TEX Education

Is there a need for TEX&Co courses?

Much self-study material is available, to start with the
TgXbook and the MFbook, next to excellent tutorials.
Courses are nevertheless necessary, IMHO, because of
the complexity. Moreover, I consider self-study not suffi-
cient, even dangerous.

Apparently the public does not ask for courses.

Education material on TgX Live DVD

Nowadays, we have AnyTgX&Co on our PCs at home,
such as the I#TgX-biased Integrated Development Envi-
ronment, TgXnicCenter, distributed on the TgX Collec-
tion DVD. However, as plain TgXie, I missed in the output
dropdown window TgX—pdf and ilks. It should not be so
difficult to add that, tho plain TgXies form a minority.
Please do. More difficult, I presume, is to provide for
MetaPost processing from within TgX. Both are neces-
sary for my proposal with respect to a MasterClass. At
the conference I became aware of TgXshop on the Mac
0S X+ and Jonathan Kew’s TgXworks IDE in the spirit of
TgXshop under Linux and Windows XP.

The public domain TgX program, distributed on the TgX
Collection DVD, comes along with a wealth of documen-
tation, software and books, which allow for self-study
of the open and public domain programs AnyTgX&Co,
while for advanced questions one may consult FAQs, or
discussion lists with their archived earlier discussions.
I consider this a tremendous development, beneficial,
except for the lack of standards in TgXing, and that it is
not enough for a casual visitor of the internet, who likes
to get started, despite the excellent active installation
PDF documents in your language. However, self-study
can be dangerous, but. .. in the absence of courses there
is no choice. A standard in TgXing in the free TgX world
is most likely not realistic, alas.

But...
we might try.

Pluriform macro writing emerged, inhibiting read-
ability, as the most obvious characteristic. No program-
ming paradigms, despite Knuth’s example macro writing
in the TgXbook: macros which constitute plain. tex, and
macros to mark up a letter, concert, or a book, and
his gkppic line-diagram macros in plain TgX, related to
IXTgXs picture environment,” which were used for type-

EUROTEX 2009

setting his Concrete Mathematics. No path nor picture
datastructures, no color and no filling of arbitrary closed
curves. The manmac macros were created to typeset the
TeXbook and ilks, and likely his The Art of Computer
Programming ceuvre. In 4AllTEX, in the TeX directory
GENERIC, macros are collected, such as the midnight suite
by van der Goot next to macros by Eijkhout, ... No stress
on paradigms. The TgX Collection DVD contains a copy
of the Comprehensive TgX archive, the CTAN. Searching
with keyword BLUe yielded no match.’

Education issues

Education turns around: language, awareness, insight,
TEXnique proper, courseware, and the personality of the
teacher.

Language

A fundamental aspect in general education is language,
it is the basis. Everybody speaks a language, can read
and write, and may publish easily nowadays via the
WWW. Language serves a lifetime! Language fluency is a
prerequisite for participation in a culture, is fundamental
in communication. Language lies at the heart of publica-
tions.

The TeXbook spends several chapters on just typesetting
text, deals with the variety of

O type faces

O accented characters

O ligatures

O hyphenation

O line and page breaking,

O structuring commands ...

TEX is well-suited for typesetting all sort of languages,
not just those based on Latin fonts. A fundamental
assumption, next to the basic boxes and glue approach,
is that a paragraph is the unit for hyphenation, not
the keyboarded lines of input are taken as lines for the
output. TgX neglects one eol-symbol in a row, treats
it as a space. In a revision of TgX, was it 1989?, the
\language command was introduced to facilitate for
various, language specific hyphenation styles.

TgX arose from Knuth’s dream to typeset math-
ematics beautifully. I presume Knuth was very
much surprised by the complexity of typesetting
ordinary language, automatically and foolproof.

Typesetting novels by TgX is a trifle. However, book
production is culture biased, with variations in layout

E7



E8 MAPS 39

and the used fonts. Is TgX the only tool available for this
task?

Definitely not. Novels are produced by word processors,
with excellent spelling checkers, I presume. I have heard
of Adobe’s Indesign, no hands-on experience as yet,
however. MS Word I use quite often for contributions to
our local gardening bulletin. These gardeners have not
even heard of AnyTgX.

It amazes me that we have no BabelTgX as yet, where
the commands and error messages can be instantiated
for your language. For example in Russian you would
then end with \noxa instead of \bye, and just keyboard
Cyrillics.

It also surprises me that we don’t have 2 communi-
cating windows open simultaneously: one for the editor
and the another for the typeset result, as next best to
WYSIWYG. Bluesky’s TgX enjoyed on the fly compilation,
called flash mode.

But ...

TgXworks has also the edit and the pdf window open
and linked, as I learned at the conference. When an error
occurs one is directly led to the line with the error in the
source file in the edit window.

LUGs The most astonishing aspect of TgX being around
is that there have arisen so many Language-biased TgX
user groups. This demonstrates a relationship between
TeX and languages. It is misleading to think that TgX has
only to do with typesetting Math. LUGs have proven that

a subset of TgX can be used extremely well to
typeset ordinary text.

Malevich
Suprematism:
White cross on a
White background
Emulation —

Maybe this fact should be brought to the attention of
a casual user, and should not be burdened by all the
other complex tasks TgX can do, which might frighten
an innocent user.

I have included a picture, and its emulation, of Male-
vich* because he is the father of suprematism, which
deletes the superfluous, which I associate with Minimal
Markup.

Kees van der Laan

NTG was founded twenty years ago PCs were emerging.
We could access the computer centre from home by
telephone through 1024baud modems. NTG started a
fileserver and the digest TeX-nl. UNIX was taking off.

No networks nor WWW were in sight. The main-
frames or midi’s were accessed via terminals. I think that
the meetings twice a year and the Minutes and ApPen-
diceS, MAPS, appearing in time, had a great impact on
NTG.

I contacted budding LUGs in Germany, France, Eng-
land and Scandinavia, and looked for cooperation. We
cooperated in organizing EuroTgXs. In my time as pres-
ident, NTG funded the I¥TgX2e project. Much later NTG
took part in funding the Latin and Gyre font projects.

Jargon Mathematics from the language point of view
is a jargon, with its own symbols, structures, meanings
and definitions. In typesetting Math TgX is superb, still
unmatched?’

But...

Microsoft, with its Cambria project and the use of
OpenType Math fonts, may have taken the lead.

Other jargons can be typeset equally well, but you
have to write the equivalent of the intelligent math mode
yourself. I have not heard of such an effort.®

Jargon books are more complicated than novels, es-
pecially with respect to tradition in typesetting the
jargon, such as: contents, back matter (an index, tables of
contents, pictures, tables, . . ., references) and cross-links.
For typesetting Math one must be a mathematician, have
enjoyed a Math education, in short one must know the
jargon.

But...

That is not enough, at least with the mathematical
training I enjoyed. No typesetting conventions of math
was ever taught to me. No Mathematical writing, 1989
by Knuth as main author (who else?) existed. Happily,
TgX embodies it all: the subtle spacing around Math
symbols, the awareness of operators and how to typeset
them in context, the composition of symbols with limits
for example, is all taken care of by TgX, though TgX
is not perfect. In-line Math and displayed Math may
look different. The choices made by TgX, implemented
in the Math mode, are wired in, but... parameterized.
Math constructs can be marked up by using macros. The
Math fonts are not just ordinary fonts, they come along
with a suite of \fontdim parameters for placement of the
glyphs in context by the intelligent Math mode. Using



TEX Education

just another, commercial, Math font with the richness of
the TgX math mode knowledge is not trivial. OpenType
Math fonts come also with a suite of parameters, some
the same as in TgX some different, and some beyond
TgX’s. Work on incorporating OpenType Math fonts for
use in TgX, is underway by Bogustav Jackovski et al., and
about to be released.

The above observations delineate the AnyTgX&Co
users who make full use of the power of TgX< MetaPost:
those who want to typeset Math (and to a lesser extent
other jargons) beautifully, and ... be in complete con-
trol. Physics jargon has a lot in common with Math, and
I think the Physics typesetting tradition is highly similar.

Awareness

To be aware of what is available in order to choose the
right tool for the task at hand is all important and costs-
effective.’

To create awareness is a main objective of ed-
ucation, next to acquiring TgXnique proper and
learning how to cope with change and the un-
known.

Awareness of competing and assisting tools is manda-
tory. As a WYSIWYG competing tool we have MS Word,
with the Cambria module for Math, which uses the
OpenType Math fonts. I glanced into the Math possi-
bilities of Word 2007, and I’'m impressed by what MS
has achieved, especially with respect to user friendliness.
Below, I have included a snapshot.

No confusing details, no markup tags which one must
remember, just templates to be filled in, or modified. The
dotted squares in the template formulas can be filled in
with the needed symbols in a WYSIWYG way. Easy, isn’t

EUROTEX 2009

it? It is hard to convince users that TgX is better, I guess.
The Binonium of Newton, with its ‘n over k’ and ‘limits
with the summation symbol’, looks correctly typeset to
me. Is TgX more flexible? Rhetorical question.

But...

MS (Math) looks easier. TpX&Co must watch out, the law
of diminishing returns seems to apply.

However, in TgXnicCenter I found similar but less
advanced templates. if you click on an icon the LaTgX
code, will be inserted in your script, which saves you
typing, and which relieves you from remembering the
commands. You still have to look at the inserted tags
for where to fill in. In MS the fill-in place is marked
by empty dotted squares. For example, for the — icon
TgXnicCenter inserts the LaTgX control sequences

\stackrel{}{\rightarrow}

Do we have IDEs with really advanced editors with
AnyTgX support, which not only prompt markup tags,
but also prompt formula templates to be filled in?

With respect to WYSIWYG, we compromise by pro-
viding two communicating windows open: the editor
window with the source file and the typeset window
with the pdf result.

At the conference attention was paid to provide sup-
port for OpenType (Math) fonts for use in TgX.

Lack of awareness shows up when how to do typesetting
tasks are published over and over again, without taking
notice of, or mentioning, earlier work nor giving proper
credits. Is the TgXworld anarchistic? In the last issue
of MAPS, spring 2009, I read about how to typeset an
addition table, which is similar to Pittman’s approach of
long ago of typesetting by TgX a multiplication table. The
author did not mention earlier work if not by me, while
the title alluded to the past. It is true that it was typeset
in ConTgXt, and that is new, I guess. Superfluous in view
of my plea to provide macros for creation of the table
data in plain TgX to be used in AnyTgX, though in this
example case the data are a trifle.

Ignoring the past is not a scientific tradition.

E9



E10 MAPS 39

I have included below the essentials of my (plain, what
else?) macros for typesetting a multiplication, addition,
...table, of a decade ago, as supplied in my Publishing
with TgX guide, PWT, which accompanies blue. tex.
The invoke reads

\def\dataMT{1\cs 2\cs 3\rs
2\cs 4\cs 6}

$$\framed\ruled %...Attributes
\bluetable\dataMT$$

The creation of the (general) data can be done as follows

% Creates 1 2 3
% 456
\def\rows{\c1
\cols \advance\r1
\ifnum\r>\mr \swor\fi
\rs\rows}
%
\def\cols{\te\r\multiply\te\c\the\te
\advance\c1
\ifnum\c>\mc \sloc\fi
\cs\cols}
%
\def\sloc#1\cols{\fi}%terminator
\def\swor#1\rows{\fi}%terminator
\def\rs{\par}%row separator
\def\cs{ } %column separator
%
\mr2 \mc3 \rows %invoke 23 table data

TgX macro writing of the past, the present, or the future?

(Im[Im[]
C(m[Iw=[]

ms =[]

=2=2=

One might argue that it just generates the data, and that
the complexity of markup is absent.

This is done on purpose adhering to the separation
of concerns adage. More general, in my bordered table
macros, I first generate the data and then do with the
data whatever I have to do. A consequence of this
approach is that the border of a table, which contains
usually information about the entries, is handled sepa-
rately. In blue.tex a table is composed of border, data,
and caption or footer, much in the spirit of Knuth’s

\bordermatrix. By attributes one can specify framing
and ilks.

My minimal markup macro for creation of the
data for the multiplication table is like Knuth’s
robust macros timeless, and that is what I ask
you to do: write timeless, robust, mean and lean
macros in plain TgX, the lowest common subset

Kees van der Laan

of all TgXs, to be reused in AnyTEX.* However, in
this special case the data can just be supplied, but
that is not the issue. OK, you are right we should
start with creating a library of reusable parts.

Awareness of other tools  Phil Taylor in his recent
\parshape pre-processor’ starts with telling that he
used HTML, because ‘HTML can flow text around an em-
bedded (rectangular) image in a totally straightforward
manner, requiring nothing more than..’. He continues
that he would like to use TgX and provided macros,
well... his pre-processor. TgX has a more powerful, gen-
eral mechanism for placing images in a paragraph.

But...

HTML, Word. .. are simpler to use. Be aware.

Sveta uses Photoshop interactively for a.o. coloring.
MetaPost and ilks allow for coloring in a workflow.
I don’t know how to achieve by MetaPost the effects
Sveta can do in Photoshop.

Libraries for macros and pictures are necessary for
reusing parts. AnyIgX is a preprocessor of TeX! TgX
itself has a built-in preprocessor called macro expander.
MetaPost is a preprocessor of PostScript, and even can
produce SVG, with the MetaFont ingenuities inherited.
So at the basis is plain TgX and PS.

A nicety in the table chapter of PWT, next to
the wealth of examples similar to those given in the
TXbook, and some more, is a little spreadsheet function-
ality, which can be used in (budget) table markup, to en-
hance data integrity. It automates addition or subtraction
of table entries, which is not that trivial because TgX does
not come with the ordinary calculator functionalities."

This is similar to my plea of long ago in the IFIPWG2.5:
write portable numerical (library) algorithms in the
lowest higher-level language, FORTRAN, for use in all
other higher level languages. Moreover those FORTRAN
algorithms could be highly optimized, for example the
matrix routines of 0(n®) complexity, with n the order
of the matrix. At the computer center of the Groningen
University we spelled out the interfacing from PASCAL,
ALGOL(68), and Simula to FORTRAN, and supplied users
with this information, on-line, together with the avail-
ability of FORTRAN numerical libraries. We even con-
tracted CDC to adapt their ALGOL68 compiler towards



TEX Education

FORTRAN interfacing. Realistically, I expect that my plea
will be partially obeyed ... again.

Data integrity is all important. I paid attention to data
integrity in among others my bridge macros, where
once a card is played, it can no longer show up in the
diagrams. Data integrity was also on my mind when
I created macros for typesetting crosswords.

BTW, in the suprematistic Lozenge below Mondiaan was
nearly right in dividing the sides according to the Golden
Ratio. This Lozenge of 1925 was the last in a series ending
with this minimal one. Others have some colored parts
or more lines.

P. Mondriaan
Lozenge
Composition

with two lines

The bundling of the various macros, pictures, references,
tools gave rise to my BLUe collection, nicknamed after
Ben Lee User in the TgXbook.

Like Knuth’s plain etc macros and Berry’s eTgX
macros, my BLUe collection is composed of parts to be
reused in anyTgX. Within BLUe what is needed can be
obtained by selective loading, similar to retrieval from a
database. One only loads what is needed! Even simpler,
when not in the context of BLUe, is just to copy what
you need, as I did for this note, see later.

But...
that is not simple enough, a library with ready to use
modules is what we need.

From the absence of my BLUe in the FAQs of the UKTUG,
the TgX archives, and the TgX collection DVD, I presume
that the TgX community missed the reuse-of-parts aspect
of BLUe. Partly true, as I became aware at the conference:
the bottleneck is the copyright.

EUROTEX 2009

In TgX education language fluency is a pre-
requisite. Teach how to typeset ordinary lan-
guage, technical jargon, e.g. mathematics, next
to awareness of similar tools, the pro and cons
of competitors.

A
s * \L;\*;b
K ’— S H \

S

Insight
Characteristics of insight are

O Abstraction

O Separations of Concerns, SoC

00 Parameterization

0O To foresee the future

O To use TeX&Co

O To adhere Minimal Markup, Suprematism
O To use Paradigms

O To reuse parts

Dijkstra in the past mentioned that abstraction is
our only mental tool to master complexity. As computer
users we abstract all the time.

pdfIgX violates SoC adage. 1 experience a retrograde.
Inserting a color for example does not obey the scope
rules in pdfTgX. So the goodies of the past are anni-
hilated. Why not keep the past achievements upright?
I understand that we don’t have the broad oversight
Knuth had, and sin against all kinds of situations we
don’t foresee. Add whatever you want.
But...

without disturbing the achievements of the past, please.
It is no good that a casual user like me is used as
a guinea-pig. Test your materials thoroughly before
releasing, please. Adhere to the practice of B-releases,
such that a casual user is warned.

MetaFont is the big example of parameterization where
each glyph is characterized by dozens of parameters. To
handle gracefully related parameters Knuth invented the
suffix concept, as far as I understand it is a unification
of the common index and the PASCAL record, in the
minimal style. In creating pictures it is a good habit to
parameterize for the size, because then we can selec-
tively scale. The line thickness is not altered if the size
is changed. By blunt overall scaling the line thickness
also changes, which might not be what you want.

Ell



E12 MAPS 39

Knuth forecasted the future by saying that he would use
TgX a hundred years after the birth of TgX with the same
quality as that of the beginning days.

Using paradigms in macro writing will increase read-
ability.

One needs time and courage to invest in the use of
plain TgX and MetaPost, which will serve a lifetime,
and will enrich your insight. Learning just a little bit of
PostScript will not harm. You will be surprised by what
you can achieve by it, with Adobe Photoshop as finishing
touch for (interactive) coloring or removing hidden lines.

On the other hand if the majority of the TEX community
spends time and energy on IXTgX, ConTgXt, LuaTgX, in
general on successors of TgX, ...it is hard to stay with
plain TgX, to stay with Knuth, which means without
development.

However, if one thinks a little deeper, it is an ill-posed
rhetorical suggestion.

TgX is a fixed point, only the environment
changes

Adaptation to PS is for example taken care of by the
driver dvi(2)ps and ilks, and pdf output can be obtained
by Distiller or Acrobat (not tested though by me
for a document), or just one of the various pstopdfs.
TgX commands for handling colors and inclusion of
graphics are dictated by the drivers and have to be
included in \specials. I have no problems at all to
leave MetaFont for MetaPost, because... well, again
an ill-posed suggestion. I don’t leave MetaFont, I just
don’t use it for graphics any longer, 'm not a font
designer. Well,. .. again partially true: I'll continue to use
MetaFont as my poor man’s limited MetaPost previewer.

Kees van der Laan

MetaFont and MetaPost have different purposes: the
first one is aimed at bitmap font design, the second at
creating PS graphics for inclusion in AnyTgX or troff.
The MetaFontbook is still needed because of the unusual
concepts suffix, vardef, primarydef, secondarydef,
and tertiarydef, which MetaPost has taken over from
MetaFont, and which I don’t grasp completely, yet.

A middle road is provided by ConTgXt, which also
comes with a wealth of documentation and is actively
supported by its author Hans Hagen and colleagues, for
example Taco Hoekwater.

A real breakthrough would be an interactive TgX,
which I would use immediately.

One can look upon this as what Apple did. They adopted
UNIX as the underlying OS, and built their nice GUI on
top. Comes TgXshop close?

Minimal markup As said in my PWT guide, I favor to
start with just text in a WYSIWYG way. Once you have
your contents more or less right, have it spell-checked,
and only then insert as few markup tags as possible. The
result is what I call a Minimal Marked up script.

But...
do you have the patience to work along these lines? In
reality this is my logical way of working. In practice
Iinsert already markup once I have a reasonable version.
Or, do you favor to rush into code and start with
\begindocument...etc, without having written a word of
the contents yet? Marvin Minsky drew attention to this
already in his Turing Award lecture of long ago ‘Form
versus Content.” This approach, to markup at the end and
use as little as possible of TgX, is next best to WYSIWYG-
TEX, and my main reason to practise Minimal Markup.

Below the essentials of my Minimal Marked up script,
obeying the 20%-80% adage, for this paper is given.

\input adhocmacros
\author ...
\abstract ...
\keywords ...
\head Script

\subhead



TEX Education

\jpgD ...
o A\ftn oL
\bye

In order to mark up in the above spirit, I have borrowed
from BLUe the following macros"'

\def\keywords#1\par{...}
\def\abstract#1\par{...}
\def\((sub)sub)head#1\par{...}
\def\ftn#1{...}%#1 footnote tekst
\def\beginverbatim \def\endverbatim
\def\beginquote \def\endquote

while \jpgD was just created for the occasion. Handy
is the \ftn macro, which takes care of the automatic
numbering of the footnotes. While working on this
note, which a.o. emphasizes the use of Minimal Markup,
I adapted the \ftn macro, such that the curly braces
around the footnote text are no longer needed: just end
the footnote by a blank line or a \par, implicit or explicit.

Also convenient is the functionality of a Mini-ToC.
For the latter all you need is to insert

%In \head

\immediate\write\toc{#1}

%In subhead
\immediate\write\toc{\noexpand\quad#1}
%In subsubhead
\immediate\write\toc{\noexpand\qquad#1}

Of course

\newwrite\toc
\immediate\openout\toc=\jobname. toc

must be supplied in the adhoc macros as well. Reuse on
the fly!

But...
A IXTpXie would shrug shoulders, because (s)he has got
it all already. True!

But...
at the loss of minimal markup. A BLUe user has both
the macros and the minimal markup. A matter of choice,
choose what you feel comfortable with.

If you like to concentrate on contents, clean
scripts, abhor the curly braces mania, to err less
and less, then Minimal Markup is for you.

Knuth’s approach

What astonishes me most is that Knuth’s plain.tex is
not embraced by the majority. His basic approach should
be taught, because in TgX, well in automated digital
typesetting, there are so many subtle things, where

EUROTEX 2009

you will stumble upon sooner or later, which cannot
be shielded away from you by AnyIgX, completely.
Just pushing the buttons—inserting by an IDE prompted
markup tags—is not enough.

How come that users did not adopt Knuth’s plain. tex?
Is it impatience, because mastering the TgXbook with
plain.tex embodied takes time, and much more when
not guided by a skilful teacher?

History has it, that first gains were preferred by
adopting IXTgX, which dares to explain less, keeps you
unaware, which emphasizes the structure of documents,
though not so rigorous as SGML, in a time when struc-
turing whatever was en vogue. I'm not saying that
structuring is wrong, not at all.

But...
one should not overdo it, one should not suggest it is the
one and only. Keep eyes open, be on the alert for other
aspects. On the other hand IXTgX comes with a lot of
packages, nowadays.

When the minimal markup attitude is adopted, one does
not need that many markup instructions! The structure is
already there, in what you have to say, no need to overdo
it. For this note I used basically a handful of structural
macros, well... a few more, to be replaced by the ones
used by the editor.

Knuth was right from the very beginning,
though... not completely!

John Plaice commented on my presentation

‘.. that it was not possible to praise Dijkstra and
Knuth in the same sentence as the two held completely
opposite points of view with respect to programming
languages. When Dijkstra published his ‘Go to con-
sidered harmful’ (CACM 11(3):147-148, 1968), Knuth de-
fended the goto statement with his ‘Structured Pro-
gramming with go to Statements’ (Computing Surveys
6(4):261-301, 1974).

According to Plaice, Knuth consistently supported the
use of low-level languages for programming. In writing
his TAOCP series of books, Knuth used his own assem-
bler, the MIX, which he updated to a RISC machine, the
MMIX, for the latest edition. His TgX: The Program book
regularly makes use of gotos. The register model used in
TEX programming is that of an assembler and the syntax
is COBOLish.

Knuth’s TgX macro language has been criticized pub-
licly by Leslie Lamport, who stated that if he had known
that TgX would have survived for so long, that he would

E13



E14 MAPS 39

have fought much more strongly with Knuth for him to
create a more usable language.
Fair enough! Especially easier languages.

But...
I don’t see what is against Knuth’s attitude. Just a
different approach.

Remember...
There Is More Than One Way To Do It.
I appreciate the features of high-level structured pro-
gramming, with no, well... little, but well-defined side-
effects, like for example exception handlers.

But...
when I learned Algol68 at the time, I was much sur-
prised, because it seemed to me one big side effect. For
me Knuth” knows what he is talking about, and he
like nobody else, produced marvelous errorless tools, so
SuPerBe documented

Sup er uple as anttoreaderBey ondthoroughness €

TeX&MetaFont

Thirty years ago the twin TEX&MF was born. TgX is
aimed at typesetting beautiful Math by computer. MF
was developed for providing the needed (Computer
Modern bitmap) fonts.

Knuth was apparently so convinced of the correctness
of his programs that he would reward every reported bug
in TgX with a check of 13, to start with, and he would
double the reward each time an error was reported. We
all know the exponential growth behavior of this. In the
Errors of TgX, Software Prac&Exp 19,7 1989, 607-685,
Knuth mentions all the errors he corrected, to begin with
those found while debugging.

TgX had the following limitations in its design, on
purpose.

0O No WYSIWYG

0 No Color

O Poor Graphics

O No Pictures (inclusion)

O No Communicating Sequential Processes"

How to overcome?
Thanks to \special, PS, PDF, the drivers and pdf(Any)TgX

Kees van der Laan

we have the following ways out, in order to compensate
for what we miss

TrX
Script 2 dvi as default

TeX dvi2
Script L v PO .ps for color and graphics

TeX dvi2 2pdf
Script£>.dv1 v S.psps—p> .p

df

or directly, the popular one-step

cript pdf(Any)TgX .

S pdf

I favor the multi-step way, the 3", which is in the
UNIX tradition of cooperating ‘little’ languages, where
processes are ‘piped’ in a chain, and which adheres
to the Separations of Concerns adage. With respect to
TpX&MetaPost we talk about well-designed and time-
proven programs.

I don’t believe that one person, or even a group, can
write a monolithic successor of TgX, of the same quality
as TgX and the time-proven cooperating little languages
like dvi(2)ps, MetaPost, Acrobat and ilks.

In the direct use of pdfeTgX I stumbled upon..., well...
undocumented features?

Drawbacks of TEX

It is interesting to read chapter 6 of the TgXbook again
about running TgX. History! Is it? Still reality for plain
TXies?

Next to the limiting choices made in the design of TgX
there are the following drawbacks

O TgX SLC 120+% Energy ™

knowledge

t—

O After so many years AnyTgX&Co lack some sort of
stability. Me, for example, I don’t have MetaPost run-
ning in an IDE. The TgXnicCenter is not perfect, does
not provide for menus suited for plain TgX, too smart
editor...

O - No GUI®
But...

O TeX&Co 99+%Quality

O TgX&Co gives you full control



TEX Education

Drawbacks of MetaFont
Nowadays, when we ask in TgX for a TgX-known font of
different size, it is generated on the fly.

MetaPost, which sounds like a successor to MetaFont,
was intended for creating PS graphics to be included in
TgX documents, and not for creating PS fonts, despite
&mfplain, which is not enough. MetaFont’s bitmap fonts
are outdated, because of the significant memory it re-
quires and because it is not scalable. The gap was filled in
2001 by Bogustav Jackovski et al. by releasing MetaType.
Latin Modern is the PS successor of TgX’s native bitmap
Computer Modern fonts. Work is underway for use of
OpenType (Math) fonts in TgX.

Literate programming
I like to characterize literate programming by

O Aims at error-free and documented programs

O Human logic oriented, not imposed by computer

O Programming and documentation are done simulta-
neously

O Relational instead of hierarchical

The computer science department of the Groningen
University pays attention to program correctness issues,
mainly for small programs, heavily biased by the loop
invariance techniques of the 70-ies. No real-life approach
suited for large programs like Knuth’s literate program-
ming approach, by which TgX was implemented.
But...
There’s More Than One Way To Do It

Even at Stanford I could not find offerings for TgX classes
nor classes for literate programming.
No need? Still ahead of time?

I consider education in literate programming im-
portant, which should be provided by computer
science departments in the first place.

TgX Collection DVD
The DVD will lead you to the use of ITEX or ConTEXt.
The IDE TgXnicCenter allowed me to open projects and

EUROTEX 2009

process either

KTEX — .dvi, or
KEIEX — .pdf, or
KIEX — .ps — .pdf

The Center does not provide buttons for processing plain
TeX with a format file of your own, at least that is not
clear to me. I had to fool the system: opened a template,
threw all that I did not need away and processed my
minimal plain TgX job as IXTgX!

Clumsy! Did I overlook something? The possibility to
adapt TgXnicCenter was on my mind for a couple of
days. At last, I undauntedly defined an output pro-
file and selected pdfeTeX.exe. Indeed, glory, my Hello
World!\bye job worked, only the viewer Acrobat did
not open automatically with the result file. The result-
ing .pdf file was stored in the same directory as the
source file, so I could view it nonetheless. Not perfect
as yet, because I would like to have the result opened in
Acrobat automatically. Nevertheless, encouraging. I was
surprised that \magnification did not work in pdfeTEX.
I also stumbled upon that \blue defined as the appro-
priate \pdfliteral invoke, did not obey the scope rules.
The editor in TgXnicCenter is too smart: \’e is changed
into é, unless you insert a space. I reported this, no
answer as yet.

This paper asks among others to include in TgXnicCenter
also buttons for processing by Knuth’s plain.tex. It
would not harm to include as example the minimal TgX
job

Hello world!

\bye

or the TgX classic story.tex, to demonstrate the work-
flow

TgX— dvi, pdf (or ps).

View buttons for either .dvi, .ps or .pdf results are nice.

E15



E16 MAPS 39

I must confess that I was put off by the TgX Collection
after roughly a decade of my TgX inactivity. The no
longer maintained 4AlTEX CD of 1999 allowed me to
TEX this paper under Vista(!) with a handful of layout
(preprint) macros, to be replaced by the macros of the
editor of the proceedings. The outdated 4AlTEX CD
contains a lot of interesting macros. Ingenious is the
refresh option by just clicking the preview window in
windvi, which alas, does not work properly under Vista.
For pdf as output I had to get familiar with TgXnicCenter.
This is in contrast with for example Adobe: when you
order software such as the Creative Suite, it is turnkey
and works.

TeXing Paradigms Master Class

The TgX arcane has become complex, very complex, and
in my opinion too complex, if not for the number of
languages one has know, as reported by Marek Rycko
at the BachoTEX2009.

But...
in the spirit of UNIX, or LINUX as you wish, many little
languages are unavoidable.

I favor to simplify. Educate the ins-and-outs of plain
as basis, as a vehicle for digital typography, with a wink
to manmac when real-life book production is at stake. A
beginners’ course on how to use TgX is not necessary,
because of the excellent tutorials, and the TgX Collection
installation (active) PDF document in your language to
get IEX, prolgXt or ConTEXt running. How to run
MetaPost is not yet provided for, did I miss something?

