
NUMMER 38 • VOORJAAR 2009

R E D A C T I E
Taco Hoekwater, hoofdredacteur
Wybo Dekker
Frans Goddijn

N E D E R L A N D S T A L I G E TEX G E B R U I K E R S G R O E P

N E D E R L A N D S T A L I G E TEX G E B R U I K E R S G R O E P

Voorzitter
Taco Hoekwater

ntg-president@ntg.nl

Secretaris
Willi Egger

ntg-secretary@ntg.nl

Penningmeester
Ferdy Hanssen

ntg-treasurer@ntg.nl

Bestuurslid
Karel Wesseling

k.h.wesseling@planet.nl

Postadres
Nederlandstalige TEX

Gebruikersgroep
Maasstraat 2

5836 BB Sambeek
Postgiro
1306238

t.n.v. NTG, Deil
BIC-code: PSTBNL21

IBAN-code: NL05PSTB0001306238
E-mail bestuur

ntg@ntg.nl

E-mail MAPS redactie
maps@ntg.nl

WWW
www.ntg.nl

Copyright © 2009 NTG

De Nederlandstalige TEX Gebruikersgroep (NTG) is een vereniging die tot doel
heeft de kennis en het gebruik van TEX te bevorderen. De NTG fungeert als een fo-
rum voor nieuwe ontwikkelingen met betrekking tot computergebaseerde document-
opmaak in het algemeen en de ontwikkeling van ‘TEX and friends’ in het bijzonder.
De doelstellingen probeert de NTG te realiseren door onder meer het uitwisselen van
informatie, het organiseren van conferenties en symposia met betrekking tot TEX en
daarmee verwante programmatuur.
De NTG biedt haar leden ondermeer:

2 Tweemaal per jaar een NTG-bijeenkomst.
2 Het NTG-tijdschrift MAPS.
2 De ‘TEX Live’-distributie op DVD/CDROM inclusief de complete CTAN software-

archieven.
2 Verschillende discussielijsten (mailing lists) over TEX-gerelateerde onderwerpen,

zowel voor beginners als gevorderden, algemeen en specialistisch.
2 De FTP server ftp.ntg.nl waarop vele honderden megabytes aan algemeen

te gebruiken ‘TEX-producten’ staan.
2 De WWW server www.ntg.nl waarop algemene informatie staat over de NTG,

bijeenkomsten, publicaties en links naar andere TEX sites.
2 Korting op (buitenlandse) TEX-conferenties en -cursussen en op het lidmaatschap

van andere TEX-gebruikersgroepen.

Lid worden kan door overmaking van de verschuldigde contributie naar de NTG-giro
(zie links); vermeld IBAN- zowel als SWIFT/BIC-code en selecteer shared cost. Daar-
naast dient via www.ntg.nl een informatieformulier te worden ingevuld. Zonodig
kan ook een papieren formulier bij het secretariaat worden opgevraagd.
De contributie bedraagt ¤ 40; voor studenten geldt een tarief van ¤ 20. Dit geeft
alle lidmaatschapsvoordelen maar geen stemrecht. Een bewijs van inschrijving is ver-
eist. Een gecombineerd NTG/TUG-lidmaatschap levert een korting van 10% op beide
contributies op. De prijs in euro’s wordt bepaald door de dollarkoers aan het begin
van het jaar. De ongekorte TUG-contributie is momenteel $65.

MAPS bijdragen kunt u opsturen naar maps@ntg.nl, bij voorkeur in LaTEX- of
ConTEXt formaat. Bijdragen op alle niveaus van expertise zijn welkom.

Productie. De Maps wordt gezet met behulp van een LaTEX class file en een ConTEXt
module. Het pdf bestand voor de drukker wordt aangemaakt met behulp van pdf-
tex 1.40.9 en luatex 0.40.1 draaiend onder Linux 2.6. De gebruikte fonts zijn Bit-
stream Charter, schreefloze en niet-proportionele fonts uit de Latin Modern collectie,
en de Euler wiskunde fonts, alle vrij beschikbaar.

TEX is een door professor Donald E. Knuth ontwikkelde ‘opmaaktaal’ voor het let-
terzetten van documenten, een documentopmaaksysteem. Met TEX is het mogelijk
om kwalitatief hoogstaand drukwerk te vervaardigen. Het is eveneens zeer geschikt
voor formules in mathematische teksten.
Er is een aantal op TEX gebaseerde producten, waarmee ook de logische struc-
tuur van een document beschreven kan worden, met behoud van de letterzet-
mogelijkheden van TEX. Voorbeelden zijn LaTEX van Leslie Lamport, AMS-TEX van
Michael Spivak, en ConTEXt van Hans Hagen.

Inhoudsopgave

Redactioneel, Taco Hoekwater 1

Announcement: EuroTEX conference 2009, Taco Hoekwater 2

Do we need a ‘Cork’ math font encoding?, Ulrik Vieth 3

OpenType Math Illuminated, Ulrik Vieth 12

Math in LuaTEX 0.40, Taco Hoekwater 22

OpenType Math in ConTEXt, Hans Hagen 32

LuaTEX – Halfway, Hans Hagen, Taco Hoekwater & Hartmut Henkel 47

TEX programming: The past, the present, and the future, Aditya Mahajan 51

TEX beauties and oddities, Paweł Jackowski 57

Doe-het-zelf presentaties, Siep Kroonenberg 63

Taco Hoekwater VOORJAAR 2009 1

Redactioneel

Dit jaar is een EuroTEX jaar voor de NTG, en deze
EuroTEX conferentie is tegelijkertijd ook nog eens de
ConTEXt gebruikers bijeenkomst voor dit jaar. U zult
hopelijk begrijpen dat ondergetekende als één van
de hoofd-organisators van dit evenement het daar
momenteel best druk mee heeft, en daardoor heb ik
wat minder tijd kunnen besteden aan vulling zoeken
voor de Maps.

Het gevolg is een Maps die weliswaar niet de dunste
ooit is, maar toch aardig in de buurt van het record
komt (Maps 35 was maar 54 bladzijden). Daar staat
tegenover dat u in het najaar een 󰀄inke pil tegemoet
kunt zien: Maps 39 zal het proceedings-issue van de
komende conferentie zijn, en het programma van de
conferentie is zelfs nu al best 󰀄ink gevuld. Ik ben dan
ook vol vertrouwen dat een extra dik Maps issue nog
net voor de kerstdagen in eenieders brievenbus zal
vallen.

Goed, wat staat er dan wel in deze Maps? Allereerst
nog een laatste aanmoediging om te registreren voor
de conferentie. De inschrijving sluit de󰀂nitief op 7 Juli,
dusmocht uwillen komen, wacht dan niet te langmeer
met het formulier invullen. En, ten overvloede, zowel
bestuur als organisatiecomité bevelen registreren na-
tuurlijk van harte aan!

Maar genoeg nu over EuroTEX. De eerste vier artikelen
in deze Maps gaan allemaal op de één of andere
manier over de combinatie van OpenType fonts en
wiskundig zetwerk in TEX.

Het eerste van de twee artikelen van Ulrik Vieth stelt
de vraag ‘Do we need a ‘Cork’ math encoding?’ Dit is
een herdruk van het artikel dat ook al verscheen in
de proceedings van de tug bijeenkomst van vorig jaar
in Cork. Het verschijnt hier opnieuw omdat het een
goede inleiding geeft over recente ontwikkelingen op
math font gebied.

Ulrik's tweede artikel ‘OpenType Math Illuminated’
bespreekt in detail wat er allemaal mogelijk is met
nieuwe OpenType Math fonts. De titel van dit artikel

is een verwijzing naar ‘Appendix G illuminated’ van
Bogusław Jackowski dat we afdrukten in Maps 34.

‘Math in LuaTEX 0.40’ van Taco Hoekwater documen-
teert allerhande uitbreidingen in LuaTEX die van doen
hebben met wiskundig zetwerk. Uiteraard gaat het
daarbij vooral over uitbreidigen die van toepassing zijn
op het gebruik van OpenType fonts, maar het artikel
begint met een setje kleine uitbreidingenmet eenmeer
algemene inslag.

Het laatste artikel over wiskunde en OpenType is
van de hand van Hans Hagen. Hans' ‘Unicode Math
in ConTEXt’ vertelt over de inpassing van de LuaTEX
uitbreidingen uit het voorgaande artikel binnen de
nieuwe ConTEXt MkIV.

Meteen hierna volgt nog een artikel over LuaTEX:
‘LuaTEX – Halfway’ geeft de tussenstand van het
LuaTEX project en geeft vast een voorzichtige vooruit-
blik op wat nog komen gaat.

Iets heel anders is ‘TEX Programming: The past, the
present, and the future’ door Aditya Mahajan. Nou ja,
heel anders . . . het gaat nog steeds grotendeels over
LuaTEX, alleen gaat het nu over hoe je het typesetten
van tabellen kunt programmeren in TEX macros of Lua
functies.

In Maps 34 stond een artikel met daarin de re-
sultaten van de ‘Pearls’ sessie van BachoTEX 2006. In
deze Maps vind je de resultaten van de sessie van
2009. Wel onder de wat realistischer titel ‘TEX beauties
and oddities’, maar nog steeds verzameld door Paweł
Jackowski.

En dan zijn we er al weer zo goed als doorheen.
Het laatste artikel is van Siep Kroonenberg en de titel is
‘Doe-het-zelf presentaties’. In dat artikel demonstreert
Siep hoe je met LaTEX ook zonder het ‘beamer’ pakket
presentaties kunt maken.

Zoals gezegd, eenwatmagerMapsje, maar toch veel
leesplezier toegewenst, en hopelijk tot ziens in Den
Haag!

Taco Hoekwater

EuroTEX 2009 3rd ConTEXt Meeting

The Dutch TEX Language User Group and the ConTEXt task force
are pleased to invite you to the combined EuroTEX 2009 confer-
ence and third international ConTEXt meeting.

August 31 – September 4 2009, The Hague

Call for Papers
As usual, proposals for presentations and workshops are wel-
comed on just about any topic of interest to TEX users, but the
conference focus will be on

Educational uses of TEX

such as manuals, courseware and college presentations, so we
especially welcome proposals on subjects in those 󰀂elds.

The language of the conference is English. Please send abstracts
and proposals in plain text or TEX format to the conference com-
mittee at eurotex@ntg.nl.

Registration
The conference is made possible by the Netherlands Defence
Academy (NLDA) that graciously invited us to their facilities, in-
cluding the on-site hotel.

http://www.ntg.nl/EuroTeX2009/

Registration will close on July 7, so don't wait too long!

C O N
T E XT

Ulrik Vieth VOORJAAR 2009 3

Do we need a ‘Cork’ math font encoding?∗

Abstract
The city of Cork has become widely known in the TEX
community, ever since it gave name to an encoding
developed at the European TEX conference of 1990.
The ‘Cork’ encoding, as it became known, was the
first example of an 8-bit text font encoding that
appeared after the release of TEX 3.0, and was later
followed by a number of other encodings based on
similar design principles.

As of today, the ‘Cork’ encoding represents only one
out of several possible choices of 8-bit subsets from a
much larger repertoire of glyphs provided in fonts such
as Latin Modern or TEX Gyre. Moreover, recent
developments of new TEX engines are making it
possible to take advantage of OpenType font
technology directly, largely eliminating the need for
8-bit font encodings altogether.

During the entire time since 1990 math fonts have
always been lagging behind the developments in text
fonts. While the need for new math font encodings
was recognized early on and while several encoding
proposals have been discussed, none of them ever
reached production quality or became widely used.

In this paper, we review the situation of math fonts as
of 2008, especially in view of recent developments of
Unicode and OpenType math fonts such as the STIX
fonts or Cambria Math. In particular, we try to answer
the question whether a ‘Cork’ math font encoding is
still needed or whether Unicode and OpenType might
eliminate the need for TEX-specific math font
encodings.

History and development of text fonts
The ‘Cork’ encoding
When the 5th European TEX conference was held in
Cork in the summer of 1990, the TEX community was
undergoing a major transition phase. TEX 3.0 had just
been released that year, making it possible to switch
from 7-bit to 8-bit font encodings and to support hy-
phenation for multiple languages.

Since the ability to properly typeset and hyphenate
accented languages strongly depended on overcoming
the previous limitations, European TEX users wanted

∗First published in TUGboat 29:3 (2008), pp.426–434. Reprinted
with permission.

to take advantage of the new features and started to
work on new font encodings [1, 2, 3]. As a result, they
came up with an encoding that became widely known
as the ‘Cork’ encoding, named after the site of the con-
ference [4].

The informal encoding name ‘Cork’ stayed in use for
many years, even after LaTEX 2ε and NFSS2 introduced
a system of formal encoding names in 1993–94, assign-
ing OTn for 7-bit old text encodings, Tn for 8-bit stan-
dard text encodings, and Ln for local or non-standard
encodings [5]. The ‘Cork’ encoding was the first exam-
ple of a standard 8-bit text font and thus became the
T1 encoding.

While the ‘Cork’ encoding was certainly an impor-
tant achievement, it also introduced some novel fea-
tures that may have seemed like a good idea at that
time but would be seen as shortcomings or problems
from today’s point of view, after nearly two decades of
experience with font encodings.

In retrospect, the ‘Cork’ encoding represents a typi-
cal example of the TEX-specific way of doing things of
the early 1990s without much regard for standards or
technologies outside the TEX world.

Instead of following established standards, such as
using ISO Latin 1 or 2 or some extended versions for
Western and Eastern European languages, the ‘Cork’
encoding tried to support as many languages as pos-
sible in a single font encoding, filling the 8-bit font
table to the limit with accented characters at the ex-
pense of symbols. Since there was no more room left
in the font table, typesetting symbols at first had to be
taken from the old 7-bit fonts, until a supplementary
text symbol TS1 encoding [6] was introduced in 1995
to fill the gap.

When it came to implementing the T1 and TS1 en-
codings for PostScript fonts, it turned out that the en-
codings were designed without taking into account the
range of glyphs commonly available in standard Post-
Script fonts.

Both font encodings could only be partially imple-
mented with glyphs from the real font, while the re-
maining slots either had to be faked with virtual fonts
or remain unavailable. At the same time, none of the
encodings provided access to the full set of available
glyphs from the real font.

4 MAPS 38 Ulrik Vieth

Alternatives to the ‘Cork’ encoding
As an alternative to using the T1 and TS1 encodings for
PostScript fonts, the TeXnANSI or LY1 encoding was
proposed [7], which was designed to provide access
to the full range of commonly available symbols (sim-
ilar to the TeXBase1 encoding), but also matched the
layout of the OT1 encoding in the lower half, so that
it could be used as drop-in replacement without any
need for virtual fonts.

In addition to that, a number of non-standard en-
codings have come into use as local alternatives to the
’Cork’ encoding, such as the Polish QX, the Czech CS,
and the Lithuanian L7X encoding, each of them try-
ing to provide better solutions for the needs of specific
languages.

In summary, the ‘Cork’ encoding as the first example
of an 8-bit text encoding (T1) was not only followed by
additional encodings based on the same design princi-
ples for other languages (Tn), but also supplemented
by a text symbol encoding (TS1) and complemented
by a variety of local or non-standard encodings (LY1,
QX, CS, etc.).

As became clear over time, the original goal of the
‘Cork’ encoding of providing a single standard encod-
ing for as many languages as possible couldn’t possibly
be achieved within the limits of 8-bit fonts, simply be-
cause there are far too many languages and symbols
to consider, even when limiting the scope to Latin and
possibly Cyrillic or Greek.

Recent developments of text fonts
Unicode support in new TEX fonts
It was only in recent years that the development of the
Latin Modern [8, 9, 10] and TEX Gyre fonts [11, 12]
has provided a consistent implementation for all the
many choices of encodings.

As of today, the ‘Cork’ encoding represents only one
out of several possible 8-bit subsets taken from a much
larger repertoire of glyphs. The full set of glyphs, how-
ever, can be accessed only when moving beyond the
limits of 8-bit fonts towards Unicode and OpenType
font technology.

Unicode support in new TEX engines
As we are approaching the TUG 2008 conference at
Cork, the TEX community is again undergoing a ma-
jor transition phase. While TEX itself remains frozen
and stable, a number of important developments have
been going on in recent years.

Starting with the development of PDFTEX since the
late 1990s the use of PDF output and scalable Post-
Script or TrueType fonts has largely replaced the use
of DVI output and bitmap PK fonts.

Followed by the ongoing development of X ETEX and
LuaTEX in recent years the use of Unicode and Open-
Type font technology is also starting to replace the use
of 8-bit font encodings as well as traditional PostScript
or TrueType font formats.

Putting everything together, the development of
new fonts and new TEX engines in recent years has
enabled the TEX community to catch up with devel-
opments of font technology in the publishing industry
and to prepare for the future.

The only thing still missing (besides finishing the
ongoing development work) is the development of
support for Unicode math in the new TEX engines and
the development of OpenType math fonts for Latin
Modern and TEX Gyre.

History and development of math fonts
When TEX was first developed in 1977–78, the 7-bit
font encodings for text fonts and math fonts were
developed simultaneously, since both of them were
needed for typesetting mathematical textbooks like
The Art of Computer Programming.

When TEX 3.0 made it possible to switch from 7-bit
to 8-bit font encodings, it was the text fonts dri-
ving these new developments while the math fonts re-
mained largely unchanged.

As a result, the development of math fonts has been
lagging behind the corresponding text fonts for nearly
two decades now, ever since the development of the
‘Cork’ encoding started in 1990.

In principle, a general need for new math fonts was
recognized early on: When the first implementations
of ‘Cork’ encoded text fonts became available, it was
soon discovered that the new 8-bit text fonts couldn’t
fully replace the old 7-bit text fonts without resolving
the inter-dependencies between text and math fonts.
In practice, however, nothing much happened since
there was no pressing need.

The ‘Aston’ proposal
The first bit of progress was made in the summer of
1993, when the LaTEX3 Project and some TEX users
group sponsored a research student to work on math
font encodings for a few months.

As a result, a proposal for the general layout of
new 8-bit math font encodings was developed and pre-
sented at TUG 1993 at Aston University [13]. Unlike
the ‘Cork’ encoding, which became widely known, this
‘Aston’ proposal was known only to some insiders and
went largely unnoticed.

After only a few months of activity in 1993 the
project mailing list went silent and nothing further
happened for several years, even after a detailed re-
port was published as a LaTEX3 Project Report [14].

Do we need a ‘Cork’ math font encoding? VOORJAAR 2009 5

The ‘newmath’ prototype
The next bit of progress was made in 1997–98, when
the ideas of the ‘Aston’ proposal were taken up again
and work on an implementation was started.

This time, instead of just discussing ideas or prepar-
ing research documents, the project focussed on devel-
oping a prototype implementation of new math fonts
for several font families using a mixture of MetaFont
and fontinst work [15].

When the results of the project were presented at
the EuroTEX 1998 conference [16], the project was
making good progress, although the results were still
very preliminary and far from ready for production.

Unfortunately, the project then came to a halt soon
after the conference when other activities came to the
forefront and changed the scope and direction of the
project [17, 18].

Before the conference, the goal of the project had
been to develop a set of 8-bit math font encodings for
use with traditional TEX engines (within the constraints
of 16 families of 256 glyphs) and also to provide some
example implementations by means of reencoding and
enhancing existing font sets.

After the conference, that goal was set aside and put
on hold for an indefinite time by the efforts to bring
math into Unicode.

Recent developments of math fonts
Unicode math and the stix fonts
While the efforts to bring math into Unicode were cer-
tainly very important, they also brought along a lot of
baggage in the form of a very large number of addi-
tional symbols, making it much more work to provide
a reasonably complete implementation and nearly im-
possible to encode all those symbols within the con-
straints of traditional TEX engines.

In the end, the Unicode math efforts continued over
several years until the symbols were accepted [19, 20]
and several more years until an implementation of a
Unicode math font was commissioned [21] by a con-
sortium of scientific and technical publishers, known
as the STIX Project.

When the first beta-test release of the so-called STIX
fonts [22] finally became available in late 2007, nearly
a decade had passed without making progress on math
font encodings for TEX.

While the STIX fonts provide all the building blocks
of Unicode math symbols, they are still lacking TEX sup-
port and may yet have to be repackaged in a different
way to turn them into a usable font for use with TEX or
other systems.

Despite the progress on providing the Unicode math
symbols, the question of how to encode all the many

Unicode math symbols in a set of 8-bit font encodings
for use with traditional TEX engines still remains un-
resolved. Most likely, only a subset of the most com-
monly used symbols could be made available in a set of
8-bit fonts, whereas the full range of symbols would be
available only when moving to Unicode and OpenType
font technology.

OpenType math in ms Office 2007
While the TEX community and the consortium of scien-
tific publishers were patiently awaiting the release of
the STIX fonts before reconsidering the topic of math
font encodings, outside developments have continued
to move on. In particular, Microsoft has moved ahead
and has implemented its own support for Unicode
math in Office 2007.

They did so by adding support for math typesetting
in OpenType font technology [23, 24] and by commis-
sioning the design of the Cambria Math font as an im-
plementation of an OpenType math font [25, 26, 27].
In addition, they have also adopted an input language
called ‘linear math’ [28], which is strongly based on
TEX concepts.

While OpenType math is officially still considered
experimental and not yet part of the OpenType speci-
fication [29], it is already a de facto standard, not only
because it has been deployed to millions of installa-
tions of Office 2007, but also because it has already
been adopted by other projects, such as the FontForge
font editor [30] and independent font designs such as
Asana Math [31].

In addition, the next release of the STIX fonts sched-
uled for the summer of 2008 is also expected to include
support for OpenType math.

OpenType math in new TEX engines
At the time of writing, current development versions
of X ETEX have added some (limited) support for Open-
Type math, so it is already possible to use fonts such
as Cambria Math in X ETEX [32], and this OpenType
math support will soon become available to the TEX
community at large with the upcoming release of TEX
Live 2008.

Most likely, LuaTEX will also be adding support for
OpenType math eventually, so OpenType math is likely
to become a de facto standard in the TEX world as well,
much as we have adopted other outside developments
in the past.

OpenType math for new TEX fonts?
Given these developments, the question posed in the
title of this paper about the need for new math font
encodings may soon become a non-issue.

6 MAPS 38 Ulrik Vieth

If we decide to adopt Unicode and OpenType math
font technology in new TEX engines and new fonts, the
real question is no longer how to design the layout of
encoding tables but rather how to deal with the tech-
nology of OpenType math fonts, as we will discuss in
the following sections.

Future developments in math fonts
Some background on OpenType math
The OpenType font format was developed jointly by
Microsoft and Adobe, based on concepts adopted from
the earlier TrueType and PostScript formats. The over-
all structure of OpenType fonts shares the extensible
table structure of TrueType fonts, adding support for
different flavors of glyph descriptions in either Post-
Script CFF or TrueType format. (An extensive doc-
umentation of the OpenType format and its features
as well as many other important font formats can be
found in [33].)

One of the most interesting points about OpenType
is the support for ‘advanced’ typographic features, sup-
porting a considerable amount of intelligence in the
font, enabling complex manipulations of glyph posi-
tioning or glyph substitutions. At the user level, many
of these ‘advanced’ typographic features can be con-
trolled selectively by the activation of so-called Open-
Type feature tags.

Despite its name, the OpenType font format is not
really open and remains a vendor-controlled specifica-
tion, much like the previous TrueType and PostScript
font formats developed by these vendors. The offi-
cial OpenType specification is published on a Microsoft
web site at [29], but that version may not necessarily
reflect the latest developments.

In the case of OpenType math, Microsoft has used
its powers as one of the vendors controlling the spec-
ification to implement an extension of the OpenType
format and declare it as ‘experimental’ until they see fit
to release it. Fortunately, Microsoft was smart enough
to borrow from the best examples of math typesetting
technology when they designed OpenType math, so
they chose TEX as a model for many of the concepts
of OpenType math.

The details of OpenType math
The OpenType MATH table. One of the most distinc-
tive features of an OpenType math font is the presence
of a MATH table. This table contains a number of global
font metric parameters, much like the \fontdimen pa-
rameters of math fonts in TEX described in Appendix G
of The TEXbook.

In a traditional TEX setup these parameters are es-
sential for typesetting math, controlling various as-
pects such as the spacing of elements such as big oper-
ators, fractions, and indices [34, 35].

In an OpenType font the parameters of the MATH
table have a similar role for typesetting math. From
what is known, Microsoft apparently consulted with
Don Knuth about the design of this table, so the result
is not only similar to TEX, but even goes beyond TEX
by adding new parameters for cases where hard-wired
defaults are applied in TEX.

In the X ETEX implementation the parameters of the
OpenType MATH table are mapped internally to TEX’s
\fontdimen parameters. In most cases this mapping
is quite obvious and straight-forward, but unfortu-
nately there are also a few exceptions where some pa-
rameters in TEX do not have a direct correspondence
in OpenType. It is not clear, however, whether these
omissions are just an oversight or a deliberate design
decision in case a parameter was deemed irrelevant or
unnecessary.

