
Taco Hoekwater & Hans Hagen NAJAAR 2008 55

Punk from Metafont to MetaPost

Abstract
To make Knuth's punk font usable with ConTEXt MKIV,
it had to be converted from Metafont to MetaPost input.
This article highlights the most important changes that
had to be made in the conversion process.

Introduction
Donald Knuth's punk font is available from CTAN and
in most TEX distributions, such as TEXLive. The TEXLive
description has this to say about it:

“A response to the assertion in a lecture that
‘typography tends to lag behind other stylistic
changes by about 10 years’. Knuth felt it was
(in 1988) time to design a replacement for his
designs of the 1970s, and came up with this
font! The fonts are distributed as Metafont
source. The package offers LaTEX support by
Rohit Grover, from an original by Sebastian
Rahtz, which is slightly odd in claiming that the
fonts are T1-encoded. A (possibly) more rational
support package is to be found in punk-latex.”

Elsewhere in this Maps 37, you can read about the
rather special characteristics of the punk font, and
about the stepts needed to make it usable in the latest
version of mplib--enabled ConTEXt. In an effort to
reduce the overall noise level on these pages, the
current article will not show you what the font looks
like at all. There is enough of that in the two other
articles.

As said already, the original font is based on Meta-
font. For use with mplib, we wanted a version that
could be processed repeatedly by a single mplib in-
stance. A bit of reorganisation was needed.

Punk in Metafont
The original distribution contains about a dozen Meta-
font input les. The content of the Metafont les
is explained below, but we were only interested in
the 10 point upright font, so we will ignore les
like punksl20.mf (that generates a 20 point slanted
version of the font).

punk10.mf
This is the parameter le for the 10 point font. It
contains ten parameter assignments and then inputs

the punk.mf le.

% 10-point PUNK font
designsize:=10pt#; font_identifier:="PUNK";
ht#:=7pt#; % height of characters
u#:=1/4pt#; % unit width
s#:=1.2pt#; % extra sidebar
px#:=.6pt#; % horizontal thickness of pen
py#:=.5pt#; % vertical thickness of pen
dot#:=1.3pt#; % diameter of dots
dev#:=.3pt#; % standard deviation of punk

% points
slant:=0; % obliqueness
seed:=sqrt2; % seed for random number

% generator
input punk
bye

punk.mf
This is a typical Metafont macro le. It denes a few
macros and sets up various drawing parameters for the
characters.

% Font inspired by Gerard and Marjan Unger's
% lectures, Feb 1985
mode_setup;

randomseed:=seed;

define_pixels(u,dev);
define_blacker_pixels(px,py,dot);
define_whole_pixels(s);
xoffset:=s;
pickup pencircle xscaled px yscaled py;
punk_pen:=savepen;
pickup pencircle scaled dot; def_pen_path_;
path dot_pen_path;
dot_pen_path:=currentpen_path;
currenttransform:=identity slanted slant

yscaled aspect_ratio;

def beginpunkchar(expr c,n,h,v) =
% code c; width is n units
hdev:=h*dev; vdev:=v*dev;
% modify horizontal and
% vertical amounts of deviation
beginchar(c,n*u#,ht#,0);
italcorr ht#*slant;

56 MAPS 37 Taco Hoekwater & Hans Hagen

pickup punk_pen enddef;
extra_endchar:=extra_endchar

& "w:=w+2s;charwd:=charwd+2s#";

def ^ = transformed currenttransform enddef;

def makebox(text rule) =
for y=0,h:
rule((-s,y)^,(w-s,y)^); % horizontals

endfor
for x=-s,0,w-2s,w-s:
rule((x,0)^,(x,h)^); % verticals

endfor
enddef;

rulepen:=pensquare;

vardef pp expr z =
z+(hdev*normaldeviate,vdev*normaldeviate)

enddef;

def pd expr z = % {\bf drawdot}
addto_currentpicture contour
dot_pen_path shifted z.t_

withpen penspeck
enddef;

input punkl % uppercase letters
input punkae % uppercase \AE, \OE, \O
input punkg % uppercase greek
input punkp % punctuation
input punkd % digits
input punka % accents

ht#:=.6ht#; dev:=.7dev;
input punksl % special lowercase
extra_beginchar:=extra_beginchar
& "charcode:=charcode+32;";

input punkl % lowercase letters
extra_beginchar:=extra_beginchar
& "charcode:=charcode-35;";

input punkae % lowercase \ae, \oe, \o

font_slant:=slant;
font_quad:=18u#+2s#;
font_normal_space:=9u#+2s#;
font_normal_stretch:=6u#;
font_normal_shrink:=4u#;
font_x_height:=ht#;
font_coding_scheme:=
"TeX text without f-ligatures";

bye

Note that punkl.mf and punkae.mf are loaded twice,
after some redenitions have taken place. The com-
bined effect of

ht#:=.6ht#; dev:=.7dev;

and

extra_beginchar:=extra_beginchar
& "charcode:=charcode+32;";

is that the drawing routines for the uppercase charac-
ters (like ‘P’, with character code 80) are reused for
the lowercase characters (like ‘p’, with character code
112). The heights and widths are diminished, and this
makes punk a ‘Caps and Small Caps’ font.

punkl.mf, punkae.mf, punkg.mf, punkp.mf,
punkd.mf, punka.mf, punksl.mf
These contain the drawing routines for the characters
and a few ligtable commands for the standard tex
ligatures like -- and ''. There is not that much to see,
just a bunch of denitions like this:

beginpunkchar("P",13,1,2);
z1=pp(2u,0); z2=pp(2u,1.1h);
z3=pp(2u,.5h); z4=pp(w,.6[y3,y2]);
pd z1; pd z3;
draw z1--z2--z4--z3; % stem and bowl
endchar;

Punk in MetaPost
In the MetaPost version, we wanted to have only one
le because that makes handling the font a bit easier.
The le's name is punkfont.mp, and even though
there is only one le now, the initial setup is much the
same.