As already proposed a decade ago, I favor a class on
minimal markup, on macro writing paradigms in plain
TgX, which I would propose nowadays as a Master Class,
not on esoterics, but on macros we all need now and
then, which are full of details worthwhile to know. In
my macros you will not find 15 \expandafters in a row.
Triads? Yes!

The prerequisite is that participants are AnyTEX users,
who just want to broaden their understanding, who
want to gain a confident way of robust macro writ-
ing, who like documents to be embellished by minimal
markup.

Kees van der Laan

This Master Class I would organize via the internet,
although a TgX course via the internet is not new.
Times have changed. The teacher, or conductor, does
not have to be the most knowledgeable TgXie, just the
coordinator, like a chairman in a meeting. Attendees
and coordinator commit themselves for a year or so,
and have once a month a multiple participants session
on the internet, with as many in between contacts as
one can handle. The coordinator provides for exercises,
where ideas to be worked out can come from participants
too. In order to secure commitment the course is not
for free, and the coordinator, under contract, is paid. A
user group, for example NTG, backs it up and warrants
continuity, for example with respect to the coordinator.
For such a TgXing Paradigms activity I have material of
10 years ago as starting point, but would like to see added
sessions on

O the use of the various \last(...)s,

O virtual fonts,

O active documents, read hypertexts, and
O TgX with calls to MetaPost on the fly.

My old headings paper will be revised with emphasis on
the three generations of headings already

1. Just as in plain TgX

2. Provide for running heads in the headline and pro-
vide for a ToC creation, like in manmac

3. Provide for hypertext cross-referencing links and PDF
bookmarks.

Of course, we might look into the CTAN for examples
from the community.

The gain for participants is to master paradigms, to
acquire a robust and minimal TgX macro writing tech-
nique, just like Knuth. Absolute necessary is that the TgX
community backs up such a Master Class, by providing
turnkey, mutual communicating TgX&MetaPost on the
fly, distributed for example via the TgX Collection DVD.
Although I am not in a good health, and have already
said good-bye to most of my TgX materials, I am avail-
able to conduct such a class, provided there is a stand-in,
and turnkey TgX<MetaPost IDEs for PCs.

Another dream of me is a (hyperbolic) geometry class
supported by MetaPost as tool.



TEX Education

M.C. Escher
Limit Circle III

TeXing Paradigms beneficial?

In the sequel I will argue why a Master Class, or is it
a sort of internet workshop, for TgXing paradigms is
beneficial.

It would be great if one could write a macro \jpg just
at the moment one needs it. Reality is, I must confess,
that it is not yet, well nearly, the case for me. Knuth,
I was told in the past, can just do that.

In 1994 I published a note on the extension of plains
\1item macro in MAPS to provide for automatic number-
ing.

After my period of TgX inertia I looked at it again, and
I was much surprised. I missed the following considera-
tions, also in the revision of 1996:

1. I missed the criterion that its use should be similar,
and then I mean really similar, to Knuth’s \item,
with its minimal markup.

2. I missed the reasoning why it is useful to supply such
a macro. Would not just the straightforward markup

\iteml textl

\item2 text2

etc

make the need for a macro \nitem superfluous?

3. I overlooked that it was all about: a list of labeled
indented paragraphs, each paragraph as usual ended
by a \par—or the synonym \endgraf—inserted by
either \item, \itemitem, \smallbreak, ... \bigbreak,
..., or implicitly by just the minimal markup of a
blank line!

The point is: a good teacher would have drawn my at-
tention to the ingenuity of Knuth’s minimal markup, and
strongly suggested not to write such a macro. Moreover,
he would argue that there is hardly a need for it. MAPS
was not reviewed, so neither a referee was in sight. Self-
study is not enough, one needs guidance by a master.
Little, first knowledge, which is usually acquired by self-
study, is dangerous.

ConTgXt and KIEX provide for automatically num-
bered lists.

EUROTEX 2009

But...
within an environment, which is a clear and secure
but different approach. It does not strive after utmost
minimal markup.

If you have to mark up a document with long lists of
numbered paragraphs a minimal \nitem macro, similar
in use as \item, can be handy. I would propose the
following \nitem nowadays, where I took care of my
perceived impossibility at the time by redefining \par
at an appropriate local place. The sequence of numbered
paragraphs, to be marked up by \nitems is enveloped by
a group behind the scenes, with the advantage that one
can stay ignorant of the hidden counter.

\newcount\itemcnt

\def\nitem{\begingroup
\def\par{\endgroup\endgraf}
\def\nitem{\advance\itemcnt1

\item{\the\itemcnt}}%

\nitem}

%\par has to be replaced by \endgraf

\def\item{\endgraf\hang\textindent}

\def\itemitem{\endgraf\indent
\hangindent2\parindent \textindent}

Another, maybe overlooked" nicety is to have a \ftn
macro, which maintains and uses a footnote counter.
The user can just supply the contents of the footnote,
does not have to worry about the (hidden) counter. My
recent created Minimal Markup variant does not need
curly braces around the (1-paragraph) footnote text, just
end the text by a blank line. No

\futerelet\next\fo@t

needed.

If not convinced by my arguments a Master Class is
beneficial by definition.

Examples of macro writing

To show you what I have on my mind in macro writing
I have supplied a few macros.

Tough exercise

Glance at my recent solution of the TgXbook tough
exercise 11.5, which is more clear and more direct than
the one given in the TgXbook, IMHO, illustrating the

E17



E18 MAPS 39

First-In-First-Out paradigm, as published in MAPS92.2
revised 1995, titled FIFO and LIFO sing the BLUes-
--Got it? To end recursion a (classical) sentinel is
appended and macro tokens are gobbled, the latter in-
stead of Knuth’s multiple use of \next. The assignment
inhibits processing in the mouth, which in general I do
not consider that relevant. This gobbling up of macro
text in the mouth I use abundantly, e.g. in my TgX
macro for quicksort, as published in MAPS96.2. It also
shows that sometimes we have to test for spaces and
that sometimes the %-character is mandatory, especially
when inadventory spaces turn you down.

Chomm oo (oo o o dl 0 b Ok

My current solution reads

\def\fifo#1{\ifx\ofif#1\ofif
\else \ifx\space#1\space
\else\blankbox{#13}%
\fi
\fi
\fifo}
\def\ofif#1\fifo{\fi}
%
\def\blankbox#1{\setbox0=\hbox{#1}
\hbox{\1lower\dp0
\vbox{\hrule
\hbox{\vrule\phantom{#1}\vrule}
\hrule}}}
%
\def\demobox#1{\1leavevmode\fifo#1\ofif?}
%with use
\demobox{My case rests.
Have fun and all the best.}

Is the use of \ifx essential, or could \if, respectively
\ifcat, have been used?

Earlier, I had a solution where I read the line word
by word using a space as parameter separator, circum-
venting explicit testing for spaces. So, at least three
variants are available for discussing the pro-and-cons.
I am curious for GUST’s approach, because they have the
bounding boxes of each character in GUST as part of their
logo. Undoubtedly ingenious.

Knuth uses the functionality in as well the TgXbook
ch1s, to illustrate his explanation of the transformation
of a math formula specification into a sequence of
(boxed) atoms, as the MetaFontbook ch12 on Boxes.
Reuse, aha!

Wind macros

Despite the powerful MetaPost, I will talk for the first
time about my plain TgX turtle line drawing graphics
macros of 213 years ago, which I have used for a variant
solution of the TgXbook exercise 22.14 (see later), but also
for drawing some fractals, e.g. my favorite the Binary

Kees van der Laan

tree and the H-fractal (to be introduced later), a square
spiral, and a Pythagorean tree, as well as a variant of
the Sierpinsky triangle given at the end, as application
of Knuth’s dragon figures approach in appendix D of the
TeXbook. The included smileys are new, they replace the
old ones in pic.dat, because like Hans Hagen I guess,
I'll do all my graphics in MetaPost or PS from now on.
Revision, aha!

The wind macros can still be handy for sketches in TgX
alone, although I programmed already some fractals in
PS directly. If time permits I might finish my fractals
note, with the graphics in PS and MP.

\N, \E, \S, and \W, draw a line element from the
point (\x, \y) of size as supplied by the argument in the
direction North, East, South, or West, respectively. The
line element is encapsulated in a box of size 0, meaning
the drawing does not change the reference point.

\def\N#1{\xy{\kern-.5\1inethickness
\vbox toOpt{\vss
\hrule height#1\unitlength
width\linethickness}}%
\advance\y#1\unitlength}
%
\def\S#1{\advance\y-#1\unitlength{\N{#13}}}
%
%\E and \W read similar, see my
%Paradigms: the winds and halfwinds. MAPS 96.1
%
\def\xy#1{%Function: place #1 at \x, \y
\vbox toOpt{\kern-\y
\hbox toOpt{\kern\x#1\hss}\vss}}

\xy is similar to Knuth’s \point macro of Appendix D of
the TgXbook.

]

A straight application of the wind macros is the above
shown (inward) square spiral, which is drawn by the
macro listed below, where the number of windings is
supplied in the counter \k, and the coordinates (\x,
\y) contain the starting point for the drawing. Note
that during the drawing one has not to be aware of
the coordinates, they are implicit. In order to display a
centralized figure supply

\x = —\k x \unitlength

\y = \k * \unitlength
and enclose it in a box of height, width and depth

S\k # \unitlength.



TEX Education

\def\inwardspiral{{\offinterlineskip
\loop\E{\the\k}\advance\k-1
\S{\the\k}\advance\k-1
\W{\the\k}\advance\k-1
\N{\the\k}\advance\k-1
\ifnum\k>4 \repeat}}

Contest
I needed for the graphics inclusion in this paper, and in
the slides, a minimal markup macro \jpg.

During my presentation I launched a minimal markup
problem. I wanted to replace the following markup with
optional width. .. height...

$$\pdfximage height..width...
{filename. jpg?}
\pdfrefximage\pdflastximage$$

by either the minimal markup

\jpgD filename

or
\jpgD width... filename

or

\jpgD height... filename

or

\jpgD height... width... filename

No square brackets, no curly braces, and even no explicit
file extension, because it is already in the macro name.

I challenged the audience to write such a macro.
There would be two winners one appointed by me and
one by the audience.”

And... the winner is... Péter Szabd, by me and by the
audience, with the following solution

\def\jpgfilename#1 {%

\egroup %end \setbox0\vbox
$$\pdfximage%
\ifdim\wd0=0pt\else width\wd0O\fi
\ifdim\ht0=0pt\else height\htO\fi
{#1.3pg}%
\pdfrefximage\pdflastximage$$
\endgroup}

\def\jpgD{%
\begingroup
\setbox0\vbox\bgroup
\hsizeOpt \parindentOpt
\everypar{\jpgfilename}%
\hrule heightOpt }

Elegant, to associate the optional parameter with a
\hrule and measure it by putting it in a box. Elegant
it is.

But...
I must confess, it took me some time to understand it. A

EUROTEX 2009

Master Class would have been beneficial for me, to learn
to understand these kinds of macros more quickly ®.
The near winner was Bernd Raichle with a thorough,
straight-forward solution, not avoiding the pitfall, and
which is a bit too long to include in this note.

But...
it shows a superb, elaborate parsing technique looking
for width. . height... and then take appropriate action.

Post conference Phil Taylor came up with a near, but
intriguing solution and I myself also boiled up one. Both
are supplied in the Appendix I, because much can be
learned from them. Both neglect the (unintended) pitfall
to concentrate on the parsing of the optional parameters.
Phil and I just pass on the optional parameters, if any, to
\pdfximage.

2D Graphics

Line drawings with incremental difficulties are included
and discussed, such as

O straight line drawings by the wind macros and by
gkppic in plain TgX, and PS, such as fractals and
flowcharts

O graphics with curved lines by PS and MP, such as
graphics composed of oblique lines (and spurious
envelopes), circles, and general curves, to be drawn
by splines.

Binary tree

I consider my binary tree macro as very beautiful,
because it can be programmed so nicely in TgX or PS,
and has such interesting applications. I consider it much
in the spirit of Knuth’s Turing award lecture Computer
Programming as an Art.

\def\bintree{\E{\the\kk}%
\ifnum\kk=2 \eertnib\fi
\divide\kk2 {\N{\the\kk}\bintree}%
\S{\the\kk}\bintree}%
\def\eertnib##1\bintree{\fi}%terminator

This mean and lean macro from the past can be adapted
to your needs.

The above \bintree I used for a Turtle graphics,
non-\alignment, solution of the TgXbook exercise 22.14,
which reflects the binary structure. En-passant, NTG’s
VIPs replace the original names given in the TgXbook.

2 GvN

1 CGL

E19



E20 MAPS 39

The previous drawing is obtained via

%labels in preorder
\def\1{CGL}
\def\2{GvN}\def\5{JLB}
\def\3{EF}\def\4{WD}
\def\6{HH}\def\7{TH}
%
$$\unitlength2ex\kk8 \chartpic$$
%
%with adaptation to insert the leaves
%
\let\Eold\E
\def\E#1{\global\advance\k1
\xytxt{ \csname\the\k\endcsname$_\the\k$}
\Eold8}}

Remarks. The (educational) indices at the nodes are
inserted to identify the nodes, to make the (order of) tra-
versal explicit. The replacement text of \1 will be placed
at node 1, etcetera. Adding the leaves, the initials, is done
by adapting the \E macro and invoking \xytxt, which
places text at the point (\x, \y). \chartpic encapsulates
the Binary Tree picture in a box of appropriate size. See
my earlier more elaborate note in MAPS96.1.
The variant PS code of the binary tree macro reads

%!PS -Bintree, cgl~1995-
%%BoundingBox: 0 0 600 600
/Bintree{/k exch def drawN
/k k 2 div def
k1 gt {%
gsave drawE k Bintree grestore
drawW k Bintree}if
/k k 2 mul def}def %end BT
/drawN{0 k rlineto currentpoint
stroke translate
0 0 movetol}def
/drawe{k 0 rlineto
currentpoint stroke translate
0 0 moveto}def
/drawW{k neg 0 rlineto
currentpoint stroke translate
0 0 movetol}def
200 400 moveto 1 setlinewidth
.5 .5 scale 128 Bintree
showpage

I hope you will experiment with my binary tree codes,
and please let me know if you have some nice, mean and
lean use for it.

A more complicated use of the wind macros is the H-
fractal macro as given below

\def\hfractalpic{%Size(2,1)*2\kk\unitlength
\def\hf{\ifnum\level>0
{\nxt1\hf}\nxt3\expandafter\hf

Kees van der Laan

\fi}%
\def\nxt##1{\advance\dir##1
\ifnum3<\dir\advance\dir-4 \fi
\ifcase\the\dir \N{\the\kk}%

\or \E{\the\kk}%

\or \S{\the\kk}%

\or \W{\the\kk}%
\fi

\multiply\kk17 \divide\kk24
\advance\level-1 }%
\dir=0 \hf}%end hfractalpic

A M AE
eyl s
TIEE EE|EE

il o

My PS variant is even more concise and reads

s

%!PS -H-fractal cgl aug2009-
%%BoundingBox: 0 0 600 600
/Hfractal{/k exch def
gsave draw
/k k 2 mul 3 div def
k 1 gt {90 rotate k Hfractal
-180 rotate k Hfractal}
if
/k k 3 mul 2 div def
grestore}def %end Hfractal
/draw{0 k rlineto
currentpoint stroke translate
0 0 moveto}def
%
300 0 moveto 1 setlinewidth
.3 .3 scale
512 Hfractal
showpage

With respect to graphics I favour PostScript, and why not
write yourself a little bit of mean and lean PostScript?
The above macros in TgX can be useful for sketches and
fractals.

But...
when linethickness becomes noticeable, they suffer from
a severe disadvantage of ugly line joinings like the notch

1

In MetaPost these notches can be circumvented by using
suitable pens. Using in PostScript appropriate values for



TEX Education

setlinejoin, setlinecap, or the use of closepaths for
contours, will help you out.

Flowchart
An example of the use of gkppic macros is the following
diagram for the loop.

The code I borrowed from BLUe’s pic.dat, adapted for
the occasion with inserting \bluec and \bluel. Not nice,
so another reason for doing it all in MetaPost.

\def\blueflowchartlooppic¥%

{\bgroup\unitlength=3ex%3.8ex
\xoffset{-.5}\yoffset{-.3}%
\xdim{53\ydim{7.5}%

\beginpicture

%\ifmarkorigin\put(0,0)\markorigin\fi
\put (0,0){\1line(1,0){2}}%

\put (0,0){\1ine(0,1){63}}%

\put (0,6){\bluec\vector(1,0){23}}%
\put(2,6.5){\bluec\vector(0,-1){1.5}}%
\put (1,4){\framebox(2,1){\bluec pre}}%
\put(2,4){\bluec\vector(0,-1){.5}}%

%\put(2,3){\rhombus(2,1)1{tst}}%
\put(1,3){\bluec\line(2,1){1}} %lu
\put(1,3){\bluec\line(2,-1){13}} %11
\put(3,3){\bluec\line(-2,1){13}} %ru
\put(3,3){\bluec\line(-2,-1){13}} %rl
\put(2,3){\makebox(0,0){\bluec tst}}%

%

\put(2,2.5){\1ine(0,-1){0.5}3%
\put(1,1){\framebox(2,1){\bluec post}}%
\put(2,1){\1ine(0,-1){1}3}%

%

\put(3,3){\1line(1,0){13}3}%

\put (4,3){\vector(0,-1){3}}%
\put(4,2.5){\kern2pt{\bluec else}}%
\endpicture\egroup%

1% end blueflowchartlooppic

Before the invoke I defined \bluel as well as \bluec
and used \bluec in the definition and \bluel before the
invoke. Not so nice, but imposed by PDF.

Disadvantages of the gkppic macros and KTEX
picture environment is that coloring is tricky when
using \pdf (Any)TeX: elements of a font are colored by

EUROTEX 2009

supplying k to \pdfliteral and lines or fills are colored
by supplying K to \pdfliteral. Moreover, one has to
put the pictures drawn by the wind macros in a box of
appropriate size, sort of Bounding Box, to ensure space.
A nuisance.

\def\bluec{\pdfliteral{1 0 0 0 k}}
%»versus
\def\bluel{\pdfliteral{1 0 0 0 K}}

When we use the multi-step processing line via PS we
don’t have that disadvantage. Below a test example.

pretext

\special{ps: 0 0 1 setrgbcolor}%blue
abc

\hrule

def

\special{ps: 0 0 0 setrgbcolor}%black
posttext

\bye

Process the . dvi via dvips and view the . ps, to verify the
result. In TeXnicCenter I have added the Output Profile
eIgX—PS—PDF. Convenient.

Note the explicit switching back to black, because the
TEX scope rule is not obeyed, of course. Another way to
prevent that the rest will appear in blue, is to insert gsave
in the first and grestore in the second \special.

My MP code for the flowchart  which made use of
Hobby’s boxes . mp

input boxes.mp;
prologues:=3;
%outputtemplate:="%j-%3c.eps”;
beginfig(0)
boxit.boxa (btex \hbox to 60pt%
{\strut\hss pre\hss}etex);
boxit.boxb (btex \hbox to 60pt%
{\strut\hss tst\hss}etex);
boxit.boxc (btex \hbox to 60pt%
{\strut\hss post\hss}etex);
boxa.c=(100,180);
boxb.c=(100,140);
boxc.c=(100,100);
boxa.dx=boxb.dx=boxc.dx=5;
boxa.dy=boxb.dy=boxc.dy=5;
drawoptions(withcolor blue);
drawboxed (boxa, boxc);
%draw contents of b and the diamond shape
draw pic.boxb;
draw boxb.w--boxb.n--boxb.e--boxb.s--cycle;
%The arrows
drawarrow boxa.s--boxb.n;
drawarrow boxb.s--boxc.n;
z1-boxb.e=z2-boxc.e=(20,0);

E21



E22 MAPS 39

drawarrow boxb.e--z1--z2;
z3=boxb.w-(20,0);
z4=boxc.w-(20,0);

drawarrow boxc.w--z4--z3--boxb.w;
endfig

end

Note how the diamond diagram is obtained from the
information created by the boxit invoke. Henderson’s
previewer does not allow the use of boxes.mp. If one can
write the above flowchart with the use of gkppic macros,
one could have coded it equally well direct in PS. To
code in PS the generality incorporated in the boxes.mp
is substantial more work, and unnecessary in view of
the neat boxes.mp macros, which come with the PD
MetaPost. In Goossens’ et al. Graphics Companion the
metaobj work of Roegel is mentioned as a generalization.
To understand the boxes.mp macro is a good exercise in
becoming familiar with the suffix concept, a unification
of index and record, which Knuth introduced to handle
conveniently the many related parameters in a glyph.
By the way, the resulting PS is not standard PS, but
named purified PostScript which is incorrect, because
of the used cmr fonts. The coupling of the TgX cmr
fonts to PostScript fonts, an old problem, is done by
the prologues:=3;. The name of the resulting output
file can be composed to one’s wishes by assigning an
appropriate string to outputtemplate.” The filename
with extension .eps facilitates previewing via Acrobat.
For previewing via CSview4.9 it does not matter. The
inclusion of the string (100,100) translate as value
of special hinders previewing: the Bounding Box is
incorrect, the calculation of the BB does not account
for this PostScript inclusion. I have the impression that
the PostScript code is just passed through to the output.
Inserting the desired font via special would not work ei-
ther. I found it convenient to name boxes beginning with
box. .., to avoid name clashes. See for more details and
possibilities the (latest version of the) MetaPost manual.

If only the TgX Live DVD would have provided
installation directions for MetaPost.

Oblique lines

When my youngest daughter was at school, she pro-
duced the following object created by ‘oblique lines’
with spurious envelopes (left). My emulated result in MP
is at the right, and created just for this note.

Kees van der Laan

The curves, not quarter circles by the way, suggested by
the oblique lines which connect points on the sides, are
spurious. Below I have included the MP code.

beginfig(1); numeric s; s=5cm;
path 1, u, cl, cr;
%. ..
cl=(-s,-s){up}..(-.5s,.5s).. {right}(s,s);
cr=(s,s){down}..(.5s,-.5s)..{left}(-s,-s);
for t= 0 step 0.5 until 20:
draw point t/10 of cl --

point t/10 of cr withcolor blue;
endfor;
pickup pencircle scaled 3pt;
draw 1..u--(s,-s)--cycle withcolor blue;
endfigure;

If we rotate and shrink appropriately we get the interest-
ing figure

In Goossens’ et al. The IXTEX Graphics Companion this
figure is shown as an example of a recursive object.”

beginfig(0);

u=1cm;

drawoptions(withcolor blue);

for k=0 upto 15:

draw((u,-u)--(u,u)--(-u,u)--
(-u,-u)--cycle)rotated 10k;

u:=.86u;

endfor

endfig;

These figures are a prelude to Gabo’s 3D regular surfaces.
PostProcessing by Photoshop
My wife, Svetlana Morozova, ‘shoot-shoot’ post processed

the PS flower (left) interactively via Photoshop into the
nice colored flower (right).

The PS code for the flower is given on the next page.



TEX Education

%%!PS Flower. CGL june 96
%%BoundingBox: -25 -25 25 25
0 0 1 setrgbcolor
100 100 translate
/r 18 def
10{r 0 r 90 180 arc

0 r r 270 360 arc

36 rotate}repeat
stroke
showpage
%%EOF

Have a try in coloring it. For comparison I have included
the MP code below.

beginfig(1);

r=18;

path p;

drawoptions(withcolor blue);

p= (0,0){up}...{right}(r,r){down}
...{left}cycle;

for i=1 upto 10:

draw p rotated 36i;

endfor

endfig

end

Note. In MP we don’t have to translate the origin.
The connection between the knots is tight, by three
dots. Interesting is that PS can draw circles while MP
approximates.

PostScript spaces

MF and MetaPost are nice graphical languages, with
convenient and powerful high-level instructions. Post-
script employs the notion of a 2D user space and a
2D device space, the latter can rotate. MetaPost has a
path and a picture data structure, which can be rotated,
well... transformed. Another difference is that PostScript
is stack oriented and MetaPost enjoys a declarative
language with a thorough syntaxes.

Negative from MetaPost is that the resulting Post-
Script code may not be concise and readable. Values of
the MP variables are given in the resulting PS and not
their symbolic names. Loops are unwinded.

Raw PostScript can be included via MetaPost’s spe-
cial, however. The best of both worlds??!

M.C. Escher
<— Bolspiraal
CGL’s

— Sort of

EUROTEX 2009

Yin Yang
A neat timeless MetaPost code I borrowed from Hobby

beginfig(1);

u=1cm;

path p;

p=(-u, 0)..(0,-u)..(u,0);

fill p{upl}..(0,0){-1,-2}..{up}cycle;
draw p..(0, u)..cycle;

endfig;

without the ‘eyes’.”
Below my enriched PostScript variant of Hobby’s
MetaPost code, for the real Yin Yang picture.

%!PS-Adobe- Yin Yang. cgl July 2009
%%BoundingBox: -25 -25 25 25

/R 25 def /hR R 2 div def

/mR R neg def /mhR hR neg def

/r R 5 div def /mr r neg def

/rcircle {translate % center on stack
r 0 moveto 0 0 r 0 360 arc
}def
0 mR moveto 0 0 R 270 90 arc
0 hR hR 90 270 arcn
0 mhR hR 90 270 arc
fill
R 0 moveto 0 0 R 0 360 arc
stroke

gsave 0 hR rcircle fill grestore
gsave 0 mhR rcircle

1 setgray fill
grestore

It differs from the MP code, because there is no di-
rection specification in PostScript. Procrusting direction
has to be done by control points in general, which are
not needed in this special case. If the small discs are
omitted—Hobby’s original code—the PS code is not that
much longer than the MP code. Orientation is immater-
ial.

A picture with a genuine use of control points is the
Malbork window below.

E23



E24 MAPS 39

Syntactic sugar? Yes, but the PS code can directly be used
in documents, to be inserted by the dvi(2)ps driver, alas
not directly by pdf(Any)TgX. Strange.

It is tempting to go for .pdf all the way and I was
advised to convert PS pictures into PDF, which is easy
via Acrobat, or the older Distiller, I1lustrator, Pho-
toshop?, or...No big deal.

However, I could not control the placement of .pdf
pictures in pdfeTgX.? For this paper, and my slides,
I have converted all . eps pictures into . jpg.*

The . jpgs could be integrated smoothly in the docu-
ment by pdfeTgX, and was the way of picture inclusion
with pdfeTgX, for EuroTgX09, because it worked and
I think . jpg is more appropriate for pictures, despite its
non-scalability without quality loss

But,..
maybe PDF, SVG or PNG is better, no hands-on with the
latter two formats as yet. However, I believe— biased by
the SoC principle and because I can include . ps pictures
in my document— that the more-steps processing, via
dvi(2)ps is better. I will explore that later.

Smiley
A simple example in MP of the use of pens is the
following MP code for the smiley @

beginfig(1);

u=1cm;

color yellow; yellow=(1, 1, 0);

fill fullcircle scaled 20u

withcolor blue;

pickup pencircle scaled 4u;

draw ( 4u, 4u) withcolor yellow;

draw (-4u, 4u) withcolor yellow;

pickup pencircle scaled 1.5u;

draw (-7u,-u){1,-103}..(0,-7u)
..{1,10}(7u,-u) withcolor yellow;

endfig;

Schrofers opart

Placement of (deformed) circles in a square has been
done by the artist Schrofer in an opart way. My emu-
lation follows.

Kees van der Laan

%!PS -Schroefer’s Opart cglnov1996-
%%BoundingBox: -190 -190 190 190
200 200 translate
/s 5 def %BB for 1 with s=5
/drawgc{gsave

r ¢ translate

r abs 5 div s add

c abs 5 div s add scale

0010 360 arc

fill
grestore}def%end drawgc
%
/indices [30 21 14 9520

-2 -5 -9 -14 -21 -30] def
/Schroefer{/flipflop true def
indices{/r exch s mul def

gsave indices{/c exch s mul def
flipflop{drawgc}if
/flipflop flipflop not def
}forall
grestore

}forall
-38 s mul dup moveto
0 76 s mul rlineto
76 s mul 0 rlineto
0 -76 s mul rlineto
closepath 5 setlinewidth stroke
}def%end Schroefer
gsave .5 .5 scale Schroefer
grestore
showpage

EuroTEX94 battleship logo
In order to illustrate the calculation of intersection points
in PS I have borrowed the EuroTEX94 battleship logo.

In general we need MF or MP for solving (linear) equa-
tions within a graphics context. However, the calculation
of the intersection point of 2 straight lines we learned
already at highschool, albeit without pivotting strategy,
for numerical best results. So, the knowledge for solving



TEX Education

2 equations in 2 unknowns in PS is there. I spent a little
time on writing the PS code for it, ~15 years ago, just
after the 1994 EuroTgX, to write the logo in PS when MP
was not yet in the public domain. I did not realize at the
time that it was important, because people believe, have
the prejudgement, that we can’t solve equations in PS, or
at least they apparently think that we don’t have a def
for it. Indeed, we should create a library of .ps defs, or
maybe it exists already somewhere?

What we miss so far is that we can’t specify in PS
the equations implicitly as we can in MF and MP. No big
deal.

From the specified points on the stack in PS we can
form the coefficients for the equations, leave these on
the stack and solve the equations. No more than high
school knowledge is required, and... a little endurance to
solve the equations, as I did maybe some 30 years ago for
the HP handheld calculator, which also uses a stack and
Polish Reverse Notation.

The data in PS code reads

%Data

/p0{0 0}def

/p1{3 s mul 0}def

/p2{4.5 s mul 2 s mul}def

/p3{3 s mul s}def

/p4{-.75 s mul 2 s mull}def

/p5{p0 top p3 p4 intersect}def

/p6{p0 p1 mean top p3 p4 intersect}def
/p7{top p1 p3 p4 intersect}def

/p8{p2 p5 top pl1 intersect}def

/p9{p8 dup 0 exch top p0 intersect}def
/top{2.5 s mul 3 s mul}def

To specify all the points I needed a PS def intersect for
calculating the intersection point of 2 lines determined
by 4 points.

Points p1 p2 p3 p4 —x y

/p1{0 0}def /p2{10 O}def ...