Support for OpenType math in X ETEX still remains
somewhat limited for precisely this reason; until the
mapping problems are resolved, X ETEX has to rely on
workarounds to extract the necessary parameters from
the OpenType MATH table.

At the time of writing, the extra parameters intro-
duced by OpenType generalizing the concepts of TEX
have been silently ignored. It is conceivable, however,
that future extensions of new TEX engines might even-
tually start to use these parameters in the math type-
setting algorithms as well.

In the end, whatever technology is used to typeset
OpenType math, it remains the responsibility of the
font designer to set up the values of all the many para-
meters affecting the quality of math typesetting. Un-
fortunately, for a non-technical designer such a task
feels like a burden, which is better left to a technical
person as a font implementor.

For best results, it is essential to develop a good un-
derstanding of the significance of the parameters and
how they affect the quality of math typesetting. In [35]
we have presented a method for setting up the values
of metric parameters of math fonts in TEX. For Open-
Type math fonts, we would obviously have to recon-
sider this procedure.

Font metrics of math fonts. Besides storing the global
font metric parameters, the OpenType MATH table is
also used to store additional glyph-specific information
such as italic corrections or kern pairs, as well as in-
formation related to the placement of math accents,
superscripts and subscripts.

In a traditional TEX setup the font metrics of math
fonts have rather peculiar properties, because much of
the glyph-specific information is encoded or hidden by
overloading existing fields in the TFM metrics in an un-
usual or non-intuitive way [36].

For example, the width in the TFM metrics is not the
real width of the glyph. Instead, it is used to indicate

Do we need a ‘Cork’ math font encoding? VOORJAAR 2009 7

the position where to attach the subscript. Similarly,
the italic correction is used to indicate the offset be-
tween subscript and superscript.

As another example, fake kern pairs involving a
skewchar are used to indicate how much the visual
center of the glyphs is skewed in order to determine
the position where to attach a math accent.

In OpenType math fonts all such peculiarities will
become obsolete, as the MATH table provides data
structures to store all the glyph-specific metric infor-
mation in a much better way. In the case of indices,
OpenType math has extended the concepts of TEX by
defining ‘cut-ins’ at the corners on both sides of a glyph
and not just to the right.

Unfortunately, while the conceptual clarity of Open-
Type math may be very welcome in principle, it may
cause an additional burden on font designers devel-
oping OpenType math fonts based on traditional TEX
fonts (such as the Latin Modern fonts) and trying to
maintain metric compatibility.

In such cases it may be necessary to examine the
metrics of each glyph and to translate the original met-
rics into appropriate OpenType metrics.

Font encoding and organization. The encoding of
OpenType fonts is essentially defined by Unicode code
points. Most likely, a typical OpenType math font will
include only a subset of Unicode limited to the rele-
vant ranges of math symbols and alphabets, while the
corresponding text font may contain a bigger range of
scripts.

In a traditional TEX setup the math setup consists
of a series of 8-bit fonts organized into families. Typ-
ically, each font will contain one set of alphabets in a
particular style and a selection of symbols filling the
remaining slots.

In a Unicode setup the math setup will consist of
only one big OpenType font, containing all the math
symbols and operators in the relevant Unicode slots, as
well as all the many styles of math alphabets assigned
to slots starting at U+1D400.

As a result, there will be several important concep-
tual implications to consider in the design and imple-
mentation of OpenType math fonts, such as how to
handle font switches of math alphabets, how to include
the various sizes of big operators, delimiters, or radi-
cals, or how to include the optical sizes of superscripts
and subscripts.

Handling of math alphabets. In a traditional TEX
setup the letters of the Latin and Greek alphabets are
subject to font switches between the various math fam-
ilies, usually containing a different style in each family
(roman, italic, script, etc.).

In a Unicode setup each style of math alphabets has
a different range of slots assigned to it, since each style
is assumed to convey a different meaning.

When dealing with direct Unicode input, this might
not be a problem, but when dealing with traditional
TEX input, quite a lot of setup may be needed at the
macro level to ensure that input such as \mathrm{a}
or \mathit{a} or \mathbf{a} will be translated to
the appropriate Unicode slots.

An additional complication arises because the Uni-
code code points assigned to the math alphabets are
non-contiguous for historical reasons [37]. While most
of the alphabetic letters are taken from one big block
starting at U+1D400, a few letters which were part of
Unicode already before the introduction of Unicode
math have to be taken from another block starting at
U+2100.

An example implementation of a LaTEX macro pack-
age for X ETEX to support OpenType math is already
available [32], and it shows how much setup is needed
just to handle math alphabets. Fortunately, such a
setup will be needed only once and will be applica-
ble for all Unicode math fonts, quite unlike the case
of traditional TEX fonts where each set of math fonts
requires its own macro package.

Handling of size variants. Ever since the days of DVI
files and PK fonts, TEX users have been accustomed to
thinking of font encodings in terms of numeric slots
in an encoding table, usually assuming a 1:1 mapping
between code points and glyphs.

However, there have always been exceptions to this
rule, most notably in the case of a math extension font,
where special TFM features were used to set up a linked
list from one code point to a series of next-larger glyph
variants representing different sizes of operators, de-
limiters, radicals, or accents, optionally followed by an
extensible version.

In a traditional TEX font each glyph variant has a slot
by itself in the font encoding, even if it was addressed
only indirectly.

In an OpenType font, however, the font encoding is
determined by Unicode code points, so the additional
glyph variants representing different sizes cannot be
addressed directly by Unicode code points and have to
remain unencoded, potentially mapped to the Unicode
private use area, if needed.

While the conceptual ideas of vertical and horizon-
tal variants and constructions in the OpenType MATH
table are very similar to the concepts of charlists and
extensible recipes in TEX font metrics, it is interesting
to note that OpenType has generalized these concepts
a little bit.

While TEX supports extensible recipes only in a ver-
tical context of big delimiters, OpenType also supports

8 MAPS 38 Ulrik Vieth

horizontal extensible constructions, so it would be pos-
sible to define an extensible overbrace or underbrace
in the font, rather than at the macro level using straight
line segments for the extensible parts. In addition, the
same concept could also be applied to arbitrarily long
arrows.

Optical sizes for scripts. In a traditional TEX setup
math fonts are organized into families, each of them
consisting of three fonts loaded at different design
sizes representing text style and first and second level
script style.

If a math font provides optical design sizes, such as
in the case of traditional MetaFont fonts, these fonts
are typically loaded at sizes of 10 pt, 7 pt, 5 pt, each
of them having different proportions adjusted for im-
proved readability at smaller sizes.

If a math font doesn’t provide optical sizes, such as
in the case of typical PostScript fonts, scaled-down ver-
sions of the 10 pt design size will have to make do, but
in such cases it may be necessary to use bigger sizes of
first and second level scripts, such as 10 pt, 7.6 pt, 6 pt,
since the font may otherwise become too unreadable
at such small sizes.

In OpenType math the concept of optical sizes from
TEX and MetaFont has been adopted as well, but it is
implemented in a different way, typical for OpenType
fonts. Instead of loading multiple fonts at different
sizes, OpenType math fonts incorporate the multiple
design variants in the same font and activate them by
a standard OpenType substitution mechanism using a
feature tag ssty=0 and ssty=1, not much different
from the standard substitutions for small caps or old-
style figures in text fonts.

It is important to note that the optical design vari-
ants intended for use in first and second level scripts,
using proportions adjusted for smaller sizes, are nev-
ertheless provided at the basic design size and subse-
quently scaled down using a scaling factor defined in
the OpenType MATH table.

If an OpenType math font lacks optical design vari-
ants for script sizes and does not support the ssty fea-
ture tag, a scaled-down version of the basic design size
will be used automatically. The same will also apply to
non-alphabetic symbols.

Use of OpenType feature tags. Besides using Open-
Type feature tags for specific purposes in math fonts,
most professional OpenType text fonts also use feature
tags for other purposes, such as for selecting small caps
or switching between oldstyle and lining figures. Some
OpenType fonts may provide a rich set of features, such
as a number of stylistic variants, initial and final forms,
or optical sizes.

Ultimately, it remains to be seen how the use of
OpenType feature tags will influence the organization
of OpenType fonts for TEX, such as Latin Modern or
TEX Gyre, not just concerning new math fonts, but also
existing text fonts.

So far, the Latin Modern fonts have very closely fol-
lowed the model of the Computer Modern fonts, pro-
viding separate fonts for each design size and each font
shape or variant.

While it might well be possible to eliminate some
variants by making extensive use of OpenType feature
tags, such as by embedding small caps into the roman
fonts, implementing such a step would imply an impor-
tant conceptual change and might cause unforeseen
problems.

Incorporating multiple design sizes into a single font
might have similar implications, but the effects might
be less critical if they are limited to the well-controlled
environment of math typesetting.

In the TEX Gyre fonts the situation is somewhat sim-
pler, because these fonts are currently limited to the
basic roman and italic fonts and do not have small caps
variants or optical sizes.

Incorporating a potential addition of small caps in
TEX Gyre fonts by means of OpenType feature tags
might well be possible without causing any incompat-
ible changes. Similarly, incorporating some expanded
design variants with adjusted proportions for use in
script sizes would also be conceivable when designing
TEX Gyre math fonts.

The impact of OpenType math
As we have seen in the previous sections, OpenType
math fonts provide a way of embedding all the relevant
font-specific and glyph-specific information needed for
high-quality math typesetting.

In many aspects, the concepts of OpenType math
are very similar to TEX or go beyond TEX. However, the
implementation of these concepts in OpenType fonts
will be different in most cases.

Given the adoption of OpenType math as a de facto
standard and its likelihood of becoming an official
standard eventually, OpenType math seems to be the
best choice for future developments of new math fonts
for use with new TEX engines.

While X ETEX has already started to support Open-
Type math and LuaTEX is very likely to follow, adopting
OpenType for the design of math fonts for Latin Mod-
ern or TEX Gyre will take more time and will require de-
veloping a deeper understanding of the concepts and
data structures.

Most importantly, however, it will also require re-
thinking many traditional assumptions about the way
fonts are organized.

Do we need a ‘Cork’ math font encoding? VOORJAAR 2009 9

Thus, while the topic of font encodings of math fonts
may ultimately become a non-issue, the topic of font
technology will certainly remain important.

The challenges of OpenType math
Developing a math font has never been an easy job, so
attempting to develop a full-featured OpenType math
font for Latin Modern or TEX Gyre certainly presents a
major challenge to font designers or font implementors
for a number reasons.

First, such a math font will be really large, even
in comparison with text fonts, which already cover a
large range of Unicode. (In the example of the Cam-
bria Math font, the math font is reported to have more
than 2900 glyphs compared to nearly 1000 glyphs in
the Cambria text font.) It will have to extend across
multiple 16-bit planes to account for the slots of the
math alphabets starting at U+1D400, and it will also
require a considerable number of unencoded glyphs to
account for the size variants of extensible glyphs and
the optical variants of math alphabets.

Besides the size of the font, such a project will also
present many technical challenges in dealing with the
technology of OpenType math fonts.

While setting up the font-specific parameters of the
OpenType MATH table is comparable to setting up the
\fontdimen parameters of TEX’s math fonts, setting
up the glyph-specific information will require detailed
attention to each glyph as well as extensive testing and
fine-tuning to achieve optimal placement of math ac-
cents and indices.

Finally, there will be the question of assembling the
many diverse elements that have to be integrated in a
comprehensive OpenType math font. So far, the var-
ious styles of math alphabets and the various optical
sizes of these alphabets have been designed as individ-
ual fonts, but in OpenType all of them have to be com-
bined in a single font. Moreover, the optical sizes will
have to be set up as substitutions triggered by Open-
Type feature tags.

Summary and conclusions
In this paper we have reviewed the work on math font
encodings since 1990 and the current situation of math
fonts as of 2008, especially in view of recent develop-
ments in Unicode and OpenType font technology. In
particular, we have looked in detail at the features of
OpenType math in comparison to the well-known fea-
tures of TEX’s math fonts.

While OpenType math font technology looks very
promising and seems to be the best choice for future
developments of math fonts, it also presents many
challenges that will have to be met.

While support for OpenType math in new TEX en-
gines has already started to appear, the development
of math fonts for Latin Modern or TEX Gyre using this
font technology will not be easy and will take consid-
erable time.

In the past, the TEX conference in Cork in 1990 was
the starting point for major developments in text fonts,
which have ultimately led to the adoption of Unicode
and OpenType font technology.

Hopefully, the TEX conference at Cork in 2008 might
become the starting point for major developments of
math fonts in a similar way, except that this time there
will be no more need for a new encoding that could be
named after the site of the conference.

Acknowledgements
The author wishes to acknowledge feedback, sugges-
tions, and corrections from some of the developers of
projects discussed in this review.

A preprint of this paper has been circulated on the
Unicode math mailing list hosted at Google Groups
[38] and future discussions on the topics of this paper
are invited to be directed here.

References
[1] Yannis Haralambous: TEX and Latin alphabet

languages. TUGboat, 10(3):342–345, 1989.
http://www.tug.org/TUGboat/Articles/
tb10-3/tb25hara-latin.pdf

[2] Nelson Beebe: Character set encoding. TUG-
boat, 11(2):171–175, 1990.
http://www.tug.org/TUGboat/Articles/
tb11-2/tb28beebe.pdf

[3] Janusz S. Bień: On standards for CM font
extensions. TUGboat, 11(2):175–183, 1990.
http://www.tug.org/TUGboat/Articles/
tb11-2/tb28bien.pdf

[4] Michael Ferguson: Report on multilingual
activities. TUGboat, 11(4):514–516, 1990.
http://www.tug.org/TUGboat/Articles/
tb11-4/tb30ferguson.pdf

[5] Frank Mittelbach, Robin Fairbairns, Werner
Lemberg: LaTEX font encodings, 2006.
http://www.ctan.org/tex-archive/macros/
latex/doc/encguide.pdf

[6] Jörg Knappen: The release 1.2 of the Cork
encoded DC fonts and text companion fonts.
TUGboat, 16(4):381–387, 1995. Reprint from
the Proceedings of the 9th European TEX Con-
ference 1995, Arnhem, The Netherlands.
http://www.tug.org/TUGboat/Articles/
tb16-4/tb49knap.pdf

10 MAPS 38 Ulrik Vieth

[7] Berthold K. P. Horn: The European Modern
fonts. TUGboat, 19(1):62–63, 1998
http://www.tug.org/TUGboat/Articles/
tb19-1/tb58horn.pdf

[8] Bogusław Jackowski, Janusz M. Nowacki: Latin
Modern: Enhancing Computer Modern with ac-
cents, accents, accents. TUGboat, 24(1):64–74,
2003. Proceedings of the TUG 2003 Confer-
ence, Hawaii, USA.
http://www.tug.org/TUGboat/Articles/
tb24-1/jackowski.pdf

[9] Bogusław Jackowski, Janusz M. Nowacki:
Latin Modern: How less means more. TUG-
boat, 27(0):171–178, 2006 Proceedings of the
15th European TEX Conference 2005, Pont-à-
Mousson, France.
http://www.tug.org/TUGboat/Articles/
tb27-0/jackowski.pdf

[10] Will Robertson: An exploration of the Latin
Modern fonts. TUGboat, 28(2):177-180, 2007.
http://www.tug.org/TUGboat/Articles/
tb28-2/tb89robertson.pdf

[11] Hans Hagen, Jerzy B. Ludwichowski, Volker
RW Schaa: The new font project: TEX Gyre.
TUGboat, 27(2):250–253, 2006. Proceedings
of the TUG 2006 Conference, Marrakesh, Mo-
rocco.
http://www.tug.org/TUGboat/Articles/
tb27-2/tb87hagen-gyre.pdf

[12] Jerzy B. Ludwichowski, Bogusław Jackowski,
Janusz M. Nowacki: Five years after: Report
on international TEX font projects. TUGboat,
29(1):25–26, 2008. Proceedings of the 17th
European TEX Conference 2007, Bachotek,
Poland.
https://www.tug.org/TUGboat/Articles/
tb29-1/tb91ludwichowski-fonts.pdf

[13] Alan Jeffrey: Math font encodings: A work-
shop summary. TUGboat, 14(3):293–295,
1993. Proceedings of the TUG 1993 Confer-
ence, Aston University, Birmingham, UK.
http://www.tug.org/TUGboat/Articles/
tb14-3/tb40mathenc.pdf

[14] Justin Ziegler: Technical report on math font
encodings. LaTEX3 Project Report, 1993.
http://www.ctan.org/tex-archive/info/
ltx3pub/processed/l3d007.pdf

[15] Math Font Group (MFG) web site, archives,
papers, and mailing list.
http://www.tug.org/twg/mfg/
http://www.tug.org/twg/mfg/archive/
http://www.tug.org/twg/mfg/papers/
http://www.tug.org/mailman/listinfo/
math-font-discuss

[16] Matthias Clasen, Ulrik Vieth: Towards a new
Math Font Encoding for AllTEX. Cahiers GUTen-
berg, 28–29:94–121, 1998. Proceedings of the
10th European TEX Conference 1998, St. Malo,
France.
http://www.gutenberg.eu.org/pub/
GUTenberg/publicationsPDF/28-29-clasen.
pdf

[17] Ulrik Vieth et al.: Summary of math font-
related activities at EuroTEX 1998. MAPS,
20:243–246, 1998.
http://www.ntg.nl/maps/20/36.pdf

[18] Ulrik Vieth: What is the status of new math
font encodings? Posting to mailing list, 2007.
http:/www./tug.org/pipermail/
math-font-discuss/2007-May/000068.html

[19] Barbara Beeton, Asmus Freytag, Murray Sar-
gent III: Unicode Support for Mathematics.
Unicode Technical Report UTR#25. 2001.
http://www.unicode.org/reports/tr25/

[20] Barbara Beeton: Unicode and math, a combi-
nation whose time has come–Finally! TUGboat,
21(3):174–185, 2000. Proceedings of the
TUG 2000 Conference, Oxford, UK.
http://www.tug.org/TUGboat/Articles/
tb21-3/tb68beet.pdf

[21] Barbara Beeton: The STIX Project–From Uni-
code to fonts. TUGboat, 28(3):299–304, 2007.
Proceedings of the TUG 2007 Conference, San
Diego, California, USA.
http://www.tug.org/TUGboat/Articles/
tb28-3/tb90beet.pdf

[22] STIX Fonts Project: Web Site and Frequently
Asked Questions.
http://www.stixfonts.org/
http://www.stixfonts.org/STIXfaq.html

[23] Murray Sargent III: Math in Office Blog.
http://blogs.msdn.com/murrays/default.
aspx

[24] Murray Sargent III: High-quality editing and
display of mathematical text in Office 2007.
http://blogs.msdn.com/murrays/archive/
2006/09/13/752206.aspx

[25] Tiro Typeworks: Cambria Math Specimen.
http://www.tiro.nu/Articles/Cambria/
Cambria_Math_Basic_Spec_V1.pdf

[26] John Hudson, Ross Mills: Mathematical Type-
setting: Mathematical and scientific typesetting
solutions from Microsoft. Promotional Booklet,
Microsoft, 2006.
http://www.tiro.com/projects/

[27] Daniel Rhatigan: Three typefaces for math-
ematics. The development of Times 4-line
Mathematics, AMS Euler, and Cambria Math.
Dissertation for the MA in typeface design,

Do we need a ‘Cork’ math font encoding? VOORJAAR 2009 11

University of Reading, 2007.
http://www.typeculture.com/academic_
resource/articles_essays/pdfs/tc_article_
47.pdf

[28] Murray Sargent III: Unicode Nearly Plain Text
Encodings of Mathematics. Unicode Technical
Note UTN#28, 2006.
http://www.unicode.org/notes/tn28/

[29] Microsoft Typography: OpenType specification
version 1.5.
http://www.microsoft.com/typography/
otspec/

[30] George Williams: FontForge. Math typesetting
information.
http://fontforge.sourceforge.net/math.
html

[31] Apostolos Syropoulos: Asana Math.
www.ctan.org/tex-archive/fonts/
Asana-Math/

[32] Will Robertson: Experimental Unicode math
typesetting: The unicode-math package.
http://github.com/wspr/unicode-math/tree/
master

[33] Yannis Haralambous: Fonts and Encodings.
O’Reilly Media, 2007. ISBN 0-596-10242-9
http://oreilly.com/catalog/9780596102425/

[34] Bogusław Jackowski: Appendix G Illuminated.
TUGboat, 27(1):83–90, 2006. Proceedings

of the 16th European TEX Conference 2006,
Debrecen, Hungary.
http://www.tug.org/TUGboat/Articles/
tb27-1/tb86jackowski.pdf

[35] Ulrik Vieth: Understanding the æsthetics of
math typesetting. Biuletyn GUST, 5–12, 2008.
Proceedings of the 16th BachoTEX Conference
2008, Bachotek, Poland.
http://www.gust.org.pl/projects/
e-foundry/math-support/vieth2008.pdf

[36] Ulrik Vieth: Math Typesetting in TEX: The
Good, the Bad, the Ugly. MAPS, 26:207–216,
2001. Proceedings of the 12th European TEX
Conference 2001, Kerkrade, Netherlands.
http://www.ntg.nl/maps/26/27.pdf

[37] Unicode Consortium: Code Charts for Symbols
and Punctuation.
http://www.unicode.org/charts/symbols.
html

[38] Google Groups: Unicode math for TEX.
http://groups.google.com/group/unimath

Ulrik Vieth
Vaihinger Straße 69
70567 Stuttgart
Germany
ulrik dot vieth (at) arcor dot de

12 MAPS 38 Ulrik Vieth

OpenType Math Illuminated

Abstract
In recent years, we have seen the development of new
TEX engines, X ETEX and LuaTEX, adopting OpenType
font technology for providing Unicode typesetting
support. While there are already plenty of OpenType
text fonts available for use, both from the TEX
community and from commercial font suppliers, there
is little support for OpenType math fonts so far.
Ironically, it was left to Microsoft to develop a de facto
standard for OpenType math font information and to
provide the first reference implementation of a
full-featured OpenType math font.

In order to develop the much-needed math support for
Latin Modern and TEX Gyre fonts, it will be crucially
important to develop a good understanding of the
internals of OpenType math tables, much as it is
necessary to develop a good understanding of
Appendix G and TEX’s \fontdimen parameters to
develop math support for traditional TEX fonts. In this
paper, we try to help improve the understanding of
OpenType math internals, summarizing the parameters
of OpenType math fonts as well as illustrating the
similarities and differences between traditional TEX
math fonts and OpenType math fonts.

Background on OpenType math
In recent years, the TEX community has been go-
ing through a phase of very significant developments.
Among the most important achievements, we have
seen the development of new TEX engines, X ETEX and
LuaTEX, providing support for Unicode and OpenType
font technology. At about the same time we have
also seen the development of new font distributions,
Latin Modern and TEX Gyre, provided simultaneously
in Type 1 format as a set of 8-bit font encodings as well
as in OpenType format.

Together these developments have enabled TEX
users to keep up with current trends in the publish-
ing industry, providing users of the new TEX engines
with a comprehensive set of free OpenType fonts and
enabling them to take advantage of the many offerings
by commercial font suppliers.

As far as text typesetting is concerned, support for
OpenType font technology in the new TEX engines is al-
ready very advanced, supporting not only traditional
typographic features of Latin alphabets, but also ad-

dressing the very complex and challenging require-
ments of Arabic typography.

However, when it comes to math typesetting, one
of the traditional strongholds of TEX, support for Uni-
code and OpenType math is only just beginning to take
shape.

Ironically, it was left to Microsoft to develop the first
system to offer support for Unicode math. When Mi-
crosoft introduced support for math typesetting in Of-
fice 2007 [1, 2], they extended the OpenType font for-
mat and commissioned the design of Cambria Math [3]
as a reference implementation of a full-featured Open-
Type math font.

Fortunately for us, Microsoft was smart enough to
borrow from the best examples of math typesetting
technology, thus many concepts of OpenType math are
not only derived from the model of TEX, but also go be-
yond TEX and introduce extensions or generalizations
of familiar concepts.

While OpenType math is officially still considered
experimental, it is quickly becoming a de facto stan-
dard, as it has already been widely deployed to mil-
lions of installations of Microsoft Office 2007 and it is
also being been adopted by other projects such as the
FontForge [4] font editor or independent font designs
such as Asana Math [5].

Most importantly, support for OpenType math has
already been implemented or is currently being imple-
mented in the new TEX engines, thus adopting Open-
Type math for the development of the much-needed
Unicode math support for Latin Modern and TEX Gyre
obviously seems to be most promising choice of tech-
nology.

Design and quality of math fonts
When it comes to developing math fonts, designing
the glyph shapes is only part of the job. Another part,
which is equally important, is to adjust the glyph met-
rics of individual glyphs and to set up the global pa-
rameters affecting various aspects of glyph positioning
in math typesetting.

