
TEX Programming: The past, the present, and the future VOORJAAR 2009 51

TEX Programming:
The past, the present, and the future

Abstract
This article summarizes a recent thread on the ConTEXt mailing list.
(http://archive.contextgarden.net/thread/20090304.193503.1c42e4d5.en.html/)
To make the article interesting, I have changed the question and correspondingly
modified the solutions.

Keywords
ConTEXt, luaTEX, TEX Programming

Suppose you want to typeset (in ConTEXt) all possible sums of roll of two dies, like
this:

(+) 1 2 3 4 5 6

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 9 10

5 6 7 8 9 10 11

6 7 8 9 10 11 12

The mundane way to do this, especially if you do not have too much time at hand, is
to type the whole thing by hand:

\bTABLE
\bTR \bTD $(+)$ \eTD \bTD 1 \eTD \bTD 2 \eTD

\bTD 3 \eTD \bTD 4 \eTD \bTD 5 \eTD \bTD 6 \eTD \eTR
\bTR \bTD 1 \eTD \bTD 2 \eTD \bTD 3 \eTD

\bTD 4 \eTD \bTD 5 \eTD \bTD 6 \eTD \bTD 7 \eTD \eTR
\bTR \bTD 2 \eTD \bTD 3 \eTD \bTD 4 \eTD

\bTD 5 \eTD \bTD 6 \eTD \bTD 7 \eTD \bTD 8 \eTD \eTR
\bTR \bTD 3 \eTD \bTD 4 \eTD \bTD 5 \eTD

\bTD 6 \eTD \bTD 7 \eTD \bTD 8 \eTD \bTD 9 \eTD \eTR
\bTR \bTD 4 \eTD \bTD 5 \eTD \bTD 6 \eTD

\bTD 7 \eTD \bTD 8 \eTD \bTD 9 \eTD \bTD 10 \eTD \eTR
\bTR \bTD 5 \eTD \bTD 6 \eTD \bTD 7 \eTD

\bTD 8 \eTD \bTD 9 \eTD \bTD 10 \eTD \bTD 11 \eTD \eTR
\bTR \bTD 6 \eTD \bTD 7 \eTD \bTD 8 \eTD

\bTD 9 \eTD \bTD 10 \eTD \bTD 11 \eTD \bTD 12 \eTD \eTR
\eTABLE



52 MAPS 38 Aditya Mahajan

I am using Natural Tables since it is easy to con󰀂gure its output (see http://
www.pragma-ade.com/general/manuals/enattab.pdf/). For example, to get
the effect shown above, I use the following setup:

\setupTABLE[each][each][width=2em,height=2em,align={middle,middle}]
\setupTABLE[r][1][background=color,backgroundcolor=gray]
\setupTABLE[c][1][background=color,backgroundcolor=gray]

Natural tables, however, are not the focus of this article. It is rather, what would you
do if you are adventurous and have time at hand. The above is a repetitive task,
so it should be possible to automate it. That will save typing errors (unless you
make a mistake in your algorithm) and make the code reusable. In any ordinary
programming language you could easily write something like the following pseudo
code

start_table
start_table_row

table_element("(+)")
for y in [1..6] do

table_elemnt(y)
stop_table_row
for x in [1..6] do

start_table_row
table_element(x)
for y in [1..6] do

table_element(x+y)
end

stop_table_row
end

stop_table

But TEX is no ordinary programming language! Lets try to do this using ConTEXt's
equivalent of a for-loop—\dorecurse

\bTABLE
\bTR
\bTD $(+)$ \eTD
\dorecurse{6}
{\bTD \recurselevel \eTD}

\eTR
\dorecurse{6}
{\bTR

\bTD \recurselevel \eTD
\edef\firstrecurselevel{\recurselevel}

\dorecurse{6}
{\bTD \the\numexpr\firstrecurselevel+\recurselevel \eTD}

\eTR}
\eTABLE

This, however, does not work as expected because \dorecurse is not fully expand-
able. One way to get around this problem is to expand the appropriate parts of the
body of \dorecurse

\bTABLE
\bTR
\bTD $(+)$ \eTD
\dorecurse{6}
{\expandafter \bTD \recurselevel \eTD}



TEX Programming: The past, the present, and the future VOORJAAR 2009 53

\eTR
\dorecurse{6}
{\bTR

\edef\firstrecurselevel{\recurselevel}
\expandafter\bTD \recurselevel \eTD

\dorecurse{6}
{\expandafter\bTD

\the\numexpr\firstrecurselevel+\recurselevel\relax
\eTD}

\eTR}
\eTABLE

Behold, the \expandafter! So, what is this expansion stuff, and why do we
need \expandafter. TEX has a esoteric executing model, which was succinctly
explained by David Kastrup in his TEX interview (http://www.tug.org/inter-
views/interview-files/david-kastrup.html/)

“Instead, macros are used as a substitute for programming. TEX's macro ex-
pansion language is the only way to implement conditionals and loops, but
the corresponding control variables can't be in󰀄uenced by macro expansion
(TEX's “mouth” in Knuth's terminology). Instead assignments must be exe-
cuted by the back end (TEX's “stomach”). Stomach and mouth execute at
different times and independently from one another. But it is not possible
to solve nontrivial programming tasks with either: only the unholy chimera
made from both can solve serious problems. 𝜀-TEX gives the mouth a few
more teeth and changes some of that, but the changes are not really funda-
mental: expansion still makes no assignments.”