%

/p {p1 p2 p3 p4 intersectl}def
%

/intersect {%p1 p2 p3 p4 > x y
makecoef 7 3 roll

makecoef

solveit}def %end intersect

EUROTEX 2009

%
/makecoef{%z1 z2 -> e a b
4 copy %x1 y1 x2 y2 x1 y1 x2 y2
4 -1 roll mul
3 1 roll mul sub
51 roll 3 -1 roll sub

%(y2x1-y1x2) x1 x2 y2-yl
3 1 roll sub%(y2x1-y1x2) y2-y1 x1-x2
}def %end makecoef

As last piece the definition of solveit

/solveit{% a b fcd ->xy
%Equations: ax + by = e p=pivot

% cx +dy = f

%pivot handling %e a b f cd

1 index abs % abfcd|c|

5 index abs % abfcd|c| |a]

gt {6 3 roll} if %exchange ‘equations’
%stack: e ab fcdor fcdeab,
%first is in comments below

exch 4 index % abfdca

div % abfdp

6 -1 roll dup 6 1 roll 3 1 roll

% eb fedp

% ebfedbp
dup 4 1 roll % ebfepdbp
mul sub % e b fep (d-b.p)
4 1 roll mul sub exch div

% e b (f-e.p)/(d-b.p) =aeby

dup 5 1 roll mul sub exch div exch
}def %stack: x y

4 index exch

Finally, the drawing of the battleship

%Battleship

-2 s mul 0 translate

0 0 1 setrgbcolor

p0 moveto p1 lineto p2 lineto p3 lineto
p0 lineto closepath

p3 lineto p4 lineto p0 lineto

top lineto p6 lineto

top lineto p7 lineto

p8 lineto p4 moveto p9 lineto

p1 moveto
p5 moveto
p6 moveto
p2 moveto
stroke

Circle covered by circles
This example is included because it demonstrates that
even in PS we can solve nonlinear equations.

E25



E26 MAPS 39

Essential in this code is the definition of Bisect for zero
finding of a nonlinear function.

/Bisect{%In 0<=1<u f(1)<0 f(u)>0
%ut 1<=d<=u u-l<eps f(1).f(u)<=0
/fd f def
fd 0 1t {/1 d def}
{/u d def}ifelse
ul sub eps gt
fd 0 ne and %1-u>0&f/=0
{Bisect}if
d}def %end Bisect
%
/1 ...def /u ...def
/d{.5 1 u add mul}def
/f{% f: d-->f(d)
} def

For the complete code and the formulas for the mid-
points of the circles see my Tiling note of the mid 90-ies.

2.5D Graphics

For drawing 3D objects in PS I discern the following
spaces

O 2D PostScript Device Space
O 2D PostScript User Space

T added

O 3D User Space, the data
and
Project 3D US
onto 2D PostScript US

By 2.5D graphics I mean an image of a 3D object,
displayed as 2D graphics, obtained from 3D data spec-
ifications and projection onto 2D.

The projection formula reads

X'\ —cos¢ sind
(y’) - (fsind)sine —cos¢sin®d

cose)

[N

VA P

L2 _____D

Kees van der Laan

The (full) transformation matrix can be understood as
to be composed of 2 rotations: first around the z-axis
and second around the transformed x-axis, such that
the z-axis coincides with the view direction OP L the
new xy-plane. We can omit the 3", the transformed
z-coordinate, because it is no longer visible in the (or-
thogonal) projection. The factorization of the projection
matrix is

1 0 0 —cos¢p sind O
0 —sin® cosH sing cosd O
0 cos® —sind 0 0 1

Coded in PS as a Point to Pair def, ptp, the projection
formula reads

/ptp{/z exch def/y exch def/x exch def

x neg a cos mul y a sin mul add

x neg a sin mul b sin mul y neg a cos mul
b sin mul add z b cos mul add}def

Later, in the MP code for Gabo’s 1inearii, the MP vardef
for Point to Pair is given.

Pyramids

Hobby in his ‘A user’s manual for MetaPost” draws a
pyramid. Below I have drawn pyramids starting from 3D
data as function of the viewing angles.

The PS code reads

%!PS-Pyramid in projection, cglaug2009-

%%BoundingBox: 0 0 300 100

/ptp{/z exch def/y exch def/x exch def

x neg a cos mul y a sin mul add

x neg a sin mul b sin mul y neg a cos mul
b sin mul add z b cos mul add}def

%

/r 20 def /hr r 2 div def

/z1{r neg r 0 ptpl}def
/z2{r neg dup 0 ptpl}def
/z3{r r neg 0 ptp}def
/z4{r r 0 ptpl}def

/top{0 0 r 4 mul ptp}def

%

/pyramid{z1 moveto z2 lineto z3 lineto
[2]11 setdash stroke



TEX Education

z3 moveto z4 lineto z1 lineto
top moveto z1 lineto
top moveto z3 lineto
top moveto z4 lineto stroke
top moveto z2 lineto
[2]1 setdash stroke}def%end pyramid
%
30 300 translate
0 0 1 setrgbcolor%blue
1 setlinecap 1 setlinewidth
%
15 25 65{/a exch def
30 -20 10{/b exch def
pyramid
57 0 translate}for}for
showpage

Escher’s impossible cube
As student I was asked by my professor to (re)make
Escher’s® Impossible Cube.

I decomposed it into two parts, in timber, and put
them together such that in projection the impossible
cube was obtained. I photographed it and handed the
photo to my professor.*

I'm happy that after so many years, I had the guts to
emulate the cubes.

I consider each corner of the (impossible, non-
mathematical) cube as a cube itself, with its 8 corners
as data points, which yields in total 64 data points.
After projection I could connect the appropriate points
and make the (impossible) cube. First, I did the erasing
and adjusting in Photoshop, but a little later I drew the
impossible cube in PS alone, which is not completely
general as function of the viewing angles. A bit tedious.
The code is too long and too tedious to be included
here.

Gabo’s constructive art

Long ago, I was still a student, I visited the Tate Gallery
in London, and was captivated by the constructive art of
Gabo,” especially his linearii of the early 1940-ies.

EUROTEX 2009

Naum Gabo
<— Lineari
—> Linearii

I also passed by his (temporarily nonworking) fountain
in front of the St Thomas hospital opposite the Big Ben,
on the other bank of the river Thames.

In the fountain, the regular surface is formed by jets of
water, and changes dynamically, because it rotates, due
to the ‘action is reaction’ principle.

After many years, I all of a sudden had an idea of how
to imitate this fountain in my garden, for my quarter
circle pond. A very remote sort of imitation, but... funny.
Too alternative to be included here, maybe on the slides
for BachoTgX2010, for fun.

With my youngest daughter I imitated Gabo’s 1in-
earii in plastic.

In ~1995 I emulated lineari, linearii in MF, and
adapted the code towards MetaPost. For this conference
I'looked at the pictures again. Sveta and I adjusted them
with thinner lines and colored them blue.

They came out more beautiful than before, even nicer
than the photo’s of the objects, IMHO. A matter of taste?

Naum Gabo
Lineari

E27



E28 MAPS 39

Naum Gabo
Linearii

Of linearii I have included the MP code below

beginfig(1);
proofing:=1;
size=75;
path p[];

def pointtopair(expr x,y,z)=

(-x*cosd a + y*sind a,

-x*sind a * sind b -y*cosd a * sind b
+ z*cosd b)

enddef’;

%

%Path construction

%

%basic path (the shape of the boundary)

%can be molded, can be constrained etc

pl:= (0,3size){right}..
{down}(1.1size,1.75size){down}..

(.35size,.75size)..(.175size,.375size)..

{left}origin;
%path with regular---nearly so---
%distributed points
n:=0;%number of points along the curve
p10:= point 0 of pl1 hide(n:=n+1)..
for t:=1 upto 19: hide(n:=n+1)
point .05t of p1..endfor
point 1 of p1 hide(n:=n+1)..
for t:=1 upto 13: hide(n:=n+1)
point 1+t/14 of p1..endfor
point 2 of p1 hide(n:=n+1)..
for t:=1 upto 3: hide(n:=n+1)
point 2+t/4 of p1..endfor
point 3 of pl1 hide(n:=n+1)..
for t:=1 upto 3: hide(n:=n+1)
point 3+t/4 of p1..endfor

origin;
%viewing angle parameters
b:=-10; a:=60;

%Project the nodes and create

Kees van der Laan

%‘paths in space’ the boundaries
p100:= for k=0 upto n-1:
pointtopair(0,xpart(point k of p10),
ypart(point k of pl10))..
endfor pointtopair(0,0,0);
p200:= for k=0 upto n-1:
pointtopair(xpart(point k of p10), O,
ypart(point k of p10))..
endfor pointtopair(0,0,0);
p300:= for k=0 upto n-1:
pointtopair(0,-xpart(point n-k of p10),
3size-ypart(point n-k of p10))..
endfor pointtopair(0,0,0);
p400:= for k=0 upto n-1:
pointtopair(-xpart(point n-k of p10),
0, 3size-ypart(point n-k of p10))..
endfor pointtopair(0,0,0);
%
%Drawing
%
%MetaPost approach: black background
% and whitedraw
%Black background
fill (-1.5size,-size)--(-1.5size,5size)--
(1.5size,5size)--(1.5size,-size)--cycle;
%
%Below white drawing
drawoptions(withcolor white);
%
pickup pencircle scaled .5pt;
%Top ring and hang up (rope)
draw point 0 of p100..
point 0 of p100 + (0,.1size)..cycle;
draw point 0 of p100 + (0,.1size)..
point 0 of p100 + (0,3size);
%Draw boundary curves
draw p100; draw p200; draw p300; draw p400;
%
%Draw (partially hidden) regular surfaces
pickup pencircle scaled .1pt;
for k=0 step 1 until n:
draw point k of p200..point n-k of p300;
endfor
for k=0 upto n:
draw point k of p400..point n-k of p100;
endfor
%erase the ‘hidden’ parts of the lines
%erase fill p100..reverse p200..cycle;
%MetaPost might blackdraw this
%fill p100..reverse p200..cycle
% withcolor black;
%Front
pickup pencircle scaled .1pt;
draw p100; draw p200;
draw point 0 of pl100--origin;



TEX Education

%

%Draw regular surface which is in sight

for k=0 step 1 until n:

draw point k of p100..point n-k of p200;

endfor

%Clip to boundary, mod July 2009

clip currentpicture to (-1.5size,-size)--
(-1.5size,5size)--
(1.5size,5size)--(1.5size,-size)--
cycle;

endfig;

end

Mathematically, I love the above included regular sur-
faces due to Gabo, because they are constructed from 1-
dimensional data, the bounding curves in 3D. The neces-
sary parameterized projection technique also facilitates
animation by changing the viewing angles.

For the first time I emulated the real Gabo by not
erasing the ‘hidden’ lines. In reality they are not hidden,
because the object is made of transparent perspex. I lied
a bit in the past, because when I did not erase the hidden
lines the reverse video picture looked too much blurred
by detail. For this conference I fine-tuned the picture
with thinner lines and in blue, which looks OK to me.

Reuse

Sooner or later one arrives at the situation to organize
the wealth of macros, pictures, references, tools and
ilks for reuse. This gave rise to my BLUe collection.
The idea in BLUe is that all the macros you use most
of the time are bundled into a blue.tex kernel. The
rest is split up into: tools, formats, pictures, references,
addresses,. . . of which BLUe will reuse parts on the fly,
unaware of the filing system of the computer. Reuse is a
general important aspect, and ipso facto in the lifecycle
of document parts.

Produce — Distribute — Consume

T T \

reuse < retrieve <« store

With a monolithic collection you have it all, all the time.
I decided to adhere to the kernel&modules adage, and
to use only from a module what is needed, realized by
a selective loading technique, similar to the one of M.
Diaz, as mentioned in appendix D of the TgXbook.

EUROTEX 2009

One might argue that this economy has become more
and more irrelevant, because of the enormous increase
of computer speed and memory, since the birth of TgX.
Partly true: sometimes parts conflict, e.g. one either
formats a report or an article, and in general it is safe
to avoid possible conflicts.

To illuminate this note, I have reused pictures be it
from pic.dat or from separate PostScript files.

Sometimes reuse implies some extra work.

I also reused the commands included in \loadtoc-
macros together with \pasteuptoc for a mini-ToC to
keep track of the structure while creating this note. En-
passant the Contents at the beginning was obtained.

This proceedings submission differs from the pre-
proceedings one, because working on the slides gave
feedback. The 2.5D GABO’s as well as the Escher Cube
have earned a place for their own.

An invoke of the one-part \bluepictures followed by
one or more \picturenames will load the indicated (TgX)
pictures and make them available under their names.
At the time I did not construct a library of PostScript
pictures, because I did not know how to supply these to
\epsfbox. There is no pspic.dat, alas. If time permits
I will think it over.

Another aspect is the search path of drivers, if only
they looked into TeX input or texmflocal; where to put
pspic.dat?

It is not so handy to put the pictures directory in the
same place as the main document. I do not know how to

add search paths.
If only \pdfTgX could handle PostScript...

As alternative to \bluepictures one can use the under-
lying two-part macros, sort of environment

\beginpictures
\picturenamel

\endpictures

but, alas TgX has no garbage collector, it would not save
on memory, it only reduces the possibility of conflicts.
Similar structures hold for tools, formats, references,

In 2002 I worked on macros for the automatic genera-
tion of PDF bookmarks for the ((sub)sub)heading titles. It
worked, even presented them at the EuroTgX, if I'm not
mistaken.

But...

I did not finish the macros, maybe I should. I noticed
that in 2005 A. Heck did not provide for bookmarks in
his MetaPost note published in MAPS, also available on
his WWW site. Is there a need? Rhetorical question.

E29



E30 MAPS 39

The above Sierpinski picture was done in TgX with its
pseudo filling via rules, also called black boxes by Knuth.
TEX lacks the filling of an arbitrary closed curve, if not
for coloring it.”® Hyperlinks were also invented long
after the birth of TgX. pdf TgX makes that all possible.”
I missed what extras eTgX, or NTS as successors of TgX
have brought us. I hope to learn at this conference what
LuaTgX is all about.

For me plain TgX mutual communicating with
MetaPost, with PDF as result is sufficient, and
even better when PS pictures can be included.

Maybe I can work around it by including PS in MetaPost
with SVG or PDF out, or by the multi-step route via
dvi(2)ps. It is so strange that the world outside has
adopted PS and we don’t in pdf(Any)TgX.*

3D metaPost?

It should not be too difficult to extend MetaPost with
triples, (%, y, z), in analogy with color, for 3D data.
Transformations can then be defined by the 12-tuple Ty,
Ty, Tz, T, Tyys Tazs Ty, Tzs Tyzs Tyxs Taxs Toy. In matrix
notation

x T, T Tyx T X
YVI|=lT]+|{Ta Tw T Y
z T, Tz Tyz T, z

Conclusions

=

<

Whatever your tool in computer-assisted typesetting,
a Master Class on macro writing in plain TgX and
MetaPost is worthwhile, along with discussing tools for
similar and complementary tasks to increase awareness,
insight and productivity.

A course in literate programming would be great too.

Wishes
May my turtle graphics macros find a niche, and may
my BLUe collection and Paradigms notes be saved from
oblivion and kept alive via distribution on the TgX
Collection DVD.*!

May the TgX Collection maintainers, the TgXnic-
Center authors, and Jonathan Kew in his TgXworks,

Kees van der Laan

support the plain TgX and MetaPost users as well as the
ETEX and ConTgXt users.

Hopes...
TpX&Co world will

O Adopt Knuth’s Plain & Adobe’s PS
O Adhere to Paradigms: SoC...

I learned a lot at and after the conference.

TgXies, who have been out of it for a while, are
well re-educated at an EuroTgX meeting.

LuaTgX and XFIgX are TgX engines, which a.o. provide
support for Unicode and OpenType fonts. New Open-
Type fonts for use in LuaTgX and XHIEX are Latin Mod-
ern and TgX Gyre, the latter based on a free counterpart
of Adobe’s basic set of 35 fonts and the former on
Computer Modern. Both aim at greatly increasing the
number of diacritical characters in the freely available
collections of fonts.”
Interesting for me with respect to Cyrillics.

Acknowledgements

Thank you NTG for inviting me for this conference.
Because of this invitation I contributed this paper, re-
freshed my TgX knowledge, polished my pictures un-
dusted blue. tex, and tried to get a modern communi-
cating TgX< MetaPost IDE running on my PC.”

I hope you enjoyed reading this paper and if only one
idea sparked up in your mind, I am happy. If the walk
along history lane, enriched by my perspectives, did not
interest you, hopefully the included pictures pleased you.

Thank you Jos Winnink for running the above lin-
earii.mp after 10+ years again, as well as the orphan
lineari.mp, which I also created in MetaFont in 1996,
and just before this conference transcribed into MetaPost
from memory, since I no longer had the original.*

Thank you Taco Hoekwater for procrusting this note
into the proceedings, and for your advice in getting me
TeXing again.

The linearii picture, I consider the most beautiful
2.5D graphics I ever made with TgX, MetaFont, Meta-
Post, or PostScript, although lineari comes close.

The doughnut picture was tricky.



TEX Education

I needed the equation solver of MetaFont, and thanks to
my familiarity with splines I could reuse the MetaFont
splines in PostScript. Recently, I made in MP a variant,
see Appendix II.

The cat picture below is my oldest and my first
exercise in MetaFont. I drew it already while at high
school. Some years ago, I recast it into a wall sculpture
composed of broken mirror pieces.

Cat
<— drawing
sculpture —>

I also made a puzzle of the cat drawing. Coloring the
contours of the cat differently in each piece yielded a
difficult, misleading puzzle: one has to concentrate on
the drawing and not on the colors, nor the shape of the
pieces.

Is this all? No, there is some more, but this is enough for
the moment.
My case rests, have fun and all the best.

Zoals
mijn dochters lectronische puzzle
VEOeger
analoog
puzzelden,
20 zullen
mijn kleinkinderen
in de toekomst
electronisch
nog plezier
aan Escher
beleven, en
ongetwijteld
Heer

Notes

1. Both had courseware: NTG’s Advanced TgX course: In-
sight & Hindsights, respectively MetaFont: practical and
impractical applications.

2. The ITEX picture environment and the gkpmac suite
I consider outdated, because of the inconsistency when using
colors and because it is much better and more convenient to do

EUROTEX 2009

all your graphics in PS directly or via MetaPost.

3. At the conference I was reminded that BLUe is under
copyright. I heard from the LPPL licensing and that seems
enough for distributing it on the TgX Live DVD. I agreed with
Manfred Lotz to modify the copyright into LPPL, and to look
over BLUe for release on TgX Live DVD of 2010. As much as
possible, for example the Publishing with TgX guide, can
already be released on the 2009 DVD as well as all my notes
published in MAPS.

4. Kazimir Malevich, 1878-1935. Russian painter, born in Kiev.
5. At the conference Ulrik Vieth talked about the need for
finetuning of math afterwards, especially with respect to a.o.
adjusting spacing, aligning subscripts, and adapting for the size
of delimiters. In an earlier paper OpenType Math Illuminated,
BachoTgX 2009, he details with OpenType Math compared to
TgX and MS Cambria release in Word 2007.

6. Hans Hagen reported about the Oriental TgX project,
which to me looks like an Oriental mode. Hans confirmed that
one can look at it that way.

7. This is an old issue. In the past we had the expression Amer-
ican Screwdriver, meaning using your tool for everything. TeX
is not an American Screwdriver.

8. I did not say that one should work in plain or PS all the
way. Of course one can start and write macros in whatever
high level language is available. I do wish, when you are
finished with the macros, that you translate them into plain,
respectively PS, and include them in a library for reuse.

9. BachoTEX2009.

10. Courtesy Phil Taylor, who published the macros for doing
the calculation by using dimension variables.

11. \author is absent, because in BLUe the author is known, is
default, you don’t have to fill it in each time, similar holds for
affiliation. BLUe is a personalized collection of macros.

12. When as a student I became member 1024 of the Ne-
derlandse Rekenmachine Genootschap, I received The Art
of Computer Programming I. My heroes next to Knuth are
G. Ploya, G.E. Forsythe, Knuth’s predecessor, C. Lanczos,
F.L. Bauer, H. Rutishauser, P. Henrici, RW. Hamming, L. Wall,
and H.A. Lauwerier my Dutch applied Math professor. He
would have loved my PS Impossible Cube, for sure.

13. Tony Hoare in the 70-ies coined the term in his famous
paper.

14. SLC mean Slow, Steep, Strenuous Learning Curve.

15. Since TgX was invented we have witnessed a tremendous
development in computers, and how to use computers. The
command line interface belongs to the past, we all use comput-
ers via GUIs. Why not have a Word-like document preparation
system with TgX as open, well-documented kernel, which can
be accessed for advanced tasks?

16. Courtesy L. Wall.

17. Because IATgX, ConTgXt, BLUe and ilks have that, of course.
18. Idid not say that one could start with the filename, because
I consider that against what people are used to, and makes the
problem a trifle. The specification was not watertight, because
I preferred a more or less open problem, to stimulate creativity.

E31



E32 MAPS 39 Kees van der Laan

19. My MetaPost1.005 did not yet provide it.

20. This rotating shrinking squares and a few other pictures,
which I borrowed from H.A. Lauwerier’s ‘Meetkunde met de
microcomputer’, such as the Koch fractal, the Hilbert curve,
the Jura fractal, Escher’s knot,. . . and published in MAPS in the
mid-90-ies, in my ‘Just a little bit of PostScript’, ‘Graphics &
TrX—a reappraisal of Metafont’, or ‘Tiling in PostScript and
Metafont—Escher’s wink’, I found back, without reference and
translated in MetaPost.

21. As yet not! Be aware that the PostScript code is just handed
through, not taken notice of.

22. The numeric equation, u=1cm, looks a bit strange, looks
more like a dimension a la TgX. It becomes clear when you
realize that cm is just a scaling factor.

23. The problem is that generally I got a picture per page, and
I did not know how to trim the picture to its bounding box.
After the conference I found out how to trim these pictures
in Acrobat 7 professional: select the picture, copy it to the
clipboard, and then click create PDF and select From Clipboard
Image.

24. The conversion was generally done by opening the .pdf
pictures in Photoshop, trim them and save them as . jpg. Later
I became aware of the prologues:=3; statement, which yields
a.0 a picture trimmed to the Bounding Box.

25. M.C. Escher, 1898-1972, Dutch artist.

26. I must have the negative somewhere, but can’t find it, alas.
I'll give it another try.

27. Naum Gabo, 1890-1977. Born Naum Borisovich Pevsner.
Bryansk. Russian Constructivist.

28. T colored the picture by post processing in Photoshop. A
work flow approach is simpler via the use of the earlier defined
\bluel and switching back via \black.

29. The term hypertext was coined by TeD Nelson during the
1960s, the concept can be traced to Vanneger Bush in 1945. See
the Hypertext issue of the CACM july, 1988.

30. Iread in the PDF manual the excuse that PDF is a successor
of PS, but does not have a programming language built in???
31. This wish will be fulfilled, as reported earlier.

32. Courtesy Bogustav Jackovski et al. and Ulrik Vieth.

33. Still a wish. But... Wybo installed Ubuntu Linux for me on
my laptop, with TgXworks, so I can explore that. Will give me
enough work to do.

34. After the conference the NTG discussion list told me how
to run the MetaPost utility supplied on TgX Live. Open a new
directory, copy cmd.exe into it as well as your filenamme.mp.
Double click the cmd. exe icon and type after the prompt mpost
filename.mp. Another suggestion was to use MetaPost from
within the SciTE editor. It would have been handy if the
readme, which comes with the TgX Live, would have contained
information on how to use the various utilities. Don’t assume
a casual user knows it.

Kees van der Laan
Hunzeweg 57, 9893PB Garnwerd, Groningen
kisal@xs4all.nl



TEX Education

Appendix I: Contest Solutions

Phil Taylor submitted the following mean and lean post
conference solution to the Contest, based on what is said
on TpXbook p204. He told me that the working of # at
the end of the parameter list is little understood, but very
useful.

Indeed, | had to look up that functionality and do the
replacement to see what it does. A paradigm, though
| don't know at the moment where Knuth used it. Phil's
solution is a near solution, because curly braces are still
needed around the filename

But...
mean and lean it is, and | reused it already, adapted, for
getting a list of all PS pictures used in this paper.

| realized, and use it as an aid in remembering, that
the # at the end of the parameter list is a workaround
for having a curly opening brace as separator.

\def \jpg #1#%
{\def \next
{\immediate \pdfximage #1
{\the \toks 0 .jpg}
\pdfrefximage \pdflastximage
3
\afterassignment \next
\toks 0 =
3
%Use
\jpg width 300pt height 30pt {P-Taylor}

I came up with the solution below, which | will add to my
FIFO paradigms list in my TgXing Paradigms collection.
Of course, | used this one for my purpose.

\def\jpgD#1\par{\def\scaling{}
\fifow#1 \wofif %Sentinels
\pdfximage\scaling\expandafter{\fn}
$$\pdfrefximage\pdflastximage$$}

%

\def\fifow#1 #2{\process{#1}#2
\ifx#2\wofif\expandafter\wofif\fi
\fifow#2}

%

\def\wofif#1\wofif{}

%

\def\process#1#2{%
\ifx#2\wofif\def\fn{#1.jpg}%
\else\edef\scaling{\scaling\space#13}%
\fi}

Both solutions circumvent the pitfall of parsing the
arguments. The height... and width... if present, are
just passed through.

EUROTEX 2009

Appendix Il: Escher’s knot

The Escher’'s knot figure, | consider highly instructive.
The latest version, in MP, makes use of the symmetry,
while the hidden lines are not removed: the figure
is (re)drawn with only the visible curve pieces. For
constructing the pieces it is handy first to draw the
complete picture wit dotlabel commands included, for
the points P, Q, R, and the intersection points a, b, ¢, d.
Construct with the aid of this picture the visible pieces
anew from the calculated curves by the use of cutbefore.

u=5cm;

%Ext points P, Q, R, counter clockwise
pair P, dP; P:=(0,u); dP:=(C 1, 0);
pair Q, dQ; Q:= P rotated 120;

pair R, dR; R:= P rotated 240;
dQ:=(-1, 1.73205);dR:=(-1, -1.73205);

path PQ, QR, RP, pa, ar, rp,
PQa, PQb, pga, pgb;%pieces
drawoptions(withcolor blue);

PQ = P{dP}.. .5R{dR}..{dQ}Q;
QR = PQ rotated 120;

RP = PQ rotated 240;

pg = PQ scaled .8;

gr = QR scaled .8;

rp = RP scaled .8;

%draw PQ..QR..RP;%No hidden lines removed
%draw pq..qr..rp;%No hidden lines removed
%Just the pieces instead of

%hidden lines removal

pga = pg cutafter QR;

pgb = pg cutbefore qgr;

draw pqga; draw pgb;

draw pga rotated 120; draw pgb rotated 120;
draw pga rotated 240; draw pgb rotated 240;
%a similar approach as above did not work, bug?
PQ:= PQ cutbefore QR;

PQa:= cuttings;

PQb:= PQ cutbefore qgr;

draw PQa; draw PQb;

draw PQa rotated 120; draw PQb rotated 120;
draw PQa rotated 240; draw PQb rotated 240;

Note the names used: a path PQ is the ‘line’ between
points P and Q. Very handy, this naming convention
taken over from good old classical geometry. It facilitates
reading of the code. With cutbefore and cutafter it
seems more natural to draw just the visible pieces instead
of erasing hidden parts.

E33



E34 MAPS 39

LuaTEX lunatic

And Now for Something Completely Different
— Monty Python, 1972

Abstract
luatex lunatic is an extension of the Lua language of luatex
to permit embedding of a Python interpreter.
A Python interpreter hosted in luatex allows macro pro-
grammers to use all modules from the Python standard li-
brary, allows importing of third modules, and permits the
use of existing bindings of shared libraries or the creation of
new bindings to shared libraries with the Python standard
module ctypes.
Some examples of such bindings, particularly in the area of
scientific graphics, are presented and discussed.
Intentionally the embedding of interpreter is limited to the
python-2.6 release and to a luatex release for the Linux op-
erating system (32 bit).

Keywords
Lua, Python, dynamic loading, ffi.

History

I met luatex sometime around November 2006, and
I started to play with it to explore the possibility of
typesetting xml documents in an alternative way than
the traditional approach based on xsl stylesheet plus xslt
processor.

My first intention was to typeset a wikipedia xml
dump [4] which is compressed with bzip2; given that
I mainly use Python for my programming language, I
quickly found python-bz2 and then Gustavo Niemeyer’s
“personal laboratory” [15] where I have discovered Lu-
natic Python [14].

To avoid confusion, here Python means CPython, the
C implementation of the Python language [49]. There
are other implementations of the Python language: for
example Jython [41] and IronPython [37]. According to
[6] “the origin of the name (is) based on the television
series Monty Python’s Flying Circus.

In March 2007 I started to investigate the possibility of
integrating Lunatic Python with luatex [57] and in Au-
gust 2007 I made the first release of luatex-lunatic [20],
just around the birth of my second daughter Martina
(09/08/07, [33]).

During the 2" ConTpxt meeting [21] I found that
luatex was stable enough to finalize the project, so I
remade all steps and some new examples too (ConTgXt
meetings are good places for these kinds of things).

Luigi Scarso

Examples are now hosted at contextgarden [35] while
[20] remains for historical purposes.

Motivations & goals

TeX is synonymous with portability (it’s easy to im-
plement/adapt TgX the program) and stability (TgX the
language changes only to fix errors).

We can summarize by saying that “typesetting in TgX
tends to be everywhere everytime.

These characteristics are a bit unusual in today’s
scenario of software development: no one is surprised
if programs exist only for one single OS (and even for
a discontinued OS, given the virtualization technology)
and especially no one is surprised at a new release of
a program, which actually means bugs fixed and new
features implemented (note that the converse is in some
sense negative: no release means program discontinued).

Of course, if we consider the ETgX-system, i.e. IXTEX
and its most used packages, this is not frozen at all: just
see the near-daily announcements from CTAN. pdfTgX
also changes to follow pdf releases.

With luatex-lunatic I adopt this point of view:
LualgX or more specifically LualgX & ConTgXt-mkiv as a
tool for publishing content, with some extent to content
management. As a tool, it is no surprise if there are
“often” (for a TgX user) new releases, given that we can
have a LudlgX update, or a ConTgXt-mkiv update, or a
Lua update, or a Python update, or a library update for
which the Python binding exists; and, of course, if made
with no “cum grano salis”, no surprise if this can become
quickly unmanageable.

The price to pay is the potential loss of stability:
the same document (with the same fonts and images)
processed with a new release can produce a different
output.