As we have discussed at previous conferences, the
quality of math typesetting crucially depends on the
fine-tuning of these parameters. Developing a good
understanding of these parameters will therefore be-

OpenType Math Illuminated VOORJAAR 2009 13

come an important prerequisite to support the devel-
opment of new math fonts.

In the case of traditional TEX math fonts, we have
to deal with the many \fontdimen parameters which
have been analyzed in Bogusław Jackowski’s paper
Appendix G Illuminated and a follow-up paper by the
present author [6, 7].

In the case of OpenType math fonts, we need to de-
velop a similar understanding of the various tables and
parameters and how the concepts of OpenType math
relate to the concepts of TEX.

Overview of the OpenType font format
The OpenType font format [8] was developed jointly
by Adobe and Microsoft, based on elements of the ear-
lier PostScript and TrueType font formats by the same
vendors. The overall structure of OpenType fonts con-
sists of a number of tables, some of which are required
while others are optional [9].

In the case of OpenType math, the extension of the
font format essentially consists of adding another op-
tional table, the so-called MATH table, containing all
the information related to math typesetting. Since it
is an optional table, it would be interpreted only by
software which knows about it (such as the new TEX
engines or Microsoft Office 2007), while it would be
ignored by other software.

Unlike a database table, which has a very rigid for-
mat, an OpenType font table can have a fairly com-
plex structure, combining a variety of different kinds
of information in the same table. In the case of the
OpenType MATH table, we have the following kinds of
information:

2 a number of global parameters specific to math
typesetting (similar to TEX’s many \fontdimen
parameters of Appendix G)

2 instructions for vertical and horizontal variants
and/or constructions (similar to TEX’s charlists and
extensible recipes)

2 additional glyph metric information specific to
math mode (such as italic corrections, accent
placement, or kerning)

In the following sections, we will discuss some of
these parameters in more detail, illustrating the simi-
larities and differences between traditional TEX math
fonts and OpenType math fonts.

Parameters of OpenType math fonts
The parameters of the OpenType MATH table play a
similar role as TEX’s \fontdimen parameters, control-
ling various aspects of math typesetting, such as the

placement of limits on big operators, the placement
of numerators and denominators in fractions, or the
placement of superscripts and subscripts.

While a number of parameters are specified in TEX
through the \fontdimen parameters of math fonts,
there are other parameters which are defined by built-
in rules of TEX’s math typesetting engine. In many such
cases, additional parameters have been introduced in
the OpenType MATH table, making it possible to specify
all the relevant parameters in the math font without
relying on built-in rules of any particular typesetting
engine.

In view of the conference motto, it is interesting
to note that the two new TEX engines, X ETEX and
LuaTEX, have taken a very different approach how to
support the additional parameters of OpenType math
fonts: While X ETEX has retained TEX’s original math
typesetting engine and uses an internal mapping to
set up \fontdimen parameters from OpenType para-
meters [10], LuaTEX has introduced an extension of
TEX’s math typesetting engine [11], which will allow
to take full advantage of most of the additional Open-
Type parameters. (More precisely, while X ETEX only
provides access to the OpenType parameters as ad-
ditional \fontdimens, LuaTEX uses an internal data
structure based on the combined set of OpenType and
TEX parameters, making it possible to supply missing
values which are not supported in either OpenType
math fonts or traditional TEX math fonts.)

For font designers developing OpenType math fonts,
it may be best to supply all of the additional OpenType
parameters in order to make their fonts as widely us-
able as possible with any typesetting engine, not nec-
essarily limited to any specific one of the new TEX en-
gines.

In the following sections, we will take a closer look
at the various groups of OpenType parameters, orga-
nized in a similar way as they are presented to font
designers in the FontForge font editor, but not neces-
sarily in the same order.

We will use the figures from [6, 7] as a visual clue
to illustrate how the various parameters are defined
in TEX, while summarizing the similarities and differ-
ences between OpenType parameters and TEX parame-
ters in tabular form.

Limits on big operators
In TEX math fonts, there are five parameters controlling
the placement of limits on big operators (see figure 1),
which are denoted as ξ9 to ξ13 using the notation of
Appendix G.

Two of them control the default position of the limits
(ξ10 and ξ12), two of them control the inside gap (ξ9
and ξ11), while the final one controls the outside gap
above and below the limits (ξ13).

14 MAPS 38 Ulrik Vieth

Q∫
M=1

δ/2

δ/2

ξ13

≥ξ9
ξ11

≥ξ10

ξ12

ξ13

Figure 1. TEX font metric parameters affecting the
placement of limits above or below big operators.

In OpenType math fonts, the MATH table contains
only four parameters controlling the placement of lim-
its on big operators. Those four parameters have a
direct correspondence to TEX’s parameters (as shown
in table 1), while the remaining one has no corre-
spondence and is effectively set to zero. (Consider-
ing the approach taken in other circumstances, it is
very likely that if there were any such correspondence,
there might actually be two parameters in OpenType
instead of only one, such as UpperLimitExtraAscender and
LowerLimitExtraDescender. In LuaTEX’s internal data struc-
tures, there are actually two parameters for this pur-
pose, which are either initialized from TEX’s parameter
ξ13 when using TEX math fonts or set to zero when us-
ing OpenType math fonts.)

OpenType parameter TEX parameter

UpperLimitBaselineRiseMin ξ11

UpperLimitGapMin ξ9

LowerLimitGapMin ξ10

LowerLimitBaselineDropMin ξ12

(no correspondence) ξ13

Table 1. Correspondence of font metric parameters
between OpenType and TEX affecting the placement of
limits above or below big operators.

OpenType parameter TEX parameter

StretchStackTopShiftUp ξ11

StretchStackGapAboveMin ξ9

StretchStackGapBelowMin ξ10

StretchStackBottomShiftDown ξ12

Table 2. Correspondence of font metric parameters
between OpenType and TEX related to stretch stacks.

Stretch Stacks
Stretch stacks are a new feature in OpenType math
fonts, which do not have a direct correspondence in
TEX. They can be understood in terms of material
stacked above or below stretchable elements such as
overbraces, underbraces or long arrows.

In TEX, such elements were typically handled at the
macro level and effectively treated in the same way as
limits on big operators.

In LuaTEX, such elements will be implemented by
new primitives using either the new OpenType para-
meters for stretch stacks (as shown in table 2) or the
parameters for limits on big operators when using tra-
ditional TEX math fonts.

Overbars and Underbars
In TEX math fonts, there are no specific parameters re-
lated to the placement of overlines and underlines. In-
stead, there is only one parameter controlling the de-
fault rule thickness (ξ8), which is used in a number
of different situations where other parameters are ex-
pressed in multiples of the rule thickness.

In OpenType math fonts, a different approach was
taken, introducing extra parameters for each purpose,
even supporting different sets of parameters for over-
lines and underlines. Thus the MATH table contains the
following parameters related to overlines and under-
lines (as shown in table 3), which only have an indirect
correspondence in TEX.

OpenType parameter TEX parameter

OverbarExtraAscender (= ξ8)
OverbarRuleThickness (= ξ8)
OverbarVerticalGap (= 3 ξ8)
UnderbarVerticalGap (= 3 ξ8)
UnderbarRuleThickness (= ξ8)
UnderbarExtraDescender (= ξ8)

Table 3. Correspondence of font metric parameters
between OpenType and TEX affecting the placement of
overlines and underlines.

OpenType Math Illuminated VOORJAAR 2009 15

σ8 styles D,D′

σ9 other styles

σ11 styles D,D′

σ12 other styles

σ8 styles D,D′

σ10 other styles

σ11 styles D,D′

σ12 other styles

Figure 2. TEX font metric parameters affecting the
placement of numerators and denominators in regular and
generalized fractions.

It is interesting to note that the introduction of ad-
ditional parameters in OpenType math fonts provides
for greater flexibility of the font designer to adjust the
values for best results.

While TEX’s built-in rules always use a fixed multi-
plier of the rule thickness regardless of its size, Open-
Type math fonts can compensate for a larger rule thick-
ness by using a smaller multiplier.

An example can be found when inspecting the pa-
rameter values of Cambria Math: In relative terms the
inside gap is only about 2.5 times rather than 3 times
the rule thickness, while the latter (at about 0.65 pt
compared to 0.4 pt) is quite a bit larger than in typical
TEX fonts.

Obviously, making use of the individual OpenType
parameters (as in LuaTEX) instead of relying on TEX’s
built-in rules (as in X ETEX) would more closely reflect
the intention of the font designer.

Fractions and Stacks
In TEX math fonts, there are five parameters controlling
the placement of numerators and denominators (see
figure 2), which are denoted as σ8 to σ12 using the
notation of Appendix G.

Four of them apply to regular fractions, either in dis-
play style (σ8 and σ11) or in text style and below (σ9
and σ12), while the remaining one applies to the spe-
cial case of generalized fractions when the fraction bar
is absent (σ10).

Besides those specific parameters, there are also
a number of parameters which are based on built-in
rules of TEX’s math typesetting engine, expressed in
multiples of the rule thickness (ξ8), such as the thick-
ness of the fraction rule or the inside gap above and
below the fraction rule (see figure 3).

In OpenType math fonts, a different approach was
once again taken, introducing a considerable number
of additional parameters for each purpose. Thus the
MATH table contains 9 parameters related to regular
fractions and 6 more parameters related to generalized
fractions (also known as stacks).

ϕ

ϕ
3ξ8 styles D,D′

ξ8 other styles
ϕ 7ξ8 styles D,D′

3ξ8 other styles

Figure 3. TEX’s boundary conditions affecting the
placement of numerators and denominators in regular and
generalized fractions.

As shown in table 4, there is a correspondence for
all TEX parameters, but this correspondence isn’t neces-
sarily unique when the same TEX parameter is used for
multiple purposes in fractions and stacks. Obviously,
font designers of OpenType math fonts should be care-
ful about choosing the values of OpenType parameters
in a consistent way.

Analyzing the font parameters of Cambria Math
once again shows how the introduction of additional
parameters increases the flexibility of the designer
to adjust the parameters for best results: In relative
terms, FractionDisplayStyleGapMin is only about 2 times
rather than 3 times the rule thickness. Similarly,
StackDisplayStyleGapMin is only about 4.5 times rather than
7 times the rule thickness. In absolute terms, however,
both parameters are about the same order of magni-
tude as in typical TEX fonts.

OpenType parameter TEX parameter

FractionNumeratorDisplayStyleShiftUp σ8

FractionNumeratorShiftUp σ9

FractionNumeratorDisplayStyleGapMin (= 3 ξ8)
FractionNumeratorGapMin (= ξ8)
FractionRuleThickness (= ξ8)
FractionDenominatorDisplayStyleGapMin (= 3 ξ8)
FractionDenominatorGapMin (= ξ8)
FractionDenominatorDisplayStyleShiftDown σ11

FractionDenominatorShiftDown σ12

StackTopDisplayStyleShiftUp σ8

StackTopShiftUp σ10

StackDisplayStyleGapMin (= 7 ξ8)
StackGapMin (= 3 ξ8)
StackBottomDisplayStyleShiftDown σ11

StackBottomShiftDown σ12

Table 4. Correspondence of font metric parameters
between OpenType and TEX affecting the placement of
numerators and denominators.

16 MAPS 38 Ulrik Vieth

σ13
σ14
σ15

σ16
σ17

σ↑18

σ↓19

Figure 4. TEX font metric parameters affecting the
placement of superscripts and subscripts on a simple
character or a boxed subformula.

Superscripts and Subscripts
In TEX math fonts, there are seven parameters control-
ling the placement of superscripts and subscripts (see
figure 4), which are denoted as σ13 to σ19 using the
notation of Appendix G.

Three of them apply to superscripts, either in dis-
play style (σ13), in text style and below (σ14), or in
cramped style (σ15), while the other two apply to the
placement of subscripts, either with or without a su-
perscript (σ16 and σ17).

Finally, there are two more parameters which apply
to superscripts and subscripts on a boxed subformula
(σ18 and σ19), which also apply to limits attached to
big operators with \nolimits.

Besides those specific parameters, there are also a
number of parameters which are based on TEX’s built-
in rules, expressed in multiples of the x-height (σ5) or
the rule thickness (ξ8), most of them related to resolv-
ing collisions between superscripts and subscripts or
adjusting the position when a superscript or subscript
becomes too big (see figure 5).

In OpenType math fonts, we once again find a num-
ber of additional parameters for each specific purpose,
as shown in table 5.

It is interesting to note that some of the usual dis-
tinctions made in TEX were apparently omitted in the
OpenType MATH table, as there is no specific value for
the superscript position in display style, nor are there
any differences in subscript position in the presence or
absence of superscripts.

While it is not clear why there is no correspondence
for these parameters, it is quite possible that there was
a conscious design decision to omit them, perhaps to
avoid inconsistencies in alignment.

1
4σ5

4
5σ5

4ξ8 4ξ84
5σ5

Figure 5. TEX font metric parameters affecting the
placement of superscripts and subscripts in cases of
resolving collisions.

OpenType parameter TEX parameter

SuperscriptShiftUp σ13, σ14

SuperscriptShiftUpCramped σ15

SubscriptShiftDown σ16, σ17

SuperscriptBaselineDropMax σ18

SubscriptBaselineDropMin σ19

SuperscriptBottomMin (= 1
4σ5)

SubscriptTopMax (= 4
5σ5)

SubSuperscriptGapMin (= 4 ξ8)
SuperscriptBottomMaxWithSubscript (= 4

5σ5)
SpaceAfterScript \scriptspace

Table 5. Correspondence of font metric parameters
between OpenType and TEX affecting the placement of
superscripts and subscripts.

Radicals
In TEX math fonts, there are no specific parameters
related to typesetting radicals. Instead, the relevant
parameters are based on built-in rules of TEX’s math
typesetting engine, expressed in multiples of the rule
thickness (ξ8) or the x-height (σ5).

To be precise, there are even more complications in-
volved [6], as the height of the fraction rule is actually
taken from the height of the fraction glyph rather than
the default rule thickness to account for effects of pixel
rounding in bitmap fonts.

OpenType Math Illuminated VOORJAAR 2009 17

OpenType parameter TEX parameter

RadicalExtraAscender (= ξ8)
RadicalRuleThickness (= ξ8)
RadicalDisplayStyleVerticalGap (= ξ8 +

1
4σ5)

RadicalVerticalGap (= ξ8 +
1
4ξ8)

RadicalKernBeforeDegree e. g. 5
18 em

RadicalKernAfterDegree e. g. 10
18 em

RadicalDegreeBottomRaisePercent e. g. 60 %

Table 6. Correspondence of font metric parameters
between OpenType and TEX affecting the placement of
radicals.

In OpenType math fonts, we once again find a
number of additional parameters for each purpose, as
shown in table 6.

While there is a correspondence for all of the pa-
rameters built into TEX’s typesetting algorithms, it is
interesting to note that OpenType math has also intro-
duced some additional parameters related to the place-
ment of the degree of an n th root (n

√
x), which is

usually handled at the macro level in TEX’s format files
plain.tex or latex.ltx:

\newbox\rootbox
\def\root#1\of{%

\setbox\rootbox
\hbox{$\m@th\scriptscriptstyle{#1}$}%
\mathpalette\r@@t}

\def\r@@t#1#2{%
\setbox\z@\hbox{$\m@th#1\sqrtsign{#2}$}%
\dimen@=\ht\z@ \advance\dimen@-\dp\z@
\mkern5mu\raise.6\dimen@\copy\rootbox
\mkern-10mu\box\z@}

As shown in the listing, the definition of the \root
macro contains a number of hard-coded parameters,
such as a positive kern before the box containing the
degree and negative kern thereafter, expressed in mul-
tiples of the font-specific math unit. In addition, there
is also a raise factor expressed relative to the size of
the box containing the radical sign.

Obviously, the extra OpenType parameters related
to the degree of radicals correspond directly to the pa-
rameters used internally in the \root macro, making it
possible to supply a set of font-specific values instead
of using hard-coded values expressed in multiples of
font-specific units.

In LuaTEX, this approach has been taken one step
further, introducing a new \Uroot primitive as an ex-
tension of the \Uradical primitive, making it possible
to replace the processing at the macro level by process-
ing at the algorithmic level in LuaTEX’s extended math
typesetting engine [11].

OpenType parameter TEX parameter

ScriptPercentScaleDown e. g. 70–80 %
ScriptScriptPercentScaleDown e. g. 50–60 %

DisplayOperatorMinHeight ?? (e. g. 12–15 pt)
(no correspondence) σ20 (e. g. 20–24 pt)
DelimitedSubFormulaMinHeight σ21 (e. g. 10–12 pt)

AxisHeight σ22 (axis height)
AccentBaseHeight σ5 (x-height)
FlattenedAccentBaseHeight ?? (capital height)

Table 7. Correspondence of font metric parameters
between OpenType and TEX affecting some general
aspects of math typesetting.

General parameters
The final group of OpenType parameters combines a
mixed bag of parameters for various purposes. Some
of them have a straight-forward correspondence in TEX
(such as the math axis position), while others do not
have any correspondence at all. As shown in table 7,
there are some very noteworthy parameters in this
group, which deserve some further explanations in the
following paragraphs.

(Script)ScriptPercentScaleDown.
These OpenType parameters represent the font sizes
of the first and second level script fonts relative to the
base font. In TEX math fonts, these parameters do not
have a correspondence in the font metrics. Instead
they are usually specified at the macro level when a
family of math fonts is loaded.

If a font family provides multiple design sizes (as in
Computer Modern), font loading of math fonts in TEX
might look like the following, using different design
sizes, each at their natural size:

\newfam\symbols
\textfont\symbols=cmsy10
\scriptfont\symbols=cmsy7
\scriptscriptfont\symbols=cmsy5

If a font family does not provide multiple design
sizes (as in MathTime), font loading of math fonts will
use scaled-down versions of the base font:

\newfam\symbols
\textfont\symbols=mtsy10 at 10pt
\scriptfont\symbols=mtsy10 at 7.6pt
\scriptscriptfont\symbols=mtsy10 at 6pt

The appropriate scaling factors depend on the font
design, but are usually defined in macro packages
or in format files using higher-level macros such as
\DeclareMathSizes in LaTEX.

18 MAPS 38 Ulrik Vieth

In OpenType math fonts, it will be possible to pack-
age optical design variants for script sizes into a single
font by using OpenType feature selectors to address the
design variants and using scaling factors as specified in
the MATH table. (As discussed in [12], there are many
issues to consider regarding the development of Open-
Type math fonts besides setting up the font parameters.
One such issue is the question of font organization re-
garding the inclusion of optical design variants into the
base font.)

The corresponding code for font loading of full-
featured OpenType math fonts in new TEX engines
might look like the following:

\newfam\symbols
\textfont\symbols="CambriaMath"
\scriptfont\symbols="CambriaMath:+ssty0"

scaled <ScriptPercentScaleDown>
\scriptscriptfont\symbols="CambriaMath:+ssty1"

scaled <ScriptScriptPercentScaleDown>

If the font provides optical design variants for some
letters and symbols, they will be substituted using the
+ssty0 or +ssty1 feature selectors, but the scaling
factor of (Script)ScriptPercentScaleDown will be applied in
any case regardless of substitutions.

DisplayOperatorMinHeight.
This OpenType parameter represents the minimum
size of big operators in display style. While TEX only
supports two sizes of operators, which are used in text
style and display style, OpenType can support multiple
sizes of big operators and it needs an additional para-
meter to determine the smallest size to use in display
style.

For font designers, it should be easy to set this pa-
rameter based on the design size of big operators, e. g.
using 14 pt for display style operators combined with
10 pt for text style operators.

DelimitedSubFormulaMinHeight.
This OpenType parameter represents the minimum
size of delimited subformulas and it might also be ap-
plied to the special case of delimited fractions.

To illustrate the significance, some explanations
may be necessary to point out the difference between
the usual case of fractions with delimiters and the spe-
cial case of delimited fractions.

If a generalized fraction with delimiters is coded like
the following

$ \left({n \atop k} \right) $

the contents will be treated as a standard case of a
generalized fraction, and the size of delimiters will
be determined by taking into account the effects of
\delimiterfactor and \delimitershortfall as

set up in the format file.
As a result, we will typically get 10 pt or 12 pt de-

limiters in text style and 18 pt or 24 pt delimiters in
display style. For typical settings, the delimiters only
have to cover 90 % of the required size and they may
fall short by at most 5 pt.

If a generalized fraction with delimiters is coded like
the following

$ {n \atopwithdelims() k} $

the contents will be treated as a delimited fraction, and
in this case the size of delimiters will depend on the
\fontdimen parameters σ20 and σ21 applicable in ei-
ther display style or text style.

As a result, regardless of the contents, we will al-
ways get 10 pt delimiters in text style and 24 pt delim-
iters in display style, even if 18 pt delimiters would be
big enough in the standard case.

While DelimitedSubFormulaMinHeight may be the best
choice of OpenType parameters to supply a value
for TEX’s \fontdimen parameters related to delimited
fractions, it will be insufficient by itself to represent a
distinction between display style and text style values
needed in TEX. (Unless we simply assume a factor, such
as σ20 = 2σ21.)

In the absence of a better solution, it may be best to
simply avoid using \atopwithdelims with OpenType
math fonts in the new TEX engines and to redefine user-
level macros (such as \choose) in terms of \left and
\right delimiters.

(Flattened)AccentBaseHeight.
These OpenType parameters affect the placement of
math accents and are closely related to design para-
meters of the font design.

While TEX assumes that accents are designed to fit
on top of base glyphs which do not exceed the x-height
(σ5) and adjusts the vertical position of accents accord-
ingly, OpenType provides a separate parameter for this
purpose, which doesn’t have to match the x-height of
the font, but plays a similar role with respect to accent
placement.

In addition to that, OpenType has introduced an-
other mechanism to replace accents by flattened ac-
cents if the size of the base glyph exceeds a certain
size, which is most likely related to the height of cap-
ital letters. At the time of writing, support for flat-
tened accents has not yet been implemented in the new
TEX engines, but it is being considered for LuaTEX ver-
sion 0.40 [11].

In view of these developments, font designers are
well advised to supply a complete set of values for all
the OpenType math parameters since new TEX engines
working on implementing full support for OpenType
math may start using them sooner rather than later.

OpenType Math Illuminated VOORJAAR 2009 19

So far, we have discussed only one aspect of the in-
formation contained in the OpenType MATH table, fo-
cusing on the global parameters which correspond to
TEX’s \fontdimen parameters or to built-in rules of
TEX’s math typesetting algorithms.

Besides those global parameters, there are other
data structures in the OpenType MATH table, which are
also important to consider, as we will discuss in the fol-
lowing sections.

Instructions for vertical and horizontal
variants and constructions
The concepts of vertical and horizontal variants and
constructions in OpenType math are obviously very
similar to TEX’s concepts of charlists and extensible
recipes. However, there are some subtle differences
regarding when and how these concepts are applied
in the math typesetting algorithms.

In TEX, charlists and extensible recipes are only used
in certain situations when typesetting elements such
as big operators, big delimiters, big radicals or wide
accents. In OpenType math fonts, these concepts have
been extended and generalized, allowing them to be
used also for other stretchable elements such as long
arrows or over- and underbraces.

Vertical variants and constructions
Big delimiters. When typesetting big delimiters or
radicals TEX uses charlists to switch to the next-larger
vertical variants, optionally followed by extensible
recipes for vertical constructions. In OpenType math,
these concepts apply in the same way.

It is customary to provide at least four fixed-size
variants, using a progression of sizes such as 12 pt,
18 pt, 24 pt, 30 pt, before switching to an extensible
version, but there is no requirement for that other than
compatibility and user expectations. (At the macro
level these sizes can be accessed by using \big (12 pt),
\Big (18 pt), \bigg (24 pt), \Bigg (30 pt).)

Font designers are free to provide any number of ad-
ditional or intermediate sizes, but in TEX they used to
be limited by constraints such as 256 glyphs per 8-bit
font table and no more than 16 different heights and
depths in TFM files. In OpenType math fonts, they are
no longer subject to such restrictions, and in the ex-
ample of Cambria Math big delimiters are indeed pro-
vided in seven sizes.

Big operators. When typesetting big operators TEX
uses the charlist mechanism to switch from text style
to display style operators, but only once. There is no
support for multiple sizes of display operators, nor are
there extensible versions.

In OpenType math, these concepts have been ex-
tended, so it would be possible to have multiple sizes
of display style operators as well as extensible versions
of operators, if desired.

While LuaTEX has already implemented most of the
new features of OpenType math, it has not yet ad-
dressed additional sizes of big operators, and it is not
clear how that would be done.

Most likely, this would require some changes to the
semantics of math markup at the user level, so that op-
erators would be defined to apply to a scope of a sub-
formula, which could then be measured to determine
the required size of operators.