So, where do we add the \expandafters? It's simple, once you get the hang
of it (Taco Hoekwater in a ConTEXt mailing list thread (http://archive.con-
textgarden.net/message/20060702.141636.a57e6b68.en.html/))

“The trick to \expandafter is that you (normally) write it backwards until
reaching a moment in time where TeX is not scanning an argument.

Say you have a macro that contains some stuff in it to be typeset by \type:

\def\mystuff{Some literal stuff}

Then you begin with

\type{\mystuff}

but that obviously doesn't work, you want the 󰀂nal input to look like

\type{Some literal stuff}

Since \expandafter expands the token that follows after next token—whatever
the next token is—you have to insert it backwards across the opening brace
of the argument, like so:

\type\expandafter{\mystuff}

But this wouldn't work, yet: you are still in the middle of an expression (the
\type expects an argument, and it gets \expandafter as it stands).

Luckily, \expandafter itself is an expandable command, so you jump
back once more and insert another one:

\expandafter\type\expandafter{\mystuff}

Now you are on ‘neutral ground’, and can stop backtracking. Easy, once you
get the hang of it.”



54 MAPS 38 Aditya Mahajan

If you do not get the hang of it, relax. ConTEXt provides a command \expanded
that expands its arguments.

\bTABLE
\bTR
\bTD $(+)$ \eTD
\dorecurse{6}

{\expanded{\bTD \recurselevel \eTD}}
\eTR
\dorecurse{6}

{\bTR
\expanded{\bTD \recurselevel \eTD}
\edef\firstrecurselevel{\recurselevel}

\dorecurse{6}
{\expanded{\bTD
\the\numexpr\firstrecurselevel+\recurselevel\relax \eTD}}

\eTR}
\eTABLE

Using \expanded is easier than using \expandafter, but you still need to under-
stand TEX's expansion mechanism to get it right. For example, if you try

...
\dorecurse{6}

{\expaned{\bTR
\bTD \recurselevel \eTD
\edef\firstrecurselevel{\recurselevel}

\dorecurse{6}
{\expanded{\bTD
\the\numexpr\firstrecurselevel+\recurselevel\relax \eTD}}

\eTR}}
...

you will get all sorts of TEX errors, and you need to sprinkle \noexpand at correct
places to get it to work. So, \expanded is not a silver bullet.

In the above mention mailing list thread, Wolfgang Schuster posted a much
neater solution.

\bTABLE
\bTR
\bTD $(+)$ \eTD
\dorecurse{6}
{\bTD #1 \eTD}

\eTR
\dorecurse{6}
{\bTR

\bTD #1 \eTD
\dorecurse{6}

{\bTD \the\numexpr#1+##1 \eTD}
\eTR}

\eTABLE

This makes TEX disguise as a normal programming language. But only TEX wizards
like Wolfgang can discover such solutions. You need to know the TeX digestive sys-
tem inside out to even attempt something like this. Inspired by Wolfgang's solution,
I tried the same thing with ConTEXt's lesser known for loops



TEX Programming: The past, the present, and the future VOORJAAR 2009 55

\bTABLE
\bTR

\bTD $(+)$ \eTD
\for \y=1 \to 6 \step 1 \do

{\bTD #1 \eTD}
\eTR
\for \x=1 \to 6 \step 1 \do
{\bTR

\bTD #1 \eTD
\for \y=1 \to 6 \step 1 \do
{\bTD \the\numexpr#1+##1 \eTD}

\eTR}
\eTABLE

Is your head hurting. Don't worry. luaTEX provides hope that normal users can do
simple programming tasks. Luigi Scarso posted the following code:

\startluacode
tprint = function(s) tex.sprint(tex.ctxcatcodes,s) end
tprint('\\bTABLE')
tprint('\\bTR')
tprint('\\bTD $(+)$ \\eTD')
for y = 1,6 do

tprint('\\bTD ' .. y .. '\\eTD')
end
tprint('\\eTR')
for x = 1,6 do

tprint('\\bTR')
tprint('\\bTD ' .. x .. '\\eTD')
for y = 1,6 do

tprint('\\bTD' .. x+y .. '\\eTD')
end
tprint('\\eTR')

end
tprint('\\eTABLE')

\stopluacode

Finally luaTEX offers a simple way of implementing simple algorithms inside TEX.
There is no need to know TEX's digestive system. Write code as you would write in
any other programing language!

If you are a TEX programming guru who can keep track of TEX's expansion mech-
anism, don't fear luaTEX. There are other options for you: mix TEX and MetaPost.

\let\normalbTABLE\bTABLE
\let\normaleTABLE\eTABLE

\unexpanded\def\bTABLE{\normalbTABLE}
\unexpanded\def\eTABLE{\normaleTABLE}

\unexpanded\def\dobTR{\dodoubleempty\parseTR}
\unexpanded\def\dobTD{\dodoubleempty\parseTD}
\unexpanded\def\dobTH{\dodoubleempty\parseTH}
\unexpanded\def\dobTN{\dodoubleempty\parseTN}

\let\bTR\dobTR
\let\bTD\dobTD
\let\bTH\dobTH



56 MAPS 38 Aditya Mahajan

\let\bTN\dobTN

\startMPcode
string table ;
table = "\bTABLE \bTR \bTD $(+)$ \eTD" &
for y = 1 upto 6 :

"\bTD " & decimal y & "\eTD " &
endfor
"\eTR " &
for x = 1 upto 6 :

"\bTR \bTD " & decimal x & "\eTD " &
for y = 1 upto 6 :

"\bTD " & decimal (x+y) & "\eTD " &
endfor
"\eTR" &

endfor
"\eTABLE" ;
label(textext(table), origin) ;

\stopMPcode

Aditya Mahajan
adityam@umich.edu