With regard to portability, the LualgX team uses
libtool: GNU Libtool simplifies the developer’s job by
encapsulating both the platform-specific dependencies,
and the user interface, in a single script. GNU Libtool is
designed so that the complete functionality of each host
type is available via a generic interface, but nasty quirks
are hidden from the programmer [39]), while in Lua and
Python support for dynamic loading is a feature of the
languages, i.e. there is a (Lua/Python) layer that hides
the details of binding.



LuaTEX lunatic

Thus stated, due to the lack of resources, I have
no plan in the immediate future to investigate any OS
other than Linux, so this article will cover this OS only;
or, stated in another way, there is a potential loss of
portability.

We can summarize saying that “typesetting in luatex-
lunatic is here and now”, where here stands for “a
specific 0S” and now for “with this release”. Actually
here stands for “Linux 32 bit”, and now stands for luatex
-snapshot-0.42.0.tar.bz2 with ConTgXt-mkiv current
2008.07.17; probably both will already be old by the time
this is printed.

Another motivation has emerged during the develop-
ment of luatex-lunatic: the possibility to use ConTeXt-
mkiv as a sort of literate programming tool for a specific
context.

It is well known that CWEB is a way to tangle together
a program written in a specific programming language
(C) with its documentation written with a macro markup
language, TgX; luatex-lunatic and ConTgXt-mkiv can be
used to tangle together a program written in an (almost)
arbitrary programming language with its documenta-
tion written with a high level macro markup language,
ConTgXt-mkiv.

Put in another way: currently an application calls
TpX or KTEX (ie. it creates a process) to obtain a
result from a tex snippet (for example to show a math
formula); instead luatex-lunatic with ConTgXt-mkiv calls
the application by dynamic loading (i.e. it does not create
a process) to obtain the result to insert into tex source.

For example one can use luatex-lunatic ConTgXt-
mkiv to typeset a math formula, and the binding for
the evaluation of the same formula (there are several
symbolic-math Python modules already available).

We will see more about this later, when we will talk
of Sage.

We want to find the smallest set of patches of the luatex
codebase, or, better, we want to avoid:

1. constraints of any sort to the development team;
2. massive modifications of the code base;
3. radical modification of the building process.

Lunatic Python

There is no better site than [14] to explain what is
Lunatic Python:

Lunatic Python is a two-way bridge between Python
and Lua, allowing these languages to intercommunicate.
Being two-way means that it allows Lua inside Python,
Python inside Lua, Lua inside Python inside Lua, Python
inside Lua inside Python, and so on.

EUROTEX 2009

The bridging mechanism consists of creating the
missing interpreter state inside the host interpreter. That
is, when you run the bridging system inside Python, a Lua
interpreter is created; when you run the system inside
Lua, a Python interpreter is created.

Once both interpreter states are available, these
interpreters are provided with the necessary tools to
interact freely with each other. The given tools offer not
only the ability of executing statements inside the alien
interpreter, but also to acquire individual objects and
interact with them inside the native state. This magic is
done by two special object types, which act by bridging
native object access to the alien interpreter state.

Almost every object which is passed between Python
and Lua is encapsulated in the language specific bridging
object type. The only types which are not encapsulated
are strings and numbers, which are converted to the
native equivalent objects.

Besides that, the Lua side also has special treatment
for encapsulated Python functions and methods. The
most obvious way to implement calling of Python objects
inside the Lua interpreter is to implement a __call
function in the bridging object metatable. Unfortunately
this mechanism is not supported in certain situations,
since some places test if the object type is a function,
which is not the case of the bridging object. To over-
whelm these problems, Python functions and methods are
automatically converted to native Lua function closures,
becoming accessible in every Lua context. Callable
object instances which are not functions nor methods, on
the other hand, will still use the metatable mechanism.
Luckily, they may also be converted in a native function
closure using the asfunc() function, if necessary.

9% According to [68], page 47, a closure is “a function plus all

it needs to access non-local variables correctly”; a non-local
variable “is neither a global variable nor a local variable”. For example
consider newCounter:

function newCounter()
local i =0
return function()
i=1i+1
return i
end
end
c1 = newCounter()
print(c1()) --> 1
print(c1()) --> 2
c2 = newCounter()
print(c2()) --> 1
print(c1()) --> 3
print(c2()) --> 2

i is a non-local variable; we see that there is no interference between
c1 and c2—they are two different closures over the same function.

E35



E36 MAPS 39

It’s better to track a layout of installation of luatex-

lunatic on a Linux box.

Let’s set up a home directory:
HOMEDIR=/opt/luatex/luatex-lunatic

Next:

1. download and install python-2.6.1 (at least) from
[49]. Assuming $HOMEDIR/Python-2.6.1 as build
directory, let’s configure python-2.6.1 with

./configure
--prefix=/opt/luatex/luatex-lunatic
--enable-unicode=ucs4
--enable-shared

and install it. After installation we should end in

a “Filesystem Hierarchy Standard”-like Filesystem
(cf. [46], except for Python-2.6.1), i.e. something like
this:

$> cd $HOMEDIR && 1ls -1X
bin

include

lib

man

share

Python-2.6.1

It’s also convenient to extend the system path:

$> export PATH=
/opt/luatex/lunatic-python/bin: $PATH

so we will use the python interpreter in $HOMEDIR.

2. download luatex source code from [43]; we will
use luatex-snapshot-0.42.0, so let’s unpack it in
$HOMEDIR/luatex-snapshot-0.42.0 . For uniformity,
make a symbolic link

$> cd $HOMEDIR
$> 1In -s luatex-snapshot-0.42.0 luatex

It’s convenient to have a stable ConTgXt minimals
distribution installed (cf. [23]) under $HOMEDIR, i.e.
$HOMEDIR/minimals, so that we will replace its lua-
tex with our luatex-lunatic. Remember to set up
the environment with

$> . $HOMEDIR/minimals/tex/setuptex

We don’t build it now, because build.sh needs to be
patched.

3. download luatex-lunatic from [3], revision 7, and put
it in lunatic-python, i.e.

Luigi Scarso

$> cd $HOMEDIR
$> bzr branch lp:lunatic-python

We must modify setup.py to match luatex installa-
tion (here "<" stands for the original setup.py, ">"
stands for the modified one; it’s a diff file):

1cl
< #!/usr/bin/python
> #1/opt/luatex/luatex-lunatic/bin/python
14,16¢14,16
< LUALIBS = ["lua5.1"]
< LUALIBDIR = []
< LUAINCDIR = glob.glob("/usr/include/lua*")
> LUALIBS = ["lua51"]
> LUALIBDIR = [’/opt/luatex/
luatex-lunatic/
luatex/build/texk/web2c’]
> LUAINCDIR = glob.glob("../
luatex/source/texk/web2c/luatexdir/lua51*")
48a49
>

When we build lunatic-python, we will end with a
python.so shared object that will be installed in the
$HOMEDIR/1ib/python2.6/site-packages directory, so
it’s convenient to prepare a python.lua wrapper like this
one:

loaded = false
func = package.loadlib(
"/opt/luatex/luatex-lunatic/lib/python2.6/
site-packages/python.so”, "luaopen_python")
if func then

func()

return
end
if not loaded then

error("unable to find python module")
end

Before building, we must resolve the dynamic loading
problem; again from [14]

... Unlike Python, Lua has no default path to its modules.
Thus, the default path of the real Lua module of Lunatic
Python is together with the Python module, and a
python.lua stub is provided. This stub must be placed
in a path accessible by the Lua require() mechanism, and
once imported it will locate the real module and load it.

Unfortunately, there's a minor inconvenience for our
purposes regarding the Lua system which imports ex-
ternal shared objects. The hardcoded behavior of the



LuaTEX lunatic

loadlib() function is to load shared objects without
exporting their symbols. This is usually not a problem
in the Lua world, but we're going a little beyond their
usual requirements here. We're loading the Python
interpreter as a shared object, and the Python interpreter
may load its own external modules which are compiled
as shared objects as well, and these will want to link
back to the symbols in the Python interpreter. Luckily,
fixing this problem is easier than explaining the problem.
It's just a matter of replacing the flag RTLD_NOW in the
loadlib.c file of the Lua distribution by the or'ed ver-
sion RTLD_NOW|RTLD_GLOBAL. This will avoid "“undefined
symbol” errors which could eventually happen.

Modifying luatex/source/texk/web2c/
luatexdir/lua51/loadlib.c
is not difficult:

69c69
< void *1ib =

dlopen(path, RTLD_NOW);

> void x1ib = dlopen(path, RTLD_NOW|RTLD_GLOBAL);

(again "<" means original and ">" means modified).

99 According to dlopen(3) - Linux man page (see for example

QP 13)),

The function dlopen() loads the dynamic library file named by the
null-terminated string filename and returns an opaque “handle” for
the dynamic library. If filename is NULL, then the returned handle
is for the main program. If filename contains a slash (“/"), then it
is interpreted as a (relative or absolute) pathname. Otherwise, the
dynamic linker searches for the library as follows (see Id.so(8) for further
details):

O (ELF only) If the executable file for the calling program contains a
DT_RPATH tag, and does not contain a DT_RUNPATH tag, then
the directories listed in the DT_RPATH tag are searched.

O If the environment variable LD_LIBRARY_PATH is defined
to contain a colon-separated list of directories, then these are
searched. (As a security measure this variable is ignored for set-
user-ID and set-group-ID programs.)

O (ELF only) If the executable file for the calling program contains
a DT_RUNPATH tag, then the directories listed in that tag are
searched.

O The cache file /etc/1d.so.cache (maintained by Idconfig(8)) is
checked to see whether it contains an entry for filename.

O The directories /lib and /usr/lib are searched (in that order).

If the library has dependencies on other shared libraries, then these
are also automatically loaded by the dynamic linker using the same
rules. (This process may occur recursively, if those libraries in turn
have dependencies, and so on.)

One of the following two values must be included in flag:

O RTLD_LAZY
Perform lazy binding. Only resolve symbols as the code that refer-

EUROTEX 2009

ences them is executed. If the symbol is never referenced, then it is
never resolved. (Lazy binding is only performed for function refer-
ences; references to variables are always immediately bound when
the library is loaded.)

O RTLD_NOW
If this value is specified, or the environment variable
LD_BIND_NOW is set to a non-empty string, all undefined sym-
bols in the library are resolved before dlopen() returns. If this can-
not be done, an error is returned.

Zero or more of the following values may also be ORed in flag:

O RTLD_GLOBAL
The symbols defined by this library will be made available for sym-
bol resolution of subsequently loaded libraries.

O RTLD_LOCAL
This is the converse of RTLD_GLOBAL, and the default if nei-
ther flag is specified. Symbols defined in this library are not made
available to resolve references in subsequently loaded libraries.

O RTLD_NODELETE (since glibc 2.2)
Do not unload the library during diclose(). Consequently, the
library’s static variables are not reinitialised if the library is re-
loaded with dlopen() at a later time. This flag is not specified in
POSIX.1-2001.

O RTLD_NOLOAD (since glibc 2.2)
Don't load the library. This can be used to test if the library is
already resident (dlopen() returns NULL if it is not, or the library’s
handle if it is resident). This flag can also be used to promote the
flags on a library that is already loaded. For example, a library that
was previously loaded with RTLD_LOCAL can be re-opened with
RTLD_NOLOAD | RTLD_GLOBAL. This flag is not specified in
POSIX.1-2001.

O RTLD_DEEPBIND (since glibc 2.3.4)
Place the lookup scope of the symbols in this library ahead of the
global scope. This means that a self-contained library will use its
own symbols in preference to global symbols with the same name
contained in libraries that have already been loaded. This flag is
not specified in POSIX.1-2001.

If filename is a NULL pointer, then the returned handle is for the main
program. When given to dlsym(), this handle causes a search for a
symbol in the main program, followed by all shared libraries loaded at
program startup, and then all shared libraries loaded by dlopen() with
the flag RTLD_GLOBAL.

External references in the library are resolved using the libraries in
that library’s dependency list and any other libraries previously opened
with the RTLD_GLOBAL flag. If the executable was linked with
the flag “-rdynamic” (or, synonymously, “—export-dynamic"), then the
global symbols in the executable will also be used to resolve references
in a dynamically loaded library.

If the same library is loaded again with dlopen(), the same file
handle is returned. The dl library maintains reference counts for library
handles, so a dynamic library is not deallocated until dlclose() has been
called on it as many times as dlopen() has succeeded on it. The _init
routine, if present, is only called once. But a subsequent call with
RTLD_NOW may force symbol resolution for a library earlier loaded
with RTLD_LAZY.

If dlopen() fails for any reason, it returns NULL.

Nevertheless this is not enough: reference manual [66]
says (page 23):

Dynamic loading of .so and .d11 files is disabled on

all platforms.

E37



E38 MAPS 39

So we must “enable” it and we must ensure that the
luatex executable is linked against 1ibdl.so because
this contains the dlopen() symbol; also we must ensure
that all the Lua functions involved in a dlopen() call
must be resolved in the luatex-lunatic executable.

Assuming that we are always in $HOMEDIR, we must
modify
source/texk/web2c/luatexdir/am/liblua51.am
and source/texk/web2c/Makefile.in .

For
source/texk/web2c/luatexdir/am/1liblua51.am:

12c12
< liblua51_a_CPPFLAGS += -DLUA_USE_POSIX

> liblua51_a_CPPFLAGS += -DLUA_USE_LINUX
while for source/texk/web2c/Makefile.in:

98c98

< @MINGW32_FALSE@am__append_14 = -DLUA_USE_POSIX
> @MINGW32_FALSE@am__append_14 =
1674c1674

< $(CXXLINK) $(luatex_OBJECTS)
$(LIBS)

> $(CXXLINK) $(luatex_OBJECTS) $(luatex_LDADD)
$(LIBS) -W1,-E -ulual_openlibs -fvisibility=hidd
en -fvisibility-inlines-hidden -1d1

—-DLUA_USE_LINUX

$(luatex_LDADD)

The last patch is the most important, so let’s examine it
more closely. Essentially, we are modifying the linking
phase of building process of luatex (switch -W1,-E) by
adding 1ibdl (switch -1d1) because libdl contains the
symbol dlopen as stated before.

The switch -ulual_openlibs tells the linker to con-
sider the symbol lual _openlibs even if it’s not neces-
sary for building luatex-lunatic. In fact lualL_openlibs
is coded in lunatic-python/src/luainpython.c and it
needs to be resolved at runtime only when luatex-lunatic
wants to load the Python interpreter.

So, even if lual_openlibs is a function coded in
$HOMEDIR/luatex/source/texk/web2c/luatexdir/lua51
/linit.c, it’s not used by luatex, so the linker discards
this symbol because it’s useless.

%) According to 1d(1):

O -u symbol
Force symbol to be entered in the output file as an undefined sym-
bol. Doing this may, for example, trigger linking of additional mod-
ules from standard libraries. -u may be repeated with different op-
tion arguments to enter additional undefined symbols. This option
is equivalent to the "EXTERN" linker script command.

Luigi Scarso

9§ It’s possible to examine how symbols are resolved runtime by
setting LD_DEBUG=all; for example

$> export LD_DEBUG=all;
$> luatex python.lua &>python.LD_DEBUG;
$> export LD_DEBUG=

Here we are assuming a correct final luatex lunatic luatex and the
python.lua wrapper seen before.
The file python.LD_DEBUG will show something like this:

3736: symbol=lualL_openlibs;
lookup in file=./luatex-lunatic [0]
3736: binding file /opt/luatex/luatex-lunatic/
lib/python2.6/site-packages/python.so [0]
to ./luatex-lunatic [0]:
normal symbol ‘lual_openlibs’

Without the -ulual_openlibs linker flag, we will see something like
this:

4033: symbol=lual_openlibs;
lookup in file=./luatex-lunatic-0.42.0.-test [0]
symbol=lual_openlibs;
lookup in file=/1ib/tls/i686/cmov/1libm.so.6 [0]
symbol=lual_openlibs;
lookup in file=/1ib/tls/i686/cmov/1libdl.so.2 [0]
symbol=lual_openlibs;
lookup in file=/lib/libreadline.so.5 [0]
symbol=lual_openlibs;
lookup in file=/lib/libhistory.so.5 [0]
symbol=lual_openlibs;
lookup in file=/lib/libncurses.so.5 [0]
symbol=1lual_openlibs;
lookup in file=/1ib/tls/i686/cmov/libc.so.6 [0]
symbol=1lual_openlibs;
lookup in file=/1lib/1d-linux.so.2 [0]
4033: symbol=lual_openlibs;
lookup in file=/opt/luatex/luatex-lunatic/lib/
python2.6/site-packages/python.so [0]
4033: symbol=lual_openlibs;
lookup in file=/1ib/tls/i686/cmov/libpthread.so.0 [0]
4033: symbol=lual_openlibs;
lookup in file=/1ib/tls/i686/cmov/libutil.so.1 [0]
4033: symbol=lual_openlibs;
lookup in file=/1ib/tls/i686/cmov/libc.so.6 [0]
symbol=1lual_openlibs;
lookup in file=/1lib/1d-linux.so.2 [0]
/opt/luatex/luatex-lunatic/lib/python2.6/
site-packages/python.so:
error: symbol lookup error:
undefined symbol: lual_openlibs (fatal)
4033:
4033: file=/opt/luatex/luatex-lunatic/lib/python2.6/
site-packages/python.so [0]; destroying link map

4033:
4033:
4033:
4033:
4033:
4033:

4033:

4033:

4033:

And near the bottom we can see this error: symbol lookup error:
undefined symbol: lualL_openlibs (fatal).

The last two switches, namely -fvisibility=hidden
and -fvisibility-inlines-hidden, are gcc switches
(not linker switches) and again they are related with



LuaTEX lunatic

symbols, more precisely with symbols collisions. Con-
sider this: in $HOMEDIR/luatex/source/libs/libpng
there is a libpng library (currently vers. 1.2.38). This
library, once compiled, will be merged by the linker
into the luatex executable, and hence into the luatex-
lunatic executable too. Now, we can build a Python
binding to another libpng library or, better, we can
import a Python module ée.g. PythonMagickWand, an
interface to ImageMagick'Y, see [40]) that has a binding
to its own libpng library. In this situation, at runtime
the dynamic loader will resolve for the Python module
the symbols of libpng from luatex libpng, instead of
those from its own libpng. Now, we cannot guarantee
that these two libraries are the same, because we cannot
replace the libpng of luatex (see near the end of the
preceding section “Motivation & goals”) and, of course,
we cannot replace the libpng library from the Python
module with the one from luatex, because the last one
can be patched for luatex only. So, we have symbols
collisions (see [9]): almost for sure, a symbol collision
will cause a segmentation fault, and the program abort.

9§ More information about this can be found starting from the
already cited [9], especially [69]. A good text is also [63].

A solution can be this: “hide” to the “outside” all symbols
that aren’t necessary for dynamic loading of shared
objects. For standard luatex, this means “hide all”: for
luatex-lunatic, this means “hide all but not symbols
from lua”, otherwise we will not be able to use loadlib.
It’s not so difficult to “hide all”: just patch the build.sh
script of luatex sources by adding

28a29,36

> CFLAGS="-g -02 -Wno-write-strings
-fvisibility=hidden”

> CXXFLAGS="$CFLAGS
-fvisibility-inlines-hidden”

> export CFLAGS

> export CXXFLAGS

The hardest part is to “unhide” the Lua part. We can
proceed in this manner: collect the result of the patched
build.sh in an out file:

$> cd $HOMEDIR/luatex; ./build.sh &> out

Then locate in out all the lines about Lua and remove
the -fvisibility=hidden flag: for example

gcc -DHAVE_CONFIG_H -I.
-I../../../source/texk/web2c -I./..
-I/opt/luatex/luatex-lunatic/
luatex-snapshot-0.42.0/build/texk
-I/opt/luatex/luatex-lunatic/

EUROTEX 2009

luatex-snapshot-0.42.0/source/texk

-I../../../source/texk/web2c/luatexdir/lua51
-DLUA_USE_LINUX -g -02
-Wno-write-strings

-fvisibility=hidden
-Wdeclaration-after-statement

-MT liblua51_a-lapi.o

-MD -MP -MF .deps/liblua51_a-lapi.Tpo
-c -o liblua51_a-lapi.o

‘test -f

’luatexdir/lua51/1api.c’

|| echo

*../../../source/texk/web2c/’ ¢
luatexdir/lua51/lapi.c
mv -f .deps/liblua51_a-lapi.Tpo

.deps/liblua51_a-lapi.Po

will become

gcc -DHAVE_CONFIG_H -I.

-I../../../source/texk/web2c -I./..

-I/opt/luatex/luatex-lunatic/

luatex-snapshot-0.42.0/build/texk
-I/opt/luatex/luatex-lunatic/
luatex-snapshot-0.42.0/source/texk

-I../../../source/texk/web2c/luatexdir/lua51

-DLUA_USE_LINUX

-g -02 -Wno-write-strings

-Wdeclaration-after-statement

-MT liblua51_a-lapi.o

-MD -MP -MF .deps/liblua51_a-lapi.Tpo

-c -0 liblua51_a-lapi.o

‘test -f

’luatexdir/lua51/lapi.c’

|| echo

*../../../source/texk/web2c/

’“luatexdir/lua51/lapi.c

mv -f .deps/liblua51_a-lapi.Tpo
.deps/liblua51_a-lapi.Po

After that, recompile luatex

/bin/bash ./libtool
--tag=CXX

--mode=1ink

./CXXLD.sh -g -02
-Wno-write-strings
-fvisibility=hidden
-fvisibility-inlines-hidden
-0 luatex

luatex-luatex.o

libluatex.a libff.a
libluamisc.a libzzip.a
libluasocket.a liblua51.a
/opt/luatex/luatex-lunatic/

E39



E40 MAPS 39

luatex-snapshot-0.42.0/build/1libs/
libpng/libpng.a

/opt/luatex/luatex-lunatic/
luatex-snapshot-0.42.0/build/1libs/
zlib/1libz.a

/opt/luatex/luatex-lunatic/
luatex-snapshot-0.42.0/build/libs/
xpdf/libxpdf.a

/opt/luatex/luatex-lunatic/
luatex-snapshot-0.42.0/build/libs/
obsdcompat/libopenbsd-compat.a

libmd5.a libmplib.a

lib/1lib.a

/opt/luatex/luatex-lunatic/
luatex-snapshot-0.42.0/build/texk/
kpathsea/libkpathsea.la

-1lm -W1,-E

-ulual _openlibs

-fvisibility=hidden

-fvisibility-inlines-hidden

-1d1

Of course it’s better to edit a trick.sh from out (see
[34]) that will do all the work, paying the price of ~20
minutes of cut and paste for every new luatex release for
preparing this trick file.

After executing $HOMEDIR/luatex/trick.sh we will
have an unstripped luatex binary in $HOMEDIR/luatex
/build/texk/web2c so we are ready for the final step.
It’s better not to strip it, because we can track problems
more easily.

4. we copy luatex into the bin directory of ConTgXt
minimals and remade formats:

$> cp $HOMEDIR/luatex/build/texk/web2c/luatex
$HOMEDIR/minimals/tex/texmf-1linux/bin
$> context --make

And in the end we must build the lunatic-python
shared object:

$> cp $HOMEDIR/lunatic-python
$> python setup.py build && python setup.py
install

99  We can now make a simple test; let’s save this in test. tex:
\directlua{require "python";

sys = python.import(”sys");
tex.print(tostring(sys.version_info))}

\bye

"

Next let’s run callgrind, a tool of valgrind (see [30]), to generate a call
graph [5]:

Luigi Scarso

$> valgrind --tool=callgrind
--callgrind-out-file=test-%p.callgrind
--dump-instr=yes
luatex --fmt=plain --output-format=pdf test.tex

To see and analyze this call graph we can use kcachegrind [13]: see
appendix at page 53 for the graph centered at main function, with Min.
node cost=1% , Min. call cost=1% .

Examples

Image processing

ImageMagick. ImageMagick is “a software suite to create,
edit, and compose bitmap images. It can read, convert
and write images in a variety of formats (over 100)
including DPX, EXR, GIF, JPEG, JPEG-2000, PDF, PhotoCD,
PNG, PostScript, SVG, and TIFF. Use ImageMagick to
translate, flip, mirror, rotate, scale, shear and transform
images, adjust image colors, apply various special effects,
or draw text, lines, polygons, ellipses and Bézier curves.”
(See [40].) There are two bindings in Python, and
we choose the PythonMagickWand [48], a ctypes-based
wrapper for ImageMagick.

Python. It provides C compatible data types, and allows calling
functions in DLLs or shared libraries. It can be used to wrap these
libraries in pure Python. ctypes is included in Python.

SES According to [50] ctypes is a foreign function library for

This simple script create a 200 x 200 pixel image at 300dpi
with a shadow:

import PythonMagickWand as pmw

pmw.MagickWandGenesis()

wand = pmw.NewMagickWand()

background = pmw.NewPixelWand(0)

pmw.MagickNewImage (wand, 200,200, background)

pmw.MagickSetImageResolution(wand,118.110,118.110)

pmw.MagickSetImageUnits(wand,
pmw.PixelsPerCentimeterResolution)

pmw.MagickShadowImage(wand,90,3,2,2)

pmw.MagickWriteImage(wand, "out.png")

i.e., something like this:



LuaTEX lunatic

Suppose we want to use it to generate a background for
text, i.e.

\startShadowtext%
\input tufte
\stopShadowtext%

Let’s now look at luatex lunatic and ConTgXt-mkiv in
action for the first time:

\usetypescriptfile[type-gentium]

\usetypescript[gentium]

\setupbodyfont[gentium, 10pt]

\setuppapersize[A6][A6]

\setuplayout[height=middle, topspace=1cm,
header={2\1ineheight}, footer=0pt,backspace=1cm,
margin=1cm,width=middle]

%%

%% lua layer

%%

\startluacode

function testimagemagick(box,t)
local
local
local
local
local
local
local

H Q T =

res = 118.11023622047244094488 -- 300 dpi

opacity = 25

sigma = 15

local x = 10

local y = 10

math.floor((tex.wd[box]/65536 )
/72.27%2.54*res)

math.floor(((tex.ht[box]/65536)+

(tex.dp[box]1/65536))

/72.27%2.54*res)

f = string.format("%s.png",t)

W =

h:

-- Call the python interpreter
require("python")
pmw = python.import(”"PythonMagickWand")
wand = pmw.NewMagickWand()
background = pmw.NewPixelWand(0)
pmw.MagickNewImage (wand,w, h,background)
pmw.MagickSetImageResolution(wand,res,res)
pmw.MagickSetImageUnits(wand,
pmw.PixelsPerCentimeterResolution)

pmw.MagickShadowImage (wand,opacity,sigma,x,y)
pmw.MagickWriteImage(wand ,f)

end

\stopluacode

%%

%% TeX layer

%%

EUROTEX 2009

\def\testimagemagick[#11{%
\getparameters[ImgkI[#1]1%
\ctxlua{%
testimagemagick (\csname Imgkbox\endcsname,
"\csname Imgkfilename\endcsname")}%
3
%%
%% ConTeXt layer
%%
\newcount\shdw
\long\def\startShadowtext#1\stopShadowtext{%
\bgroup%
\setbox0=\vbox{#13}%
\testimagemagick[box=0,
filename={shd-\the\shdw}]%
\defineoverlay[backgl%
[{\externalfigure[shd-\the\shdw.pngl}1%
\framed[background=backg,
frame=off,offset=4pt]1{\box0}%
\global\advance\shdw by 1%
\egroup%
3
\starttext
\startTEXpage%
\startShadowtext%
\input tufte
\stopShadowtext%
\stopTEXpage
\stoptext

As we can see, there is an almost one-to-one mapping
between Python code and Lua code, a good thing for a
small script.

And here is the result:

We thrive in information—thick worlds because of our mar-
velous and everyday capacity to select, edit, single out,
structure, highlight, group, pair, merge, harmonize, synthe-
size, focus, organize, condense, reduce, boil down, choose,
categorize, catalog, classify, list, abstract, scan, look into,
idealize, isolate, discriminate, distinguish, screen, pigeon-
hole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, cluster, aggre-
gate, outline, summarize, itemize, review, dip into, flip
through, browse, glance into, leaf through, skim, refine,
enumerate, glean, synopsize, winnow the wheat from the
chaff and separate the sheep from the goats.

9% What about symbols collisions?

$> eu-readelf --all luatex &> luatex.dump

$> export LD_DEBUG=all;context test-imagemagick.tex &> test-
imagemagick. tex.LD_DEBUG; export LD_DEBUG=

If we search png_memcpy_check which is coded in $HOMEDIR/source
/1ibs/1libpng/libpng-1.2.38/pngmem.c of luatex, we will find that

E41



E42 MAPS 39

it’s bound to system libpng:
25749: symbol=png_memcpy_check;
lookup in file=luatex [0]

25749: symbol=png_memcpy_check;
lookup in file=/1ib/tls/i686/cmov/libm.so.6 [0]

25749: symbol=png_memcpy_check;

lookup in file=/1ib/tls/i686/cmov/1libdl.so0.2 [0]
: (62 lines after)
25749: symbol=png_memcpy_check;

lookup in file=/usr/lib/libpngl12.s0.0 [0]

25749: binding file /usr/lib/libpngl2.s0.0 [0]
to /usr/lib/libpng12.s0.0 [0]:
normal symbol ‘png_memcpy_check’ [PNG12_0]

In fact if we search for png_memcpy_check in luatex.dump we see that
it’s hidden now:

Symbol table [40] ’.symtab’ contains 10087 entries:
9592 local symbols String table: [41] ’.strtab’

Num:

Value Size Type
4837: 082022b0 27 FUNC
Bind  Vis Ndx Name

LOCAL HIDDEN 13 png_memcpy_check

As a counterexample, suppose that we don’t use hidden flags, so now
png_memcpy_check is visible:

Num: Value Size Type
2273: 08243050 27 FUNC
Bind Vis Ndx Name

GLOBAL DEFAULT 13 png_memcpy_check

Now we have a fatal error:

$> export LD_DEBUG=all;context test-imagemagick.tex &> test-
imagemagick.tex.LD_DEBUG; export LD_DEBUG=

MTXrun | fatal error, no return code, message: luatex: execu-
tion interrupted

and we see that png_memcpy_check is resolved in luatex:

24213: symbol=png_memcpy_check;

lookup in file=luatex [0]

binding file /usr/lib/libpngl12.s0.0 [0]
to luatex [0]:

normal symbol ‘png_memcpy_check’ [PNG12_0]

24213:

so we have symbols collisions. In this case it can be hard to track the
guilty symbol; even in this case the fatal error can be given by another
symbols collision, not necessarily png_memcpy_check. Also note that
this code

\starttext

Luigi Scarso

\externalfigurelout.png]
\stoptext

compiles right—of course, because there is no PythonImagickWand
involved and so no symbols collisions. So this kind of error can become
a nightmare.