In addition, such a change might also require
adding new parameters to decide when an opera-
tor is big enough, similar to the role of the parame-
ters \delimiterfactor and \delimitershortfall
in the case of big delimiters.

Horizontal variants and constructions
Wide accents. When typesetting wide math accents
TEX uses charlists to switch to the next-larger horizon-
tal variants, but it doesn’t support extensible recipes
for horizontal constructions.

As a result, math accents in traditional TEX fonts
cannot grow beyond a certain maximum size, and
stretchable horizontal elements of arbitrary size have
to be implemented using other mechanisms, such as
alignments at the macro level.

In OpenType math, these concepts have been ex-
tended, making it possible to introduce extensible ver-
sions of wide math accents (or similar elements), if
desired. In addition, new mechanisms for bottom ac-
cents have also been added, complementing the exist-
ing mechanisms for top accents.

Over- and underbraces. When typesetting some
stretchable elements such as over- and underbraces,
TEX uses an alignment construction at the macro level
to get an extensible brace of the required size, which
is then typeset as a math operator with upper or lower
limits attached.

While it would be possible to define extensible over-
and underbraces in OpenType math fonts as extensible
versions of math accents, the semantics of math ac-
cents aren’t well suited to handle upper or lower limits
attached to those elements.

In LuaTEX, new primitives \Uoverdelimiter and
\Uunderdelimiter have been added as a new con-
cept to represent stretchable horizontal elements
which may have upper or lower limits attached. The
placement of these limits is handled similar to limits
on big operators in terms of so-called ‘stretch stacks’
as discussed earlier in section .

20 MAPS 38 Ulrik Vieth

Long arrows. In TEX math fonts, long horizontal ar-
rows are constructed at the macro level by overlapping
the glyphs of short arrows and suitable extension mod-
ules (such as − or =). Similarly, arrows with hooks or
tails are constructed by overlapping the glyphs of reg-
ular arrows and suitable glyphs for the hooks or tails.

In OpenType math fonts, all such constructions can
be defined at the font level in terms of horizontal con-
structions rather than relying on the macro level. How-
ever, in most cases such constructions will also contain
an extensible part, making the resulting long arrows
strechable as well.

In LuaTEX, stretchable long arrows can also be de-
fined using the new primitives \Uoverdelimiter as
discussed in the case of over- and underbraces. The
placement of limits on such elements more or less cor-
responds to using macros such as \stackrel to stack
text on top of a relation symbol.

Encoding of variants and constructions
In traditional TEX math fonts, glyphs are addressed by
a slot number in a font-specific output encoding. Each
variant glyph in a charlist and each building block in
an extensible recipe needs to have a slot of its own in
the font table. However, only the entry points to the
charlists need to be encoded at the macro level and
these entry points in a font-specific input encoding do
not even have to coincide with the slot numbers in the
output encoding.

In OpenType math fonts, the situation is somewhat
different. The underlying input encoding is assumed to
consist of Unicode characters. However these Unicode
codes are internally mapped to font programs using
glyph names, which can be either symbolic (such as
summation or integral) or purely technical (such as
uni2345 or glyph3456).

With few exceptions, most of the variant glyphs and
building blocks cannot be allocated in standard Uni-
code slots, so these glyphs have to be mapped to the
private use area with font-specific glyph names. In
Cambria Math, variant glyphs use suffix names (such
as glyph.vsize<n> or glyph.hsize<n>), while other
fonts such as Asana Math use different names (such
as glyphbig<n> or glyphwide<n>).

For font designers developing OpenType math fonts,
setting up vertical or horizontal variants is pretty
straight-forward, such as
summation: summation.vsize1 summation.vsize2 ...
integral : integral.vsize1 integral.vsize2 ...

or
tildecomb: tildecomb.hsize1 tildecomb.hsize2

provided that the variant glyphs use suffix names.
Setting up vertical or horizontal constructions is

slightly more complicated, as it also requires some ad-
ditional information which pieces are of fixed size and
which are extensible, such as
integral : integralbt:0 uni23AE:1 integraltp:0

or
arrowboth :

arrowleft.left:0 uni23AF:1 arrowright.right:0

It is interesting to note that some of the building
blocks (such as uni23AE or uni23AF) have Unicode
slots by themselves, while others have to placed in the
private use area, using private glyph names such as
glyph.left, glyph.mid, or glyph.right.

Moreover, vertical or horizontal constructions may
also contain multiple extensible parts, such as in the
example of over- and underbraces, where the left, mid-
dle, and right parts are of fixed size while the extensi-
ble part appears twice on either side.

Additional glyph metric information
Besides the global parameters and the instructions
for vertical and horizontal variants and constructions,
there is yet another kind of information stored in the
OpenType MATH table, containing additions to the font
metrics of individual glyphs.

In traditional TEX math fonts, the file format of TFM
fonts only provides a limited number of fields to store
font metric information. As a workaround, certain
fields which are needed in math mode only are stored
in rather non-intuitive way by overloading fields for
other purposes [13].

For example, the nominal width of a glyph is used to
store the subscript position, while the italic correction
is used to indicate the horizontal offset between the
subscript and superscript position.

As a result, the nominal width doesn’t represent the
actual width of the glyph and the accent position may
turn out incorrect. As a secondary correction, fake
kern pairs with a so-called skewchar are used to store
an offset to the accent position.

In OpenType math fonts, all such non-intuitive ways
of storing information can be avoided by using addi-
tional data fields for glyph-specific font metric infor-
mation in the MATH table.

For example, the horizontal offset of the optical cen-
ter of a glyph is stored in a top_accent table, so any
adjustments to the placement of math accents can be
expressed in a straight-forward way instead of relying
on kern pairs with a skewchar.

Similarly, the italic correction is no longer used for
the offset between superscripts and subscripts. In-
stead, the position of indices can be expressed more
specifically in a math_kern array, representing cut-ins
at each corner of the glyphs.

OpenType Math Illuminated VOORJAAR 2009 21

Summary and conclusions
In this paper, we have tried to help improve the un-
derstanding of the internals of OpenType math fonts.
We have done this in order to contribute to the much-
needed development of math support for Latin Modern
and TEX Gyre fonts.

In the previous sections, we have discussed the pa-
rameters of the OpenType MATH table in great detail,
illustrating the similarities and differences between
traditional TEX math fonts and OpenType math fonts.
However, we have covered other aspects of OpenType
math fonts only superficially, as it is impossible to cover
everything in one paper.

For a more extensive overview of the features and
functionality of OpenType math fonts as well as a dis-
cussion of the resulting challenges to font developers,
readers are also referred to [12].

In view of the conference motto, it is interesting
to note that recent versions of LuaTEX have started to
provide a full-featured implementation of OpenType
math support in LuaTEX and Context [14, 15], which
differs significantly from the implementation of Open-
Type math support in X ETEX [10]. In this paper, we
have pointed out some of these differences, but fur-
ther discussions of this topic are beyond of the scope
of this paper.

Acknowledgments
The author once again wishes to thank Bogusław Jack-
owski for permission to reproduce and adapt the fig-
ures from his paper Appendix G Illuminated [6]. In
addition, the author also wishes to acknowledge feed-
back and suggestions from Taco Hoekwater and Hans
Hagen regarding the state of OpenType math support
in LuaTEX.

References
[1] Murray Sargent III: Math in Office Blog.

http://blogs.msdn.com/murrays/default.
aspx

[2] Murray Sargent III: High-quality editing and
display of mathematical text in Office 2007.
http://blogs.msdn.com/murrays/archive/
2006/09/13/752206.aspx

[3] John Hudson, Ross Mills: Mathematical Type-
setting: Mathematical and scientific typesetting
solutions from Microsoft. Promotional Booklet,
Microsoft, 2006.
http://www.tiro.com/projects/

[4] George Williams: FontForge. Math typesetting
information.

http://fontforge.sourceforge.net/math.
html

[5] Apostolos Syropoulos: Asana Math.
www.ctan.org/tex-archive/fonts/
Asana-Math/

[6] Bogusław Jackowski: Appendix G Illuminated.
Proceedings of the 16th EuroTEX Conference
2006, Debrecen, Hungary.
http://www.gust.org.pl/projects/
e-foundry/math-support/tb87jackowski.pdf

[7] Ulrik Vieth: Understanding the æsthetics of
math typesetting. Biuletyn GUST, 5–12, 2008.
Proceedings of the 16th BachoTEX Conference
2008, Bachotek, Poland.
http://www.gust.org.pl/projects/
e-foundry/math-support/vieth2008.pdf

[8] Microsoft Typography: OpenType specification.
Version 1.5, May 2008.
http://www.microsoft.com/typography/
otspec/

[9] Yannis Haralambous: Fonts and Encodings.
O’Reilly Media, 2007. ISBN 0-596-10242-9
http://oreilly.com/catalog/9780596102425/

[10] Will Robertson: The unicode-math package.
Version 0.3b, August 2008.
http://github.com/wspr/unicode-math/tree/
master

[11] Taco Hoekwater: LuaTEX Reference Manual.
Version 0.37, 31 March 2009.
http://www.luatex.org/svn/trunk/manual/
luatexref-t.pdf

[12] Ulrik Vieth: Do we need a ‘Cork’ math font
encoding? TUGboat, 29(3), 426–434, 2008.
Proceedings of the TUG 2008 Annual Meeting,
Cork, Ireland. Reprinted in this MAPS,
3–11.
https://www.tug.org/members/TUGboat/
tb29-3/tb93vieth.pdf

[13] Ulrik Vieth: Math Typesetting: The Good, The
Bad, The Ugly. MAPS, 26, 207–216, 2001.
Proceedings of the 12th EuroTEX Conference
2001, Kerkrade, Netherlands.
http://www.ntg.nl/maps/26/27.pdf

[14] Taco Hoekwater: Math extensions in LuaTEX.
Published elsewhere in this MAPS issue.

[15] Hans Hagen: Unicode math in Context Mk IV.
Published elsewhere in this MAPS issue.

Ulrik Vieth
Vaihinger Straße 69
70567 Stuttgart
Germany
ulrik dot vieth (at) arcor dot de

22 MAPS 38 Taco Hoekwater

Math in LuaTEX 0.40

Abstract
The math machinery in luaTEX has been completely
overhauled in version 0.40. The handling of mathematics
in luaTEX has been extended quite a bit compared to
how TEX82 (and therefore pdfTEX) handles math. First,
luaTEX adds primitives and extends some others so that
Unicode input can be used easily. Second, all of TEX82's
internal special values (for example for operator spacing)
have been made accessible and changeable via control
sequences. Third, there are extensions that make it
easier to use OpenType math fonts. And finally, there
are some extensions that have been proposed in the past
that are now added to the engine.

Introduction
We (the luaTEX team) started thinking about OpenType
Math support almost immediately after Cambria Math
was released, but it took us more than a year to get
around to actually writing the implementation. The
extensions to the math engine are not complete yet,
but there is now enough stuff worthy of publication.
This article tries to give a complete overview of all
work done so far, but that also means that it is sketchy
on details in some places. For the de󰀂nitive reference,
you should read the Math chapter in the luaTEX refer-
ence manual.

Pre-existing math primitives
TEX82
Besides the math primitives found in TEX82, luaTEX
has support for the extended math primitives that were
added by Aleph and X ETEX.

The TEX82 primitives have been left untouched,
except for the fact that when there is a character num-
ber needed on the left side of the equation sign (for
\mathcode and \delcode), this number can make use
of the full Unicode range.

Typical example code of TEX82 primitives:

\mathcode`\+="202B
\delcode`\(="028300
\mathchardef\alpha="010B
\mathchar"1270
\mathaccent"017E

\delimiter"3222378
\radical"270370

Aleph
The Aleph math primitives use a syntax that is a fairly
straightforward extension of the TEX82 primitives. The
difference is that everything has been extended to
allow for 16-bit character codes and 256 families.
For \odelcode, \odelimiter, and \oradical, this
forced the syntax into using two integers for the value
to be assigned (because more than 31 bits are needed)
but other than that every extension is quite straight-
forward.

Once again, luaTEX extends the character code on
the left side of the equals sign for \omathcode and
\odelcode to the full Unicode range.

Typical example code of Aleph primitives:

\omathcode`\+="200002B
\odelcode`\(="000028 "030000
\omathchardef\alpha="001000B
\omathchar"1020070
\omathaccent"001007E
\odelimiter"3020022 "030078
\oradical"020070 "030070

XƎTEX
The X ETEX primitives need to pack even more infor-
mation: like Aleph, X ETEX has 256 math families, but
each of those is encoded using the full Unicode range.
This makes it hard to come up with a nice hexadecimal
notation, so instead the values are split up into their
class, family, slot segments, for example:

\def\overbrace {\Umathaccent 0 1 "23DE }

When a math class is required, this is given by the 󰀂rst
integer, which ranges from 0 to 7. The next integer is
the family number and ranges from 0 to 255. The last
integer is the Unicode code point, which ranges from
0 to hexadecimal 0x10FFFF (1,114,111 in decimal).

There are always just two or three integers needed,
because X ETEX never bothers to list ‘small’ and ‘large’
versions of delimiters. The use of large vs. small items
is controlled via OpenType font parameters.

LuaTEX includes primitives that are fully compatible

Math in LuaTEX 0.40 VOORJAAR 2009 23

with their X ETEX counterparts except for their names.
Where X ETEX uses the \XeTeX pre󰀂x, luaTEX uses \U.

Typical example code of X ETEX-compatible primitives:

\Umathcode`\+="2 "0 "2B
\Udelcode`\(= "0 "28
\Umathchardef\alpha="0 "1 "B
\Umathchar "1 "2 "70
\Umathaccent "0 "1 "7E
\Udelimiter "3 "2 "22
\Uradical "2 "70

For the sake of completeness, the ‘packed’ X ETEX primi-
tives \Umathcharnum, \Umathcodenum and \Udelco-
denum are also provided, but their use is discouraged.

General new math extensions
Cramped math styles
TEX's math engine has four main math styles: display
style, text style, script style, and scriptscript style. Each
of those four main styles can also appear in a ‘cramped’
form that is suitable for use in situations where some-
thing lives on top of the current sub-formula (like in
the denominator part of a fraction). This makes for a
total of eight styles. In TEX82, it is possible to force
a particular main math style by using one of these
primitives:

\displaystyle
\textstyle
\scriptstyle
\scriptscriptstyle

However, until now it was not possible to explicitly
switch to one of the cramped modes. For this, luaTEX
adds the following four new primitives:

\crampeddisplaystyle
\crampedtextstyle
\crampedscriptstyle
\crampedscriptscriptstyle

Math characters in text mode
LuaTEX allows \mathchar, \omathchar, and \Umath-
char and control sequences that are the result of
\mathchardef, \omathchardef, or \Umathchardef
outside math mode.

When luaTEX sees an object like this, it uses the
\textfont from the requested math family to produce
a normal glyph node.

For example, assume that \alpha is de󰀂ned as
before and that \omega is de󰀂ned as a \mathchardef
with value "121. Further assume that \textfont1

is \teni (as it is in the plain macros). Under these
conditions,

From \alpha\ to \omega.

and

From {\teni\char"B} to {\teni \char"21}.

are equivalent. Both will produce:

From 𝛼 to 𝜔.

Querying the math style
The new expandable primitive \mathstyle returns a
value between 0 and 7 (in math mode), or −1 (all
other modes). The returned number represents the
current math style value.

Higher numbers represent smaller styles: 0 stands
for \displaystyle, 1 for \crampeddisplaystyle,
and 7 for \crampedscriptscriptstyle.

Using these new primitives, you can write code like
this:

\def\uncramped#1{{\ifcase\mathstyle
\or \displaystyle \or
\or \textstyle \or
\or \scriptstyle \or
\or \scriptscriptstyle \fi #1}}

or even create a fully expandable version of \math-
choice:

\def\mathchoice#1#2#3#4{{\ifcase\mathstyle
#1\or #1\or
#2\or #2\or
#3\or #3\or
#4\or #4\fi}}

To make it easier to test the return value of \math-
style, the four old and the four new math style
commands have been altered so that they can be used
as numeric values for testing. This allows constructs
like this:

\ifnum\mathstyle=\textstyle
\message{normal text style}

\fi

But there is a small catch: there are a few primitives
(\over, \atop, \overwithdelims, \atopwithde-
lims) in TEX82 where the style that will be used is
not known at the start, and these commands would
therefore return wrong values for \mathstyle.

24 MAPS 38 Taco Hoekwater

To make it possible to get the correct math style
in all cases, luaTEX introduces the new primitive
\Ustack, that can (should) be used as a pre󰀂x for the
commands given above.

$\Ustack { ... a ... \over ... b ... }$

The \Ustack command will make sure that \math-
style is returning the correct values, even inside the
... a ... branch. A \Ustack can be nested inside
another, if needed.

Bottom accents
Besides the normal top accents, luaTEX also supports
bottom accents in math mode. For bottom accents,
there is the new primitive \Umathbotaccent. For
combined top and bottom accents, there is \Umath-
accents. The latter takes two math accent speci󰀂ca-
tions. Like all the new primitives that actively scan
for mathchars or delimititers, these use the X ETEX-style
syntax:

$$
\Umathbotaccent"0"0"323 A
\Umathaccents "0"0"20D7 "0"0"323 A
$$

𝐴̣ ⃗⃗𝐴̣

Horizontal extenders
On top of the normal vertical extensibles, luaTEX also
has support for horizontal extensibles. This is particu-
larly useful for wide accents, as the following example
shows:

\def\overarrow{\Umathaccent"0"0"20D7}
$$
\overarrow{a+b+c+d+e}
$$

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑎 + 𝑏 + 𝑐 + 𝑑 + 𝑒

Note that this feature depends on support from the
math font that is being used. This article is typeset
using MicroSoft's Cambria Math font and that actually
has this support built in, but so far none of the standard
TEX fonts provide the needed information.

Math parameters
In luaTEX, the font dimension parameters that TEX82
uses in math typesetting are now accessible via prim-
itive commands. These parameters are initialized
from the math fonts, or can be set by the user via
explicit commands. Each math parameter exists in

eight versions that match the math styles. Re-factoring
of the math engine has resulted in more parameters
than were accessible before, even when taking the font
dimensions of the math fonts into account.

Math parameter commands
Each of the math parameters (the full list is given
in table 1 at the end of this article) can be set by an
explicit command, like this:

\Umathquad\displaystyle=1em

Such settings obey grouping, but only one value can
be in effect for a single formula, and that is decided
upon when the closing dollar sign is read in. Here is
an example:

\centerline{
$
\Ustack{a \over b} × b
$ \kern 50pt $
\Umathfractiondenomvgap \textstyle = 8pt
\Ustack{a \over b} × b
$}

𝑎

𝑏
× 𝑏

𝑎

𝑏

× 𝑏

You can use \the\Umathquad\displaystyle if the
current value is needed (for example inside a space
󰀂ne-tuning macro).

Font-based Math Parameters
While it is nice to have these math parameters avail-
able for tweaking, it would be tedious to have to
set each of them by hand. For this reason, luaTEX
initializes (almost) all these parameters whenever you
assign a font identi󰀂er to a math family. This is
based either on the traditional math font dimensions
in the font (for assignments to math family 2 and 3
using TFM-based fonts like cmsy and cmex), or on
the named values in a ‘MathConstants’ table (when an
OpenType math font is loaded via Lua). If there is a
‘MathConstants’ table, this takes precedence over font
dimensions, and in that case no attention is paid to
which family is being assigned to: the ‘MathConstants’
tables in the last assigned family sets all parameters.

The eight math parameters are typically set by using
the \textfont value for the display and text styles
(cramped and normal), \scriptfont for the script
styles, and \scriptscriptfont for the scripscript
styles. In table 2 these automatic mappings are shown.
Besides the parameters listed in that table, luaTEX also
looks at the ‘space’ font dimension parameter. For
math fonts, this should be set to zero.

Math in LuaTEX 0.40 VOORJAAR 2009 25

Math spacing parameters
Inter-element math spacing in TEX82 is controlled by
the 8 × 8 table of spacing values that is given in
Chapter 18 of the TEXbook. In luaTEX, this table
has been converted into 64 primitives of the form
\Umath...spacing, for all the paired combinations
of bin, rel, ord, open, close, punct, inner, and op.
Here is an example:

\centerline{$
a × b
$ \kern 50pt $
\Umathordbinspacing \textstyle = 18mu
\Umathbinordspacing \textstyle = \thickmuskip
\thickmuskip = 10mu
a × b
$}

𝑎 × 𝑏 𝑎 × 𝑏

Normally, one would assign explicit mu dimensions
to these parameters, but a special case arises when
the prede󰀂ned muskip registers are used. When
the assignment uses \thinmuskip, \medmuskip, or
\thickmuskip, late binding is used, so that later
(re)assignments to one of these registers is taken into
account.

Verbose versions of character commands
luaTEX de󰀂nes six new primitives that have the same
function as ^, _, $, and $$.

primitive explanation
\Usuperscript for the functionality of ^
\Usubscript for the functionality of _
\Ustartmath for $, outside math.
\Ustopmath for $, inside inline math.
\Ustartdisplaymath for $$, outside math.
\Ustopdisplaymath for $$, inside display math.

The \Ustopmath and \Ustopdisplaymath primitives
check if the current math mode is the correct one
(inline vs. displayed), but you can freely intermix the
four mathon/mathoff commands with explicit dollar
sign(s).

Lua math extensions
Setting and getting math parameters
The lua functions tex.setmath() and tex.get-
math() can be used to get or set the internal math
parameters.

To set a math parameter, use tex.setmath():

tex.setmath(<string> n, <string> t, <number> n)

or

tex.setmath('global',
<string> n, <string> t, <number> n)

In an attempt to cut down the verbosity level, the
󰀂rst string is the parameter name minus the leading
‘Umath’, and the second string is the style name minus
the trailing ‘style’, for example:

tex.setmath('fractiondenomvgap','text',8*65536)

An optional 󰀂rst parameter can be given with the
explicit string 'global', which indicates a global
assignment. For now, you cannot use Lua for the math
object spacing parameters (because there is no read
interface for ‘mu’ lengths de󰀂ned yet).

Querying a math parameter uses the inverse func-
tion tex.getmath():

<number> n = tex.getmath(<string> n, <string> t)

which should not need further explanation.

Attributes in math mode
Starting with luaTEX 0.40, node attributes are now
remembered in math mode even after the conversion
from math back to the horizontal list that is eventually
added to the typeset paragraph. New nodes that are
created in this process (like the horizontal rule in a
fraction) inherit their attributes from the most logical
parent node.

The ‘mlist_to_hlist’ callback
A simple callback is offered that can be used to alter
last-minute things in the math node list. When you
use this callback, you have to run the math to hlist
conversion process yourself. To make this easier, there
is a builtin function that does exactly what luaTEX
would have done if there was no callback set.

First, here is the syntax diagram for the callback:

function(<node> head,
<string> displaytype,
<boolean> need_penalties)

return <node> newhead
end

The returned node has to be the head of the list
that will be added to the vertical or horizontal list,
the string displaytype argument is either ‘text’ or
‘display’ depending on the current math mode, the
boolean need_penalties argument is true if penal-
ties have to be inserted into the generated hlist, false
otherwise.

26 MAPS 38 Taco Hoekwater

If all you want to do is alter a few small things, than
the easiest approach is to make those alterations 󰀂rst,
and then call the following helper function:

<node> h = node.mlist_to_hlist(
<node> n,
<string> displaytype,
<boolean> penalties)

This runs the internal mlist to hlist conversion, con-
verting the math list in n into the horizontal list h.
The interface is exactly the same as for the callback
mlist_to_hlist, so that a simple working callback is
this one:

callback.register ('mlist_to_hlist',
function (h,d,n)

return node.mlist_to_hlist(h,d,n)
end)

OpenType Math features
As explained by Ulrik Vieth's articles on the subject,
there is much more to ‘OpenType Math’ than just being
able to handle Unicode input characters. A number of
extensions have been made to luaTEX to handle speci󰀂c
features of OpenType Math.

OpenType font metrics
First, lets talk about OpenType font metrics. OpenType
fonts in luaTEX are always loaded via lua code in the
define_font callback, and OpenType Math fonts are
no exception.

The lua function fontloader.to_table() outputs
the OpenType Math information in two parts: there is
a global part where the Math Constants are listed, and
a per-glyph local part with data like italic correction
and extensible recipe structures.

The global part looks like this:

["math"]={
["AxisHeight"]=585,
...
["FractionDenominatorDisplayStyleGapMin"]=260,
["FractionDenominatorGapMin"]=133,
["FractionDenominatorShiftDown"]=1030,
["FractionNumeratorDisplayStyleGapMin"]=260,
["FractionNumeratorDisplayStyleShiftUp"]=1550,
["FractionNumeratorGapMin"]=133,
...
["ScriptPercentScaleDown"]=73,
["ScriptScriptPercentScaleDown"]=60,
...

