}

\defineXMLargument [title]
{\section}

\defineXMLenvironment[p]
{\ignorespaces}{\par}

When attributes have to be dealt with, for instance a
reference to this section, things quickly start looking
more complex. Also, users need to know what deni-
tions to use in situations like this:

<table>
<tr><td>first</td> ... <td>last</td></tr>
<tr><td>left</td> ... <td>right</td></tr>

</table>

Here we cannot be sure that a cell does not contain
a nested table, which is why we need to dene the
mapping as follows:

\defineXMLnested[table]{\bTABLE} {\eTABLE}
\defineXMLnested[tr] {\bTR} {\eTR}

The TEX–Lua mix NAJAAR 2008 9

\defineXMLnested[td] {\bTD} {\eTD}

The \defineXMLnested macro is rather messy be-
cause it has to collect snippets and keep track of the
nesting level, but users don't see that code, they just
need to know when to use what macro. Once it works,
it keeps working.

Unfortunately mappings from source to style are
never that simple in real life. We usually need to
collect, lter and relocate data. Of course this can
be done before feeding the source to TEX, but MkII
provides a few mechanisms for that too. For instance,
to reverse the order you can do this:

<article>
<title>Whatever</title>
<author>Someone</author>
<p>some text</p>

</article>

\defineXMLenvironment[article]
{\defineXMLsave[author]}
{\blank author: \XMLflush{author}}

This will save the content of the author element and
ush it when the end tag article is seen. So, given
previous denitions, we will get the title, some text
and then the author. You may argue that instead we
should use for instance xslt but even then a mapping
is needed from the xml to TEX, and it's a matter of taste
where the burden is put.

Because ConTEXt also wants to support standards
like MathML, there are some more mechanisms but
these are hidden from the user. And although these
do a good job in most cases, the code associated with
the solutions has never been satisfying.

Supporting xml this way is doable, and ConTEXt
has used this method for many years in fairly complex
situations. However, now that we have Lua available,
it is possible to see if some things can be done more
simply (or differently).

MkIV: tree-based processing
After some experimenting I decided to write a
full blown xml parser in Lua, but contrary to the
stream-based approach, this time the whole tree is
loaded in memory. Although this uses more memory
than a streaming solution, in practice the difference is
not signicant because often in MkII we also needed
to store whole chunks.

Loading xml les in memory is very fast and once it
is done we can have access to the elements in a way
similar to xpath. We can selectively pipe data to TEX
and manipulate content using TEX or Lua. In most
cases this is faster than the stream-based method. An

interesting fact is that we can do this without linking
to existing xml libraries, and as a result we are pretty
independent.

So how does this look from the perspective of the
user? Say that we have the simple article denition
stored in demo.xml.

<?xml version ='1.0'?>
<article>

<title>Whatever</title>
<author>Someone</author>
<p>some text</p>

</article>

This time we associate so-called setups with the ele-
ments. Each element can have its own setup, and we
can use expressions to assign them. Here we have just
one such setup:

\startxmlsetups xml:document
\xmlsetsetup{main}{article}{xml:article}

\stopxmlsetups

When loading the document it will automatically be
associated with the tag main. The previous rule as-
sociates the setup xml:article with the article
element in tree main. We register this setup so that
it will be applied to the document after loading:

\xmlregistersetup{xml:document}

and the document itself is processed with (the empty
braces are an optional setup argument):

\xmlprocessfile{main}{demo.xml}{}

The setup xml:article can look as follows:

\startxmlsetups xml:article
\section{\xmltext{#1}{/title}}
\xmlall{#1}{!(title|author)}
\blank author: \xmltext{#1}{/author}

\stopxmlsetups

Here #1 refers to the current node in the xml tree,
in this case the root element, article. The second
argument of \xmltext and \xmlall is a path ex-
pression, comparable to xpath: /title means: the
title element anchored to the current root (#1), and
!(title|author) is the negation of (complement
to) title or author. Such expressions can be more
complex than the one above, for instance:

\xmlfirst{#1}{/one/(alpha|beta)/two/text()}

10 MAPS 37 Hans Hagen

which returns the content of the rst element that
satises one of the paths (nested tree):

/one/alpha/two
/one/beta/two

There is a whole bunch of commands like \xmltext
that lter content and pipe it into TEX. These are calling
Lua functions. This article is no manual, so we will not
discuss them here. However, it is important to realize
that we have to associate setups (consider them free
formatted macros) with at least one element in order
to get started. Also, xml inclusions have to be dealt
with before assigning the setups. These are simple
one-line commands. You can also assign defaults to
elements, which saves some work.

Because we can use Lua to access the tree and
manipulate content, we can now implement parts of
xml handling in Lua. An example of this is dealing with
so-called Cals tables. This is done in approximately
150 lines of Lua code, loaded at runtime in a module.
This time the association uses functions instead of
setups and those functions will pipe data back to TEX.
In the module you will nd:

\startxmlsetups xml:cals:process
\xmlsetfunction {\xmldocument} {cals:table}

{lxml.cals.table}
\stopxmlsetups

\xmlregistersetup{xml:cals:process}
\xmlregisterns{cals}{cals}

These commands tell MkIV that elements with a
namespace specication that contains cals will be
remapped to the internal namespace cals and the se-
tup associates a function with this internal namespace.