Let’s continue with our gallery.

PIL — PythonImageLibrary. PIL (see [51]) is similar to
ImageMagick, but at least for png doesn’t require libpng,
so we are safe from symbol collisions.

\startluacode
function testPIL(imageorig,imagesepia)
require("python™)
PIL_Image = python.import("PIL.Image")
PIL_ImageOps = python.import("PIL.ImageOps")
python.execute([[
def make_linear_ramp(white):
ramp = []
r, g, b = white
for i in range(255):
ramp.extend((r*i/255, gxi/255, b*i/255))
return ramp
1D
-- make sepia ramp
-- (tweak color as necessary)
sepia = python.eval
("make_linear_ramp((255, 240, 192))")
im = PIL_Image.open(imageorig)

-- convert to grayscale
if not(im.mode == "L")
then
im = im.convert("L")
end
-- optional: apply contrast
-- enhancement here, e.g.
im = PIL_ImageOps.autocontrast(im)
-- apply sepia palette
im.putpalette(sepia)
-- convert back to RGB
-- so we can save it as JPEG
-- (alternatively, save it in PNG or similar)
im = im.convert("RGB")
im.save(imagesepia)
end
\stopluacode

\def\Sepialmage#1#2{%
\ctxlua{testPIL("#1","#2")}%
\startcombination[1%2]
{\externalfigure[#1][width=512pt]}{\ss Orig.}
{\externalfigure[#2][width=512pt]}{\ss Sepia}
\stopcombination

3



LuaTEX lunatic

\starttext

\startTEXpage

%\Sepialmage{lena. jpg}{lena-sepia. jpg}
\Sepialmage{lena.png}{lena-sepia.png}
\stopTEXpage

\stoptext

Here is the result (sorry, Lena is too nice to show her
only in black and white):

Orig

Sepia

The code shows how to define a Python function
inside a Lua function and how to call it. Note that we
must respect the Python indentation rules, so we can use
the multiline string of Lua [[..]].

Language adapter

Suppose we have a C library for a format of a file (i.e.
TIFF, PostScript) that we want to manage in the same
way as png, pdf, jpeg and jbig. One solution is to build a
quick binding with ctypes of Python, and then import it

EUROTEX 2009

in luatex-lunatic as a traditional Lua module. As an ex-
ample, let’s consider ghostscript [10], here in vers. 8.64.
It can be compiled as a shared library, and building a
testgs.py (see [35]#Ghostscript) binding is not difficult
(see file base/gslib.c in source distribution). The key
here is to build a binding that fits our needs, not a general
one.

\startluacode

function testgs(epsin,pdfout)
require("python")
gsmodule = python.import(”testgs")
ghost = gsmodule.gs()
ghost.appendargs(’-q’)
ghost.appendargs(’ -dNOPAUSE’)
ghost.appendargs(’-dEPSCrop’)
ghost.appendargs(’-sDEVICE=pdfwrite’)
ghost.InFile = epsin
ghost.OutFile = pdfout
ghost.run()

end

\stopluacode

\def\epstopdf#1#2{\ctxlua{testgs("#1","#2")}}
\def\EPSfigure[#11{%lazy way to load eps
\epstopdf{#1.eps}{#1.pdf}%
\externalfigure[#1.pdf]}

\starttext
\startTEXpage
{\EPSfigure[golfer]}
{\ss golfer.eps}
\stopTEXpage
\stoptext

Here is the result:

We can also use PostScript libraries: for example
barcode.ps [56], a PostScript barcode library:

\startluacode

function epstopdf(epsin,pdfout)
require("python")
gsmodule = python.import(”testgs")
ghost = gsmodule.gs()
ghost.appendargs(’-q’)

E43



E44 MAPS 39

ghost.appendargs(’ -~dNOPAUSE )
ghost.appendargs(’-dEPSCrop’)
ghost.appendargs(’ -sDEVICE=pdfwrite’)
ghost.InFile = epsin
ghost.OutFile = pdfout
ghost.run()

end

function barcode(text,type,options,savefile)
require("python”)
gsmodule = python.import(”testgs”)
barcode_string =

string.format("%%!\n100 100 moveto (%s) (%s)
%s barcode showpage”,
text,options, type)
psfile = string.format("%s.ps",savefile)
epsfile = string.format("%s.eps”,savefile)
pdffile = string.format("%s.pdf",savefile)
temp = io.open(psfile,’w’)
print(psfile)
temp:write(tostring(barcode_string),"”\n")
temp: flush()
io.close(temp)
ghost = gsmodule.gs()
ghost.rawappendargs(’-q’)
ghost.rawappendargs(’-dNOPAUSE’)
ghost.rawappendargs(’-sDEVICE=epswrite’)
ghost. rawappendargs(
string.format(’-sOutputFile=%s’,epsfile))

ghost.rawappendargs(’barcode.ps’)
ghost.InFile= psfile
ghost.run()

end

\stopluacode

\def\epstopdf#1#2{\ctxlua{epstopdf ("#1","#2")}}
\def\EPSfigure[#11{%lazy way to load eps
\epstopdf{#1.eps}{#1.pdf}%
\externalfigure[#1.pdf]%

3

\def\PutBarcode[#11{%

\getparameters[bc][#11%

\ctxlua{barcode("\csname bctext\endcsname”,
"\csname bctype\endcsname”,
"\csname bcoptions\endcsname”,
"\csname bcsavefile\endcsname” )3}%

\expanded{\EPSfigure

[\csname bcsavefile\endcsname]}%

3

\starttext

\startTEXpage

{\PutBarcode[text={CODE 39}, type={code39},
options={includecheck includetext},
savefile={TEMP1}]3\\

Luigi Scarso

{\ss code39}

\blank

{\PutBarcode[text={CONTEXT}, type={code93},
options={includecheck includetext},
savefile={TEMP2}13\\

{\ss code93}

\blank

{\PutBarcode[text={977147396801}, type={ean13},
options={includetext},
savefile={TEMP3}]1}\\

{\ss ean13}

\stopTEXpage

\stoptext

Of course one can implement a direct conversion into
ps->pdf, instead of ps->eps->pdf.
Here is the result:

For a beautiful book on PostScript see [58] (and its site
[42]) and also [2].

Scientific & math extensions

Sage. “Sage is a free open-source mathematics software
system licensed under the GPL. It combines the power
of many existing open-source packages into a common
Python-based interface. Mission: Creating a viable free
open source alternative to Magma, Maple, Mathematica
and Matlab.” [53]

Given that Sage comes with its own Python in-
terpreter, we must rebuild lunatic-python and adapt
python.lua accordingly; also sage is a command line
program, so we need a stub sagestub. py:

from sage.all_cmdline import *
Here is the ConTgXt-mkiv code:

\startluacode
function test_ode(graphout)
require("python")
pg = python.globals()
SAGESTUB = python.import("sagestub”)
sage = SAGESTUB.sage
python.execute([[
def f_1(t,y,params):
return[y[1],
-y[0]-params[0]xy[1]x(y[0]**2-1)]
1D
python.execute([[
def j_1(t,y,params):
return [ [0,1.0],
[-2.0xparams[0]*y[0]xy[1]-1.0,
-params[0]x(y[0]*y[0]-1.0)1, [0,0]]
1D



LuaTEX lunatic

T=sage.gsl.ode.ode_solver()
T.algorithm="rk8pd"

f_1 = pg.f_1
j-1 = pg.j1
pg.T=T

python.execute("T.function=f_1")
T.jacobian=j_1
python.execute("T.ode_solve(y_0=[1,0],
t_span=[0,100],
params=[10], num_points=1000)")
python.execute(string.format(
"T.plot_solution(filename="%s’)",
graphout ))
end
\stopluacode

\def\TestODE#1{%

\ctxlua{test_ode("#1")}%
\startcombination[1%2]

{%

\vbox{\hsize=8cm

Consider solving the Van der Pol oscillator
$x7 7 (t) +ux’ (t) (x(t)*2-1)+x(t)=0 $

between $t=0%$ and $t= 100$%.

As a first order system it is

$x’=y$

$y’=-x+uy(1-x*2)$

Let us take $u=10% and use

initial conditions $(x,y)=(1,0)$ and use the
\emphs1{\hbox{Runge-Kutta} \hbox{Prince-Dormand}}
algorithm.

Y%

I{\ss \ }
{\externalfigure[#1][width=9cm]}{\ss Result
for 1000 points}}

\starttext
\startTEXpage
\TestODE{odel.pdf}
\stopTEXpage
\stoptext

As we can see, here we use the python.globals() Lua
function to communicate between the Python interpreter
and Lua, and this can generate a bit of useless redun-
dancy.

R R “is a free software environment for statistical
computing and graphics” [52]. It has its own language,
but there is also a Python binding, rpy2 [27], that we
install in our $HOMEDIR.

969 It can be necessary to add these env. variabless

$>export R_HOME=/opt/luatex/luatex-lunatic/1lib/R

$>export LD_PRELOAD=/opt/luatex/
luatex-lunatic/1ib/R/1ib/1ibR.so

EUROTEX 2009

Consider solving the Van der Pol oscillator
2"(t) +ur' () (x(t)? = 1) +2(t) =0

between ¢ = 0 and ¢ = 100.

As a first order system it is

=y

y = —x +uy(l —z?)

Let us take v = 10 and use initial condi-
tions (z,y) = (1,0) and use the Runge-Kutta
Prince-Dormand algorithm.

ARRAR
V1)17.

Result for 1000 points

Figure 1. Result of the Sage code, with sage-3.2.3-pentiumM-

ubuntu32bit-i686-Linux

For R we split the Python side in Lua in a pure Python
script test-R.py:

import rpy2.robjects as robjects
import rpy2.rinterface as rinterface
class density(object):
def __init__(self,samples,outpdf,w,h,kernel):
self.samples = samples
self.outpdf= outpdf
self.kernel = kernel
self.width=w
self.height=h
def run(self):

r = robjects.r
data = [int(k.strip())
for k in
file(self.samples,’r’).readlines()
]
X = robjects.IntVector(data)

r.pdf (file=self.outpdf,
width=self.width,
height=self.height)
z = r.density(x,kernel=self.kernel)
r.plot(z[0]1,z[1],xlab="",ylab="")
r[’dev.off’1()
if __name__ == ’__main_

dens =

)

density(’u-random-int’,’ test-001.pdf’,10,7,’0")

dens.run()

E45



E46 MAPS 39

and import this into Lua:

\startluacode

function testR(samples,outpdf,w,h,kernel)
require("python")
pyR = python.import(”test-R")
dens =

pyR.density(samples,outpdf,w,h,kernel)

dens.run()

end

\stopluacode

\def\plotdenstiy[#11{%
\getparameters[RI[#11%
\expanded{\ctxlua{testR("\Rsamples",

"\Routpdf"”,

\Rwidth,

\Rheight, "\Rkernel”)}}}

\setupbodyfont[sans, 14pt]

\starttext

\startTEXpage

\plotdenstiy[samples={u-random-int},
outpdf={test-001.pdf},
width={10},height={73},
kernel={0}]

\setupcombinations[location=top]

\startcombination[1%2]

{\vbox{\hsize=400bp

This is a density plot of around {\tt 100 000}

random numbers between

$0$ and $27{16}-1$ generated

from {\tt \hbox{/dev/urandom}}}}{}

{\externalfigure[test-001.pdf][width={400bp}]1}{}

\stopcombination

\stopTEXpage

\stoptext

Note the conditional statement

’

if __name__ == ’'__main__
that permits to test the script with an ordinary Python
interpreter.

9% It’s worth noting that rpy2 is included in Sage too.

For more information about scientific computation with
Python see [61] and [62] (also with site [31]) and [54].

The example of Sage shows that in this case we can
think of luatex lunatic as an extension of Sage but
also that luatex lunatic is extended with Sage. This
is somehow similar to CWEB: code and description are
tangled together, but now there’s not a specific language
like C in CWEB (in fact we can do the same with
R). Eventually “untangled” is a matter of separation of

Luigi Scarso

This is a density plot of around 100 000 random numbers between 0
and 2! — 1 generated from /dev/urandom

1 5~._—""‘"--—-———-._—"‘-—§

1.0e-05 1.5e-05
I

5.0e-06
I

3
S o3
3
S )
Q o
o o
o o
o o
3 o
o o
3 o
o o
o o
o o
o o
o o
o o
o o
o o
o o
o o
o o
o o
o o
S o
o [
I L}
[

f;ﬂxpo

J

T T T T
0 20000 40000 60000

0.0e+00
I

Figure 2. Result of the R code

Python code in a different file from the source tex file.

9§ By the way, it’s important to underline that CWEB is more

advanced than other (C) code documentation systems because
it embeds source code inside descriptive text rather than the reverse (as
is common practice in most programming languages). Documentation
can be not “linear”, a bit unusual for ordinary programmers, but it’s
a more efficient and effective description of complex systems. Here
we are talking about “linear” documentation, much like this article: a

linear sequence of text-and-code printed as they appear.

Of course some computations may require much more
time to be completed than the time of generation of the
respective document (and ConTgXt is also a multipass
system), so this approach is pretty inefficient—we need a
set of macros that take care of intermediate results, i.e.
caching macros or multipass macros. For example, in
ConTgXt-mkiv we can say

\doifmode{xfirst}{%
% this code will be executed only at first pass
\Mymacro

}

so \Mymacro will be executed only at the first pass; there
is also a Two Pass Data module core-two.mkiv that can
be used for this, but don’t forget that we also have Lua
and Python for our needs.

Graphs

In LualgX-ConTeXt-mkiv we already have a very pow-
erful tool for technical drawing: MetaPost. Simple
searching reveals for example METAGRAPH [32] or the
more generic LuaGRAPH [19], a Lua binding to graphviz
[38] with output also in MetaPost; both are capable of
drawing (un)directed graphs and/or networks. The next
two modules are more oriented to graph calculations.



LuaTEX lunatic

9% MetaPost is an example of “embedding” an interpreter in
@ LudlgX at compilation time (see luaopen_mplib(L) in void lu-
ainterpreter(void) in $HOMEDIR/source/texk/web2c/luatexdir/lua
/luastuff.c). So hosting Python is not a new idea: the difference is
that the “embedding” is done at run time.

igraph. igraph “is a free software package for creating
and manipulating undirected and directed graphs. It in-
cludes implementations for classic graph theory problems
like minimum spanning trees and network flow, and also
implements algorithms for some recent network analysis
methods, like community structure search. The efficient
implementation of igraph allows it to handle graphs with
millions of vertices and edges. The rule of thumb is that
if your graph fits into the physical memory then igraph
can handle it. [11]

9§  To install igraph we must first install pycairo, a Python
@ binding to cairo [1], a well known 2D graphics library: so we
gain another tool for generic drawing.

Figure 3. The result of the igraph code.
This time we coded the Python layer as a class:

import igraph
class spanningtree(object) :
def __init__(self,ofn):

self.ofn = ofn
def distance(self,pl, p2):

return ((p1[0]-p2[0]) **x 2

+ (p1[11-p2[1]) ** 2) *x 0.5

def plotimage(self):

res = igraph.Graph.GRG(100,
0.2, return_coordinates=True)
g = res[0]
xs = res[1]
ys = res[2]

layout = igraph.Layout(zip(xs, ys))

EUROTEX 2009

weights = [self.distance(layout[edge.source],
layout[edge.target]) for edge in g.es]

max_weight = max(weights)

g.es["width"] =\

[6 - 5xweight/max_weight for weight in weights]

mst = g.spanning_tree(weights)

fig = igraph.Plot(target=self.ofn)
fig.add(g, layout=layout,
opacity=0.25,
vertex_label=None)
add(mst,
layout=layout,
edge_color="blue",
vertex_label=None)
fig.save()
if __name__ == ’__main__":
sp = spanningtree(’test-igraph.png’)
sp.plotimage()

fig.

In this case we calculate a minimum spanning tree of a
graph, and save the result in test-igraph.png. The Lua
layer is so simple that it is encapsulated in a TgX macro:

\def\PlotSpanTree#1{%

\startluacode

require("python")

local spantree_module

local sp

spantree_module =
python.import(”test-igraph")

sp = spantree_module.spanningtree("#1")

sp.plotimage()

\stopluacode

\externalfigure[#1]}

\starttext

\startTEXpage

\PlotSpanTree{test-igraph.png}

\stopTEXpage

\stoptext

NetworkX.  NetworkX is a Python package for the
creation, manipulation, and study of the structure, dy-
namics, and functions of complex networks. [22]

The code is simpler: we have only two layers: the
Python layer, and the TgX layer. The Python layer
is a trivial modification of knuth_miles.py (see [24],
[36], [60]), and is left to the reader (hint: rename

..__init__.. in def run()).
\starttext
\startTEXpage

\ctxlua{require("python");
knuth=python. import(”test-networkx");
knuth.run();}

E47



E48 MAPS 39

\externalfigure[knuth_miles]
\stopTEXpage
\stoptext

Here is the result (with a bit of imagination, one can see
the USA):

ROOT. ROOT is an object-oriented program and library
developed by CERN. It was originally designed for par-
ticle physics data analysis and contains several features
specific to this field. [7], [26]

In this example we will draw 110 lines from file data
(each line being 24 float values separated by spaces);
each line will be a curve to fit with a polynomial of
degree 6. We isolate all relevant parts in a Python script
test-ROOT1. py:

from ROOT import TCanvas,
TGraph, TGraphErrors, TMultiGraph
from ROOT import gROOT
from math import sin
from array import array
def run(filename):
cl = TCanvas("c1”,"multigraph”,200,10,700,500)
c1.SetGrid()
mg = TMultiGraph()
n = 24; x = array(’d’,range(24))
data = file(’data’).readlines()
for line in data:
line = line.strip()

y = array(’d’,
[float(d) for d in line.split()1)
gr = TGraph(n,x,y)

gr.Fit("pol6”,"q")
mg.Add(gr)
mg.Draw("ap")
cl.Update(); cl1.Print(filename)

This is the ConTgXt side:

\startluacode

function test_ROOT(filename)
require("python")
test = python.import(’test-RO0T1’)
test.run(filename)

Luigi Scarso

end

\stopluacode

\starttext \startTEXpage
\ctxlua{test_ROOT("data.pdf")}
\rotate[rotation=90]{\externalfigure[data.pdf1}
\stopTEXpage \stoptext

Here is the result:

=
&

©
S

N
o

&
T T T e e

N
=3

o

)

Database

Oracle Berkeley DB XML. Oracle Berkeley DB XML “is
an open source, embeddable xml database with XQuery-
based access to documents stored in containers and
indexed based on their content. Oracle Berkeley DB XML
is built on top of Oracle Berkeley DB and inherits its rich
features and attributes” [45];

We take as our data source a Wikiversity XML
dump [8], more specifically
enwikiversity-20090627-pages-articles.xml
a ~95MByte uncompressed xml file (in some sense, we
end were we started).

Building a database is not trivial, so one can see
[35] under Build_the_container for details. The most
important things are indexes; here we use

container.addIndex("","title",
"edge-element-substring-string"”,uc)

container.addIndex("","username”,
"edge-element-substring-string"”,uc)

container.addIndex("","text",

"edge-element-substring-string"”,uc)

These indexes will be used for substring queries, but
not for regular expressions, for which it will be used
the much slower standard way.  Again it’s bet-
ter to isolate the Python code in a specific module,
wikidbxml_queryTxn.py (see [35] under Make pdf for
details). This module does the most important work:
translate from a ‘MediaWiki-format’ to ConTgXt-mkiv.
A ‘MediaWiki-format’ is basically made by <page> like
this:

<page>
<title>Wikiversity:What is Wikiversity?</title>



LuaTEX lunatic

<id>6</id>

<revision>

<id>445629</id>
<timestamp>2009-06-08T06:30:15Z</timestamp>
<contributor>

<username>Jr.duboc</username>

<id>138341</id>

</contributor>

<comment>/* Wikiversity for teaching */</comment>
<text xml:space="preserve">{{policy|[[WV:IS]]1}}
{{about wikiversity}}

[[Image:Plato i sin akademi,

av Carl Johan Wahlbom

(ur Svenska Familj-Journalen).png

| thumb|left|300px|Collaboration between students
and teachers.]]

__TOoC__

==Wikiversity is a learning community==
[[Wikiversity]] is a community effort to learn
and facilitate others’

learning. You can use Wikiversity to find
information or ask questions about a subject you
need to find out more about. You can also use it
to share your knowledge about a subject,

and to build learning

materials around that knowledge.

&lt;!-- That’s all, folks! --&gt;
</text>

</revision>

</page>

So, a <page> is an xml document with non-xml markup
in <text> node (which is an unfortunate tag name for an
xml document); even if <page> is simple, parsing <text>
content, or, more exactly, the text node of <text> node,
is not trivial, and we can:

O implement a custom parser using the 1peg mod-
ule of ConTeXt-mkiv (e.g. $HOMEDIR/minimals/tex
/texmf-context/tex/context/base/1xml-tab.lua);
this can be a good choice, because we can translate
‘MediaWiki-format’ directly into ConTgXt markup,
but of course we must start from scratch;

O use an external tool, like the Python module mwlib:
MediaWiki parser and utility library [25].

We choose mwlib (here in vers. 0.11.2) and implement the
translation in two steps:

1. from ‘MediaWiki-format’ to XML-DocBook (more
exactly DocBook RELAX NG grammar 4.4; see [44])

2. from XML-DocBook to ConTgXt-mkiv (this is done
by the getConTeXt(title,res) function)

EUROTEX 2009

9% Actually, the wikidbxml_queryTxn.writeres() function writes

the result of the query by calling wikidbxml_queryTxn.
getArticleByTitle() which in turn calls wikidbxml_queryTxn.
getConTeXt() function.

The ConTgXt-mkiv side is (for the moment forget
about the functions listtitles(title) and simplere-
ports(title)):

\usetypescriptfile[type-gentium]
\usetypescript[gentium]
\setupbodyfont[gentium, 10pt]
\setuppapersize[A5][A5]
\setuplayout[height=middle,
topspace=1cm, header={2\1lineheight},
footer=0pt,backspace=1cm,margin=1cm,
width=middle]
%%
%% DB XML
%%
\startluacode
function testdbxml(title,preamble,
postamble, filename)
require("python”)
pg = python.globals()
wikiversity =
python. import("wikidbxml_queryTxn")
wikiversity.writeres(title,preamble,
postamble, filename)
end
\stopluacode
%%
%% sqlite
%%
\startluacode
function listtitles(title)
require("python)
pg = python.globals()
wikiversity =
python.import("wikidbxml_queryTxn")

r = wikiversity.querycategory(title)
local j =0
local res = r[j] or {}
while res do
local d =

string.format("\%s\\par",
string.gsub(tostring(res),’_’,’

tex.sprint(tex.ctxcatcodes,d)

j =3

res = r[j]

end

end
\stopluacode
%%
%% sqlite

D)

E49



E50 MAPS 39

%%

\startluacode

function simplereports(title)
require("python™)
pg = python.globals()
wikiversity =

python.import("wikidbxml_queryTxn")

r = wikiversity.simplereports(title)

local j = tonumber(r)
for v = 0,j-1 do
local d =

string.format("\\input reps\%04d ",v)
tex.sprint(tex.ctxcatcodes,d)
end
print( j )

end

\stopluacode

%% ConTeXt

\def\testdbxml[#11{%

\getparameters[dbxml][#1]1%

\ctxlua{%

testdbxml(”\csname dbxmltitle\endcsname”,
"\csname dbxmlpreamble\endcsname”,
"\csname dbxmlpostamble\endcsname”,
"\csname dbxmlfilename\endcsname"”)3}%

\input \csname dbxmlfilename\endcsname %

3

\starttext

\testdbxml[title={Primary mathematics/Numbers},
preamble={},
postamble={},
filename={testres.tex}]

\stoptext

Here we query for the exact title Primary mathemat-
ics/Numbers: for the result, see page 55.

sqlite.  Python offers adapters for practically all well
known databases like PostgreSQL, MySQL, ZODB, etc.
(“ZODB is a persistence system for Python objects” writ-
ten in Python, see [16]. ZODB is the heart of Plone [47],
a popular content management system also written in
Python), but here we conclude with sqlite, a “soft-
ware library that implements a self-contained, serverless,
zero-configuration, transactional SQL database engine.
SQLite is the most widely deployed SQL database engine
in the world. The source code for SQLite is in the public
domain” (see [29]).

sqlite is a module of the standard Python library,
and we can use it to query a category.db for titles.
(category.db is a db made from
enwikiversity-20090627-category.sql, which is a
MySQL dump. Conversion is not difficult and is not
shown here.)

Luigi Scarso

The code uses the two functions seen before, listtitles
and simplereports:

\starttext

{\bfb Query for ’geometr’:}
\ctxlua{listtitles("geometr")}%
\ctxlua{simplereports("geometr"”)}%
\stoptext

See p. 57 for a short result (actually the first page of sec-
ond hit, Geometry. The complete document is 12 pages).

MetaTgX

What is MetalgX?
Quoting from $HOMEDIR/tex/texmf-context/tex/context
/base/metatex. tex:

This format is just a minimal layer on top of the
LudlgX engine and will not provide high level function-
ality. It can be used as basis for dedicated (specialized)
macro packages.

A format is generated with the command:

Juatools --make --compile metatex

It should be clear from previous examples that a system
with all these “bindings” becomes quickly unmanage-
able: one can spend almost all available time upgrading
to latest releases. Just as an example: already at time
of preprinting ghostscript was at rel. 8.70 (vs. rel. 8.64
of this article) Sage was at rel. 4.1 (vs. rel. 3.2.2), Python
itself was at rel. 2.6.2 (vs. rel. 2.6.1) and there even exists
rel. 3.1....

Also not all Python packages are “robust”: for exam-
ple, in the file dochookwriter.py of mwlib we can see

Generate DocBook from the DOM tree generated
by the parser.

Currently this is just a proof of concept
which is very incomplete

(and of course, mwlib was at rel. 0.12.2 (vs. rel. 0.11.2) so
this message may have disappeared as well).

So, in the end, it’s better to have more distinct “tools”
than one big tool that does anything and badly. We can
see now why MetdlgX fits well in this line: it permits
to create the exact “tool” needed and luatex lunatic can
be used to complete this tool. For example, consider the
problem of typesetting labels like the one on top if the
next page.

Basically, it’s a table with barcode and two or three
fonts (preferably monospaced fonts), most of the time
black and white. ConTgXt-mkiv already comes with
natural tables, or even a layer mechanism (see [70]);
luatex-lunatic with barcode.ps provides the barcode
We don’t need colors, interaction, indexes, sectioning.



LuaTEX lunatic

Schnelidienst 245t [ 1004100
Nachnahme:  EUR 438 70BAR "

BEWMO

Hauptstr. 65

72336 Balingen

Ref. Nr. | Paket Nr
111293 | 000001 11

Suotheweg 43

T D 49504

HITHIMIN o=

1223-111293-000001-49-49504 trans-o-flex

rint s

Financial reports are similar: here we can benefit from
the decimal Python module that is included in the stan-
dard library (decimal is an implementation of Decimal
fixed point and floating point arithmetic; see [28]).

MetdlgX can be used to produce very specific for-
mats for educational purposes: think for example of a
MetdlgXSage, or a MetalgXR from the CWEB point of
view, i.e. embedded source code inside descriptive text
rather than the reverse.

Also, Python can be used as a query language for
Plone (mentioned previously), a powerful CMS written
in Python, so it can be possible to print specific content
type without translating it into an intermediate form like
xml (and maybe in the future the reverse too, i.e. push a
content type made by a MetaTgXPlone).

Conclusion

LuaTgX with ConTgXt-mkiv is a powerful tool for pub-
lishing content, and with an embedded Python inter-
preter we unquestionably gain more power, especially
when MetalgX becomes stabilized. If one wants, one
can also experiment with JPype “an effort to allow
Python programs full access to Java class libraries. This
is achieved not through re-implementing Python, as
Jython/JPython has done, but rather through interfacing
at the native level in both virtual machines” [12] (cur-
rently unstable under Linux).

So it’s better here to emphasize “the dark side of the
moon”.

First, it should be clear that currently we cannot assure
stability and portability in the TgX sense.

Moreover, under Linux there is immediately a price to
pay: symbol collisions. Even if the solution presented
here should ensure that there are no symbol collisions
between luatex and an external library, it doesn’t resolve
problems of collision between symbols of two external
libraries; installing all packages under a folder /opt
/luatex/luatex-lunatic can help to track this problem,
but it’s not a definitive solution. Of course, we avoid this
problem if we use pure Python libraries, but these tend
to be slower than C libraries.

EUROTEX 2009

ctypes looks fascinating, but a binding in ctypes is
usually not easy to build; we must not forget that
Lua offers its loadlib that can always be used as an
alternative to ctypes or to any other Python alternative
like SWIG [55] which can, anyway, build wrapper code
for Lua too, at least from development release 1.3. In
the end, an existing Python binding is a good choice if
it is stable, rich, complete and mature with respect to an
existing Lua binding, or if there is not a Lua binding.

For a small script, coding in Lua is not much different
from coding in Python; but if we have complex objects,
things can be more complicated: for example this Python
code

Z = x*np.exp(-x**2-y*x2)

is translated in this not-so-beatiful Lua code

_mul__(np.exp((x.__pow__(2).
——add__(y.__pow__(2))).__neg__()))

Z=X. _

(see [35]#Scipy). It is better to separate the Python
layer into an external file, so we can eventually end in
a *py,xlua,xtex for the same job, adding complexity to
manage.

In the end, note that a Python interpreter does not
“complete” in any sense luatex, because Lua is a perfect
choice: it’s small, stable, and OS-aware. Conversely,
Python is bigger, and today we are seeing Python ver-
sions 2.4, 2.5, 2.6.2, 2.7 alpha, 3.1 ... not exactly a stable
language from a TgX user point of view.

Acknowledgements

The author would like to thank Taco Hoekwater and
Hans Hagen for their suggestions, help and encourage-
ment during the development and the writing process of
this article.

The author is also immensely grateful to Massimil-
iano “Max” Dominici for his strong support, help and
encouragement.