The full list is longer than this of course; all the math
constants are listed in that table. Except for a few
cases with the word ‘Percent’ in the name, values
are expressed in design units, and these have to be
converted by Lua code into scaled points before being
passed back to luaTEX (as is the case for all font
dimensions).

The example above is taken from Cambria Math
which is a Truetype format font with 2048 design units
per em, so the actual value of ‘AxisHeight’ if the font is
loaded at 10pt would be

585/2048 * 10pt = 187200sp

The local part is easier to explain in two steps, because
not all glyphs have the same set of extended infor-
mation. The 󰀂rst example shows the relevant part of
the data for the Unicode character ‘MATHEMATICAL
ITALIC SMALL F’, 𝑓:

{
["name"]="u1D453",
["italic_correction"]=60,
["mathkern"]={
["bottom_right"]={
{

["height"]=420,
["kern"]=-400,

},
{

["height"]=720,
["kern"]=-320,

},
{

["height"]=1020,
["kern"]=0,

},
},
["bottom_left"]={ ... }
["top_right"]={ ... }

},
["top_accent"]=840,
...

},

As you can see, it has an italic correction of 60 design
units, it has an entry top_accent that is used for the
placement of math accents on top of the glyph, and
it has a mathkern subtable. The mathkern table is
used for super- and subscript placement: it can de󰀂ne
kerning corrections for each of the four corners of the
glyph. Any of those can be missing, in which case no
correction is needed (this is the case for the top_left
side of this glyph).

Math in LuaTEX 0.40 VOORJAAR 2009 27

The next example shows part of the metric data for
SQUARE ROOT, the extensible character that represents

the root sign, √:

{
["name"]="radical",
["vert_variants"]={
["italic_correction"]=0,
["parts"]={
{

["component"]="uni23B7",
["advance"]=2743,
["end"]=2500,

},
{

["component"]="uni20D3",
["advance"]=1211,
["end"]=1150,
["extender"]=1,
["start"]=1150,

},
{

["component"]="radical.top",
["advance"]=1211,
["start"]=600,

}
},

["variants"]="radical radical.vsize1 \
radical.vsize2 radical.vsize3\
radical.vsize4 radical.vsize5"

}
...

},

This glyph does not have either of the mathkern and
top_accent extended information items that were
present in the previous example, but it does have a
vert_variants subtable. This table contains infor-
mation for extensible recipes, split into three parts:

the variants string gives a sequence of versions
of this glyph with ever increasing size,
the parts table lists the extensible parts,
the italic_correction gives the italic correction
that is needed for a glyph constructed from such
parts.

The actual metric details will be explained later.

OpenType Math family sizes and ssty
When using OpenType Math fonts, it is important to
load the \scriptfont and \scriptscriptfont at
the sizes that are requested by the font designer (via
ScriptPercentScaleDown and ScriptScriptPer-
centScaleDown).

If the font provides an ssty feature, then it is
advisable to enable that feature (with values ssty=1
for script size and ssty=2 for script script size). The
difference between doing so and simply loading the
Cambria Math font at the ‘normal’ values of 70% and
50% can be seen in this example:

𝑥𝑥
𝑥

𝑥𝑥
𝑥

cambria cambria
7pt/5pt 73%/60%+ssty

Extra Math Parameters
OpenType Math fonts have a few extra parameters
compared to traditional TFM-based math fonts, and
the effects of those extra parameters can be quite no-
ticeable. The example below shows the difference be-
tween using the actual \Umathfractiondenomvgap
and \Umathfractionnumvgap from Cambria Math
versus the hardwired TEX82 value of three times de-
fault_rule_thickness:

𝑝𝑝

𝑏𝑏

𝑝𝑝

𝑏𝑏

TEX82, 3*rule thickness luaTEX, from font

Math accent placements
When a math (top) accent has to be placed and the ac-
centee is a character that has a non-zero top_accent
value, then this value will be used to place the accent
instead of the \skewchar kern used by TEX82.

The top_accent value represents a vertical line
somewhere in the accentee. The accent will be shifted
horizontally such that its own top_accent line coin-
cides with the one from the accentee. If the top_ac-
cent value of the accent is zero, then half the width
of the accent followed by its italic correction is used
instead.

In a picture, it looks like this:

𝑓
top_accent

840

̂
top_accent

-288

→ 𝑓
top_accent

840

̂
top_accent

-288

The vertical placement of a top accent depends on the
x_height of the font of the accentee (as explained

28 MAPS 38 Taco Hoekwater

in the TEXbook), but if that value turns out to be
zero and the font has a ‘MathConstants’ table, then
AccentBaseHeight is used instead.

If a math bottom accent has to be placed, the
bot_accent value is checked instead of top_accent.
Because bottom accents do not exist in TEX82, the
\skewchar kern is ignored.

The vertical placement of a bottom accent is straight
below the accentee, no correction takes place.

Also, remember that luaTEX has horizontal extensi-
bles, and when present, these will be used by the ac-
cent placement primitives to build up longer versions
when that is needed.

Overlapping extensibles
In TFM based fonts, extensible bits of glyphs are placed
butt to butt, which normally works 󰀂ne when printing,
but often creates problems with PDF previewers. If
you are looking at this article in PDF format, you will
likely see small gaps appearing in the left side of the
following example:

√√√√√
 ⎧

⎨
⎩

√
⎞

⎠

… but not on the right side, because the right side uses
OpenType extensible recipes where a certain amount
of overlap is built in.

Recall the vert_variants metrics representation
that was listed earlier. Each of the parts had an
advance key, but also type start and/or end. These
latter two are combined with the ‘MathConstants’
value MinConnectorOverlap to de󰀂ne overlap zones.
Once again here is an image to demonstrate the effect
(the actual algorithm is documented in the OpenType
Math speci󰀂cation, which is followed by luaTEX).

⎷ ⃓ √ → ⎷

⃓
√

Extensible big operators
In OpenType Math (and therefore also in luaTEX), big
operators can come in more than just the two sizes
provided by TEX82. Big operators can even be build
up from extensible parts.

Normally, the OpenType font designer decides the
size that is used in display mode via the ‘MathCon-

stants’ table, but it can be fun to change the used value
manually. For example:

\Umathoperatorsize\displaystyle = 15pt
$$\sum_{k=2}^4 k^2 = 2^2 + 3^2 + 4^2 = 29$$
\Umathoperatorsize\displaystyle = 55pt
$$\sum_{k=2}^4 k^2 = 2^2 + 3^2 + 4^2 = 29$$

4

∑

𝑘=2

𝑘2 = 22 + 32 + 42 = 29

4

∑

𝑘=2

𝑘2 = 22 + 32 + 42 = 29

Script placements
As seen earlier, the character entries in an OpenType
Math font can have a ‘mathkern’ table.

The ‘mathkern value’ at a speci󰀂c height is the kern
value that is speci󰀂ed by the next higher height and
kern pair, or the highest one in the character (if there
is no value high enough in the character), or simply
zero (if the character has no mathkern pairs at all).

𝑓
bottom_left

(100,0)

(0,100)

top_right

(0,620)

(65,720)

bottom_right

(-400,420)

(-320,720)

(0,1020)

italic 60

top_accent

840

𝑎top_right

(0,0)

bottom_right

(0,0)

italic 50

top_accent

672

When a super- or subscript has to be placed next to
a math item, luaTEX checks whether the super- or sub-
script and the nucleus are both simple character items.
If they are, and if the fonts of both character items
are OpenType fonts (as opposed to legacy TEX fonts),
then luaTEX will use the OpenTypeMath algorithm for
deciding on the horizontal placement of the super- or
subscript. This works as follows:

The vertical position of the script is calculated.
The default horizontal position is 󰀄at next to the
base character.
For superscripts, the italic correction of the base
character is added.
For a superscript, two vertical values are calcu-
lated: the bottom of the script (after shifting up),

Math in LuaTEX 0.40 VOORJAAR 2009 29

and the top of the base. For a subscript, the two
values are the top of the (shifted down) script, and
the bottom of the base.
For each of these two locations, luaTEX:
− 󰀂nds out the ‘mathkern value’ at this height for

the base (for a subscript placement, this is the
bottom_right corner, for a superscript place-
ment the top_right corner)

− 󰀂nds out the ‘mathkern value’ at this height for
the script (for a subscript placement, this is the
top_left corner, for a superscript placement
the bottom_left corner)

The horizontal kern to be applied is the smallest of
the two results from previous step.

A picture should help make this clearer:

𝑓𝑎 → 𝑓bottom_right

(-400,420)

(-320,720)

(0,1020)

𝑎
Legends on extensible items
The new \Uunderdelimiter and \Uoverdelimiter
primitives allow the placement of a subscript or
superscript on an extensible item and the comple-
mentary \Udelimiterunder and \Udelimiterover
primitives allow the placement of an extensible item
as a subscript or superscript on a nucleus.

In all four primitives, the vertical placements are
controlled by \...bgap and \...vgap parameters
using a similar method as for limit placements on large
operators. The superscript in \Uoverdelimiter is
typeset in a suitable scripted style, the subscript in
\Uunderdelimiter is cramped as well.

$$
A \mathrel{\Uoverdelimiter 0 "2192 {a+b}}
B \mathrel{\Uunderdelimiter 0 "2192 {a+b}} C
$$

𝐴
𝑎+𝑏
→⎯→ 𝐵 →⎯→

𝑎+𝑏
𝐶

$$\Udelimiterover 0 "23DE {a+b}
+ \Udelimiterunder 0 "23DF {a+b} = C $$

⏜⎴⏞⎴⏜
𝑎 + 𝑏 + 𝑎 + 𝑏

⏝⎵⏟⎵⏝
= 𝐶

Here it is the delimiter that is typeset in a script style.

Radicals with degrees
The new primitive \Uroot allows the direct construc-
tion of a radicals including a degree. Its syntax is a
straightforward extension of \Uradical:

\Uradical <fam> <char> <radicand>
\Uroot <fam> <char> <degree> <radicand>

The placement of the degree is controlled by the
math parameters \Umathradicaldegree..., and the
degree is typeset in \scriptscriptstyle.

$$
\Uroot 0 "221A {3}{x^3+y^3}
$$

3
√𝑥3 + 𝑦3

This bit of the OpenType Math speci󰀂cation is a
literal conversion of the plain TEX macro \root \of,
with the important difference being that it shifts the
adhoc values in the plain macro to the font, so that the
font designer can come up with nice looking values.

In luaTEX, this functionality could have been imple-
mented by a macro. However, doing so felt clumsy
because of the need to take care of the different sizes.

Open OpenType issues
There are a few remaining problems that have not been
dealt with at the time of the writing of this article:

It is not clear how \atopwithdelims and \over-
withdelims should be implemented with Open-
Type Math fonts. For the moment, it is best to
avoid using these primitives.
It is unclear whether stretch stacks (the four primi-
tives explained in the ‘Legends on extensible items’
section) should be centered on the math axis or
not.
Some confusion remains on what the Math con-
stant ‘DelimitedSubFormulaMinHeight’ is meant to
represent.

Two features of OpenType Math have not been imple-
mented yet:

Skewed (text-style) fractions.
Flattened accents for high characters.

These, as well as some other math extensions, are
planned for the luaTEX 0.50 release.

Taco Hoekwater

30 MAPS 38 Taco Hoekwater

Primitive name Description

\Umathquad the width of 18mu's
\Umathaxis height of the vertical center axis of the math formula above the baseline
\Umathoperatorsize minimum size of large operators in display mode
\Umathoverbarkern vertical clearance above the rule
\Umathoverbarrule the width of the rule
\Umathoverbarvgap vertical clearance below the rule
\Umathunderbarkern vertical clearance below the rule
\Umathunderbarrule the width of the rule
\Umathunderbarvgap vertical clearance above the rule
\Umathradicalkern vertical clearance above the rule
\Umathradicalrule the width of the rule
\Umathradicalvgap vertical clearance below the rule
\Umathradicaldegreebefore the forward kern that takes place before placement of the radical degree
\Umathradicaldegreeafter the backward kern that takes place after placement of the radical degree
\Umathradicaldegreeraise this is the percentage of the total height and depth of the radical sign that

the degree is raised by. It is expressed in percents, so 60% is expressed
as the integer 60.

\Umathstackvgap vertical clearance between the two elements in a \atop stack
\Umathstacknumup numerator shift upward in \atop stack
\Umathstackdenomdown denominator shift downward in \atop stack
\Umathfractionrule the width of the rule in a \over
\Umathfractionnumvgap vertical clearance between the numerator and the rule
\Umathfractionnumup numerator shift upward in \over
\Umathfractiondenomvgap vertical clearance between the denominator and the rule
\Umathfractiondenomdown denominator shift downward in \over
\Umathfractiondelsize minimum delimiter size for \...withdelims
\Umathlimitabovevgap vertical clearance for limits above operators
\Umathlimitabovebgap vertical baseline clearance for limits above operators
\Umathlimitabovekern space reserved at the top of the limit
\Umathlimitbelowvgap vertical clearance for limits below operators
\Umathlimitbelowbgap vertical baseline clearance for limits below operators
\Umathlimitbelowkern space reserved at the bottom of the limit
\Umathoverdelimitervgap vertical clearance for limits above delimiters
\Umathoverdelimiterbgap vertical baseline clearance for limits above delimiters
\Umathunderdelimitervgap vertical clearance for limits below delimiters
\Umathunderdelimiterbgap vertical baseline clearance for limits below delimiters
\Umathsubshiftdrop subscript drop for boxes and sub-formulas
\Umathsubshiftdown subscript drop for characters
\Umathsupshiftdrop superscript drop (raise, actually) for boxes and sub-formulas
\Umathsupshiftup superscript raise for characters
\Umathsubsupshiftdown subscript drop in the presence of a superscript
\Umathsubtopmax the top of standalone subscripts cannot be higher than this above the

baseline

\Umathsupbottommin the bottom of standalone superscripts cannot be less than this above the
baseline

\Umathsupsubbottommax the bottom of the superscript of a combined super- and subscript be at
least as high as this above the baseline

\Umathsubsupvgap vertical clearance between super- and subscript
\Umathspaceafterscript additional space added after a super- or subscript
\Umathconnectoroverlapmin minimum overlap between parts in an extensible recipe

Table 1 Named math parameters.

Math in LuaTEX 0.40 VOORJAAR 2009 31

Variable Default value (OpenType) Default value (TFM)
\Umathaxis AxisHeight axis_height
\Umathoperatorsize MinimumDisplayOperatorHeight <not set>
\Umathfractiondelsize 0 delim1, delim2
\Umathfractiondenomdown FractionDenominator[DisplayStyle]ShiftDown denom1, denom2
\Umathfractiondenomvgap FractionDenominator[DisplayStyle]GapMin 3*rule, rule
\Umathfractionnumup FractionNumerator[DisplayStyle]ShiftUp num1, num2
\Umathfractionnumvgap FractionNumerator[DisplayStyle]GapMin 3*rule, rule
\Umathfractionrule FractionRuleThickness rule
\Umathlimitabovebgap UpperLimitBaselineRiseMin big_op_spacing3
\Umathlimitabovekern 0 big_op_spacing5
\Umathlimitabovevgap UpperLimitGapMin big_op_spacing1
\Umathlimitbelowbgap LowerLimitBaselineDropMin big_op_spacing4
\Umathlimitbelowkern 0 big_op_spacing5
\Umathlimitbelowvgap LowerLimitGapMin big_op_spacing2
\Umathoverdelimitervgap StretchStackGapBelowMin big_op_spacing1
\Umathoverdelimiterbgap StretchStackTopShiftUp big_op_spacing3
\Umathunderdelimitervgap StretchStackGapAboveMin big_op_spacing2
\Umathunderdelimiterbgap StretchStackBottomShiftDown big_op_spacing4
\Umathoverbarkern OverbarExtraAscender rule
\Umathoverbarrule OverbarRuleThickness rule
\Umathoverbarvgap OverbarVerticalGap 3*rule
\Umathquad <font_size(f)> math_quad
\Umathradicalkern RadicalExtraAscender rule
\Umathradicalrule RadicalRuleThickness <not set>
\Umathradicalvgap Radical[DisplayStyle]VerticalGap (rule+(abs(math_x)/4)),

(rule+(abs(rule)/4))
\Umathradicaldegreebefore RadicalKernBeforeDegree <not set>
\Umathradicaldegreeafter RadicalKernAfterDegree <not set>
\Umathradicaldegreeraise RadicalDegreeBottomRaisePercent <not set>
\Umathspaceafterscript SpaceAfterScript script_space
\Umathstackdenomdown StackBottom[DisplayStyle]ShiftDown denom1, denom2
\Umathstacknumup StackTop[DisplayStyle]ShiftUp num1, num3
\Umathstackvgap Stack[DisplayStyle]GapMin 7*rule, 3*rule
\Umathsubshiftdown SubscriptShiftDown sub1
\Umathsubshiftdrop SubscriptBaselineDropMin sub_drop
\Umathsubsupshiftdown SubscriptShiftDown[WithSuperscript] sub2
\Umathsubtopmax SubscriptTopMax (abs(math_x*4)/5)
\Umathsubsupvgap SubSuperscriptGapMin 4*rule
\Umathsupbottommin SuperscriptBottomMin (abs(math_x)/4)
\Umathsupshiftdrop SuperscriptBaselineDropMax sup_drop
\Umathsupshiftup SuperscriptShiftUp[Cramped] sup1, sup2, sup3
\Umathsupsubbottommax SuperscriptBottomMaxWithSubscript (abs(math_x*4)/5)
\Umathunderbarkern UnderbarExtraDescender rule
\Umathunderbarrule UnderbarRuleThickness rule
\Umathunderbarvgap UnderbarVerticalGap 3*rule
\Umathconnectoroverlapmin MinConnectorOverlap 0

Table 2 Initialization of math parameters from font information. In the last column, ‘rule’ stands for de-
fault_rule_thickness, and ‘math_x’ stands in for math_x_height. Where multiple values or square brackets are
present some of the eight parameter instances are based on some values and others on other values. See the
luaTEX reference manual for more detailed information.

32 MAPS 38 Hans Hagen

Unicode Math in ConTEXt

Abstract
This article is complementary to Taco Hoekwater's article about the upgrade of the
math subsystem in LuaTEX. In parallel (also because we needed a testbed) the math
subsystem of ConTEXt has been upgraded. In this article I will describe how we deal
with Unicode math using the regular Latin Modern and TEXGyre fonts and how we were
able to clean up some of the more nasty aspects of math.

Introduction
The LuaTEX project entered a new stage when end of 2008 and beginning of 2009
math got opened up. Although TEX can handle math pretty well we had a few
wishes that we hoped to ful󰀂ll in the process. TEX's math machinery is a rather
independent subsystem. This is re󰀄ected in the fact that after parsing there is an
intermediate list of so called noads (math elements), which then gets converted
into a node list (glyphs, kerns, penalties, glue and more). This conversion can be
intercepted by a callback and a macro package can do whatever it likes with the
list of noads as long as it returns a proper list.

Of course ConTEXt does support math and that is visible in its code base:

Due to the fact that we need to be able to switch to alternative styles the
font system is quite complex and in ConTEXt MkII math font de󰀂nitions (and
changes) are good for 50% of the time involved. In MkIV we can use a more
ef󰀂cient model.
Because some usage of ConTEXt demands the mix of several completely differ-
ent encoded math fonts, there is a dedicated math encoding subsystem in MkII.
In MkIV we will use Unicode exclusively.
Some constructs (and symbols) are implemented in a way that we 󰀂nd subop-
timal. In the perspective of Unicode in MkIV we aim at all symbols being real
characters. This is possible because all important constructs (like roots, accents
and delimiters) are supported by the engine.
In order to 󰀂t vertical spacing around math (think for instance of typesetting
on a grid) in MkII we have ended up with rather messy and suboptimal code.
(This is because spacing before and after formulas has to cooperate with spac-
ing of structural components that surround it.) The expectation is that we can
improve that.

In the following sections I will discuss a few of the implementation details of the
font related issues in MkIV. Of course a few years from now the actual solutions
we implemented might look different but the principles remain the same. Also, as
with other components of LuaTEX Taco and I worked in parallel on the code and its
usage, which made the tasks easier for both of us.

Transition
In TEX, math typesetting uses a special concept called families. Each math compo-
nent (number, letter, symbol, et cetera) is member of a family. Because we have
three sizes (text, script and scriptscript) this results in a family--size matrix of de-
󰀂ned fonts. The number of glyphs in a font was limited to 256, which meant that

Unicode Math in ConTEXt VOORJAAR 2009 33

we had quite some font de󰀂nitions. The minimum number of families was 4 (ro-
man, italic, symbol, and extension) but in practice several more could be active
(sans, bold, mono-spaced, more symbols, et cetera) for speci󰀂c alphabets or extra
symbols (for instance ams set A and B). The total number of families in traditional
TEX is limited to 16, and one easily hits this maximum. In that case, some 16 times
3 fonts are de󰀂ned for one size of which in practice only a few are really used in
the typesetting.

A potential source of confusion is bold math. Bold in math can either mean
having some bold letters, or having the whole formula in bold. In practice this
means that for a complete bold formula one has to de󰀂ne the whole lot using bold
fonts. A complication is that the math symbols are kind of bound to families and so
we end up with either rede󰀂ning symbols, or reusing the families (which is easier
and faster). In any case there is a performance issue involved due to the rather
massive switch from normal to bold.

In Unicode all alphabets that make sense, as well as all math symbols are part of
the de󰀂nition, although unfortunately some alphabets have their letters spread over
the Unicode vector and not in a range (like blackboard). This forces all applications
that want to support math to implement similar hacks to deal with it.

In MkIV we will assume that we have Unicode aware math fonts, like OpenType.
The font that sets the standard is Microsoft Cambria. The upcoming (I'm writing
this in January 2009) TEXGyre fonts will be compliant to this standard but they're
not yet there and so we have a problem. The way out is to de󰀂ne virtual fonts
and now that LuaTEX math is extended to cover all of Unicode, as well as provides
access to the (intermediate) math lists, this has become feasible. This also permits
us to test LuaTEX with both Cambria and Latin Modern Virtual Math.

The advantage is that we can stick to just one family for all shapes which sim-
pli󰀂es the underlying TEX code enormously. First of all we need to de󰀂ne way less
fonts (which is partially compensated by loading them as part of the virtual font)
and all math aspects can now be dealt with using the character data tables.

One tricky aspect of the new approach is that the Latin Modern fonts have design
sizes, so we have to de󰀂ne several virtual fonts. On the other hand, fonts like
Cambria have alternative script and scriptscript shapes which is controlled by the
ssty feature, a gsub alternate that provides some alternative sizes for a couple of
hundred characters that matter.

text lmmi12 at 12pt cambria at 12pt with ssty=no
script lmmi8 at 8pt cambria at 8pt with ssty=1
scriptscript lmmi6 at 6pt cambria at 6pt with ssty=2

So Cambria not so much has design sizes but shapes optimized relative to the text
variant: in the following example we see text in red, script in green and scriptscript
in blue.

\definefontfeature[math][analyze=false,script=math,language=dflt]

\definefontfeature[text] [math][ssty=no]
\definefontfeature[script] [math][ssty=1]
\definefontfeature[scriptscript][math][ssty=2]

Let us 󰀂rst look at Cambria:

\startoverlay
{\definedfont[name:cambriamath*scriptscript at 150pt]\mkblue X}
{\definedfont[name:cambriamath*script at 150pt]\mkgreen X}
{\definedfont[name:cambriamath*text at 150pt]\mkred X}

\stopoverlay

34 MAPS 38 Hans Hagen

􀋐􀋐􀋐
When we compare them scaled down as happens in real script and scriptscript we
get:

\startoverlay
{\definedfont[name:cambriamath*scriptscript at 120pt]\mkblue X}
{\definedfont[name:cambriamath*script at 80pt]\mkgreen X}
{\definedfont[name:cambriamath*text at 60pt]\mkred X}

\stopoverlay

􀋐􀋐􀋐
Next we see (scaled) Latin Modern:

\startoverlay
{\definedfont[LMRoman8-Regular at 150pt]\mkblue X}
{\definedfont[LMRoman10-Regular at 150pt]\mkgreen X}
{\definedfont[LMRoman12-Regular at 150pt]\mkred X}

\stopoverlay

XXX
In practice we will see:

\startoverlay
{\definedfont[LMRoman8-Regular at 120pt]\mkblue X}
{\definedfont[LMRoman10-Regular at 80pt]\mkgreen X}
{\definedfont[LMRoman12-Regular at 60pt]\mkred X}

\stopoverlay

Unicode Math in ConTEXt VOORJAAR 2009 35

XXX
Both methods probably work out well, although you need to keep in mind that the
OpenType ssty feature is not so much a design size related feature.