It begins with parameter settings, like this:

if unknown punk_font_loaded :

if unknown scale_factor :
scale_factor := 1 ;

fi ;

boolean punk_font_loaded ;

punk_font_loaded := true ;
warningcheck := 0 ;
designsize := 10pt#;
font_identifier := "Punk Nova" ;

ht# := 7pt# ; % height of characters
u# :=1/4pt# ; % unit width
s# := 0 ; % extra sidebar
px# := .6pt# ; % horizontal pen thickness
py# := .5pt# ; % vertical pen thickness

Punk from Metafont to MetaPost NAJAAR 2008 57

dot# :=1.3pt# ; % diameter of dots
dev# := .3pt# ; % standard deviation of

% punk points

% seed := sqrt2 ;

Most if the changes above should be self--explanatory.
The only things worth noting are the test and setting of
the punk_font_loaded boolean (this prevents errors
when the le is being read multiple times) and the
commented out denition of seed. That latter change
is because we wanted the font to be truly random.
Knuth's original only appears to be random. In fact
it always has the exact same ‘randomness’.

The next bit contains the assignments and macro def-
initions, much like punk.mf:

proofing := 0 ;
pt := .1pt ;
mag := scale_factor * 10 ;
bp_per_pixel := bpppix_ * mag ;

MetaPost's mfplain doesn't have the mode_setup
macro, so the important settings from that are given
explicitly. The trickery with scale_factor and pt is
just so the resulting gures will have a usable range
(in PostScript big points).

Going on:

define_pixels(u,dev) ;
define_blacker_pixels(px,py,dot) ;
define_whole_pixels(s) ;
xoffset := s ;

pickup pencircle xscaled px yscaled py ;
punk_pen := savepen ;
pickup pencircle scaled dot ;
path dot_pen_path ;
dot_pen_path :=tensepath makepath currentpen;

defaultcolormodel := 1 ;

def beginpunkchar(expr c,n,h,v) =
% code c; width is n units
hdev := h * dev ;
% modify horizontal amounts of deviation
vdev := v * dev ;
% modify vertical amounts of deviation
beginchar(c,n*u#,ht#,0) ;
italcorr 0 ;
pickup punk_pen

enddef ;

extra_endchar := extra_endchar
& "w := w+2s ; charwd := charwd+2s# ;";

extra_endchar := extra_endchar
& "setbounds currentpicture to (0,-d)"
& "--(w*1.2,-d)--(w*1.2,ht#)--(0,ht#)"
& "--cycle;";

def ^ = transformed currenttransform enddef ;

def makebox(text rule) =
for y=0, h : % horizontals

rule((-s,y)^,(w-s,y)^) ;
endfor
for x=-s, 0, w-2s, w-s : % verticals

rule((x,0)^,(x,h)^) ;
endfor

enddef ;

rulepen := pensquare ;

vardef pp expr z =
z + (hdev * normaldeviate,

vdev * normaldeviate)
enddef;

def pd expr z = % {\bf drawdot}
addto currentpicture

contour dot_pen_path
shifted z.t_ withpen penspeck

enddef;

This is all pretty much the same as in Metafont. The
trick with the multiple loading doesn't work because
there is only the one le, but we did not want to
manually adjust the drawing macros within de be-
ginpunkchar commands. That is why the following
denitions were added:

def initialize_punk_upper =
ht# := 7pt# ; dev# := .3pt# ;

enddef ;
def initialize_punk_lower =

sht# := ht#; sdev := dev;
ht# := .6ht# ; dev := .7dev ;

enddef ;
def revert_punk_lower =

ht# := sht#; dev := sdev;
enddef ;

fi ;

The fi ends the boolean test that was started at the
top of the le, everything below this point can be safely
re-interpreted.

58 MAPS 37 Taco Hoekwater & Hans Hagen

The rest of the le consists of a few calls to these
three macros and a whole bunch of character deni-
tions. It starts like this:

initialize_punk_upper ;

beginpunkchar("A",13,1,2);
z1=pp(1.5u,0); z2=(.5w,1.1h);
z3=pp(w-1.5u,0);
pd z1; pd z3;
draw z1--z2--z3; % left and right diagonals
z4=pp .3[z1,z2];
z5=pp .3[z3,z2];
pd z4; pd z5;
draw z4--z5; % crossbar

endchar;

The MetaPost version of the font does not have any
ligtable commands; the ligatures are automatically
generated by ConTEXt. This is possible because the
loaded font uses an (incomplete) Unicode encoding.

For example, we have:

beginpunkchar(8221,9,.3,.5);
% '' quotedblright
z1=pp(.5w-.5u,h); z2=pp(u,.6h);
z3=pp(w-u,.95h); pd z1; pd z3;
draw z1--z2--z3; % stroke

endchar;

Incidentally, this is why the warningcheck:=0; above
was needed. Without it, MetaPost would have com-
plained about Number too large.

The last thing worth mentioning is that the origi-
nal font was using 7-bit TEX roman encoding, which
doesn't have a full ASCII set. We have added the
missing denitions: underscore, caret, left brace, right
brace, backslash, and the straight quote and double
quote.

Taco Hoekwater & Hans Hagen