References
All links were verified between 2009.08.17 and 2009.08.21.

http://cairographics.org
http://cg.scs.carleton.ca/~luc/PSgeneral.html
https://code.Jaunchpad.net/~niemeyer/lunatic-python/trunk
http://download.wikimedia.org

— o, — — —
(SN
e S S

http://en.wikipedia.org/wiki/Call_graphs
http://en.wikipedia.org/wiki/Python_(programming_language)
http://en.wikipedia.org/wiki/ROOT

E51



E52 MAPS 39

[8] http://en.wikiversity.org/wiki/Getting_stats_out_of
_Wikiversity_ XML_dumps

9] http://gec.gnu.org/wiki/Visibility

10] http://ghostscript.com/

11] http://igraph.sourceforge.net

12] http://jpype.sourceforge.net/

13] http://kcachegrind.sourceforge.net/cgi-bin/show.cgi

14] http://labix.org/lunatic-python

15] http://labix.org/python-bz2

16] https://launchpad.net/zodb

17] http://linux.die.net/man/1/1d

18] http://linux.die.net/man/3/dlopen

19] http://luagraph.luaforge.net/graph.html

20] http://luatex.bluwiki.com/go/User:Luigi.scarso

21] http://meeting.contextgarden.net/2008

22] http://networkx.lanl.gov

23] http://minimals.contextgarden.net/

24] http://networkx.lanl.gov/examples/drawing/knuth_miles.htm]

25] http://pypi.python.org/pypi/mwlib

26] http://root.cern.ch

27] http://rpy.sourceforge.net/

28] http://speleotrove.com/decimal

29] http://sqlite.org/

30] http://valgrind.org/

31] http://vefur.simula.no/intro-programming/

32] http://vigna.dsi.unimi.it/metagraph

33] http://wiki.contextgarden.net/Future_ConTeXt_Users

34] http://wiki.contextgarden.net/Image:Trick.zip

35] http://wiki.contextgarden.net/User:Luigi.scarso/luatex_lunatic

36] http://www-cs-faculty.stanford.edu/~knuth/sgb.html

37] http://www.codeplex.com/IronPython

38] http://www.graphviz.org

39] http://www.gnu.org/software/libtool

40] http://www.imagemagick.org/script/index.php

41] http://www.jython.org

42] http://www.math.ubc.ca/~cass/graphics/text/www/index.html

43] http://www.luatex.org

44] http://www.oasis-open.org/docbook

45] http://www.oracle.com/database/berkeley-db/xml/index.html

46] http://www.pathname.com/fhs/

47] http://www.plone.org

48] http://www.procoders.net/?p=39

49] http://www.python.org

50] http://www.python.org/doc/2.6.1/library/ctypes.html

51] http://www.pythonware.com/products/pil/

52] http://www.r-project.org/

53] http://www.sagemath.org/

54] http://www.scipy.org/

55] http://www.swig.org

56] http://www.terryburton.co.uk/barcodewriter/

57] private email with Taco Hoekwater

58] Bill Casselman, Mathematical Illustrations: A Manual of
Geometry and PostScript. ISBN-10: 0521547881, ISBN-13:
9780521547888 Available at site http://www.math.ubc.ca/~cass
/graphics/text/www/index.html

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

Luigi Scarso

[59] Danny Brian, The Definitive Guide to Berkeley DB XML. Apress,
2006. ISBN-13: 978-1-59059-666-1

[60] Donald E. Knuth, The Stanford GraphBase: A Platform for
Combinatorial Computing. ACM Press, New York, 1993. ISBN
978-0-470-75805-2

[61] Hans Petter Langtangen, A Primer on Scientific Programming
with Python. Springer, 2009. ISBN: 978-3-642-02474-0

[62] Hans Petter Langtangen, Python Scripting for Computational
Science. Springer, 2009. ISBN: 978-3-540-73915-9

[63] John Levine, Linkers & Loaders. Morgan Kaufmann Publisher,
2000. ISBN-13: 978-1-55860-496-4

[64] Mark Lutz, Learning Python, Fourth Edition. O’Reilly, Septem-
ber 2009 (est.) ISBN-10: 0-596-15806-8,
ISBN 13: 978-0-596-15806-4

[65] Mark Lutz, Programming Python, Third Edition. O’Reilly, Au-
gust 2006. ISBN-10: 0-596-00925-9, ISBN 13: 978-596-00925-0

[66] luatexref-t.pdf. Available in manual folder of luatex-snapshot-
0.42.0.tar.bz2

[67] Priscilla Walmsley, XQuery. O’Reilly, April 2007. ISBN-13:
978-0-596-00634-1

[68] Roberto Ierusalimschy, Programming in Lua (second edition).
Lua.org, March 2006. ISBN 85-903798-2-5

[69] Ulrich Drepper, How to Write Shared Libraries.
http://people.redhat.com/drepper/dsohowto.pdf

[70] Willi Egger, ConTeXt: Positioning design elements at specific
places on a page (tutorial). EuroTgX 2009 & 3rd ConTEXt Meet-
ing

[71] Yosef Cohen and Jeremiah Cohen, Statistic and Data with R.
Wiley 2008. ISBN 978-0-470-75805-2

| currently use Ubuntu Linux, on a standalone
laptop—it has no Internet connection. | occasion-
ally carry flash memory drives between this machine
and the Macs that | use for network surfing and
graphics; but | trust my family jewels only to Linux.
— Donald Knuth

Interview with Donald Knuth

By Donald E. Knuth and Andrew Binstock

Apr. 25, 2008
http://www.informit.com/articles/article.aspx?p=1193856

The lunatic is on the grass

The lunatic is on the grass

Remembering games and daisy chains and laughs
Got to keep the loonies on the path

— Brain Damage,

The Dark Side of the Moon,

Pink Floyd 1970

Mr. LuaTgX hosts a Python,
and become a bit lunatic
— Anonymous

Luigi Scarso



2009 E53

LuaTgX |
Appendix

Call graph of a simple run




E54 MAPS 39

Call graph of a simple run, cont.

TeX, forever

Luigi Scarso

.T

'®

: I i i
VEI 4

il o
]

Ie

‘N

._._
5”.

3

T

.WMI

0
H

[

0
!

SN

1 hlist 2 glyph
id:0 id:37
subtype:0 subtype:256
attr:<node nil <1435 > 1420 : attribute_list 0> attr:<node nil <1435 > 1420 : attribute_list 0>
width:1451238 char:84
depth:169476 font:1
height:537133 lang:2
dir:TLT — left:2
shift:0 right:3
glue_order:0 uchyph:1
glue_sign:0 components:nil
glue_set:0 xoffset:0
list:<node 2000 < 1965 > 150 : glyph 256> yoffset:0
prev:nil prev:<node nil <2000 > 2006 : attribute 1>
next:nil next:<node 1965 < 150 > 1549 : kern 1>
3lkern 4 hlist
id:11 id:0
subtype:1 subtype:0
attr:<node nil < 1373 > 1433 : attribute_list 0> —» attr:<node 1 <1953 > 1955 : attribute_list 0>
kern:-117596 width:523764
prev:<node 2000 < 1965 > 150 : glyph 256> depth:0
next:<node 150 < 1549 > 2002 : hlist 0> height:535560
dir:TLT
shift:169476
glue_order:0
glue_sign:0
glue_set:0

list:<node nil <1970 > nil : glyph 256>
prev:i<node 1965 < 150 > 1549 : kern 1>

next:<node 1549 < 2002 > 1989 : kern 1>

5 glyph

6 kern

id:37

id:11

subtype:256

subtype:1

attr:<node 1 < 1953 > 1955 : attribute_list 0> F——>

attr:<node nil < 1987 > 1994 : attribute_list 0>

char:69

kern:-88178

font:1

prev:i<node 150 < 1549 > 2002 : hlist 0>

lang:2

next:<node 2002 < 1989 > nil : glyph 256>

left:2

right:3

uchyph:1

components:nil

xoffset:0

yoffset:0

prev:nil

next:nil

7 glyph

id:37

subtype:256

attr:<node nil <1979 > 1981 : attribute_list 0>

char:88

font:1

lang:2

left:2

right:3

uchyph:1

components:nil

xoffset:0

yoffset:0

prev:<node 1549 < 2002 > 1989 : kern 1>

next:nil

TEX nodelist made with lunatic binding for graphviz




LuaTEX lunatic EUROTEX 2009 Ebb

DB XML example

( N

1 Primary mathematics/Numbers

1.1 Primary mathematics/Numbers

1.1.1 Teaching Number

This page is for teachers or home-schoolers. It is about teaching the basic concepts and conventions of simple number.

1.1.1.1 Developing a sound concept of number

Children typically learn about numbers at a very young age by learning the sequence of words, "one, two, three, four, five" etc. Usually,
in chanting this in conjunction with pointing at a set of toys, or mounting a flight of steps for example. Typically, 'mistakes’ are made.
Toys or steps are missed or counted twice, or a mistake is made in the chanted sequence. Very often, from these sorts of activities,
and from informal matching activities, a child’s concept of number and counting emerges as their mistakes are corrected. However,
here, at the very foundation of numerical concepts, children are often left to "put it all together’ themselves, and some start off on a
shaky foundation. Number concepts can be deliberately developed by suitable activities. The first one of these is object matching.

1.1.2 Matching Activities

As opposed to the typical counting activity childen are first exposed to, matching sets of objects gives a firm foundation for the concept
of number and numerical relationships. It is very important that matching should be a physical activity that children can relate to
and build on.

Typical activities would be a toy’s tea-party. With a set of (say) four toy characters, each toy has a place to sit. Each toy has a cup,
maybe a saucer, a plate etc. Without even mentioning four’, we can talk with the child about ’the right number’ of cups, of plates
etc. We can talk about 'too many’ or 'not enough’. Here, we are talking about number and important number relations without even
mentioning which number we are talking about! Only after a lot of activities of this type should we talk about specific numbers and
the idea of number in the abstract.

1.1.3 Number and Numerals

Teachers should print these numbers or show the children these numbers. Ideally, the numbers should be handled by the student.
There are a number of ways to acheive this: cut out numerals from heavy cardstock, shape them with clay together, purchase wooden
numerals or give them sandpaper numerals to trace. Simultaneously, show the definitions of these numbers as containers or discrete
quantities (using boxes and small balls, eg. 1 ball, 2 balls, etc. Note that 0 means "no balls"). This should take some time to learn
thoroughly (depending on the student).

0123456789

1.1.4 Place Value

The Next step is to learn the place value of numbers.

It is probably true that if you are reading this page you know that after 9 comes 10 (and you usually call it ten) but this would not be
true if you would belong to another culture.

Take for example the Maya Culture where there are not the ten symbols above but twenty symbols.

cfr http://www.michielb.nl/maya/math.html

Imagine that instead of using 10 symbols one uses only 2 symbols. For example 0 and 1

Here is how the system will be created:
Binary |0/1{10{11{100{101|110|111{1000|...

Decimal|0|1|2 [3 |4 |5 |6 |7 |8

Or if one uses the symbols A and B one gets:
Binary |A|B|BA|BB(BAA|BAB|BBA|BBB|BAAA|...
Decimal|0[1]2 [3 |4 |5 |6 |7 |8

This may give you enough information to figure the place value idea of any number system.
For example what if you used 3 symbols instead of 2 (say 0,1,2).




E56 MAPS 39 Luigi Scarso

Trinary |0{1|2({10|11{12|20|21|22|100|...
Decimal|0|1|2|3 [4 |5 |6 |7 |8 |9

If you're into computers, the HEXADECIMAL (Base 16) or Hex for short, number system will be of interest to you. This system uses 4
binary digits at a time to represent numbers from 0 to 15 (decimal). This allows for a more convenient way to express numbers the
way computers think - that we can understand. So now we need 16 symbols instead of 2, 3, or 10. So we use 0123456789ABCDEF.

Binary |0/1{10|11{100{101|110{111{1000{1001|1010{1011{1100{1101{1110{1111|10000|...
Decimal|0[1[2 |3 [4 |5 |6 |7 |8 9 10 (11 (12 (13 |14 |15 (16
0|12 314 |5 |6 |7 |8 9 A B C D E F 10

Hex

1.1.5 Resources for Early Math

15 Fun Ways and Easy Games for Young Learners Math: Reproducible, Easy-to-Play Learning Games That Help Kids Build Essential
Math Skills, by Susan Julio, Scholastic Professional, 2001.

Eenie Meenie Miney Math!: Math Play for You and Your Preschooler, by Linda Allison, Little Brown & Co., 1993.

Marshmallow Math: Early Math for Toddlers, Preschoolers and Primary School Children, by Trevor Schindeler, Trafford, 2002.
Number Wonder: Teaching Basic Math Concepts to Preschoolers, by Deborah Saathoff and Jane Jarrell, Holman Bible, 1999.

cfr Category:School of Mathematics

cfr Category:Pages moved from Wikibooks

cfr Category:Primary education

Next in Primary School Mathematics:

cfr http://en.wikiversity.org/wiki/Primary_mathematics:Adding_numbers




LuaTEX lunatic EUROTEX 2009 Eb7

sqlite example
e 7

Query for ’geometr’: Geometric algebra
Geometry

Introductory Algebra and Geometry

Orbital geometry

Coordinate Geometry




E58 MAPS 39 Luigi Scarso

2 Geometry

2.1 Geometry

This subdivision is dedicated to bridging the gap between the mathematical layperson and the student who is ready to learn calculus
and higher mathematics or to take on any other endeavour that requires an understanding of basic algebra and (at least Euclidean)
geometry.

2.1.1 Subdivision news
2.1.2 Departments

2.1.3 Active participants

The histories of Wikiversity pages indicate who the active participants are. If you are an active participant in this subdivision, you
can list your name here (this can help small subdivisions grow and the participants communicate better; for large subdivisions a list
of active participants is not needed). Please remember: if you have an

cfr http://en.wikiversity.org/w/index.php?title=Special:Userlogin\&type=signup

cfr Category:Geometry

cfr Category:Introductions

cfr \#

cfr \#

In Cartesian or Analytic Geometry we will learn how to represent points, lines, and planes using the Cartesian Coordinate System,
also called Rectangular Coordinate System. This can be applied to solve a broad range of problems from geometry to algebra and it
will be very useful later on Calculus.

2.1.4 Cartesian Coordinate System

The foundations of Analytic Geometry lie in the search for describing geometric shapes by using algebraic equations. One of the most
important mathematicians that helped to accomplish this task was René Descartes for whom the name is given to this exciting subject
of mathematics.

2.1.4.1 The Coordinate System

For a coordinate system to be useful we want to give to each point an atribute that help to distinguish and relate different points.
In the Cartesian system we do that by describing a point using the intersection of two(2D Coordinates) or more(Higher Dimensional
Coordinates) lines. Therefore a point is represented as P(x1,x2,x3,...,xn) in "n" dimensions.

2.1.5 Licensing:

"Geometry is the only science that it hath pleased God hitherto to bestow on mankind."-Thomas Hobbes

This department of the Olympiad Mathematics course focuses on problem-solving based on circles and vectors, thus generalizing
to Coordinate Geometry. Our major focus is on Rectangular (Cartesian) Coordinates, although the course does touch upon Polar
coordinates.

The first section is based on the geometric study of circles. Although not based on pure analytical geometry, it uses Appolonius-style
reference lines in addition to Theorems on Tangents, Areas, etc.

The second section is devoted to Vector Analysis, covering problem-solving from Lattices and Affine Geometry to Linear Algebra of
Vectors

Third section, focusing on locus problems, is all about conic sections and other curves in the Cartesian plane.

2.1.6 Textbooks

2.1.7 Practice Questions




Willi Egger EUROTEX 2009

Decorating CD-ROMs and DVDs
(Tutorial)

Abstract

After having burned a disk you sometimes need to add a label and, if the disk is stored in

a jewel case, a booklet and an inlay for the jewel case. The following article describes how
to create a label for the disk on a commercial label-sheet and a booklet and an inlay for the
jewel case. The following solutions are based on ConTgXt's built-in layer capabilities.

Keywords
ConTeXt, CD-ROM, DVD, label, booklet, inlay, layer.

Label
The label’s several elements can be switched on/off with the following three modes:

O enabling draft mode will draw an outline of the label. Beware, simultaneously en-
abling the withBackground mode will obscure the outline.

O enabling withLogo mode will show an image at the top of the label.

O enabling withBackground mode will place the background image on the label.

\enablemode[draft]
\enablemode[withLogo]
\enablemode[withBackground]

We begin by specifying the main language.
\mainlanguagel[en]

Next, we choose the label font. Since we are using ConTgXt MkIV, we will choose the
Iwona-medium font in its otf variant.

\usetypescript[iwona medium]
\setupbodyfont[iwona-medium, 10pt]

All texts in the different boxes on the various layers are of type \framed. As a visual
aid, draft mode switches on all their frames.

\doifmodeelse{draft}
{\def\Onoff{on}}
{\def\Onoff{off}}

We will place two images in the background. As a convenience, we define two macros
whose names are the names of their respective images. The Labelbackground image
covers the complete label, while the Logo image will appear at the top of the label
when the withLogo mode is enabled.

\def\Labelbackground{fish}
\def\Logo{eurotexlogo}

Texts can be placed at the top and bottom of the label, and to the left and right of the
disk’s center. The bottom area is divided into three sections, each wide enough to fit,
depending on the position of the text, within the available space.

E59



E60 MAPS 39

Willi Egger

To keep things uncluttered, we place the texts in buffers here and use only the
buffers’ names in the later typesetting instructions. All the texts will be placed in the
\framed environment.

\startbuffer[BottomtextA]

\green Contains all files for decorating a CD or DVD:\crlf

\em \tfx CD label, CD inlay booklet, CD inlay for the jewel case
\stopbuffer

\startbuffer[BottomtextB]
\green \em Published in the Euro\TEX -proceedings
\stopbuffer

\startbuffer[BottomtextC]
\green 2009
\stopbuffer

There is one text area at the top of the label.

\startbuffer[Toptext]

{\tfc \red CD/DVD decoration}\blank \green{\tfb Tutorial}\vfill Over-
lays and layers
\stopbuffer

The text areas to the left and right of the disk’s center are, like the area at the top of
the label, based on a single block of text.

\startbuffer[Righttext]
\green CD ROM
\blank
\gray \currentdate
\stopbuffer

\startbuffer[Lefttext]
\green \TEX -tutorial
\blank
Euro\TEX 2009

\stopbuffer

By separating the content elements above from the typesetting commands below, we
can change the content without worrying about the code below this point. We will add
a comment to emphasize this.

Basically you do not need to edit the lines below
First, we tell ConTgXt how the label will look when typeset.

\setuppapersize[A4]1[A4]
\setuppagenumbering[state=stop]
\setupcolors[state=start]

\setuplayout
[topspace=0pt,
backspace=0pt,
header=0pt,
footer=0pt,
margin=0pt,
width=210mm,
height=297mm,
marking=on,
location=middle]



Decorating CD-ROMs and DVDs EUROTEX 2009

As mentioned above, enabling draft mode will draw the label outline. The drawing
itself consists of two concentric circles drawn with MetaPost.

\startreusableMPgraphic{CDShape}
draw fullcircle scaled 117mm;
draw fullcircle scaled 41mm;

\stopreusableMPgraphic

ConTgXt provides the \doifmode[]{} command, which we will use to set the label
background to our predefined background image when the withBackground mode is
enabled.

\doifmode{withBackground}
{\defineoverlay
[Lbackground]
[{\externalfigure
[\Labelbackground]
[width=\overlaywidth,height=\overlayheight]}1}

We use the same mechanism to place the optional logo image.

\doifmode{withLogo}
{\defineoverlay
[Logo]
[{\externalfigure[\Logo]
[width=\overlaywidth,height=\overlayheight]}1}

Here we define a layer that will cover the entire page. To indicate that we do not want
relative positioning of this layer, we set its position to no and its reference point to
bottom. Lastly, we place the layer into the page area as a background.

\definelayer[PagelLayer][position=no]

\setuplayer
[Pagelayer]
[corner=bottom,location=c,height=\paperheight]

\setupbackgrounds[page][background=PagelLayer]

We define a second layer to hold the label fields we have already defined. We set this
layer’s reference point to top and left and the location of the layer data to bot-
tom right. We also define its width and height. Set option=test to see what ConTgXt
does with these settings.

\definelayer
[Label]
[position=no,corner={top,left},location={bottom,right},
width=117mm,height=117mm,option=test]

In the following lines we fill the Label layer with our predefined label fields, and then

typeset it. To tell ConTgXt to flush the layer at the end of the page we enclose the filling

commands and the typesetting command: \placelayer[] within a \standardmakeup
. \stopstandardmakeup block.

\starttext

\startstandardmakeup[page=no,doublesided=no]

\setlayerframed
[Label]
[x=\dimexpr(\textwidth-117mm) /2,y=21.43mm]
[width=117mm,height=117mm, frame=\0Onoff,background=Lbackground]
{3

E61



E62 MAPS 39

Willi Egger

\setlayerframed
[Label]
[x=\dimexpr(\textwidth-13mm)/2,y=22.43mm]
[width=13mm, height=13mm, frame=\0Onoff,align={top,middle},
background=Logo]
{3

\setlayerframed
[Label]
[x=\dimexpr(\textwidth-78mm) /2,y=35.43mm]
[width=78mm, height=24mm, frame=\0Onoff,align={top,middle}]
{\gethuffer[Toptext]}

\setlayerframed
[Label]
[x=126mm, y=60mm]
[width=34mm, height=40mm, frame=\Onoff,align={middle, lohi}]
{\gethuffer[Righttext]}

\setlayerframed
[Label]
[x=50mm, y=60mm]
[width=34mm, height=40mm, frame=\Onoff,align={flushleft,lohi}]
{\getbuffer[Lefttext]}

\setlayerframed
[Label]
[x=\dimexpr(\textwidth-98mm) /2,y=100.43mm]
[width=98mm,height=\dimexpr(38mm/3), frame=\0Onoff,align=middle]
{\getbhuffer[BottomtextAl}

\setlayerframed
[Label]
[x=\dimexpr(\textwidth-72mm)/2,y=\dimexpr(100.43mm+38mm/ 3)]
[width=72mm, height=\dimexpr(38mm/3),frame=\0Onoff,align=middle]
{\getbhuffer[BottomtextB]}

\setlayerframed
[Label]
[x=\dimexpr(\textwidth-18mm)/2,y=\dimexpr(100.43mm+38mm/ 3%2)]
[width=18mm, height=\dimexpr(38mm/3),frame=\0Onoff,align=middle]
{\getbuffer[BottomtextC]l}

\doifmode{draft}
{\setlayer[PagelLayer][x=.5\paperwidth,y=216.93mm]
{\useMPgraphic{CDShape}}
\setlayer[PagelLayer][x=.5\paperwidth,y=79.93mm]
{\useMPgraphic{CDShape}}}
\placelayer([Label]
\stopstandardmakeup

\stoptext

As you can see in the code above, we move a piece of information to its correct position
by adjusting its vertical and horizontal offsets.

Near the end of the code there is another conditional action that controls the place-
ment of the label shape.

The preceding code yields the following result:



Decorating CD-ROMs and DVDs EUROTEX 2009 E63

CD-ROM

Figure 1. Example CD-label



E64 MAPS 39

Willi Egger

Booklet

The CD-booklet is composed of a single section which we arrange with \setuparrang-
ing[2UP]. As before, we start with setting the main language and choosing the font
for the booklet.

\mainlanguagel[en]

\usetypescript[palatino]
\setupbodyfont[palatino, 8pt]

If you want to place a background image on the front page, you can define a macro
with a symbolic name which will be used later when you setup the page layer.

\def\Pageimage{fish}

We can add a title typeset along the spine of the cover page. The title is placed in a
buffer:

\startbuffer[Sidetitle]
{\tfc \yellow CD/DVD decoration}
\stopbuffer

In the next buffer we place the contents of the cover page.

\startbuffer[Covertext]
\strut
\blank[line]
\startalignment[middle]
\startlines
{\tfc \red CD/DVD decoration}
\blank \green{\tfb Tutorial}
\blank Overlays and layers
\stoplines
\stopalignment
\blank
\stopbuffer

The booklet contents is put into its own buffer.

\startbuffer[Bookletcontent]
\input knuth\par
\stopbuffer

Now that all the content elements for the booklet have been defined, the positioning
code that follows, once written, need not be changed.

Basically you do not need to edit the lines below

The CD-booklet is typeset on a custom size of paper. We define this paper size and put
it on landscape A4 sheets. We choose our layout parameters and, because we are using
the standard-makeup-environment, we turn vertical centering off.

\definepapersize[CDbooklet][width=120mm,height=118mm]
\setuppapersize[CDbooklet][A4,landscape]
\setuppagenumbering[location={bottom,right},alternative=doublesided]
\setupcolors[state=start]
\setupnarrower[left=.5em]
\setuplayout

[topspace=2mm,

backspace=9mm,

header=0pt,



Decorating CD-ROMs and DVDs EUROTEX 2009

footer=5mm,

margin=8.5mm,

margindistance=.5mm,

width=100mm,

height=115mm,

marking=on,

location=middle]
\setupmakeup[standard][top=,bottom=]

The background image on the cover should be a bleeding image, i.e. it should be larger
than the crop marks indicate. However, as soon as we use imposition, the image is
cropped to the paper size and the bleed is gone. We define the bleed as follows:

\definemeasure[bleed][\dimexprimm\relax]
Now we define a layer which is filled with the background image.

\definelayer
[Background]
[position=no]

\setlayer
[Background]
{\externalfigure
[\Pageimage]
[height=\dimexpr118mm:2\measure{bleed},
width=\dimexpr120mm:2\measure{bleed}]}

The filled layer is placed into the page background. Because we bled the image, we
have to add a background offset equal to the bleed.

\setupbackgrounds[page][background=Background,
backgroundoffset=\measure{bleed}]

As mentioned earlier, the booklet is typeset with imposition.
\setuparranging[2UP]

Now that everything is in place, we can produce the booklet.
\starttext

\startstandardmakeup[doublesided=no, page=yes]
\inleft{\rotate[rotation=901{
\framed[frame=off,align={1lohi,middle},width=\textheight]
{\bfd \getbuffer[Sidetitle]l}}}
\getbuffer[Covertext]
\stopstandardmakeup

\setupbackgrounds[page][background=]
\getbuffer[Bookletcontent]
\stoptext

These parameters will produce the following (only the cover page is shown):

E65



E66 MAPS 39 Willi Egger

Figure 2. The cover of the booklet



Decorating CD-ROMs and DVDs EUROTEX 2009 E67

Jewel case inlay

To complete the CD project, we want to prepare an inlay for the jewel case.
As in the previous sections, we start with setting the main language:

\mainlanguagel[en]
We tell ConTgXt the font we want to use for the inlay

\usetypescript[palatino]
\setupbodyfont[palatino, 10pt]

The inlay will be defined such that you can have as many as three images on the inlay.
There is a page image, a text image and an image for the small strips to the left and
right of the inlay. Again, we define macros in order to replace the actual filename in
the code with a symbolic name.

\def\Pageimage{fish}
\def\Textimage{eurotexlogo}
\def\SideTitleimage{}

We have three text areas. At the left and right sides of the inlay there are small strips
along the spine for the title information. Both strips are automatically filled with the
same information. In between these is the main text area.

\startbuffer[Sidetitle]
\tfa \yellow CD/DVD decoration\hfil12009
\stopbuffer

\startbuffer[Maintext]
\startalignment[middle]
\startlines
{\tfc \red CD/DVD decoration}
\blank \yellow{\tfb Tutorial}
\blank Overlays and layers
\stoplines
\stopalignment
\stopbuffer

The following comment reminds us that the code below this point is usually left un-
touched.

Basically you do not need to edit the lines below.

We must define the inlay paper size ourselves. Its dimensions are 150 x 118 mm and
typeset on an A4.

\definepapersize[CDinlaycase][width=150mm,height=118mm]
\setuppapersize[CDinlaycase][A4]

We define a bleed measure to insure that the page image will cover the entire page.
\definemeasure[bleed][\dimexprimm\relax]

We specify the various layout settings. The width of the main text area is 14 mm
smaller than the paper width. We use a backspace of 7 mm, which is filled with the
margin + margin distance.

\setuplayout
[topspace=0mm,
backspace=7mm,
margin=6.5mm,
header=0pt,



E68 MAPS 39

Willi Egger

footer=0pt,
margindistance=.5mm,
width=136mm,
height=118mm,
location=middle,
marking=on]

\setupcolors[state=start]
\setupmakeup[standard][bottom=, top=]

To fit the inlay into the jewel case we have to make two folds. It is important to make
these folds accurately. To help, we add a layer with fold marks that extend out into the
cut space.

\definelayer
[Foldmarks]
[position=no,
height=\dimexpr(\paperheight+10mm),
width=\dimexpr(\paperwidth+10mm),
x=0mm,
y=-8mm]

Next we define two layers, one each for the page and text images. We do not want the
layers to be positioned relative to the text so we set each position to no.

\definelayer
[Pagebackground]
[position=no]

\definelayer
[Textbackground]
[position=no]

As mentioned earlier, we can use an overlay to add an image or a background along
the spine. The image could be a previously defined external image, and the background
could be a transparent color generated with MetaPost.

\defineoverlay
[SideTitlebackground]
[{\externalfigure[\SideTitleimage][width=\overlaywidth,
height=\overlayheight]}]

or

\defineoverlay
[SideTitlebackground]
[\useMPgraphic{TransparentBackground}]

We define two additional layers intended for the side titles. Again, there is no need for
relative positioning.

\definelayer
[SideTitleL]
[position=no]

\definelayer
[SideTitleR]
[position=no]

We use MetaPost for the fold marks.



Decorating CD-ROMs and DVDs

\startuniqueMPgraphic{Marks}
path p;
pair ptl[l;
p := unitsquare xscaled 136mm yscaled 135mm;
pt[1]1 := llcorner p;
pt[2] := point 3.95 of p;
pt[3] := point 3.05 of p;
pt[4] := ulcorner p;
pt[5] := lrcorner p;
pt[6] := point 1.05 of p;
ptl7] := point 1.95 of p;
pt[8] := urcorner p;

for i= 1 step 2 until 7 :
draw pt[i] —pt[i+1];
endfor;
\stopuniqueMPgraphic

It is easy to prepare a transparent colored background for an overlay with MetaPost.

\startreusableMPgraphic{TransparentBackground}
path p;
p:= unitsquare xscaled \overlaywidth yscaled \overlayheight;
fill p withcolor transparent(1,0.3,yellow);
\stopreusableMPgraphic

Now we are ready to fill the layers with their respective content, and assign the layers
as page or text backgrounds.