An OpenType font can have a speci󰀂cation for the script and scriptscript size. By
default we listen to this speci󰀂cation instead of the one imposed by the bodyfont
environment. When you turn on tracing

\enabletrackers[otf.math]

you will get messages like:

asked scriptscript size: 458752, used: 471859.2 (102.86 %)
asked script size: 589824, used: 574095.36 (97.33 %)

The differences between the defaults and the font recommendations are not that
large so by default we listen to the font speci󰀂cation.

∑
𝑛

𝑖=0
∑
𝑛

𝑖=0∫
𝑛

𝑖=0
∫
𝑛

𝑖=0
log

𝑛

𝑖=0
log

𝑛

𝑖=0
cos𝑛𝑖=0cos𝑛𝑖=0∏

𝑛

𝑖=0
∏
𝑛

𝑖=0
In this overlay the white text is scaled according to the speci󰀂cation in the font,
while the black text is scaled according to the bodyfont environment (12/7/5 points).

Going virtual
The number of math fonts (used) in the TEX community is relatively small and of
those only Latin Modern (which builds upon Computer Modern) has design sizes.
This means that the amount of Unicode compliant virtual math fonts that we have to
make is not that large. We could have used an already present virtual composition
mechanism but instead we made a handy helper function that does a more ef󰀂cient
job. This means that a de󰀂nition looks (a bit simpli󰀂ed) as follows:

mathematics.make_font ("lmroman10-math", {
{ name="lmroman10-regular", features="virtualmath", main=true },
{ name="lmmi10", vector="tex-mi", skewchar=0x7F },
{ name="lmsy10", vector="tex-sy", skewchar=0x30, parameters=true } ,
{ name="lmex10", vector="tex-ex", extension=true } ,
{ name="msam10", vector="tex-ma" },
{ name="msbm10", vector="tex-mb" },
{ name="lmroman10-bold", "tex-bf" } ,
{ name="lmmib10", vector="tex-bi", skewchar=0x7F } ,
{ name="lmsans10-regular", vector="tex-ss", optional=true },
{ name="lmmono10-regular", vector="tex-tt", optional=true },

})

For the TEXGyre Pagella it looks this way:

mathematics.make_font ("px-math", {
{ name="texgyrepagella-regular", features="virtualmath", main=true },
{ name="pxr", vector="tex-mr" } ,
{ name="pxmi", vector="tex-mi", skewchar=0x7F },

36 MAPS 38 Hans Hagen

{ name="pxsy", vector="tex-sy", skewchar=0x30, parameters=true } ,
{ name="pxex", vector="tex-ex", extension=true } ,
{ name="pxsya", vector="tex-ma" },
{ name="pxsyb", vector="tex-mb" },

})

As you can see, it is possible to add alphabets, given that there is a suitable vector
that maps glyph indices onto Unicodes. It is good to know that this function only
de󰀂nes the way such a font is constructed. The actual construction is delayed till
the font is needed.

Such a virtual font is used in typescripts (the building blocks of typeface de󰀂ni-
tions in ConTEXt) as follows:

\starttypescript [math] [palatino] [name]
\definefontsynonym [MathRoman] [pxmath@px-math]
\loadmapfile[original-youngryu-px.map]

\stoptypescript

If you are familiar with the way fonts are de󰀂ned in ConTEXt, you will notice that
we no longer need to de󰀂ne MathItalic, MathSymbol and additional symbol fonts.
Of course users don't have to deal with these issues themselves. The @ triggers the
virtual font builder.

You can imagine that in MkII switching to another font style or size involves
initializing (or at least checking) some 30 to 40 font de󰀂nitions when it comes to
math (the number of used families times 3, the number of math sizes.). And even
if we take into account that fonts are loaded only once, this checking and enabling
takes time. Keep in mind that in ConTEXt we can have several math font sets active
in one document which comes at a price.

In MkIV we use one family (at three sizes). Of course we need to load the font
(and more than one in the case of virtual variants) but when switching bodyfont
sizes we only need to enable one (already de󰀂ned) math font. And that really saves
time. This is one of the areas where we gain back time that we loose elsewhere by
extending core functionality using Lua (like OpenType support).

Dimensions
By setting font related dimensions you can control the way TEX positions math ele-
ments relative to each other. Math fonts have a few more dimensions than regular
text fonts. But OpenType math fonts like Cambria have quite some more. There is
a nice booklet published by Microsoft, ‘Mathematical Typesetting’, where dealing
with math is discussed in the perspective of their word processor and TEX. In the
booklet some of the parameters are discussed and since many of them are rather
special it makes no sense (yet) to elaborate on them here. Figuring out their mean-
ing was quite a challenge.

I am the 󰀂rst to admit that the current code in MkIV that deals with math para-
meters is somewhat messy. There are several reasons for this:

We can pass parameters as a MathConstants table in the tfm table that we
pass to the core engine.
We can use some named parameters, like x_height and pass those in the pa-
rameters table.
We can use the traditional font dimension numbers in the parameters table,
but since they overlap for symbol and extensible fonts, that is asking for trou-
bles.

Because in MkIV we create virtual fonts at run-time and use just one family, we
󰀂ll the MathConstants table for traditional fonts as well. Future versions may use
the upcoming mechanisms of font parameter sets at the macro level. These can be

Unicode Math in ConTEXt VOORJAAR 2009 37

de󰀂ned for each of the sizes (display, text, script and scriptscript, and the last three
in cramped form as well) but since a font only carries one set, we currently use a
compromise.

Tracing
One of the nice aspects of the opened up math machinery is that it permits us to
get a more detailed look at what happens. It also 󰀂ts nicely in the way we always
want to visualize things in ConTEXt using color, although most users are probably
unaware of many such features because they don't need them as I do.

\enabletrackers[math.analyzing]
\ruledhbox{$a = \sqrt{b^2 + \sin{c} - {1 \over \gamma}}$}
\disabletrackers[math.analyzing]

𝑎 = √𝑏2 + sin 𝑐 −
1

𝛾

This tracker option colors characters depending on their nature and the fact that
they are remapped. The tracker also was handy during development of LuaTEX
especially for checking if attributes migrated right in constructed symbols.

For over a year I had been using a partial Unicode math implementation in some
projects but for serious math the vectors needed to be completed. In order to help
the ‘math department’ of the ConTEXt development team (Aditya Mahajan, Mojca
Miklavec, Taco Hoekwater and myself) we have some extra tracing options, like

\showmathfontcharacters[][0x0007B]

U+0007B: { left curly bracket
width: 253760, height: 463680, depth: 146560, italic: 0
mathclass: open, mathname: lbrace

next: U+F03B0 { =>U+F04CE { =>U+F03B1 { =>U+F04D4 {=>

U+F03B2 { => U+F04DA { => U+F03B3 { => variants: U+023A9 ⎩

=> U+023AA ⎪ => U+023A8 ⎨ => U+023AA ⎪ => U+023A7 ⎧

The simple variant with no arguments would have extended this document with
many pages of such descriptions.

Another handy command (de󰀂ned in module fnt-25) is the following:

\ShowCompleteFont{name:cambria}{9pt}{1}
\ShowCompleteFont{dummy@lmroman10-math}{10pt}{1}

For Cambria this will generate between 50 and 100 pages of character tables.
If you look at the following samples you can imagine how coloring the characters

and replacements helped 󰀂guring out the alphabets. We use the following input
(stored in a buffer):

$abc \bf abc \bi abc$
$\mathscript abcdefghijklmnopqrstuvwxyz $
$\mathscript 1234567890 ABCDEFGHIJKLMNOPQRSTUVWXYZ$
$\mathfraktur abcdefghijklmnopqrstuvwxyz$
$\mathfraktur 1234567890 ABCDEFGHIJKLMNOPQRSTUVWXYZ$
$\mathblackboard abcdefghijklmnopqrstuvwxyz $
$\mathblackboard 1234567890 ABCDEFGHIJKLMNOPQRSTUVWXYZ$

38 MAPS 38 Hans Hagen

$\mathscript abc IRZ \mathfraktur abc IRZ $
$\mathblackboard abc IRZ \ss abc IRZ 123$

For testing Cambria we say:

\usetypescript[cambria]
\switchtobodyfont[cambria,11pt]
\enabletrackers[math.analyzing]
\getbuffer[mathtest] % the input shown before
\disabletrackers[math.analyzing]

And we get:

𝑎𝑏𝑐𝐚𝐛𝐜𝒂𝒃𝒄
𝒶𝒷𝒸𝒹ℯ𝒻ℊ𝒽𝒾𝒿𝓀𝓁𝓂𝓃ℴ𝓅𝓆𝓇𝓈𝓉𝓊𝓋𝓌𝓍𝓎𝓏
1234567890𝒜ℬ𝒞𝒟ℰℱ𝒢ℋℐ𝒥𝒦ℒℳ𝒩𝒪𝒫𝒬ℛ𝒮𝒯𝒰𝒱𝒲𝒳𝒴𝒵
𝔞𝔟𝔠𝔡𝔢𝔣𝔤𝔥𝔦𝔧𝔨𝔩𝔪𝔫𝔬𝔭𝔮𝔯𝔰𝔱𝔲𝔳𝔴𝔵𝔶𝔷
1234567890𝔄𝔅ℭ𝔇𝔈𝔉𝔊ℌℑ𝔍𝔎𝔏𝔐𝔑𝔒𝔓𝔔ℜ𝔖𝔗𝔘𝔙𝔚𝔛𝔜ℨ
𝕒𝕓𝕔𝕕𝕖𝕗𝕘𝕙𝕚𝕛𝕜𝕝𝕞𝕟𝕠𝕡𝕢𝕣𝕤𝕥𝕦𝕧𝕨𝕩𝕪𝕫
𝟙𝟚𝟛𝟜𝟝𝟞𝟟𝟠𝟡𝟘𝔸𝔹ℂ𝔻𝔼𝔽𝔾ℍ𝕀𝕁𝕂𝕃𝕄ℕ𝕆ℙℚℝ𝕊𝕋𝕌𝕍𝕎𝕏𝕐ℤ
𝒶𝒷𝒸ℐℛ𝒵𝔞𝔟𝔠ℑℜℨ
𝕒𝕓𝕔𝕀ℝℤ𝖺𝖻𝖼𝖨𝖱𝖹123

For the virtualized Latin Modern we say:

\usetypescript[modern]
\switchtobodyfont[modern,11pt]
\enabletrackers[math.analyzing]
\getbuffer[mathtest] % the input shown before
\disabletrackers[math.analyzing]

This gives:

abcabcabc
abcdefghijklmnopqrstuvwxyz
1234567890ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
1234567890ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
1234567890ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcIRZabcIRZ
abcIRZabcIRZ123
These two samples demonstrate that Cambria has a rather complete repertoire of
shapes which is no surprise because it is a recent font that also serves as a showcase
for Unicode and OpenType driven math.

Commands like \mathscript set an attribute. When we post-process the noad
list and encounter this attribute, we remap the characters to the desired variant. Of
course this happens selectively. So, a capital A (0x0041) becomes a capital script A
(0x1D49C). Of course this solution is rather ConTEXt-speci󰀂c and there are other
ways to achieve the same goal (like using more families and switching family.)

Special cases
Because we now are operating in the Unicode domain, we run into problems if
we keep de󰀂ning some of the math symbols in the traditional TEX way. Even with
the ams fonts available, we still end up with some characters that are represented
by combining others. Take for instance ≠ which is composed of two characters.
Because in MkIV we want to have all characters in their pure form, we use a virtual
replacement for them. In MkIV speak it looks like this:

Unicode Math in ConTEXt VOORJAAR 2009 39

local function negate(main,unicode,basecode)
local characters = main.characters
local basechar = characters[basecode]
local ht, wd = basechar.height, basechar.width
characters[unicode] = {

width = wd,
height = ht,
depth = basechar.depth,
italic = basechar.italic,
kerns = basechar.kerns,
commands = {

{ "slot", 1, basecode },
{ "push" },
{ "down", ht/5},
{ "right", - wd/2},
{ "slot", 1, 0x2215 },
{ "pop" },

}
}

end

In case you're curious, there are indeed kerns, in this case the kerns with the Greek
Delta.

Another thing we need to handle is positioning of accents on top of slanted
(italic) shapes. For this TEX uses a special character in its fonts (set with \skew-
char). In its kerning table, any character can have a kern towards this special char-
acter. From this kern we can calculate the top_accent variable that we can pass
for each character. This variable lives at the same level as width, height, depth
and italic and is calculated as: 𝑤/2 + 𝑘, so it de󰀂nes the horizontal anchor. A
nice side effect is that (in the ConTEXt font management subsystem) this saves us
passing information associated with speci󰀂c fonts such as the skew character.

A couple of concepts are unique to TEX, like having \hat and \widehat where
the wide one has sizes. In OpenType and Unicode we don't have this distinction so
we need special trickery to simulate this. We do so by adding extra code points in a
private Unicode space which in return results in them being de󰀂ned automatically
and the relevant 󰀂rst size variant being used for \hat. For some users this might
still be too wide but at least it's better than a wrongly positioned ascii variant. In
the future we might use this private space for similar cases.

Arrows, horizontal extenders and radicals also fall in the category ‘troublesome’
if only because they use special dimensions to get the desired effect. Fortunately
OpenType math is modeled after TEX, so in LuaTEX we introduce a couple of new
constructs to deal with this. One such simpli󰀂cation at the macro level is in the
de󰀂nition of \root. Here we use the new \Uroot primitive. The placement re-
lated parameters are those used by traditional TEX, but when they are available the
OpenType variants are applied. The simpli󰀂ed plain de󰀂nitions are now:

\def\rootradical{\Uroot 0 "221A }

\def\root#1\of{\rootradical{#1}}

\def\sqrt{\rootradical{}}

The successive sizes of the root will be taken from the font in the same way as
traditional TEX does it. In that sense LuaTEX is not doing anything differently, it only
has more parameters to control the process. The de󰀂nition of \sqrt in ConTEXt
permits an optional 󰀂rst argument that sets the degree.

40 MAPS 38 Hans Hagen

U+0221A: √ square root
width: 430400, height: 603520, depth: 27200, italic: 0
mathclass: radical, mathname: surd

next: U+F03F8 √ => U+F03F9 √ => U+F03FA √ => U+F03FB √

=>U+F03FC√=>variants: U+023B7⎷=>U+020D3⃓=>U+F04A1√

Note that we have collected all characters in family 0 (simply because that is what
TEX defaults characters to) and that we use the formal Unicode slots. When we use
the Latin Modern fonts we just remap traditional slots to the right ones.

Another neat trick is used when users choose among the bigger variants of some
characters. The traditional approach is to create a box of a certain size and create
a fake delimited variant which is then used.

\definemathcommand [big] {\choosemathbig\plusone }
\definemathcommand [Big] {\choosemathbig\plustwo }
\definemathcommand [bigg] {\choosemathbig\plusthree}
\definemathcommand [Bigg] {\choosemathbig\plusfour }

Of course this can become a primitive operation and we might decide to add such
a primitive later on so we won't bother you with more details.

Attributes are also used to make live easier for authors who have to enter lots of
pairs. Compare:

\setupmathematics[autopunctuation=no]

$ (a,b) = (1.20,3.40) $

(𝑎, 𝑏) = (1.20, 3.40)

with:

\setupmathematics[autopunctuation=yes]

$ (a,b) = (1.20,3.40) $

(𝑎,𝑏) = (1.20,3.40)

So we don't need to use this any more:

$ (a{,}b) = (1{.}20{,}3{.}40) $

Features like this are implemented on top of an experimental math manipulation
framework that is part of MkIV. When the math font system is stable we will rework
the rest of math support and implement additional manipulating frameworks.

Control
Aswith all other character related issues, inMkIV everything is driven by a character
table (consider it a database). Quite some effort went into getting that one right
and although by now math is represented well, more data will be added in due
time.

Unicode Math in ConTEXt VOORJAAR 2009 41

In MkIV we no longer have huge lists of TEX de󰀂nitions for math related symbols.
Everything is initialized using the mentioned table: normal symbols, delimiters,
radicals, with or without name. Take for instance the square root:

U+0221A: √ square root
width: 430400, height: 603520, depth: 27200, italic: 0
mathclass: radical, mathname: surd

next: U+F03F8 √ => U+F03F9 √ => U+F03FA √ => U+F03FB √

=>U+F03FC√=>variants: U+023B7⎷=>U+020D3⃓=>U+F04A1√

Its entry is:

[0x221A] = {
adobename = "radical",
category = "sm",
cjkwd = "a",
description = "SQUARE ROOT",
direction = "on",
linebreak = "ai",
mathclass = "radical",
mathname = "surd",
unicodeslot = 0x221A,

}

The fraction symbol also comes in sizes (this symbol is not to be confused with the
negation symbol 0x2215 – which is known as \not in TEX terminology):

U+02044: ⁄ fraction slash
width: 362880, height: 457920, depth: 137600, italic: 0
mathclass: binary, mathname: slash
mathclass: close, mathname: solidus

next: U+F03AC ⁄ => U+F03AD ⁄ => U+F03AE⁄=> U+F03AF⁄

[0x2044] = {
adobename = "fraction",
category = "sm",
contextname = "textfraction",
description = "FRACTION SLASH",
direction = "cs",
linebreak = "is",
mathspec = {

{ class = "binary", name = "slash" },
{ class = "close", name = "solidus" },

},
unicodeslot = 0x2044,

}

42 MAPS 38 Hans Hagen

However, since most users don't have this symbol visualized in their word proces-
sor, they expect the same behavior from the regular slash. This is why we 󰀂nd a
reference to the real symbol in its de󰀂nition.

U+0002F: / solidus
width: 321280, height: 457920, depth: 137600, italic: 0
mathsymbol: U+02044 ⁄

The de󰀂nition is:

[0x002F] = {
adobename = "slash",
category = "po",
cjkwd = "na",
contextname = "textslash",
description = "SOLIDUS",
direction = "cs",
linebreak = "sy",
mathsymbol = 0x2044,
unicodeslot = 0x002F,

}

One problem left is that currently we have only one class per character (apart
from the delimiter and radical usage which have their own de󰀂nitions). Future
releases of ConTEXt will provide support for math dictionaries (as in OpenMath
and MathML 3). At that point we will also have a mathdict entry.

There is another issue with character mappings, one that will seldom reveal itself
to the user, but might confuse macro writers when they see an error message.

In traditional TEX, and therefore also in the Latin Modern fonts, a chain from
small to large character goes in two steps: the normal size is taken from one family
and the larger variants from another. The larger variant then has a pointer to an
even larger one and so on, until there is no larger variant or an extensible recipe
is found. The default family is number 0. It is for this reason that some of the
de󰀂nition primitives expect a small and large family part.

However, in order to support OpenType in LuaTEX, the alternative method no
longer assumes this split. After all, we no longer have a situation where the 256
limit forces us to take the smaller variant from one font and the larger sequence
from another (so we need two family--slot pairs where each family eventually re-
solves to a font).

It is for that reason that the new \U... primitives expect only one family spec-
i󰀂cation: the small symbol, which then has a pointer to a larger variant when ap-
plicable. However deep down in the engine, there is still support for the multiple
family solution (after all, we don't want to drop compatibility). As a result, in error
messages you can still 󰀂nd references (defaulting to 0) to large speci󰀂cations, even
if you don't use them. In that case you can simply ignore the large symbol (0,0),
since it is not used when the small symbol provides a link.

Extensibles
In TEX fences can be told to become larger automatically. In traditional TEX a char-
acter can have a linked list of next larger shapes ending in a description of how to
compose even larger variants.

A parenthesis in Cambria has the following list:

U+00028: (left parenthesis
width: 272000, height: 462400, depth: 144640, italic: 0
mathclass: open, mathname: lparent

Unicode Math in ConTEXt VOORJAAR 2009 43

next: U+F03C0 (=>U+F04CA (=>U+F03C1 (=>U+F04D0(=>

U+F03C2 (=>U+F04D6 (=>U+F03C3 (=> variants: U+0239D⎝

=> U+0239C ⎜ => U+0239B ⎛

In Latin Modern we have:

U+00028: (left parenthesis
width: 254935.04, height: 491520, depth: 163840, italic: 0
mathclass: open, mathname: lparent
next: U+FF000 (=>U+FF010 (=>U+FF012 (=>U+FF020(

=> U+FF030  => variants: U+FF040  => U+FF042  =>

U+FF030 
Of course, LuaTEX is downward compatible with respect to this feature, but the
internal representation is now closer to what OpenType math provides (which is
not that far from how TEX works, simply because it is inspired by TEX). Because
Cambria has different parameters we get slightly different results. In the following
list of pairs, you see Cambria on the left, Latin Modern on the right. Both start with
stepwise larger shapes, followed by a more gradual growth. The thresholds for a
next step are driven by parameters set in the OpenType font or by TEX's default.

{ }{ } { }{ } { }

{ }
{ }

{ }
{ }

{ }
{ }

{ }
{ }




{ }




⎧

⎨
⎩

⎫

⎬
⎭




⎧

⎨

⎩

⎫

⎬

⎭




⎧
⎪

⎨
⎪
⎩

⎫
⎪

⎬
⎪
⎭




⎧
⎪

⎨
⎪
⎩

⎫
⎪

⎬
⎪
⎭




⎧
⎪

⎨
⎪
⎩

⎫
⎪

⎬
⎪
⎭





⎧
⎪

⎨
⎪
⎩

⎫
⎪

⎬
⎪
⎭





⎧
⎪
⎪

⎨
⎪
⎪
⎩

⎫
⎪
⎪

⎬
⎪
⎪
⎭





⎧
⎪
⎪

⎨
⎪
⎪
⎩

⎫
⎪
⎪

⎬
⎪
⎪
⎭





⎧
⎪
⎪

⎨
⎪
⎪
⎩

⎫
⎪
⎪

⎬
⎪
⎪
⎭





⎧
⎪
⎪

⎨
⎪
⎪
⎩

⎫
⎪
⎪

⎬
⎪
⎪
⎭





⎧
⎪
⎪

⎨
⎪
⎪

⎩

⎫
⎪
⎪

⎬
⎪
⎪

⎭





44 MAPS 38 Hans Hagen

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

⎫
⎪
⎪
⎪

⎬
⎪
⎪
⎪
⎭





⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

⎫
⎪
⎪
⎪

⎬
⎪
⎪
⎪
⎭





⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪

⎩

⎫
⎪
⎪
⎪

⎬
⎪
⎪
⎪

⎭





⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪

⎩

⎫
⎪
⎪
⎪

⎬
⎪
⎪
⎪

⎭





⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎩

⎫
⎪
⎪
⎪
⎪

⎬
⎪
⎪
⎪
⎪
⎭





⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎩

⎫
⎪
⎪
⎪
⎪

⎬
⎪
⎪
⎪
⎪
⎭




⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪

⎩

⎫
⎪
⎪
⎪
⎪

⎬
⎪
⎪
⎪
⎪

⎭





⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪

⎩

⎫
⎪
⎪
⎪
⎪

⎬
⎪
⎪
⎪
⎪

⎭





⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪

⎩

⎫
⎪
⎪
⎪
⎪

⎬
⎪
⎪
⎪
⎪

⎭




In traditional TEX horizontal extensibles are not really present. Accents are cho-

sen from a linked list of variants and don't have an extensible speci󰀂cation. This is
because most such accents grow in two dimensions and the only extensible accents
are rules and braces. However, in Unicode we have a few more and also because
of symmetry we decided to add horizontal extensibles too. Take:

$ \overbrace {a+1} \underbrace {b+2} \doublebrace {c+3} $ \par
$ \overparent{a+1} \underparent{b+2} \doubleparent{c+3} $ \par

This gives:
⏜⏞⏜𝑎 + 1𝑏 + 2⏝⏟⏝ ⏜⏞⏜𝑐 + 3⏝⏟⏝

⏜⎴⏜𝑎 + 1𝑏 + 2⏝⎵⏝ ⏜⎴⏜𝑐 + 3⏝⎵⏝

Contrary to Cambria, Latin Modern Math, which is just like Computer Modern
Math, has no ready overbrace glyphs. Keep in mind that in the latter we are dealing
with fonts that have only 256 slots and that the traditional font mechanism has the
same limitation. For this reason, the (extensible) braces are traditionally made
from snippets as is demonstrated below.

\hbox\bgroup
\ruledhbox{\getglyph{lmex10}{\char"7A}}
\ruledhbox{\getglyph{lmex10}{\char"7B}}
\ruledhbox{\getglyph{lmex10}{\char"7C}}
\ruledhbox{\getglyph{lmex10}{\char"7D}}
\ruledhbox{\getglyph{lmex10}{\char"7A\char"7D\char"7C\char"7B}}
\ruledhbox{\getglyph{name:cambriamath}{\char"23DE}}
\ruledhbox{\getglyph{lmex10}{\char"7C\char"7B\char"7A\char"7D}}
\ruledhbox{\getglyph{name:cambriamath}{\char"23DF}}

\egroup

This gives:︷ ︷ ︸ ︸ ︷︸︸︷ ⏞ ︸︷︷︸ ⏟

Unicode Math in ConTEXt VOORJAAR 2009 45

The four snippets have the height and depth of the rule that will connect them.
Since we want a single interface for all fonts we no longer will use macro based
solutions. First of all fonts like Cambria don't have the snippets, and using active
character trickery (so that we can adapt the meaning to the font) has no preference
either. This con󰀂nes us to virtual glyphs.