By now it will be clear that from the perspective
of the user Lua is hardly visible. Sure, he or she can
deduce that deep down some magic takes place, espe-
cially when you run into more complex expressions
like this (the @ denotes an attribute):

\xmlsetsetup
{main}
{item[@type='mpctext' or @type='mrtext']}
{questions:multiple:text}

Such expressions resemble xpath, but can go much
further, just by adding more functions to the library.

item[position() > 2 and position() < 5
and text() == 'ok']

item[position() > 2 and position() < 5
and text() == upper('ok')]

item[@n=='03' or @n=='08']
item[number(@n)>2 and number(@n)<6]
item[find(text(),'ALSO')]

Just to give you an idea, in themodule that implements
the parser you will nd denitions that match the
function calls in the above expressions.

xml.functions.find = string.find
xml.functions.upper = string.upper
xml.functions.number = tonumber

So much for the different approaches. It's up to
the user what method to use: stream-based MkII,
tree-based MkIV, or a mixture.

TEX–Lua in conversation
The main reason for taking xml as an example of
mixing TEX and Lua is in that it can be a bit mind-bog-
gling if you start thinking of what happens behind the
scenes. Say that we have

<?xml version ='1.0'?>
<article>

<title>Whatever</title>
<author>Someone</author>
<p>some bold text</p>

</article>

and we use the setup shown before with article.
At some point, we are done with dening setups

and load the document. The rst thing that happens is
that the list of manipulations is applied: le inclusions
are processed rst, setups and functions are assigned
next, maybe some elements are deleted or added, etc.
When that is done we serialize the tree to TEX, starting
with the root element. When piping data to TEX we use
the current catcode regime; linebreaks and spaces are
honored as usual.

Each element can have a function (command) as-
sociated and when this is the case, control is given to
that function. In our case the root element has such
a command, one that will trigger a setup. And so,
instead of piping content to TEX, a function is called
that lets TEX expand the macro that deals with this
setup.

However, that setup itself calls Lua code that lters
the title and feeds it into the \section command, next
it ushes everything except the title and author, which
again involves calling Lua. Last it ushes the author.
The nested sequence of events is as follows:

lua: Load the document and apply setups and the
like.

The TEX–Lua mix NAJAAR 2008 11

lua: Serialize the article element, but since there is
an associated setup, tell TEX to expand that one
instead.
tex: Execute the setup, rst expand the

\section macro, but its argument is a call
to Lua.
lua: Filter title from the subtree under

article, print the content to TEX and
return control to TEX.

tex: Tell Lua to lter the paragraphs i.e. skip
title and author; since the b element has
no associated setup (or whatever) it is just
serialized.
lua: Filter the requested elements and re-

turn control to TEX.
tex: Ask Lua to lter author.

lua: Pipe author's content to TEX.
tex: We're done.

lua: We're done.

This is a very simple case. In my daily work I am
dealing with rather extensive and complex educational
documents where in one source there is text, math,
graphics, all kind of fancy stuff, questions and answers
in several categories and of different kinds, to be
reshufed or not, omitted or combined. So there we
are talking about many more levels of TEX calling Lua
and Lua piping to TEX, etc. To stay in TEX speak:
we're dealing with one big ongoing nested expansion
(because Lua calls expand), and you can imagine that
this somewhat stresses TEX's input stack, but so far I
have not encountered any problems.

Final remarks
Here I discuss several possible applications of Lua in
TEX. I didn't mention yet that because LuaTEX contains
a scripting engine plus some extra libraries, it can
also be used purely for that. This means that support
programs can now be written in Lua and that we need
no longer depend on other scripting engines being
present on the system. Consider this a bonus.

Usage in TEX can be categorized in four ways:

1. Users can use Lua for generating data, do all kind
of data manipulations, maybe read data from le,
etc. The only link with TEX is the print function.

2. Users can use information provided by TEX and use
this when making decisions. An example is collect-

ing data in boxes and use Lua to do calculations
with the dimensions. Another example is a con-
verter from MetaPost output to pdf literals. No real
knowledge of TEX's internals is needed. The MkIV
xml functionality discussed before demonstrates
this: it's mostly data processing and piping to TEX.
Other examples are dealing with buffers, dening
character mappings, and handling error messages,
verbatim . . . the list is long.

3. Users can extend TEX's core functionality. An ex-
ample is support for OpenType fonts: LuaTEX itself
does not support this format directly, but provides
ways to feed TEX with the relevant information.
Support for OpenType features demands manip-
ulating node lists. Knowledge of internals is a re-
quirement. Advanced spacing and language speci-
c features are made possible by node list manip-
ulations and attributes. The alternative \Words
macro is an example of this.

4. Users can replace existing TEX functionality. In
MkIV there are numerous examples of this, for in-
stance all le io is written in Lua, including reading
from zip les and remote locations. Loading and
dening fonts is also under Lua control. At some
point MkIV will provide dedicated splitters for mul-
ticolumn typesetting and probably also better dis-
play spacing and display math splitting.

The boundaries between these categories are not set
in stone. For instance, support for image inclusion
and mplib in ConTEXt MkIV sits between categories 3
and 4. Categories 3 and 4, and probably also 2, are
normally the domain of macro package writers and
more advanced users who contribute to macro pack-
ages. Because a macro package has to provide some
stability it is not a good idea to let users mess around
with all those internals, due to potential interference.
On the other hand, normally users operate on top of a
kernel using some kind of api, and history has proved
that macro packages are stable enough for this.

Sometime around 2010 the team expects LuaTEX to
be feature complete and stable. By that time I can
probably provide a more detailed categorization.

Hans Hagen
Pragma ADE
http://pragma-ade.com