\setlayer
[FoldmarksJ{\useMPgraphic{Marks}}
\setlayer
[Pagebackground]
{\externalfigure
[\Pageimage]
[height=\dimexpr118mm:2\measure{bleed},
width=\dimexpr150mm+2\measure{bleed}]}
\setlayer
[Textbackground]
{\externalfigure[\Textimage][height=\textheight,width=\textwidth]}
\setlayer
[SideTitlel]
[x=.5mm, y=.5mm]
{\rotate[rotation=901{
\framed
[frame=off,align={right,lohi},
width=\dimexpr\textheight-Tmm,
background=SideTitlebackground]
{\bf \getbuffer[Sidetitle]}}}
\setlayer
[SideTitleR]
[x=-.5mm,y=.5mm]
{\rotate[rotation=901{
\framed
[frame=off,align={right,lohi},
width=\dimexpr\textheight Tmm,

EUROTEX 2009

E69



E70 MAPS 39 Willi Egger

background=SideTitlebackground]
{\bf \getbuffer[Sidetitle]}}}

\setupbackgrounds

[page]

[background=Pagebackground, backgroundoffset=\measure{bleed}]
\setupbackgrounds[text][background={Foldmarks, Textbackground}]
\setupbackgrounds[text][leftmargin][background=SideTitleL]
\setupbackgrounds[text][rightmargin][background=SideTitleR]

What remains to be done is to start a document and add the information for the main
text area.

\starttext

\strut
\framedtext

[frame=off,
rulethickness=3pt,
offset=10pt,
width=\textwidth,
height=\textheight,
align=middle]
{\getbuffer[Maintext]}

\stoptext

The result is as follows:

s'and layers
During the EuroTgX 2009 a tutori? over the use o ! iy k and layers was held.
The project dealt with was g ConTEXt to create decorations for a
CD/DVD. First a CD-label was created. Further a possible solution for
the inlay-booklet as well’as thelinlay for the/jewel-case-base was shown.
content of this tutorial is published in the proceedings of the Euro
\

C2/DVD decoration

Figure 3. The inlay for the jewel case



Decorating CD-ROMs and DVDs EUROTEX 2009 E71

Further reading

O ConTgXt the manual. Hans Hagen. November 2001, available from
http://www.pragma-ade.com/

O Metafun. Hans Hagen. January 2002, available from http://www.pragma-ade.com/

O It’s in the details. Hans Hagen. Spring 2002, available from http://www.pragma-
ade.com/

O http://wiki.contextgarden.net/Layers.

Conclusion

This small project demonstrates ConTgXt’s capability to place information and graph-
ics at specific locations using layers. Once you become familiar with how they work,
you will find many more situations where layers can be used in modern design. It is
worthwhile having a look at the literature references given above since there is more
to be said about layers than can be presented in this project.

Acknowledgements
I would like to thank Michael Guravage for proofreading this article and for all the

improvements he has made to it.
Willi Egger
w.egger (at) boede.nl



E72 MAPS 39

The language mix

Abstract

During the third ConTEXt conference that ran in parallel
to EuroTEX 2009 in The Hague we had several sessions
where mkiv was discussed and a few upcoming features
were demonstrated. The next sections summarize some of
that. It's hard to predict the future, especially because new
possibilities show up once LuaTEX is opened up more, so
remarks about the future are not definitive.

TEX

From now on, if I refer to TgX in the perspective of
LuaTEX I mean “Good Old TgX”, the language as well
as the functionality. Although LuaTgX provides a couple
of extensions it remains pretty close to compatible to its
ancestor, certainly from the perspective of the end user.

As most ConTgXt users code their documents in the
TgX language, this will remain the focus of mMk1v. After
all, there is no real reason to abandon it. However,
although ConTgXt already stimulates users to use struc-
ture where possible and not to use low level TgX com-
mands in the document source, we will add a few more
structural variants. For instance, we already introduced
\startchapter and \startitem in addition to \chapter
and \item.

We even go further, by using key/value pairs for
defining section titles, bookmarks, running headers, ref-
erences, bookmarks and list entries at the start of a
chapter. And, as we carry around much more informa-
tion in the (for TgX so typical) auxiliary data files, we
provide extensive control over rendering the numbers of
these elements when they are recalled (like in tables of
contents). So, if you really want to use different texts for
all references to a chapter header, it can be done:

\startchapter
[label=emcsquare,
title={About $e=mc"2$},
bookmark={einstein},
list={About $e=mc”2$ (Einstein)},
reference={$e=mc*2$3}]

. content ...
\stopchapter
Under the hood, the Mk1v code base is becoming quite

a mix and once we have a more clear picture of where
we’re heading, it might become even more of a hybrid.

Hans Hagen

Already for some time most of the font handling is
done by Lua, and a bit more logic and management
might move to Lua as well. However, as we want to
be downward compatible we cannot go as far as we
want (yet). This might change as soon as more of the
primitives have associated Lua functions. Even then it
will be a trade off: calling Lua takes some time and it
might not pay off at all.

Some of the more tricky components, like vertical
spacing, grid snapping, balancing columns, etc. are al-
ready in the process of being Luafied and their hybrid
form might turn into complete Lua driven solutions
eventually. Again, the compatibility issue forces us to
follow a stepwise approach, but at the cost of (quite
some) extra development time. But whatever happens,
the TgX input language as well as machinery will be
there.

MetaPost

I never regret integrating MetaPost support in ConTEXt
and a dream came true when MPLIB became part of
LuaTgX. Apart from a few minor changes in the way
text integrates into MetaPost graphics the user interface
in Mx1v is the same as in MK1I. Insofar as Lua is involved,
this is hidden from the user. We use Lua for managing
runs and conversion of the result to ppr. Currently
generating MetaPost code by Lua is limited to assisting
in the typesetting of chemical structure formulas which
is now part of the core.

When defining graphics we use the MetaPost lan-
guage and not some TgX-like variant of it. Information
can be passed to MetaPost using special macros (like
\MPcolor), but most relevant status information is passed
automatically anyway.

You should not be surprised if at some point we can
request information from TgX directly, because after all
this information is accessible. Think of something w :=
texdimen(0) ; being expanded at the MetaPost end in-

stead of w := \the\dimen0 ; being passed to MetaPost
from the TgX end.
Lua

What will the user see of Lua? First of all he or she can
use this scripting language to generate content. But when
making a format or by looking at the statistics printed at
the end of a run, it will be clear that Lua is used all over
the place.



The language mix

So how about Lua as a replacement for the TgX
input language? Actually, it is already possible to make
such “ConTgXt Lua Documents” using MKIV’s built in
functions. Each ConTEXt command is also available as
a Lua function.

\startluacode
context.bTABLE {

framecolor = "blue”,
align= "middle",
style = "type”,
offset=".5ex",

}

for i=1,10 do

context.bTR()
for i=1,20 do
local r= math.random(99)
if r < 50 then
context.bTD {
background = "color”,
backgroundcolor = "blue”
}
context(context.white("%#2i",r))
else
context.bTD()
context ("%#2i",r)
end
context.eTD()
end
context.eTR()
end
context.eTABLE()
\stopluacode

Of course it helps if you know ConTgXt a bit. For
instance we can as well say:

if r < 50 then
context.bTD {

background = "color”,
backgroundcolor = "blue”,
foregroundcolor = "white”,
}
else
context.bTD()
end

context("%#2i",r)
context.eTD()

And, knowing Lua helps as well, since the following is
more efficient:

\startluacode
local colored = {
background = "color”,

EUROTEX 2009

backgroundcolor =
foregroundcolor =
3
local basespec = {
framecolor = "bluered”,
align= "middle"”,
style = "type”,
offset=".5ex",
3
local bTR, eTR = context.bTR, context.eTR
local bTD, eTD = context.bTD, context.eTD
context.bTABLE (basespec)
for i=1,10 do
bTR()
for i=1,20 do
local r= math.random(99)
bTD((r < 50 and colored) or nil)
context("%#21i",r)
eTD()
end
eTR(Q)
end
context.eTABLE()
\stopluacode

"bluegreen”,
"white",

Since in practice the speedup is negligible and the
memory footprint is about the same, such optimizations
seldom make sense.

At some point this interface will be extended, for
instance when we can use TgX’s main (scanning, parsing
and processing) loop as a so-called coroutine and when
we have opened up more of TgX’s internals. Of course,
instead of putting this in your TgX source, you can as
well keep the code at the Lua end.

E4o E 20 34 [&d 28 B8 4837 51
2%mﬂmmwnﬁnaﬂﬁwmmwﬂmw
40@29 =5 80| o1 [EM 94 53 JFIEN) 35 7 2 46 7

24 m 27 B 38 67/ 53 [N ) 36

ﬁ 17 44 33 23

ﬂss 68 EE4440E

48 2215@432831 45 23 19 28 [ 42 17 )
50| 3837 30 238 25 16 &) 13 [ 17

s B8 s 18 24@10 14 8 7 21 46D

6 16@21@13@ cFds 1 18 17 39 1Y

BT 55 |58 [ o0 I 53| 75 B

Figure 1. The result of the displayed Lua code.

The script that manages a ConTgXt run (also called
context) will process files with that consist of such
commands directly if they have a c1d suffix or when you
provide the flag --forcecld.

context yourfile.cld

E73



E74 MAPS 39

But will this replace TgX as an input language? This is
quite unlikely because coding documents in TgX is so
convenient and there is not much to gain here. Of course
in a pure Lua based workflow (for instance publishing
information from databases) it would be nice to code in
Lua, but even then it’s mostly syntactic sugar, as TgX has
to do the job anyway. However, eventually we will have
a quite mature Lua counterpart.

XML

This is not so much a programming language but more
a method of tagging your document content (or data).
As structure is rather dominant in XML, it is quite handy
for situations where we need different output formats
and multiple tools need to process the same data. It’s
also a standard, although this does not mean that all
documents you see are properly structured. This in
turn means that we need some manipulative power in
ConTgXt, and that happens to be easier to do in MKIV
than in MKIL

In ConTgXt we have been supporting xmL for a long
time, and in MK1vV we made the switch from stream based
to tree based processing. The current implementation is
mostly driven by what has been possible so far but as
LuaTEX becomes more mature, bits and pieces will be
reimplemented (or at least cleaned up and brought up to
date with developments in LuaTgX).

One could argue that it makes more sense to use XSLT
for converting xmL into something TgX, but in most
of the cases that I have to deal with much effort goes
into mapping structure onto a given layout specification.
Adding a bit of xmL to TgX mapping to that directly is
quite convenient. The total amount of code is probably
smaller and it saves a processing step.

We're mostly dealing with education-related docu-
ments and these tend to have a more complex structure
than the final typeset result shows. Also, readability of
code is not served with such a split as most mappings
look messy anyway (or evolve that way) due to the way
the content is organized or elements get abused.

There is a dedicated manual for dealing with xmL
in MK1v, so we only show a simple example here. The
documents to be processed are loaded in memory and
serialized using setups that are associated to elements.
We keep track of documents and nodes in a way that
permits multipass data handling (rather usual in TgX).
Say that we have a document that contains questions.
The following definitions will flush the (root element)
questions:

\startxmlsetups xml:mysetups
\xmlsetsetup{#1}{questions}{xml:questions}

\stopxmlsetups

\xmlregistersetup{xml:mysetups?}

Hans Hagen

\startxmlsetups xml:questions
\xmlflush{#1}
\stopxmlsetups

\xmlprocessfile{main}{somefile.xml}{}

Here the #1 represents the current xmL element. Of
course we need more associations in order to get some-
thing meaningful. If we just serialize then we have
mappings like:

\xmlsetsetup{#1}{question|answer}{xml:x}

So, questions and answers are mapped onto their own
setup which flushes them, probably with some number-
ing done at the spot.

In this mechanism Lua is sort of invisible but quite
busy as it is responsible for loading, filtering, accessing
and serializing the tree. In this case TgX and Lua hand
over control in rapid succession.

You can hook in your own functions, like:

\xmlfilter{#1}
{(wording|feedback|choice)/function(cleanup)}

In this case the function cleanup is applied to elements
with names that match one of the three given.’

Of course, once you start mixing in Lua in this way,
you need to know how we deal with xML at the Lua end.
The following function show how we calculate scores:

\startluacode
function xml.functions.totalscore(root)
local n = 0
for e in xml.collected(root,"/outcome”) do
if xml.filter(e,"action[text()="add’]") then
local m = xml.filter
(e,"xml:///score/text()")
n = n + (tonumber(m or 0) or 0)
end
end
tex.write(n)
end
\stopluacode

You can either use such a function in a filter or just use
it as a TgX macro:

\startxmlsetups xml:question
\blank
\xmlfirst{#1}{wording}
\startitemize
\xmlfilter{#1}
{/answer/choice/command(xml:answer:choice)}
\stopitemize



The language mix

EUROTEX 2009

[ process | soioc | save | toza | cct || resot | festres | souco )| iog | o | oxas |

ConTeXt Font Tester: Zapfino Extra LT Pro (zapfinoextraltpro.otf)

ornm M sait M sinf M smcp M sso1 M ss02 M 5504 M ss05 M sso6 M sso7 W

@ ™o & X

Figure 2. An example of using the font tester.

\endgraf
score: \xmlfunction{#13}{totalscore}
\blank

\stopxmlsetups

\startxmlsetups xml:answer:choice
\startitem
\xmlflush{#1}
\stopitem
\stopxmlsetups

The filter variant is like this:
\xmlfilter{#13}{./function(’totalscore’)}

So you can take your choice and make your source look
more XML-ish, Lua-like or TgX-wise. A careful reader
might have noticed the peculiar xml:// in the function
code. When used inside Mx1v, the serializer defaults to
TEX so results are piped back into TgX. This prefix forced
the regular serializer which keeps the result at the Lua
end.

Currently some of the xML related modules, like
MATHML and handling of tables, are really a mix of
TgX code and Lua calls, but it makes sense to move
them completely to Lua. One reason is that their input
(formulas and table content) is restricted to non-TgX

anyway. On the other hand, in order to be able to share
the implementation with TgX input, it also makes sense
to stick to some hybrid approach. In any case, more of
the calculations and logic will move to Lua, while TgX
will deal with the content.

A somewhat strange animal here is xsL-rFo. We do
support it, but the Mxm implementation was always
somewhat limited and the code was quite complex. So,
this needs a proper rewrite in Mx1v, which will happen
indeed. It’s mostly a nice exercise of hybrid technology
but until now I never really needed it. Other bits and
pieces of the current xML goodies might also get an
upgrade.

There is already a bunch of functions and macros to
filter and manipulate XML content and currently the code
involved is being cleaned up. What direction we go also
depends on users’ demands. So, with respect to XML you
can expect more support, a better integration and an
upgrade of some supported xmL related standards.

Tools
Some of the tools that ship with ConTgXt are also
examples of hybrid usage.

Take this:

mtxrun --script server --auto



E76 MAPS 39

Edit View Higtory Bookmarks Iools Help

o

& (O

Hans Hagen

\setupframed [optional string 1] [mandate list 2]

top, middle, bottom, keep

source: core-rul.tex mode: lua mode

Done

ConTeXt Help Information

french
german

coupledregister italian

couplemarking
persian

romanian

@ ™ot & X

Figure 3. An example of a help screen for a command.

On my machine this reports:

MTXrun | running at port: 31415

MTXrun | document root: c:/data/develop/context/
lua

MTXrun | main index file: unknown

MTXrun | scripts subpath: c:/data/develop/context
/lua

MTXrun | context services: http://localhost:31415

/mtx-server-ctx-startup.lua

The mtxrun script is a Lua script that acts as a controller
for other scripts, in this case mtx-server.lua that is part
of the regular distribution. As we use LuaTgX as a Lua
interpreter and since LuaTgX has a socket library built
in, it can act as a web server, limited but quite right for
our purpose.’

The web page that pops up when you enter the given
address lets you currently choose between the ConTgXt
help system and a font testing tool. In figure 2 you seen
an example of what the font testing tool does.

Here we have LuaTgX running a simple web server
but it’s not aware of having TgX on board. When you
click on one of the buttons at the bottom of the screen,
the server will load and execute a script related to the
request and in this case that script will create a TgX file
and call LuaTgX with ConTgXt to process that file. The

result is piped back to the browser.

You can use this tool to investigate fonts (their bad
and good habits) as well as to test the currently available
OpenType functionality in Mx1v (bugs as well as good-
ies).

So again we have a hybrid usage although in this
case the user is not confronted with Lua and/or TgX
at all. The same is true for the other goodie, shown in
figure 3. Actually, such a goodie has always been part
of the ConTgXt distribution but it has been rewritten in
Lua.

The ConTgXt user interface is defined in an xmt file,
and this file is used for several purposes: initializing the
user interfaces at format generation time, typesetting the
formal command references (for all relevant interface
languages), for the wiki, and for the mentioned help
goodie.

Using the mix of languages permits us to provide con-
venient processing of documents that otherwise would
demand more from the user than it does now. For
instance, imagine that we want to process a series of doc-
uments in the so-called EpuB format. Such a document
is a zipped file that has a description and resources. As
the content of this archive is prescribed it’s quite easy to
process it:

context --ctx=x-epub.ctx yourfile.epub



The language mix

This is equivalent to:

texlua mtxrun.lua --script context --ctx=x-epub.
ctx yourfile.epub

So, here we have LuaTgX running a script that itself
(locates and) runs a script context. That script loads a
ConTgXt job description file (with suffix ctx). This file
tells what styles to load and might have additional direc-
tives but none of that has to bother the end user. In the
automatically loaded style we take care of reading the
xML files from the zipped file and eventually map the em-
bedded uTMmL like files onto style elements and produce
a pDF file. So, we have Lua managing a run and mMKIv
managing with help of Lua reading from zip files and
converting XML into something that TgX is happy with.
As there is no standard with respect to the content itself,
i.e. the rendering is driven by whatever kind of structure
is used and whatever the css file is able to map it onto, in
practice we need an additional style for this class of doc-
uments. But anyway it’s a good example of integration.

The future

Apart from these language related issues, what more is
on the agenda? To mention a few integration related
thoughts:

O At some point I want to explore the possibility to
limit processing to just one run, for instance by doing
trial runs without outputting anything but still col-

EUROTEX 2009

lecting multipass information. This might save some
runtime in demanding workflows especially when
we keep extensive font loading and image handling
in mind.

O Related to this is the ability to run Mx1V as a ser-
vice but that demands that we can reset the state of
LuaTgX and actually it might not be worth the trou-
ble at all given faster processors and disks. Also, it
might not save much runtime on larger jobs.

O More interesting can be to continue experimenting
with isolating parts of ConTgXt in such a way that
one can construct a specialized subset of functional-
ity. Of course the main body of code will always be
loaded as one needs basic typesetting anyway.

Of course we keep improving existing mechanisms and
improve solutions using a mix of TgX and Lua, using
each language (and system) for what it can do best.

Notes

1. Similar methods exist for processing xmL files.

2. This example is inspired by one of our projects where the
cleanup involves sanitizing (highly invalid) HTML data that is
embedded as a CDATA stream, a trick to prevent the xmr file to
be invalid.

3. This application is not intentional but just a side effect.

Hans Hagen
Pragma ADE, Hasselt
pragma (at) wxs dot nl

E77



E78 MAPS 39

Jelle Huisman

E16 & DEtool

typesetting language data using ConTEXt

Abstract

This article describes two recent projects in which ConTEXt was used to typeset language
data. The goal of project E16 was to typeset the 16t edition of the Ethnologue, an en-
cyclopaedia of the languages of the world. The complexity of the data and the size of the
project made this an interesting test case for the use of TEX and ConTgXt. The Dictionary
Express tool (DEtool) is developed to typeset linguistic data in a dictionary layout. DEtool
(which is part of a suite of linguistic software) uses ConTEXt for the actual typesetting.

Introduction

Some background: SIL is an NGO dedicated to serve the world’s minority language
communities in a variety of language-related ways. Collecting all sorts of language
data is the basis of much of the work. This could be things like the number of speakers
of a particular language, relations between different languages, literacy rates and bi-
and multilingualism. Much of this data ends up in a huge database, which in turn is
used as the source for publications like the Ethnologue." which is an encyclopaedia of
languages. It consists of four parts, starting with an introductory chapter explaining
the scope of the publication and 25 pages of ‘Statistical summaries’. Part 1 has 600
pages with language descriptions, describing all the 6909 languages of the world. Part
2 consists of 200 pages with language maps and Part 3 has of 400 pages of indexes, for
Language names, Language Codes and Country names.

Typesetting the Ethnologue

Data flow and directory structure: All the data is stored in an Oracle database running
on a secure web server. The XML output is manipulated using XSLT to serve different
‘views’. One output path leads to html (for the website http://www.ethnologue.com)
and another output path gives TgX-output of with the codes are defined in ConTgXt.
Once the data is downloaded from the server, it is stored locally in the ‘data’ directory
of the typesetting system. There is also a ‘content’ directory containing small files that
\input the data files (and do some tricky things with catcodes.) All the content-files are
loaded using a ‘project’ file in the root directory. This (slightly complicated) process
allows for easy updating of the data and convenient testing of all the different parts,
both separately and together. The macro definitions are all stored in a module.

Module
In good ConTgXt style all the code for this project is placed in a module. A ConTEXt
module starts with a header like this:

%D \module

% L file=p-ethnologue,

%D version=2009.01.14

%D title=\CONTEXT\ User Module,

%D subtitle=Typesetting Ethnologue 16,

%D author=Jelle Huisman, SIL International,
%D date=\currentdate,

%D copyright=SIL Internationall]

%C Copyright SIL International



E16 & DEtool: typesetting language data using ConTEXt

\writestatus{loading}{Context User Module Typesetting Ethnologue 16}
\unprotect
\startmodule[ethnologue]

All the macro definitions go here... and the module is closed with:

\stopmodule
\protect \endinput

With the command texexec --modu p-ethnologue.tex it is easy to make a pdf with
the module code, comments and even an index.

E16 code examples

A couple of code examples are presented here to give an impression of the project. This
is part of the standard page setup for the paper size and the setup of two basic layouts.

\definepapersize [ethnologue][width=179mm, height=255mm]

\startmode[book] % basic page layout for the book

\setuppapersize [ethnologuel[letter]% paper size for book mode

\setuplayout[backspace=18mm, width=148mm, topspace=7mm, top=0mm,
header=6mm, footer=7mm, height=232mm]

\stopmode

\startmode[proofreading] % special layout for proofreading mode

\setuppapersize [letter][letter]% paper size for proofreading mode

\setuplayout[backspace=18mm, width=160mm, topspace=7mm, top=0mm,
header=16mm, footer=6mm, height=250mm]

\stopmode

Use of modes: proofreading vs. final output

To facilitate the proofreading a special proofreading ‘mode’ was defined with wider
margins, as shown in the code example in the previous section and with a single col-
umn layout (not in this code example). The ‘modes’ mechanism is used to switch
between different setups. This code:

%\enablemode[book]
\enablemode[proofreading]

is used in a ‘project setup’ file to switch between the proofreading mode (single col-
umn, bigger type) and the book mode showing the layout of the final publication. One
other application of modes is the possible publication of separate extracts with e.g. the
language descriptions of only one country. This could be published using a Printing on
Demand process.

Language description

The biggest part of the publication is the section with the language descriptions. Each
language description consists of: a page reference (not printed), the language name,
the language code, a short language description and a couple of special ‘items’ like:
language class, dialects, use and writing system. This is an example of the raw data for
Belarusian:

\startLaDes{ % start of Language Description

\pagereference[bel-BY] % used for index

\startLN{Belarusan }\stopLN % LN: Language name

[bel] % ISO 639-3 code for this language

(Belarusian, Belorussian, Bielorussian, Byelorussian, White Russian,
White Ruthenian). 6,720,000 in Belarus (Johnstone and Mandryk 2001).
Population total all countries: 8,620,000. Ethnic population:
9,051,080. Also in Azerbaijan, Canada, Estonia, Kazakhstan,
Kyrgyzstan, Latvia, Lithuania, Moldova, Poland, Russian Federation

EUROTEX 2009

E79



E80 MAPS 39

194 Ethnologue

Jelle Huisman

Africa: Senegal

Sine, Dyegueme (Gyegem), Niominka. The Niominka and
Serere-Sine dialects mutually inherently intelligible. Lg
Use: Official language. National language. Lg Dev: Literacy
rate in L1: Below 1%. Bible: 2008. Writing: Arabic script.
Latin script. Other: ‘Sereer’ is their name for themselves.
Traditional religion, Muslim, Christian. Map: 725:28.

Soninke [snk] (Marka, Maraka, Sarahole, Sarakole,
Sarangkolle, Sarawule, Serahule, Serahuli, Silabe,
Toubakai, Walpre). 250,000 in Senegal (2007 LeClerc).
North and south of Bakel along Senegal River. Bakel,
Ouaoundé, Moudéri, and Yaféra are principal towns.
Dialects: Azer (Adjer, Aser), Gadyaga. Lg Use: Official
language. National language. Also use French, Bambara
[bam], or Fula [fub]. Lg Dev: Literacy rate in L1: Below
1%. Other: The Soninke trace their origins back to the
Eastern dialect area of Mali (Kinbakka), whereas the
northeastern group in Senegal is part of the Western
group of Mali (Xengenna). Thus, significant differences
exist between the dialects of the 2 geographical groups
of Soninke in Senegal. Muslim. See main entry under
Mali. Map: 725:29.

Wamey [cou] (Conhague, Coniagui, Koniagui, Konyagi,
Wamei). 18,400 in Senegal (2007), decreasing. Population
total all countries: 23,670. Southeast and central along
Guinea border, pockets, usually beside Pulaar [fuc]. Also
in Guinea. Class: Niger-Congo, Atlantic-Congo, Atlantic,
Northern, Eastern Senegal-Guinea, Tenda. Lg Use: Neutral
attitude. Also use Pulaar [fuc]. Lg Dev: Literacy rate in
L1: Below 1%. Writing: Latin script. Other: Konyagi is the
ethnic name. Agriculturalists; making wine, beer; weaving
bamboo mats. Traditional religion, Christian. Map: 725:30.

Wolof [wol] (Ouolof, Volof, Walaf, Waro-Waro, Yallof).
3,930,000 in Senegal (2006). Population total all countries:
3,976,500. West and central, Senegal River left bank
to Cape Vert. Also in France, Gambia, Guinea-Bissau,
Mali, Mauritania. Class: Niger-Congo, Atlantic-Congo,
Atlantic, Northern, Senegambian, Fula-Wolof, Wolof.
Dialects: Baol, Cayor, Dyolof (Djolof, Jolof), Lebou (Lebu),
Jander. Different from Wolof of Gambia [wof]. Lg
Use: Official language. National language. Language of
wider communication. Main African language of Senegal.
Predominantly urban. Also use French or Arabic. Lg Dev:
Literacy rate in L1: 10%. Literacy rate in L2: 30%. Radio
programs. Dictionary. Grammar. NT: 1988. Writing: Arabic
script, Ajami style. Latin script. Other: ‘Wolof’ is their
name for themselves. Muslim. Map: 725:32.

Xasonga [kao] (Kasonke, Kasso, Kasson, Kassonke,
Khasonke, Xaasonga, Xaasongaxango, Xasonke). 9,010 in
Senegal (2006). Lg Dev: Literacy rate in L1: Below 1%. Other:
Muslim. See main entry under Mali (Xaasongaxango).

Seychelles

Republic of Seychelles. 86,000. National or official languages:
English, French, Seselwa Creole French. Includes Aldabra,
Farquhar, Des Roches; 92 islands. Literacy rate: 62%-80%.
Information mainly from D. Bickerton 1988; J. Holm 1989.
Blind population: 150 (1982 WCE). The number of individual
languages listed for Seychelles is 3. Of those, all are living
languages.

English [eng]. 1,600 in Seychelles (1971 census). Lg Use:
Official language. Other: Principal language of the schools.
See main entry under United Kingdom.

French [fra]. 980 in Seychelles (1971 census). Lg Use:
Official language. Other: Spoken by French settler families,
‘grands blancs’. See main entry under France.

Seselwa Creole French [crs] (Creole, Ilois, Kreol,
Seychelles Creole French, Seychellois Creole). 72,700

Figure 1.

(1998). Ethnic population: 72,700. Class: Creole, French
based. Dialects: Seychelles dialect reportedly used on
Chagos Islands. Structural differences with Morisyen
[mfe] are relatively minor. Low intelligibility with
Réunion Creole [rcf]. Lg Use: Official language since 1977.
All domains. Positive attitude. Lg Dev: Taught in primary
schools. Radio programs. Dictionary. Grammar. NT: 2000.
Writing: Latin script. Other: Fishermen. Christian.

Sierra Leone

Republic of Sierra Leone. 5,586,000. National or official
language: English. Literacy rate: 15%. Immigrant languages:
Greek (700), Yoruba (3,800). Also includes languages of
Lebanon, India, Pakistan, Liberia. Information mainly from
D. Dalby 1962; TISSL 1995. Blind population: 28,000 (1982
WCE). Deaf institutions: 5. The number of individual
languages listed for Sierra Leone is 25. Of those, 24 are
living languages and 1 is a second language without
mother-tongue speakers. See map on page 726.

Bassa [bsq]. 5,730 in Sierra Leone (2006). Freetown. Other:
Traditional religion. See main entry under Liberia.

Bom [bmf] (Bome, Bomo, Bum). 5,580 (2006), decreasing.
Along Bome River. Class: Niger-Congo, Atlantic-Congo,
Atlantic, Southern, Mel, Bullom-Kissi, Bullom, Northern.
Dialects: Lexical similarity: 66%-69% with Sherbro [bun]
dialects, 34% with Krim [krm]. Lg Use: Shifting to Mende
[men)]. Other: Traditional religion.

Bullom So [buy] (Bolom, Bulem, Bullin, Bullun, Mandenyi,
Mandingi, Mmani, Northern Bullom). 8,350 in Sierra
Leone (2006). Coast from Guinea border to Sierra Leone
River. Also in Guinea. Class: Niger-Congo, Atlantic-Congo,
Atlantic, Southern, Mel, Bullom-Kissi, Bullom, Northern.
Dialects: Mmani, Kafu. Bom is closely related. Little
intelligibility with Sherbro, none with Krim. Lg Use:
Shifting to Themne [tem]. Lg Dev: Bible portions: 1816.
Writing: Latin script. Other: The people are intermarried
with the Temne and the Susu. Traditional religion. Map:
726:1.

English [eng]. Lg Use: Official language. Used in
administration, law, education, commerce. See main
entry under United Kingdom.

Gola [gol] (Gula). 8,000 in Sierra Leone (1989 TISLL). Along
the border and inland. Dialects: De (Deng), Managobla
(Gobla), Kongbaa, Kpo, Senje (Sene), Tee (Tege), Toldil
(Toodii). Lg Use: Shifting to Mende [men]. Other: Different
from Gola [mzm] of Nigeria (dialect of Mumuye) or Gola
[pbp] (Badyara) of Guinea-Bissau and Guinea. Muslim,
Christian. See main entry under Liberia. Map: 726:4.