It took us a bit of experimenting to get the right virtual de󰀂nition because it is a
multi--step process:

The right Unicode character (0x23DE) points to a character that has no glyph
itself but only horizontal extensibles.
The snippets that make up the extensible don't have the right dimensions (as
they de󰀂ne the size of the connecting rule), so we need to make them virtual
themselves and give them a size that matches LuaTEX's expectations.
Each virtual snippet contains a reference to the physical snippet and moves it
up or down as well as 󰀂xes its size.
The second and 󰀂fth snippet are actually not real glyphs but rules. The dimen-
sions are derived from the snippets and it is shifted up or down too.

You might wonder if this is worth the trouble. Well, it is if you take into account
that all upcoming math fonts will be organized like Cambria.

Math kerning
While reading Microsofts orange booklet, it became clear that OpenType provides
advanced kerning possibilities and we decided to put it on the agenda for LuaTEX.

It is possible to de󰀂ne a ladder--like boundary for each corner of a character
where the ladder more or less follows the shape of a character. In theory this means
that when we attach a superscript to a base character we can use two such ladders
to determine the optimal spacing between them.

Let's have a look at a few characters, the upright f and its italic cousin.

f
top_right

(-30,680)

(250,780)𝑓
bottom_left

(100,0)

(0,100)

top_right

(0,620)

(65,720)

bottom_right

(-400,420)

(-320,720)

(0,1020)

italic 60

top_accent

840

U+00066 0x1D453

The ladders on the right can be used to position a super- or subscript, that is, they
are positioned in the normal way but the ladder, as well as the boundingbox and/or
left ladders of the scripts, can be used to 󰀂ne tune the positioning.

Should we use this information? I made this visualizer for checking some Ara-
bic fonts anchoring and cursive features and then it made sense to add some of
the information related to math as well. (Taco extended the visualizer for his pre-
sentation at Bachotek 2009 so you might run into variants.) The orange booklet

46 MAPS 38 Hans Hagen

shows quite advanced ladders, and when looking at the 3500 shapes in Cambria,
it quickly becomes clear that in practice there is not that much detail in the spec-
i󰀂cation. Nevertheless, because without this feature the result is not acceptable,
LuaTEX gracefully supports it.

V aa V
aVaV

1
2 V

1V2f
afaf

a
a

V ff V
fVfV

1
2 V

1V2f
ffff

f
f

T aa T
aTaT

1
2 T

1T2f
afff

a
f

T ff T
fTfT

1
2 T

1T2f
ffaf

f
a

𝑉𝑎𝑎𝑉
𝑎𝑉𝑎𝑉

1
2𝑉

1𝑉2𝑓
𝑎𝑓𝑎𝑓

𝑎
𝑎

𝑉
𝑓
𝑓𝑉

𝑓𝑉𝑓𝑉
1
2𝑉

1𝑉2𝑓
𝑓𝑓𝑓𝑓

𝑓
𝑓

𝑇𝑎𝑎𝑇
𝑎𝑇𝑎𝑇

1
2𝑇

1𝑇2𝑓
𝑎𝑓𝑓𝑓

𝑎
𝑓

𝑇
𝑓
𝑓𝑇

𝑓𝑇𝑓𝑇
1
2𝑇

1𝑇2𝑓
𝑓𝑓𝑎𝑓

𝑓
𝑎

𝑉𝑎𝑎 𝑉
𝑎𝑉𝑎𝑉

1
2 𝑉

1𝑉2𝑓
𝑎𝑓𝑎𝑓

𝑎
𝑎

𝑉
𝑓
𝑓 𝑉

𝑓𝑉𝑓𝑉
1
2 𝑉

1𝑉2𝑓
𝑓𝑓𝑓𝑓

𝑓
𝑓

𝑇𝑎𝑎 𝑇
𝑎𝑇𝑎𝑇

1
2 𝑇

1𝑇2𝑓
𝑎𝑓𝑓𝑓

𝑎
𝑓

𝑇
𝑓
𝑓 𝑇

𝑓𝑇𝑓𝑇
1
2 𝑇

1𝑇2𝑓
𝑓𝑓𝑎𝑓

𝑓
𝑎

latin modern cambria
without kerning

cambria with kerning

Faking glyphs
A previous section already discussed virtual shapes. In the process of replacing all
shapes that lack in Latin Modern and are composed of snippets instead, we ran into
the dots. As they are a nice demonstration of something that, although somewhat of
a hack, survived 30 years without problems we show the de󰀂nition used in ConTEXt
MkII:

\def\PLAINldots{\ldotp\ldotp\ldotp}
\def\PLAINcdots{\cdotp\cdotp\cdotp}

\def\PLAINvdots
{\vbox{\forgetall\baselineskip.4\bodyfontsize\lineskiplimit\zeropoint

\kern.6\bodyfontsize\hbox{.}\hbox{.}\hbox{.}}}

\def\PLAINddots
{\mkern1mu%
\raise.7\bodyfontsize\ruledvbox{\kern.7\bodyfontsize\hbox{.}}%
\mkern2mu%
\raise.4\bodyfontsize\relax\ruledhbox{.}%
\mkern2mu%
\raise.1\bodyfontsize\ruledhbox{.}%
\mkern1mu}

This permitted us to say:

\definemathcommand [ldots] [inner] {\PLAINldots}
\definemathcommand [cdots] [inner] {\PLAINcdots}
\definemathcommand [vdots] [nothing] {\PLAINvdots}
\definemathcommand [ddots] [inner] {\PLAINddots}

However, in MkIV we use virtual shapes instead.
The following lines show the virtual shapes in greyscale. In each triplet we see

the original, the virtual and the overlaid character.

. · · ·· · ·· · ·· · ·
.....
......
.

As you can see here, the virtual variants are rather close to the originals. At 12pt
there are no real differences but (somehow) at other sizes we get slightly different
results but it is hardly visible. Watch the special spacing above the shapes. It is
probably needed for getting the spacing right in matrices (where they are used).

Hans Hagen

Hans Hagen Taco Hoekwater Hartmut Henkel VOORJAAR 2009 47

LuaTEX – Halfway

Introduction
We are about halfway the LuaTEX project now. At the
time of writing this document we are only a few days
away from version 0.40 (the BachoTEX cq. TEXlive
version) and around EuroTEX 2009 we will release
version 0.50. Starting with version 0.30 (which we
released around the conference of the Korean TEX User
group meeting) all one-decimal releases are supported
and usable for (controlled) production work. We have
always stated that all interfaces may change until they
are documented to be stable, and we expect to docu-
ment the 󰀂rst stable parts in version 0.50. Currently
we plan to release version 1.00 sometime in 2012, 30
years after TEX82, with 0.60 and 0.70 in 2010, 0.80
and 0.90 in 2011. But of course it might turn out
different.

In this update we assume that the reader knows
what LuaTEX is and what it does.

Design principles
We started this project because we wanted an exten-
sible engine and have chosen Lua as glue language.
We do not regret this choice as it permitted us to open
up TEX's internals pretty well. There have been a few
extensions to TEX itself and there will be a few more
but none of them are fundamental in the sense that
they in󰀄uence typesetting. Extending TEX in that area
is up to the macro package writer who can use the
Lua language combined with TEX macros. In a similar
fashion we made some decisions about Lua libraries
that are included. What we have now is what you will
get. Future versions of LuaTEX will have the ability to
load additional libraries but these will not be part of
the core distribution. There is simply too much choice
and we do not want to enter endless discussions about
what is best. More 󰀄exibility would also add a burden
on maintenance that we do not want. Portability has
always been a virtue of TEX and we want to keep it that
way.

Lua scripting
Before 0.40 there could be multiple instances of the
Lua interpreter active at the same time, but we decided
to limit the number of instances to just one. The reason
is simple: sharing all functionality among multiple Lua

interpreter instances does more bad than good and
Lua has enough possibilities to create namespaces any-
way. The new limit also simpli󰀂es the internal source
code, which is a good thing. While the \directlua
command is now sort of frozen, we might extend
the functionality of \latelua especially in relation to
what is possible in the backend. Both commands still
accept a number but this now refers to an index in a
user--de󰀂nable name table that will be shown when an
error occurs.

Input and output
The current LuaTEX release permits multiple instances
of kpse which can be handy if you mix for instance
a macro package and mplib, as both have there own
‘progname’ (and engine) namespace. However, right
from the start it has been possible to bring most input
under Lua control and one can overload the usual kpse
mechanisms. This is what we do in ConTEXt (and
probably only there).

Logging et cetera is also under Lua control. There is
no support for writing to TEX's opened output channels
except for the log and the terminal. We are thinking

48 MAPS 38 Hans Hagen Taco Hoekwater Hartmut Henkel

about limited write control to numbered channels but
this has a very low priority.

Reading from zip 󰀂les and sockets has been avail-
able for a while now.

Among the 󰀂rst things that have been implemented
is a mechanism for managing category codes (\cat-
code) although this is not really needed for practical
usage as we aim at full compatibility. It just makes
printing back to TEX from Lua a bit more comfortable.

Interface to TEX
Registers can always be accessed from Lua by number
and (when de󰀂ned at the TEX end) also by name.
When writing to a register, grouping is honored. Most
internal registers can be accessed (mostly read-only).
Box registers can be manipulated but users need to be
aware of potential memory management issues.

There will be provisions to use the primitives related
to setting codes (lowercase codes and such). Some of
this functionality will be available in version 0.50.

Fonts
The internal font model has been extended to the
full Unicode range. There are readers for OpenType,
Type1, and traditional TEX fonts. Users can create
virtual fonts on the 󰀄y and have complete control over
what goes into TEX. Font speci󰀂c features can either
be mapped onto the traditional ligature and kerning
mechanisms or be implemented in Lua.

We use code from FontForge that has been stripped
to get a smaller code base. Using the FontForge code
has the advantage that we get a similar view on the
fonts in LuaTEX as in this editor which makes debug-
ging easier and developing fonts more convenient.

The interface is already rather stable but some of
the keys in loaded tables might change. Almost all of
the font interface will be stable in version 0.50.

Tokens
It is possible to intercept tokenization. Once inter-
cepted, a token table can be manipulated before being
piped back into LuaTEX. We still support Omega's
translation processors but that might become obsolete
at some point.

Future versions of LuaTEX might use Lua's so called
user data concept but the interface will mostly be the
same. Therefore this subsystem will not be frozen yet
in version 0.50.

Nodes
Users have access to the node lists in various stages.
This interface has already been quite stable for some

time but some cleanup might still take place. Cur-
rently the node memory maintenance is still explicit,
but we will eventually make releasing unused nodes
automatic.

We have plans for keeping more extensive informa-
tion within a paragraph (initial whatsit) so that one
can build alternative paragraph builders in Lua. There
will be a vertical packer (in addition to the horizontal
packer) and we will open up the page builder (inserts
et cetera). The basic interface will be stable in 0.50.

Attributes
This new kid on the block is now available for most
subsystems but we might change some of its default
behavior. As of 0.40 you can also use negative values
for attributes. The original idea of using negative
values for special purposes has been abandoned as we
consider a secondary (faster and more ef󰀂cient) lim-
ited variant. The basic principles will be stable around
version 0.50, but we reserve the freedom to change
some aspects of attributes until we reach version 1.00.

Hyphenation
In LuaTEX we have clearly separated hyphenation,
ligature building and kerning. Managing patterns as
well as hyphenation is reimplemented from scratch but
uses the same principles as traditional TEX. Patterns
can be loaded at run time and exceptions are quite
ef󰀂cient now. There are a few extensions, like embed-
ded discretionaries in exceptions and pre- as well as
posthyphens.

On the agenda is 󰀂xing some ‘hyphenchar’ related
issues and future releases might deal with compound
words as well. There are some known limitations that
we hope to have solved in version 0.50.

Images
Image handling is part of the backend. This part of
the pdfTEX code has been rewritten and can now be
controlled from Lua. There are already a few more
options than in pdfTEX (simple transformations). The
image code will also be integrated in the virtual font
handler.

Paragraph building
The paragraph builder has been rewritten in C (soon to
be converted back to cweb). There is a callback related
to the builder so it is possible to overload the default
line breaker by one written in Lua.

There are no further short-term revisions on the
agenda, apart from writing an advanced (third order)
Arabic routine for the Oriental TEX project.

LuaTEX -- Halfway VOORJAAR 2009 49

Future releases may provide a bit more control over
\parshapes and multiple paragraph shapes.

Metapost
The closely related mplib project has resulted in a
MetaPost library that is included in LuaTEX. Multiple
instances can be active at the same time and MetaPost
processing is very fast. Conversion to pdf is to be done
with Lua.

On the todo list is a bit more interoperability (pre-
and postscript tables) and this will make it into release
0.50 (maybe even in version 0.40 already).

Mathematics
Version 0.50 will have a stable version of Unicode math
support. Math is backward compatible but provides
solutions for dealing with OpenType math fonts. We
provide math lists in their intermediate form (noads)
so that it is possible to manipulate math in great detail.

The relevant math parameters are reorganized ac-
cording to what OpenType math provides (we use
Cambria as reference). Parameters are grouped by
style. Future versions of LuaTEX will build upon this
base to provide a simple mechanism for switching style
sets and font families in-formula.

There are new primitives for placing accents (top
and bottom variants and extensible characters), creat-
ing radicals, and making delimiters. Math characters
are permitted in text mode.

There will be an additional alignment mechanism
analogous to what MathML provides. Expect more.

Page building
Not much work has been done on opening up the page
builder although we do have access to the intermediate
lists. This is unlikely to happen before 0.50.

Going cweb
After releasing version 0.50 around EuroTEX 2009
there will be a period of relative silence. Apart from
bug 󰀂xes and (private) experiments there will be no
release for a while. At the time of the 0.50 release
the LuaTEX source code will probably be in plain C
completely. After that is done, we will concentrate
strongly on consolidating and upgrading the code base
back into cweb.

Cleanup
Cleanup of code is a continuous process. Cleanup is
needed because we deal with a merge of traditional
TEX, 𝜀-TEX extensions, pdfTEX functionality and some

Omega (Aleph) code.
Compatibility is a prerequisite, with the exception

of logging and rather special ligature reconstruction
code.

We also use the opportunity to slowly move away
from all the global variables that are used in the Pascal
version.

Alignments
We do have some ideas about opening up alignments,
but it has a low priority and it will not happen before
the 0.50 release.

Error handling
Once all code is converted to cweb, we will look into
error handling and recovery. It has no high priority as
it is easier to deal with after the conversion to cweb.

Backend
The backend code will be rewritten stepwise. The
image related code has already been redone, and cur-
rently everything related to positioning and directions
is redesigned and made more consistent. Some bugs
in the Aleph code (inherited from Omega) have been
removed and we are trying to come up with a con-
sistent way of dealing with directions. Conceptually
this is somewhat messy because much directionality is
delegated to the backend.

We are experimenting with positioning (preroll)
and better literal injection. Currently we still use the
somewhat fuzzy pdfTEX methods that evolved over
time (direct, page and normal injection) but we will
come up with a clearer model.

Accuracy of the output (pdf) will be improved and
character extension (hz) will be done more ef󰀂cient.
Experimental code seems to work okay. This will
become available from release 0.40 and onwards and
further cleanup will take place when the cweb code is
there as much of the pdf backend code is already C.

Context MkIV
When we started with LuaTEX we decided to use a
branch of ConTEXt for testing as it involves quite dras-
tic changes, many rewrites, a tight connection with
binary versions, et cetera.

As a result for some time we now have two versions
of ConTEXt: MkII and MkIV, where the 󰀂rst one targets
at pdfTEX and X ETEX, and the second one is exclusively
using LuaTEX. Although the user interface is downward
compatible, the code base starts to diverge more and
more. Therefore at the last ConTEXt meeting it was
decided to freeze the current version of MkII and only

50 MAPS 38 Hans Hagen Taco Hoekwater Hartmut Henkel

apply bug 󰀂xes and an occasional simple extension.
This policy change opened the road to rather drastic

splitting of the code, also because full compatibility
between MkII and MkIV is not required. Around
LuaTEX version 0.40 the new, currently still experimen-
tal, document structure related code will be merged
into the regular MkIV version. This might have some
impact as it opens up new possibilities.

The future
In the future, MkIV will try to create (more) clearly
separated layers of functionality so that it will become
possible to make subsets of ConTEXt for special pur-
poses. This is done under the name MetaTEX. Think of
layering like:

io, catcodes, callback management, helpers
input regimes, characters, 󰀂ltering
nodes, attributes and noads
user interface
languages, scripts, fonts and math
spacing, par building and page construction
xml, graphics, MetaPost, job management, struc-
ture (huge impact)
modules, styles, speci󰀂c features
tools

Fonts
At this moment MkIV is already quite capable of deal-
ing with OpenType fonts. The driving force behind this
is the Oriental TEX project which brings along some
very complex and feature--rich Arabic font technology.
Much time has gone into reverse engineering the speci-
󰀂cation and behavior of these fonts in Uniscribe (which
we use as reference for Arabic).

Dealing with the huge cjk fonts is less a font issue
and more a matter of node list processing. Around the
annual meeting of the Korean User Group we got much
of the machinery working, thanks to discussions on the
spot and on the mailing list.

Math
Between LuaTEX versions 0.30 and 0.40 the math
machinery was opened up (stage one). In order to test
this new functionality, MkIV's math subsystem (that
was then already partially Unicode aware) had to be
adapted.

First of all Unicode permits us to use only one
math family and so MkIV now does that. The im-
plementation uses Microsoft's Cambria Math font as
a benchmark. It creates virtual fonts from the other
(old and new) math fonts so they appear to match up
to Cambria Math. Because the TEXGyre math project
is not yet up to speed, MkIV currently uses virtual
variants of these fonts that are created at run time. The
missing pieces in for instance Latin Modern and friends
are compensated for by means of virtual characters.

Because it is now possible to parse the intermediate
noad lists MkIV can do some manipulations before
the formula is typeset. This is for instance used for
alphabet remapping, forcing sizes, and spacing around
punctuation.

Although MkIV already supports most of the math
that users expect, there is still room for improvement
once there is even more control over the machinery.
This is possible because MkIV is not bound to down-
ward compatibility.

As with all other LuaTEX related MkIV code, it is
expected that we will have to rewrite most of the
current code a few times as we proceed, so MkIV math
support is not yet stable either. We can take such dras-
tic measures because MkIV is still experimental and
because users are willing to do frequent synchronous
updating of macros and engine. In the process we hope
to get away from all ad-hoc boxing and kerning and
whatever solutions for creating constructs, by using
the new accent, delimiter, and radical primitives.

Tracing and testing
Whenever possible we add tracing and visualization
features to ConTEXt because the progress reports and
articles need them. Recent extensions concerned trac-
ing math and tracing OpenType processing.

The OpenType tracing options are a great help in
stepwise reaching the goals of the Oriental TEX project.
This project gave the LuaTEX project its initial boost
and aims at high quality right to left typesetting. In
the process complex (test)fonts are made which, com-
bined with the tracing mentioned, helps us to reveal
the secrets of OpenType.

Hans Hagen
Taco Hoekwater
Hartmut Henkel

TEX Programming: The past, the present, and the future VOORJAAR 2009 51

TEX Programming:
The past, the present, and the future

Abstract
This article summarizes a recent thread on the ConTEXt mailing list.
(http://archive.contextgarden.net/thread/20090304.193503.1c42e4d5.en.html/)
To make the article interesting, I have changed the question and correspondingly
modified the solutions.

Keywords
ConTEXt, luaTEX, TEX Programming

Suppose you want to typeset (in ConTEXt) all possible sums of roll of two dies, like
this:

(+) 1 2 3 4 5 6

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 9 10

5 6 7 8 9 10 11

6 7 8 9 10 11 12

The mundane way to do this, especially if you do not have too much time at hand, is
to type the whole thing by hand:

\bTABLE
\bTR \bTD $(+)$ \eTD \bTD 1 \eTD \bTD 2 \eTD

\bTD 3 \eTD \bTD 4 \eTD \bTD 5 \eTD \bTD 6 \eTD \eTR
\bTR \bTD 1 \eTD \bTD 2 \eTD \bTD 3 \eTD

\bTD 4 \eTD \bTD 5 \eTD \bTD 6 \eTD \bTD 7 \eTD \eTR
\bTR \bTD 2 \eTD \bTD 3 \eTD \bTD 4 \eTD

\bTD 5 \eTD \bTD 6 \eTD \bTD 7 \eTD \bTD 8 \eTD \eTR
\bTR \bTD 3 \eTD \bTD 4 \eTD \bTD 5 \eTD

\bTD 6 \eTD \bTD 7 \eTD \bTD 8 \eTD \bTD 9 \eTD \eTR
\bTR \bTD 4 \eTD \bTD 5 \eTD \bTD 6 \eTD

\bTD 7 \eTD \bTD 8 \eTD \bTD 9 \eTD \bTD 10 \eTD \eTR
\bTR \bTD 5 \eTD \bTD 6 \eTD \bTD 7 \eTD

\bTD 8 \eTD \bTD 9 \eTD \bTD 10 \eTD \bTD 11 \eTD \eTR
\bTR \bTD 6 \eTD \bTD 7 \eTD \bTD 8 \eTD

\bTD 9 \eTD \bTD 10 \eTD \bTD 11 \eTD \bTD 12 \eTD \eTR
\eTABLE

52 MAPS 38 Aditya Mahajan

I am using Natural Tables since it is easy to con󰀂gure its output (see http://
www.pragma-ade.com/general/manuals/enattab.pdf/). For example, to get
the effect shown above, I use the following setup:

\setupTABLE[each][each][width=2em,height=2em,align={middle,middle}]
\setupTABLE[r][1][background=color,backgroundcolor=gray]
\setupTABLE[c][1][background=color,backgroundcolor=gray]

Natural tables, however, are not the focus of this article. It is rather, what would you
do if you are adventurous and have time at hand. The above is a repetitive task,
so it should be possible to automate it. That will save typing errors (unless you
make a mistake in your algorithm) and make the code reusable. In any ordinary
programming language you could easily write something like the following pseudo
code

start_table
start_table_row

table_element("(+)")
for y in [1..6] do

table_elemnt(y)
stop_table_row
for x in [1..6] do

start_table_row
table_element(x)
for y in [1..6] do

table_element(x+y)
end

stop_table_row
end

stop_table

But TEX is no ordinary programming language! Lets try to do this using ConTEXt's
equivalent of a for-loop—\dorecurse

\bTABLE
\bTR
\bTD $(+)$ \eTD
\dorecurse{6}
{\bTD \recurselevel \eTD}

\eTR
\dorecurse{6}
{\bTR

\bTD \recurselevel \eTD
\edef\firstrecurselevel{\recurselevel}

\dorecurse{6}
{\bTD \the\numexpr\firstrecurselevel+\recurselevel \eTD}

\eTR}
\eTABLE

This, however, does not work as expected because \dorecurse is not fully expand-
able. One way to get around this problem is to expand the appropriate parts of the
body of \dorecurse

\bTABLE
\bTR
\bTD $(+)$ \eTD
\dorecurse{6}
{\expandafter \bTD \recurselevel \eTD}

TEX Programming: The past, the present, and the future VOORJAAR 2009 53

\eTR
\dorecurse{6}
{\bTR

\edef\firstrecurselevel{\recurselevel}
\expandafter\bTD \recurselevel \eTD

\dorecurse{6}
{\expandafter\bTD

\the\numexpr\firstrecurselevel+\recurselevel\relax
\eTD}

\eTR}
\eTABLE

Behold, the \expandafter! So, what is this expansion stuff, and why do we
need \expandafter. TEX has a esoteric executing model, which was succinctly
explained by David Kastrup in his TEX interview (http://www.tug.org/inter-
views/interview-files/david-kastrup.html/)

“Instead, macros are used as a substitute for programming. TEX's macro ex-
pansion language is the only way to implement conditionals and loops, but
the corresponding control variables can't be in󰀄uenced by macro expansion
(TEX's “mouth” in Knuth's terminology). Instead assignments must be exe-
cuted by the back end (TEX's “stomach”). Stomach and mouth execute at
different times and independently from one another. But it is not possible
to solve nontrivial programming tasks with either: only the unholy chimera
made from both can solve serious problems. 𝜀-TEX gives the mouth a few
more teeth and changes some of that, but the changes are not really funda-
mental: expansion still makes no assignments.”

So, where do we add the \expandafters? It's simple, once you get the hang
of it (Taco Hoekwater in a ConTEXt mailing list thread (http://archive.con-
textgarden.net/message/20060702.141636.a57e6b68.en.html/))

“The trick to \expandafter is that you (normally) write it backwards until
reaching a moment in time where TeX is not scanning an argument.

Say you have a macro that contains some stuff in it to be typeset by \type:

\def\mystuff{Some literal stuff}

Then you begin with

\type{\mystuff}

but that obviously doesn't work, you want the 󰀂nal input to look like

\type{Some literal stuff}

Since \expandafter expands the token that follows after next token—whatever
the next token is—you have to insert it backwards across the opening brace
of the argument, like so:

\type\expandafter{\mystuff}

But this wouldn't work, yet: you are still in the middle of an expression (the
\type expects an argument, and it gets \expandafter as it stands).

Luckily, \expandafter itself is an expandable command, so you jump
back once more and insert another one:

\expandafter\type\expandafter{\mystuff}

Now you are on ‘neutral ground’, and can stop backtracking. Easy, once you
get the hang of it.”

54 MAPS 38 Aditya Mahajan

If you do not get the hang of it, relax. ConTEXt provides a command \expanded
that expands its arguments.

\bTABLE
\bTR
\bTD $(+)$ \eTD
\dorecurse{6}

{\expanded{\bTD \recurselevel \eTD}}
\eTR
\dorecurse{6}

{\bTR
\expanded{\bTD \recurselevel \eTD}
\edef\firstrecurselevel{\recurselevel}

\dorecurse{6}
{\expanded{\bTD
\the\numexpr\firstrecurselevel+\recurselevel\relax \eTD}}

\eTR}
\eTABLE

Using \expanded is easier than using \expandafter, but you still need to under-
stand TEX's expansion mechanism to get it right. For example, if you try

...
\dorecurse{6}

{\expaned{\bTR
\bTD \recurselevel \eTD
\edef\firstrecurselevel{\recurselevel}

\dorecurse{6}
{\expanded{\bTD
\the\numexpr\firstrecurselevel+\recurselevel\relax \eTD}}

\eTR}}
...

you will get all sorts of TEX errors, and you need to sprinkle \noexpand at correct
places to get it to work. So, \expanded is not a silver bullet.

In the above mention mailing list thread, Wolfgang Schuster posted a much
neater solution.

\bTABLE
\bTR
\bTD $(+)$ \eTD
\dorecurse{6}
{\bTD #1 \eTD}

\eTR
\dorecurse{6}
{\bTR

\bTD #1 \eTD
\dorecurse{6}

{\bTD \the\numexpr#1+##1 \eTD}
\eTR}

\eTABLE

This makes TEX disguise as a normal programming language. But only TEX wizards
like Wolfgang can discover such solutions. You need to know the TeX digestive sys-
tem inside out to even attempt something like this. Inspired by Wolfgang's solution,
I tried the same thing with ConTEXt's lesser known for loops

TEX Programming: The past, the present, and the future VOORJAAR 2009 55

\bTABLE
\bTR

\bTD $(+)$ \eTD
\for \y=1 \to 6 \step 1 \do

{\bTD #1 \eTD}
\eTR
\for \x=1 \to 6 \step 1 \do
{\bTR

\bTD #1 \eTD
\for \y=1 \to 6 \step 1 \do
{\bTD \the\numexpr#1+##1 \eTD}

\eTR}
\eTABLE

Is your head hurting. Don't worry. luaTEX provides hope that normal users can do
simple programming tasks. Luigi Scarso posted the following code:

\startluacode
tprint = function(s) tex.sprint(tex.ctxcatcodes,s) end
tprint('\\bTABLE')
tprint('\\bTR')
tprint('\\bTD $(+)$ \\eTD')
for y = 1,6 do

tprint('\\bTD ' .. y .. '\\eTD')
end
tprint('\\eTR')
for x = 1,6 do

tprint('\\bTR')
tprint('\\bTD ' .. x .. '\\eTD')
for y = 1,6 do

tprint('\\bTD' .. x+y .. '\\eTD')
end
tprint('\\eTR')

end
tprint('\\eTABLE')

\stopluacode

Finally luaTEX offers a simple way of implementing simple algorithms inside TEX.
There is no need to know TEX's digestive system. Write code as you would write in
any other programing language!

If you are a TEX programming guru who can keep track of TEX's expansion mech-
anism, don't fear luaTEX. There are other options for you: mix TEX and MetaPost.

\let\normalbTABLE\bTABLE
\let\normaleTABLE\eTABLE

\unexpanded\def\bTABLE{\normalbTABLE}
\unexpanded\def\eTABLE{\normaleTABLE}

\unexpanded\def\dobTR{\dodoubleempty\parseTR}
\unexpanded\def\dobTD{\dodoubleempty\parseTD}
\unexpanded\def\dobTH{\dodoubleempty\parseTH}
\unexpanded\def\dobTN{\dodoubleempty\parseTN}

\let\bTR\dobTR
\let\bTD\dobTD
\let\bTH\dobTH

56 MAPS 38 Aditya Mahajan

\let\bTN\dobTN

\startMPcode
string table ;
table = "\bTABLE \bTR \bTD $(+)$ \eTD" &
for y = 1 upto 6 :

"\bTD " & decimal y & "\eTD " &
endfor
"\eTR " &
for x = 1 upto 6 :

"\bTR \bTD " & decimal x & "\eTD " &
for y = 1 upto 6 :

"\bTD " & decimal (x+y) & "\eTD " &
endfor
"\eTR" &

endfor
"\eTABLE" ;
label(textext(table), origin) ;

\stopMPcode

Aditya Mahajan
adityam@umich.edu

TEX beauties and oddities VOORJAAR 2009 57

TEX beauties and oddities

Abstract
The BachoTEX 2009 conference continued the Pearls of TEX Programming open session
introduced in 2005 during which volunteers present TEX-related tricks and shorties.

A permanent call for TEX pearls
What is wanted:

short TEX or MetaPost macro/macros (half A4 page or half a screen at most),
the code should be generic; potentially understandable by plain-oriented users,
results need not be useful or serious, but language-speci󰀂c, tricky, preferably
non-obvious,
obscure oddities, weird TEX behaviour, dirty and risky tricks and traps are also
welcome,
the code should be explainable in a couple of minutes.

The already collected pearls can be found at http://www.gust.org.pl/pearls. All
pearl-divers and pearlgrowers are kindly asked to send the pearl-candidates to
pearls@gust.org.pl, where Paweł Jackowski, our pearl-collector, is waiting impa-
tiently. The pearls market-place is active during the entire year, not just before the
annual BachoTEX Conference.

Note: The person submitting pearl proposals and/or participating in the BachoTEX
pearls session does not need to be the inventor. Well known hits are also welcome,
unless already presented at one of our sessions.

Since some seasoned TEX programmers felt indignant of calling ugly TEX constructs
‘Pearls of TEX programming’, we decided not to irritate them any longer. We hope
they will accept ‘TEX beauties and oddities’ as the session title.

If you yourself have something that 󰀂ts the bill, please consider. If you know some-
body's work that does, please let us know, we will contact the person. We await
your contributions even if you are unable to attend the conference. In such a case
you are free either to elect one of the participants to present your work or ‘leave the
proof to the gentle reader’ (cf. e.g. http://www.aurora.edu/mathematics/bhaskara
.htm).

Needless to say that all contributions will be published in a separate section of the
conference proceedings, possibly also reprinted in different TEX bulletins.

58 MAPS 38 Paweł Jackowski

Scary space
Hans Hagen & Taco Hoekwater

In pure TeX

\show\
\show\ %

gives different logs on Hans' and Taco's machines (Hans' is on the left)

**space.tex **space.tex
(./space.tex (./space.tex
> \ > \^^M=macro:
=macro: ->\ .
->\ . l.1 \show\
l.1 \show\

?
? > \ =\ .
> \ =\ . l.2 \show \
l.2 \show \ %

% ?
?)
) No pages of output.

No pages of output.

The visualization of a ^^M depends of the platform but since there's de󰀂nitely a
newline involved we need to take care of it.

When parsing the input the following happens (this is mentioned in one of the
dangerous bends in the TEXbook):

\let\x\ <newline> => \let\x\<endlinechar>

This means that when you want to store the meaning of this primitive, you need
to make sure that TEX explicitly sees a space instead of a newline. So we get:

\let\normalspaceprimitive=\ % space-comment is really needed

In ConTeXt this is used for:

\unexpanded\def
\ {\mathortext\normalspaceprimitive{\dontleavehmode\space}}

If you don't use the explicit space a simple

$\ $

will execute \^^M. In Plain TeX (and in ConTeXt) we have:

\def\^^M{\ } % control <return> = control <space>

So this will result in a loop.

TEX beauties and oddities VOORJAAR 2009 59

Null control sequence
Hans Hagen & Taco Hoekwater

When you do:

\endlinechar=-1
\let\x\

the macro \x is unde󰀂ned…

Actually \x becomes equal to the 'null control sequence' that you would get from

\expandafter\def\csname\endcsname{}

but that is usually unde󰀂ned.

And you can even use this effect to assign to the null control sequence without
needing \expandafter:

\endlinechar=-1
\gdef\

{\message{NULL CS}}

\csname\endcsname

$$: empty formula or unmatched display
Hans Hagen & Taco Hoekwater

When you try the following under TEX'S normal catcode regime, you will get an
error:

$$ $21-09$

The message is:

! Display math should end with $$.
<to be read again>

2
l.7 $$ $2

1-09$

But how about this then:

\halign{#&#\cr $$ & $21-09$\cr}

It magically works! The actual effect is similar to

\hbox{$$} % or
\hbox{${}$}

In words of the TEXbook (chapter 25, page 287):

“One consequence of these rules is that `$$' in restricted horizontal mode
simply yields an empty math formula.”

60 MAPS 38 Paweł Jackowski

<macro> macro
Philip Taylor

Typesetting a multi-lingual document, even something as simple as a Christ-
mas letter, can be time-consuming and error-prone if the embedded languages
make frequent use of diacritics. To eliminate both of these problems, I wrote a
macro called \macro which enables me to encapsulate all of the tricky words
and phrases into macros whose names are (normally) identical to the words or
phrases but without the corresponding diacritics.

The following code implements the \macromacro, and is followed by some
sample de󰀂nitions and applied occurrences.

\catcode`\<=\active
\def<#1>{%

% cf. Bernd Raichle: check if defined, no side effects (2006)
\if \csname macro:#1\endcsname \relax

{\bf {\ll}#1{\gg}}%
\else

\csname macro:#1\endcsname
\fi}

\def\macro#1#2{\expandafter\def\csname macro:#1\endcsname{#2}}

\macro {Zhou Shang Zhi}{Zh\=ou Sh\`ang Zh\=\i}
\macro {Shangzhi}{Sh\`angzh\=\i}
\macro {Sai Gon}{S\`ai G\`on}
\macro {HCM}{H\raise 0.5ex \rlap {\` }\^o Ch\'\i{} Minh}
\macro {Mui Ne}{M\~ui N\'e}
%\macro {Le}{L\rlap {\d e}\^e}

On a~happier note, the year started with both Khanh \&~I~being
invited to spend time with one of my former Chinese teachers,
<Zhou Shang Zhi>, and his family in Kyoto, Japan. <Shangzhi>
was there for one year, teaching at a~local university, and
the last three months were effectively a~holiday for him with
very few formal duties. Knowing that we might like to visit
Kyoto, <Shangzhi> very kindly invited both of us, which we
accepted with great pleasure.

Khanh's journey commenced with a~flight to <Sai Gon>
(``<HCM> City''), from where she took a~'bus south to <Mui Ne>
(a~distance of some 100 miles or so), where her sister
<Le>~Hoa had booked her into a~very posh hotel by the
beach. Once in <Mui Ne>, Khanh hired a~moped driver.

On a happier note, the year started with both Khanh & I being invited to spend
time with one of my former Chinese teachers, Zhōu Shàng Zhī, and his family in
Kyoto, Japan. Shàngzhī was there for one year, teaching at a local university,
and the last three months were effectively a holiday for him with very few formal
duties. Knowing that we might like to visit Kyoto, Shàngzhī very kindly invited
both of us, which we accepted with great pleasure.

Khanh's journey commenced with a flight to Sài Gòn (“Hồ Chí Minh City”),
from where she took a 'bus south to Mũi Né (a distance of some 100 miles or so),
where her sister �Le� Hoa had booked her into a very posh hotel by the beach.
Once in Mũi Né, Khanh hired a moped driver.

TEX beauties and oddities VOORJAAR 2009 61

UTF-8 support detection
Arthur Reutenauer

When you need to detect if you are running an extension of TEX that supports
UTF-8 input, you can use an extensive approach by making the list of engines that
could be concerned, and check for particular control sequences like
\XeTeXversion for X ETEX, or \directlua for luaTEX. But you can also simply
check for UTF-8 directly, by counting the bytes:

Take Τ, the letter Tau from the Greek alphabet, not the Latin one that looks
like it. In UTF-8, its encoding form uses two bytes, which means it is read as
two characters by 8-bit TEX engines, but only one by UTF-8 engines. Hence, the
following lines detect UTF-8 engines:

\def\testengine#1#2!{\def\secondarg{#2}}

That's Tau (as in TEX),

\testengine T!\relax

UTF-8
\ifx\secondarg\empty

is % We're UTF-8
\else

not % We're 8-bit
\fi
supported.

Abba Don
Grzegorz Murzynowski

What is and what is not a number for TEX? Adoremus magna et mirabilia opera
pappæ Knuth!

\ifnum 666>'0888${}-222 = 2\times32\times37={}$DCLXVI
(all the Roman digits except the largest)\fi

\ifnum 666>"000ecce Angelus Pulcherissimus regnavit!\fi

\ifnum 666>"0000ABBA Father call I from the deepest of my s***
\else Breke kekk, breke kekk!\fi

\ifnum 11254493="ABBADDON(\aleph_0)\fi

Note that A, B, c, D and e are (in some contexts) hexadecimal digits and (in those
contexts) 0xecce = 60622 and (in some other contexts) Abbaddon is the name
of the Angel of Extinction.

62 MAPS 38 Paweł Jackowski

inlinedef: a general recursive token scanner with callbacks
Stephen Hicks

There have been several discussions about uses of \expandafter that border
on the ridiculous, with as many as 󰀂fteen in a row found in actual TeX input
󰀂les! Additionally, trying to expand past macro parameters #1 causes problems
because there is no guarantee that #1 is a single token. It would instead be
nice to insert something right before a single token we want to expand far in
advance. A slightly more general problem is to scan tokens in the input stream
while preserving spaces and grouping.

\let\xa\expandafter

\def\scan{\futurelet\foo\switch}
\def\switch{%

\let\next\normal
\ifcat\noexpand\foo\space \let\next\dospace\fi
\ifcat\noexpand\foo\bgroup \let\next\trygroup\fi
\ifcat\noexpand\foo\relax \try{&\meaning\foo}\fi
\next}

\def\try#1{\ifcsname #1\endcsname\xa
\let\xa\next \csname #1\endcsname\fi}

\def\dospace{\toks0\xa{\the\toks\xa0 \space}\xa\scan\unspace}

\xa\def\xa\unspace\space{}
\long\def\trygroup#1#{%

\def\temp{#1}\xa\let\xa\next
\ifx\temp\empty\recurse\else \normal\fi\next#1}

\long\def\recurse#1{%
\begingroup\toks0{}\scan#1\END{}\xa\endgroup\xa
\toks\xa0\xa\xa\xa{\xa\the\xa\toks\xa0\xa{\the\toks0}}\scan}

\long\def\normal#1{\toks0\xa{\the\toks0 #1}\scan}

\def\callback#1#2#{%
\def#1{\noexpand#1}\xa\def\csname&\meaning#1\endcsname#2}

We can set up a few callbacks, e.g. \END to end scanning, and \EXPAND to expand
the next token:

\callback\END#1{}
\callback\EXPAND#1{\expandafter\scan}

And now we can get arbitrary tokens from the input stream into \toks0 using

\def\baz{!}
\scan foo {bar \EXPAND\baz} \baz \END
\message{\the\toks0} % foo\space {bar\space !}\space \baz

This can be made more general in several ways: if we don't check \ifcat
\noexpand\foo\relax then we can execute callbacks on arbitrary tokens, in-
cluding spaces and grouping symbols. Of course this slows things down quite a
bit further, which brings me to the main disadvantage of this approach: it takes
about 25 times as long as a simple string of \expandafter's, and is therefore not
suitable for inner loops. But the code it allows us to write, as long as ef󰀂ciency
isn't important, is much more readable.

Siep Kroonenberg VOORJAAR 2009 63

Doe-het-zelf presentaties

Abstract
Dit artikel laat zien hoe je zonder een speciaal
presentatie-pakket presentaties kunt maken en aan
eigen wensen aanpassen.

Keywords
Presentaties geometry wallpaper fancyhdr

Met LaTEX kun je prima presentaties maken. Je kunt
kiezen voor een kant-en-klaar pakket zoals Beamer,
maar als je wensen eenvoudig zijn dan is een doe-het-
zelf presentatie-stijl ook een optie. Het grote voordeel
hierbij is dat je meer controle hebt over het eindresul-
taat.

Wat erbij komt kijken
Pagina definitie. Het enige absoluut noodzakelijke
element van een doe-het-zelf presentatie stijl is een
pagina-definitie.

De letters worden vanzelf groter naarmate de pag-
ina kleiner wordt, omdat de pagina automatisch wordt
vergroot tot schermgrootte. Dus is het meestal niet
nodig lettergroottes te wijzigen.

De volgende aanroep van het geometry package
definieert een aangepast pagina-formaat:
\usepackage[%
paperwidth=108mm,
paperheight=81mm,
width=88mm,
height=62mm,
top=9mm,
footskip=20pt]{geometry}

Let op de verhouding 4:3 van het ‘papier’-formaat. Zie
de geometry handleiding voor details.

Typografie. Voor een presentatie is het meestal beter
om niet in te springen, en in plaats daarvan alinea’s te
scheiden met vertikale witruimte:
\setlength{\parskip}{6pt}
\setlength{\parindent}{0pt}

Slides. Je kunt slides simpelweg scheiden met
\newpage. Maar als we er nu een environment
voor definiëren dan kunnen we straks verfijningen
aanbrengen zonder te hoeven ingrijpen in de tekst
van het document:
\newenvironment{slide}{\newpage}{}

Voorbeeld. Met al deze commando’s in de preamble
en met de volgende code voor een slide
\begin{slide}
\begin{itemize}
\item Creating a screen layout
\item Slide typography
\item Adding a background
\end{itemize}
\end{slide}

krijgen we de slide afgebeeld in figuur 1:

• Creating a screen layout

• Slide typography

• Adding a background

1

Figure 1. Article stijl met aangepaste pagina-definitie

Enkele verfijningen
Een classfile. We kunnen code in de preamble stop-
pen of in een afzonderlijke package, bijvoorbeeld
myslides.sty. Maar we kunnen ook een echte class-
file myslides.cls maken. De aanhef hiervan is dan:
\LoadClass{article}
\RequirePackage[%

[...]
footskip=20pt]{geometry}

Merk op dat we in classes en packages meestal
\RequirePackage in plaats van \usepackage ge-
bruiken. In ons LaTEX-bestand laden we deze classfile
met
\documentclass{myslides}

Slide titels. We willen onze slides van titels kunnen
voorzien. In de volgende definitie is de titel een op-
tionele parameter van de slide omgeving:
\newenvironment{slide}[1][]%
{\newpage {{\large\bfseries #1}}}{}

64 MAPS 38 Siep Kroonenberg

Vertikaal centreren. In de volgende definitie duwen
de twee \vfil’s samen de inhoud in vertikale richting
naar het midden van de pagina, maar laten wel de titel
vast bovenaan staan:
\newenvironment{slide}[1][]%
{\newpage {{\large\bfseries #1}}\null\vfil}%
{\vfil\null}

Lettertype. Computer Modern is niet het ideale letter-
type voor slides. Een geschiktere keus is Bitstream Vera
Sans. Dit schreefloze font omvat ook een goede col-
lectie wiskundige symbolen. Laad hiervoor het Arev
package, dat beschikbaar is voor zowel MikTeX als TeX
Live:
\RequirePackage{arev}

Een achtergrond. Met de wallpaper package kunnen
we makkelijk een achtergrond toevoegen:
\RequirePackage{wallpaper}
\LLCornerWallPaper{1}{zand}

Figuur 2 laat het resultaat zien:

Math example

Ωq−1 =
T−1
∑

=0

μ











q−1
∑

j=0

jq+j



− 







3

Figure 2. Ander lettertype, titel, vertikaal centreren,
achtergrond

Afstemmen op de achtergrond
Met deze eerste achtergrond konden we de rest van de
opmaak ongemoeid laten, maar dat is lang niet altijd
het geval.

Lichte tekst op een donkere ondergrond. In het vol-
gende voorbeeld (figuur 3) is alle tekst geel, om beter
uit te komen tegen de donkerblauwe achtergrond. Dit
doen we met de volgende extra regels in de classfile:
\RequirePackage{color}
\color{yellow}

Asymmetrische layout. De achtergrond van het vol-
gende voorbeeld, figuur 4, noodzaakt een asym-
metrische layout. Het geometry package voorziet hi-
erin: je kunt inplaats van de tekstbreedte ook linker-
en rechtermarges opgeven, en inplaats van de tek-
sthoogte boven- en ondermarge:

Titled slide

• Creating a screen layout

• Slide typography

• Adding a background

2

Figure 3. Lichte tekst op donkere achtergrond

\RequirePackage[%
paperwidth=108mm,
paperheight=81mm,
vmargin={12mm,7mm},
hmargin={20mm,6mm},
headsep=13pt,
footskip=7pt]{geometry}

Headers en footers. We kunnen met gangbare midde-
len headers en footers definiëren. Piet van Oostrum’s
package fancyhdr komt hierbij goed van pas:
\usepackage{fancyhdr}
\pagestyle{fancy}
% no header/footer rules
\renewcommand{\headrulewidth}{0pt}
\renewcommand{\footrulewidth}{0pt}
% reset contents
\fancyhead{}\fancyfoot{}
% extend into the margin
\fancyhfoffset{2mm}
\rhead{\color{white}\scriptsize\bfseries

SAMPLE PRESENTATION}
\rfoot{\color{white}\scriptsize\bfseries

\thepage}

Zie de fancyhdr handleiding voor details.

SAMPLE PRESENTATION

Dinner

• tortilla: pancake filled with ground
beef, onions and carrots, covered
with molten cheese

• refried beans

• guacamole, sourcream and salsa

4

Figure 4. Asymmetrische pagina, aangepaste header en
footer

Doe-het-zelf presentaties VOORJAAR 2009 65

Dynamische effekten
Met het texpower package kun je slides in stappen
zichtbaar maken in combinatie met eigen opmaak.
Texpower biedt hiervoor een aantal technieken, die
echter niet allemaal even fraai combineren met ver-
tikaal centreren. Texpower heeft uitgebreide docu-
mentatie.

Kunstjes met bestaande pdf-bestanden
In mijn Ubuntu Linux distributie ben ik ook een
paar packages tegengekomen die met bestaande pdf-
bestanden kunstjes kunnen uithalen.

Pdfcube. Als je een pdf presentatie met pdfcube af-
speelt dan kun je, naast een normale pagina-overgang,
ook ‘roteren’ van de ene pagina naar de volgende. Zie
figuur 5.

Figure 5. Roterende kubus met pdfcube

Keyjnote. Hoewel keyjnote ook speciale effekten heeft
voor pagina-overgangen, is het vooral interessant om-
dat je er delen van de pagina ermee uit kunt lichten
(figuur 6) of met een schijnwerper belichten (figuur 7).

Figure 6. KeyJNote highlighten

Figure 7. KeyJNote schijnwerper

Een complete presentatie classfile

\LoadClass{article}
\RequirePackage[%

paperwidth=108mm,
paperheight=81mm,
vmargin={12mm,7mm},
hmargin={20mm,6mm},
headsep=13pt,
footskip=7pt]{geometry}

\usepackage{fancyhdr}
\pagestyle{fancy}
% no header/footer rules
\renewcommand{\headrulewidth}{0pt}
\renewcommand{\footrulewidth}{0pt}
% reset contents
\fancyhead{}\fancyfoot{}
% extend into the margin
\fancyhfoffset{2mm}
\rhead{\color{white}\scriptsize\bfseries SAMPLE PRESENTATION}
\rfoot{\color{white}\scriptsize\bfseries \thepage}

\setlength{\parskip}{6pt}
\setlength{\parindent}{0pt}

% Bitstream Vera Sans
\RequirePackage{arev}

\newenvironment{slide}[1][]%
{\newpage {{\large\bfseries #1}}\null\vfil}{\vfil\null}

% background picture
\RequirePackage{wallpaper}
\LLCornerWallPaper{1}{starred}

Siep Kroonenberg
N.S.Kroonenberg at rug dot nl