Kisi, Southern [kss] (Gissi, Kisi, Kissien). 85,000 in Sierra
Leone (1995). Lg Dev: Literacy rate in L2: 3%. Other:
Different from Northern Kissi [kqs]. Traditional religion,
Muslim, Christian. See main entry under Liberia. Map:
726:13.

Kissi, Northern [kgs] (Gizi, Kisi, Kisie, Kissien). 40,000
in Sierra Leone (1991 LBT). Dialects: Liaro, Kama, Teng,
Tung. Lg Use: Also use Krio [kri] or Mende [men]. Other:
Traditional religion. See main entry under Guinea. Map:
726:11.

Klao [klu] (Klaoh, Klau, Kroo, Kru). 9,620 in Sierra
Leone (2006). Freetown. Originally from Liberia. Other:
Traditional religion. See main entry under Liberia.

Kono [kno] (Konnoh). 205,000 (2006). Northeast. Class:
Niger-Congo, Mande, Western, Central-Southwestern,
Central, Manding-Jogo, Manding-Vai, Vai-Kono. Dialects:
Northern Kono (Sando), Central Kono (Fiama, Gbane,
Gbane Kando, Gbense, Gorama Kono, Kamara, Lei,
Mafindo, Nimi Koro, Nimi Yama, Penguia, Soa, Tankoro,

Example of page with language descriptions



E16 & DEtool: typesetting language data using ConTEXt EUROTEX 2009 E81

(Europe), Tajikistan, Turkmenistan, Ukraine, United States, Uzbekistan.
\startLDitem{Class: }\stopLDitem % LDitem: Language description item
Indo-European, Slavic, East.

\startLDitem{Dialects: }\stopLDitem Northeast Belarusan (Polots,
Viteb-Mogilev), Southwest Belarusan (Grodnen-Baranovich,

Slutsko-Mozyr, Slutska-Mazyrski), Central Belarusan. Linguistically
between Russian and Ukrainian [ukr], with transitional dialects to both.
\startLDitem{Lg Use: }\stopLDitem National language.

\startLDitem{Lg Dev: }\stopLDitem Fully developed. Bible: 1973.
\startLDitem{Writing: }\stopLDitem Cyrillic script.

\startLDitem{Other: }\stopLDitem Christian, Muslim (Tatar). 3}
\stopLaDes % end of Language Description

The styles for the different elements are defined using start-stop setups. One example
is the style for the LDitem (Language Definition item) which was initially coded in
this way:

\definestartstop % Language Description Item Part 1 % deprecated code!
[LDitem]
[before={\switchtobodyfont[GentiumBookIt,\LDitemfontsize]},
after={\switchtobodyfont[Gentium, \bodyfontpartone]}]

Eventually bodyfont switches were replaced by proper ConTgXt-style typescripts, but
the idea remains the same: \definestartstop[something][code here] makes it pos-
sible to use the pair \startsomething and \stopsomething.

Dynamic running header

As the example of the page with language descriptions (figure 1) shows the Country
name is inserted in the header of the page, using the first country on a left page and
the last country on the right page. The code used to do this is based on an example in
page-set.tex in the ConTgXt distribution.

\definemarking[headercountryname]
\setupheadertexts[\setups{show-headercountryname-marks}]
\startsetups show-headercountryname-first
\getmarking[headercountryname][1][first] % get first marking
\stopsetups
\startsetups show-headercountryname-last
\getmarking[headercountryname][2][last] % get last marking
\stopsetups
\setupheadertexts[]
\setupheadertexts
[\setups{text a}][]
[1[\setups{text b}] % setup header text (left and right pages)
\startsetups[text al % setup contents page a
\rlap{Ethnologue}
\hfill
{\pagenumber}
\hfill
\1lap{\setups{show-headercountryname-last}}
\stopsetups
\startsetups[text b] % setup contents page b
\rlap{\setups{show-headercountryname-first}}
\hfill
\pagenumber
\hfill
\1lap{Ethnologue}
\stopsetups



E82 MAPS 39

Jelle Huisman

Language Name Index

This index lists every name that appears in Part I as
a primary or alternate name of a language or dialect.
The following abbreviations are used in the index
entries: alt. ‘alternate name for’, alt. dial. ‘alternate
dialect name for’, dial. ‘primary dialect name for’,
pej. alt. ‘pejorative alternate name for’, and pej.
alt. dial. ‘pejorative alternate dialect name for’. The
index entry gives the primary name for the language

A Fala de Xalima, alt. Fala [fax], 575
A Fala do Xalima, alt. Fala [fax], 575
A Nden, alt. Abun [kgr], 427
A V0O, alt. dial. Awa [vwa], 335
’A vo’ loi, alt. dial. Awa [vwal, 335
A’a Sama, alt. dial. Sama, Southern
[ssb], 473
Aachterhoeks, alt. Achterhoeks [act],
563
Aage, alt. Esimbi [ags], 70, 171
Aaimasa, alt. dial. Kunama [ kun], 121
Aal Murrah, alt. dial. Arabic, Najdi
Spoken [ars], 523
Aalan, dlt. Allar [all], 366
Aalawa, dial. Ramoaaina [rai), 633
Aalawaa, alt. dial. Ramoaaina [rai],
633
Aaleira, alt. Laro [Iro], 204
Aantantara, dial. Tairora, North [tbg],
637
A’ara, alt. Cheke Holo [mrn], 646
Aarai, alt. Aari [aiw], 121
Aari [aiw], 121, 699
Aariya [aay], 365
Aasa, alt. Aasax [aas], 207
Aasax [aas], 207, 731
Aatasaara, dial. Tairora, South
[omw], 637
AAVE, alt. dial. English [eng], 310
|Aaye, alt. dial. Shua [shg], 58
Aba, dlt. Amba [utp], 645
alt. Shor [cjs], 522
dial. Tibetan [bod], 404
Aba, alt. Ava-Canoeiro [avv], 237
Abaangi, alt. dial. Gwamhi-Wuri
[bgal, 173
Ababda, dial. Bedawiyet [bej], 121
Abaca, dlt. dial. Ilongot [ilk], 511
Abacama, alt. Bacama [bcy], 165
Abacha, dlt. Basa [ bzw], 166
Abadani, dial. Farsi, Western [pes],
454
Abadhi, alt. Awadhi [awa], 484
Abadi [ kbt], 600, 877
alt. Awadhi [awal], 367, 484
alt. Tsuvadi [tvd], 187
Abadzakh, alt. dial. Adyghe [ady], 567
Abadzeg, alt. dial. Adyghe [ady], 567

Abadzex, dial. Adyghe [ady], 567

Abaga [abg], 600, 871

Abai, dial. Putoh [put], 411

Abai Sungai [abf], 471, 811

Abak, dial. Anaang [anw], 165

Abaka, dial. llongot [ilk], 511

Abakan, alt. Kpan [ kpk], 178

Abakan Tatar, alt. Khakas [kjh], 520,
345

Abakay Spanish, alt. dial. Chavacano
[cbk], 509

Abaknon, dlt. Inabaknon [abx], 511

Abaknon Sama, alt. Inabaknon [abx],
511

Abakoum, alt. Kwakum [ kwu], 74

Abakpa, alt. dial. Ejagham [etu], 170,
70

Abakum, alt. Kwakum [ kwu], 74

Abakwariga, alt. Hausa [hau], 173

Abaletti, dial. Yele [yle], 644

Abam, dial. Wipi [gdr], 642

Abancay, dial. Quechua, Eastern
Apurimac [qve], 300

Abane, dlt. Baniva [bvv], 320

Abangba, alt. Bangba [ bbe], 106

Abanliku, dlt. Obanliku [bzy], 183

Abanyai, alt. dial. Kalanga [ kck], 227

Abanyom [abm], 164, 724

Abanyum, dlt. Abanyom [abm], 164

Abar [mij], 65, 685

Abarambo, alt. Barambu [brm)], 106

Abasakur, dlt. Pal [abw], 632

Abathwa, alt. ||Xegwi [xeg], 198

Abatonga, dlt. dial. Ndau [ndc], 228

Abatsa, alt. Basa [bzw], 166

Abau [aau], 601, 866

Abaw, alt. Bankon [abb], 67

Abawa, dial. Gupa-Abawa [gpa], 173

Abayongo, dial. Agwagwune [ yay],
164

Abaza [abq], 567, 533, 849

Abazin, alt. Abaza [abq], 567, 533

Abagzintsy, alt. Abaza [abq], 567, 533

Abbé, alt. Abé [aba], 100

Abbey, alt. Abé [aba], 100

Abbey-Ve, dial. Abé [aba], 100

Abbruzzesi, dial. Romani, Sinte
[rmo], 572

885

with which the given name is associated, followed
by the unique three-letter language code in square
brackets. The numbers identify the pages on which
the language entries using the indexed name may
be found. If the list of page references includes the
entry in the primary country, it is listed first. The
entry for a primary name also lists page numbers for
the maps on which the language occurs.

’Abd Al-Kuri, dial. Soqotri [sqt], 543

Abdal, dlt. Ainu [aib], 335

Abdedal, alt. Gagadu [gbu], 584

Abe, dial. Anyin [any], 100

Abé [aba], 100, 692

Abedju-Azaki, dial. Lugbara [lgg],
112

Abéélé, alt. Beele [bxq], 166

Abefang, dlt. dial. Befang [ bby], 68

Abelam, qlt. Ambulas [abt], 602

Abellen Ayta, see Ayta, Abellen [abp],
507

Abenaki, alt. Abnaki, Eastern [aaq],
306

alt. Abnaki, Western [abe], 247

Abenaqui, alt. Abnaki, Western [abe],
247

Abendago, dlt. Yali, Pass Valley
[yac], 441

Abeng, dial. Garo [grt], 329

A’beng, dial. Garo [grt], 375

A’bengya, dlt. dial. Garo [grt], 375

Abenlen, alt. Ayta, Abellen [abp], 507

Aberu, dial. Mangbetu [mdj], 113

Abewa, alt. Asu [aum], 165

Abgue, dial. Birgit [btf], 88

Abhor, alt. Adi [adi], 365

Abi, dlt. Abé [aba], 100

Abia, alt. Aneme Wake [aby], 602

Abiddul, alt. Gagadu [gbu], 584

Abidiji [abi], 100, 692

Abie, alt. Aneme Wake [aby], 602

Abiem, dial. Dinka, Southwestern
[dik], 201

Abigar, alt. dial. Nuer [nus], 126

dial. Nuer [nus], 205

Abigira, alt. Abishira [ash], 295

Abiji, alt. Abidji [abi], 100

Abiliang, dial. Dinka, Northeastern
[dip], 201

Abini, dial. Agwagwune [ yay], 164

Abinomn [bsa], 427, 797

Abinsi, alt. Wannu [ jub], 188

Abipon [axb], 231

Abiquira, alt. Abishira [ash], 295

Abira, alt. E’fiapa Woromaipu [pbh],
320

Abiri, alt. Mararit [mgb], 92

Figure 2. Start of the language name index



E16 & DEtool: typesetting language data using ConTEXt

Index

Since all the data for this publication comes from a database it was easy to compile
a list of index items from that data. Page numbers were resolved using ConTgXt’s
internal referencing system. The data contains references using three letter ISO code
for language and a two letter country code like this:

\pagereference[bel-BY] % ISO code - country code
In the file with the index data this reference is linked to an index item:
Belarusan [bel], \at[bel-BY]

The code [bel-BY] is automatically replaced by the right page number(s) producing
the correct entry in the index:

Belarusan [bel], 32, 224

Since the language name index (the biggest index) contains more than 100.000 ref-
erences it can be imagined that typesetting this publication in one run was pushing the
limits of TgX. This is the first time that ConTgXt is used to typesetting this publication.
The previous version was produced using Ventura but when that program was replaced
by InDesign there were some questions about the way in which InDesign works with
the automatically generated data. TeX seemed to be the right tool to use for this project
and it sparked renewed interest in the use of TgX for other data-intensive publications
like dictionaries.

Exploring language

Counting languages is not the only way to collect language data: many linguists move
into a language group and take a closer look at the different parts of the actual lan-
guages. Some linguists focus on the sounds of a language, others analyse the sentence
structure or the way in which language is used in specific communication processes.
The collected data is stored in a special database program called FieldWorks. Field-
Works runs on Windows only (though a Linux port is work in progress) and it is a free
download from the SIL website®. FieldWorks is actually a suite of programs consisting
of Data Notebook, Language Explorer and WorldPad. FieldWorks Data Notebook is
used for anthropological observations. FieldWorks WorldPad is a ‘world ready’ text
editor with some special script support (including Graphite®). FieldWorks Language
Explorer (FLEx) is used to store all sorts of language related data. It is basically a
complex database program with a couple of linguistics related tools. FLEx contains a
lexicon for storing data related to words, meaning(s), grammatical information about
words and translations in other languages. Another part of FLEx is the interlinear tool
which makes it possible to take a text in one language and to give a ‘word for word
translation’ in another language, for example as a way to discover grammatical struc-
tures. FLEx comes with a grammar tool to facilitate the analysis and description of the
grammar of a language. Since all language data is stored in the same database there
are some interesting possibilities to integrate the language data and analysis tools.

Dictionaries

Once a field linguist has collected a certain amount of data he can start to think about
the production of a word list or a real dictionary. To facilitate this a team of program-
mers has made tool called ‘Dictionary Express’. This tool allows for the easy produc-
tion of dictionaries based on data available in the FLEx database. The user of FLEx gets
a menu option ‘Print dictionary’ and is presented with small window to enter some
layout options. Behind the scenes one of two output paths is used: one is based on the
use of an OpenOffice document template and another one uses XqIEX and ConTgXt to
typeset the dictionary. XgIEX was chosen because of the requirement to facilitate the

EUROTEX 2009

E83



E84 MAPS 39 Jelle Huisman

# Simple A - FieldWorks Language F

© Enty Show Hidden Felds
= horse N Alarge hoofed animal (scientific name Equus caballus)

' horse
stem
edge of tiver 13,13 - Rive. &
1 tree skin Main Eniry
aver aguatic ena
tor
box box container
break break separate Sense 1
bright ‘bright ‘Tuminous Glos 19 hoofed animal
bring bring teansport Def Ene Aalhaar}lg:s;mnfed animal (scientific name Equus
at cat fetine Nous |
dog dog canine
3 elephant  elephant tusked animal
O e fox fox small wild
canine
@ Texts giraffe giraffe fou Tongnecked
animal al Info. Details
@ Words [horse [horse Nown ‘haofed animal Noun
ring ring Ve bell sound.
(57 Grammar s N o
wood wood Noun small forest
E Lists
< =l
27/5/2007 27/56p/2007 _ Quewe: (41 o Passer Loadd 1518

Figure 3. FieldWorks Language Explorer main window

use of the Graphite smart font technology used for the correct rendering of complex
non-roman script fonts in use in some parts of the world (see footnote 2). The use of
XHIEX does of course mean that we use ConTgXt MKIL

All data is available in an XML format and converted (using a purpose built con-
verter) to a simple TgX-tagged format. A typical dictionary entry looks like this:

\Bentry

\Bhw{abel \Ehw

\marking[guidewords]{abel}

\Bpr{a.™bel \Epr

\Bps{noun(al) \Eps

\BIt{Eng}\Elt

\Bde{line, row}\Ede

\BIt{Pdg}\Flt

\Bde{lain}\Ede

\Bps{noun(al)}\Eps

\BIt{Eng}\Elt

\Bde{pole, the lowest of the three horizontal poles to which a fence is
tied and which form the main horizontal framework for the fence. This
is the biggest of the three}\Ede

\Eentry

The tags used in this data file include:

O headword (hw): this is the word that this particular entry is about,

O pronunciation (pr): the proper pronunciation of the word written using the Inter-
national Phonetic Alphabet (IPA),

O part of speech (ps): the grammatical function of the word,

O language tag (lt): the language of the definition or example,

O definition (de): meaning of the headword,

O example (ex): example of the word used in a sentence.

O \marking[guidewords]{}: is used to put the correct guideword at the top of each
page. (The code used here is inspired by the code used to put country name in the
headers in the Ethnologue project.)

Currently most of the required features are implemented. This includes: font selection
(including the use of Graphite fonts), basic dictionary layout and picture support. Some
of these features are strait-forward and easy to implement. Other features such as
picture support required more work e.g. page wide pictures keep floating to the next



E16 & DEtool: typesetting language data

adingné

Aa

=a [a] int exs question marker added to conso-
nant final words pag dispela i makim askim
Bus Gyam-a? kng Have you come? su Mak
gelé Abraham-a? gag Did you maybe see
Abraham?

a- [a] V g First person plural marker pre-
fixed to verbs stressed on the first syllable of
the root in first person dual, trial and plural
forms. It is often not marked on the plural
exclusive unless something else intervenes
between the pronoun he and the verb s He
su ayoh vu bé adah vun in ham
are not able to hide it from you s
sepa atag vaha . g Let’s go and follow my
mother’s tracks su Alu aluk dub lok ayed
s&né kg We two went to school in our own
language

aba ['a."ba] nounal) e cob, core, the central
section of a cob of corn or of pandanus fruit
after the outer seeds or kernels are removed
4z bun bilong kon o marita s Aba neggép
lok sakom ayo peggo eag There is an inner
core inside a cob of corn sus Desoh tagee
gedeté aba ya ra; They removed the fruit
of the pandanus and threw the inner core
away

abel [a."bel] noun(al) eag line, row pag lain
noun(al) s pole, the lowest of the three
horizontal poles to which a fence is tied and
‘which form the main horizontal framework
for the fence. This is the biggest of the three
pag stik-longpela diwai o mambu ol i yusim
bilong pasim banis i go pas long en

abel abel [a.bel a."bel] Nc e lines, rows
pag lain

abes [a."betf] noun(al) g having a flat tail-
as of ecls, tadpoles, catfish g stretpela tel-
olsem tel bilong maleo, pis, samting sus Beg-
26b rak bél rabu rak abes e Eels are able
to climb waterfalls by using their tails pua

Megov abes pepd ya gevaha los nema
rak iag Tadpoles' tails fall off and they grow
legs and hands

abiba [a."bi."ba] noun(al) s yam species
»ag yam

abu [a."bu] noun(al) s large brown flying
beetle res kain binatang em i save plai long
nait

abuhek  [a."bux.ok] noun(al) ks edible
wild sugarcane-Saccharum edule; this is the
generic term,-many different varieties are
grown rés ol pitpit bilong kaikai

abuung [a."bu] noun(al) s A flat sheet
used as a rubbish carrier. They are usually
used in pairs and are made from any suitable
material such as the sago palm trunk, the
sheath of a banana palm, or in more recent
times from a couple of pieces of flat iron or
plywood. rés pangal bilong saksak ol meri
save kisim bilong bungim pipia long en.

adiiv [a."diB] prop s Angans-people of
the Angan family of languages, formerly re-
ferred to as the Kukukuku people rég man-
‘meri Watut inap i go long Asiki

ading [a."din] 1) adj es long, tall rag longpela,
longwe nus Maluh seyu andd rak aggis ad-
ing. ns The man tied the dog up with a long
rope. ms Nabé sa nanér dus, mé ading,
og yik yoh vu! e Whether I speak briefly
or at length, it doesn't matter. s BEI tuus
geseya ading rot. s The water had dried
up and I went a very long way.  2) Adv
ng far, distant vas longwe sus He naya nyég
ading rot. e We are going to a very dis-
tant place. s B3GK yu ti vare deneruuk
rak kedu séné medenare ading teka. i
Aherd of pigs were rooting on this mountain
and they were standing at a little distance.
3) ad) e tall

adingné [a."dinone] Adv s far away, at a
distance rag longwe tru ma Gwetah hong
‘na adingné en Move well back/far away nia

using ConTEXt

adingseké

caption

Bél tuus geya adingné rot. s The stream
was dried up and (so) he went very far.
adingseké [a."din.tf2.qe] adj eag very long
or tall rag longpela tru Adv ey very far, far
away, distant

aén ['aen] noun(al) erg iron pég ain e Dener-
ipek kap gedég aén los ngaa pin. g
‘They washed the cup and the iron saucepan
and everything else. 5 Devanuh agn ah&
petes ggérin newaj nebé kelenavi. ens
‘They wore a flat sheet of iron covering their
chests like a shield. noun(al) exs crowbar

aga [a.’gal Adv ex there (near hearer) rig
long hap bus Agat Neyam vu hong exs There
it is IUs coming to you nus Neydk aga
om genam in kg IU's going towards you, so
come and get it.

agesip ['a.%ge.tfip] noun(al) kg handkerchief
veg ankasip

aget ['a.get] noun(al) ins agate rds wanpela

kain ston

agi ['a’gi] Adv s here (near speaker) ris
em hia sus BOGK neggép lok agi lom veya
meya ey The pig was lying here and it ran
away nua Sa nado lok agi ins 1 live here adj
ng this pag em hia

agu ['a"gu] Adv s over there, distant from
both speaker and hearer pds long hap nia
Agu! Vong bés x; Over there! Its going
to fall! 5ua Gena agu eng Go over there!

age ['a.%e] noun(al) kag tree with small yellow
berries, the seeds of which are cooked and
eaten g diwai bilong kaikai

agee [a."e:] noun(al) ks variety of the thick
strong bamboo rs mambu

ageleng [a."Gel.an] kg variety of plant used
for killing cockroaches ras wanpela kain gras
bilong kilim kokros

ago ['a.%Go] noun(al) ez the central horizon-
tal forked strut of a snare, the part against

Figure 4. Sample double column dictionary layout

page. Since it is usually a good idea to separate form and content most of the layout
related settings are not stored in the data file itself but in a separate settings file which
is loaded at the start of the typesetting process. Examples of settings in this file include
the fonts and the use of a double column layout. Default settings are used unless the
user has specified different settings using the small layout options window at the start
of the process.

Currently the test version of this ConTgXt-based system works with a stand alone
ConTgXt-installation, using the ‘minimals’ distribution. One of the remaining chal-
lenges is to make a light weight, easy to install version of ConTgXt which can be
included with the FieldWorks software. Since the main script used by ConTgXt Mark
IT is a Ruby script this requires dealing with (removing) the Ruby dependency. It is
hoped that stripping the TgX-tree of all unused fonts and code will help too to reduce
the space used by this tool. This is currently work in progress.

Footnotes

1. Lewis, M. Paul (ed.), Ethnologue: Languages of the World, Sixteenth edition. Dallas, Tex.: SIL
International (2009)

2. http://www.sil.org/computing/fieldworks/

3. http://scripts.sil.org/RenderingGraphite

Jelle Huisman

SIL International

Horsleys Green

High Wycombe

United Kingdom

HP14 3XL

jelle_huisman (at) sil (dot) org

EUROTEX 2009

E85



E86 MAPS 39

Siep Kroonenberg

A network TEX Live installation

at the University of Groningen

Abstract
This article describes a network TEX Live installation for
Windows users and the context in which it operates.

Keywords
TEX Live, MiKTEX, installers, editors, roaming profiles,
Windows Vista

Our university has a LAN-based TgX installation for Win-
dows users. The current edition is based on TgX Live.
After some historical notes, I discuss the computing envi-
ronment at the university, the new TgX Live-based instal-
lation and issues with Windows Vista.

This article can be considered an update of a previ-
ous article! about the MiKTgX-based installation that I
maintained for the university’s economics department.

Prehistory: 4TEX
Our department has had a network TgX installation for
pos/Windows users since the early nineties. It started out
as a simple 4pos menu for running TgX and associated
programs. Later, it evolved into 4TgX, and was also made
available to members of the Dutch-speaking TgX users
group (the NTG) and others; see figure 1.

The final version was a Windows program, based on
the same core as TgX Live. It included a vast array of
utilities, some of them third-party or shareware.

A MiKTgX-based installation

When I took over in 2003, 4TgX was no longer being
developed. We chose to make a fresh start, based on what
was then available, and to limit ourselves to free software.

Modern KIgX editors such as TgXnicCenter can take
care of running BiBTEX and Makelndex, include spell
checkers, and offer help in entering BTgX macros and in
debugging. For many users, the editor is all they see from
the TgX installation.

The good integration of MiKTgX as the TgX implemen-
tation and TgXnicCenter as editor and frontend was hard
to argue with, so that was what we used.

For graphics support, there was a script to install
WMEZ2EPS and its PostScript printer driver which did the

4TEX v3.27

main TeX file i test tex
include TeX file : tex
TeX files path : cidocs

backup path
TexX format

t ciNbak
¢ big LaTeX Ze + Babel

main menu:

choose TeX Format
Compile TeX file
show Logfile
manage Output
Quit

change Main TeX file
change Include file
change TeX files Path
change files eXtensions
Edit file(s)

check Spelling
run Utilities
cxccute Dos command
Backup TeX files

press highlighted key or
press [F11 or [Alt] highlighted key for help
press [?1 for info on 4TE

make your choice... _

(c) 4U 1991-1995 —

Figure 1. 4TEX main menu

real work in the background. For anything else, users had
to look elsewhere.

Evolution

Installer. The original installer was a combined batch-
file/Perl script, which also used some registry patches.
This was replaced with a Gui installer based on Ns1s, an
open source installation system. Where possible, files and
registry settings were generated during installation rather
than copied from a prototype installation.

Updated versions. The editor and MiKTgX have been
updated several times. This included a major change

=IsIx]
=18Ix|

Tooks Window Help

oF 0| S 2% i & [ <1 b ]2 7 | S
8| ae| 4% % K| S on e |

Py "ty R G O T T S

= pm X111, =

i d errofs of the parameter 3
P r $n$ less than $p$, parameters

X tmes

+ dv

oG s can be given as
cdot

o ac

Gresk Letters
Greek Capital Letters

Constructs

=18 LaTexfiles
(81 xvinlaoptedisam [ || &5 comparison 2
8] BibTexiiles o
[B) regression bib (3¢ Th
=4 Graphicfes \L
& figurreps

Functions

\ v}
\] ' Above/Below

US  sub/super * bulet Gauss-Markov Theorem, 'lt 15
PO e [ ctines etermine whether or not
mo oGD is valid. The number of degrees
of  arous ® e
Th Amowswithcaptons  ¥|o odor rence between the observations
an © oslash ired to analyse tf
re ‘White Spaces -

big odot.

»
»
»
»
>
»
»
»
»
Boundaries >
»
»
»
»
»
»
»
»

\[ Severdsymbos E9ers

Matrix big oplus. a}
big uphs
star

\—

\———————
The standard deviatiol § for the model is determined from

\hat{\sigma} = \sqrt upks eAT(\epsvechat) Hnop-1)) = \sart(\Frac

L DwveclydAT\vecly} - sqcap FIIAT \wxAT\vec{y}} {n-p -
s o i o
*35.J&0.] BF [SR | (in regressontex [Gregressonti  <tmins |
wr
ﬂ The top-level auwxiliary file: X:\imloopieditsam  bgthngeup  fau =
The style file: plain.st
Dataase file #1 EITE3ETm
bigarc
LaTei-Result: 0 Error(z), O Varning(s), O Bad b  dagger |
(WS> T%)\Build Find T AFind 2 AFarse /. ddagger

amalg

Ln 153, Col41 v BR R

Figure 2. TeXnicCenter as frontend to MiKTEX



A network TEX Live installation

iaix
Fie Edit Vew Help
= @ RUG-TREE Title Tree [ Hame [orcer |
B Eﬂ M8 Office RUG-TREE Tex_Live_RUG_2008.ALL.ADS.RUG.NL
B[R RUG Meru
[} Datebases & Spreacshes
([ Development & Programs
([ Dictionaries
(5} Drawing & Presentation
{5} Education &Practicals
(3 Geographical Informatior
([ Internet & Communicatio
(3 Ubrary Services
{3 Management & Organisa
3 Mathematics & Statistics
{3 Miscellaneous
([ Printers
([ Text Processing
Ghostscript
{15} Ghastvizw
RIE:] Tex Live Rug 2008
(3 Tools & Utilties
‘ i
1 Object(s) Selected |Novell. %)

Figure 3. The NAL application menu

in configuration strategy in MiKTgX from version 2.4
to version 2.5. I understand that there are again major
changes with MiKTgX 2.8.

CD edition. A companion cD was created. At first this
contained a set of downloaded installers with directions
for use. As a result, I was asked time and again to install
TEX on people’s laptops. Therefore, a later version got a
modified version of the network installer. Nowadays, the
cD is offered as an 1so image in the root of the installation.

Expanded user base. The user base for our MiKTgX was
expanded first with students, then with other depart-
ments.

Standardization. Around the time of the second MiKTgX
edition, we also moved to standardized desktops and
roaming profiles; see the next section.

Graphics support. WME2EPS was dropped, in part because
it was shareware and I didn’t want to deal with licensing
issues for the expanded user base, in part for technical
reasons. In its place, I created EPSPDF to take care of
converting and cropping arbitrary PostScript (print)files.

The university network

For some time, we have had a centrally managed
university-wide Novell network. Software and licenses
are also centrally managed. There is a standardized Win-
dows xp workstation. Standard software and additional
software is installed from the network and where possi-
ble also run from the network. NAL (Novell Application
Launcher) is the network component which takes care of
this.

Figure 3 displays the NAL menu as seen from my com-
puter at the university (the TgX Live entry merely points
to the installation script).

Staff members can and do install software of their own
on their local system if they want to. Students do not

EUROTEX 2009

have this luxury. Some staff members download and
install their own TgX.

The standard workstation is configured with roaming
profiles, i.e. user configuration is mostly copied to the
network on logout and copied back to the local system
on login. Users see the same desktop on any client com-
puter on the net, of course excepting software which staff
members may have installed locally.

Roaming profile configuration should involve nothing
local, unless it is copied to and from the network as part of
the user profile. It should not require admin rights either.
This is especially important for classroom computers and
for students.

TEX Live

In 2008 I got involved in the TgX Live project. I mostly
worked on Windows support, keeping an eye on the needs
of our university installation.

I have done only a little work on the 2009 edition.
However, other team members now also have Windows
virtual machines for testing, and we have been joined by
a real Windows user, Tomasz Trzeciak. He proved to us
that pos batchfiles aren’t quite as lame as we thought
they were.

Compared to MiKTgX 2.5, TgX Live is a lot simpler to
turn into a network installation:2 in good Unix tradition,
TgX Live uses environment variables and plain text files
for configuration.

Relocatable. An important function of configuration is
telling programs where they can find the files they need.
Normally, TgX Live puts only relative paths in the config-
uration files. Programs can combine these relative paths
with their own location to determine absolute paths. With
this strategy, configuration files can stay the same if the
installation as a whole is transferred to another place.

Batteries included. TgX Live contains copies of Perl and
Ghostscript for Windows. This puts Windows on a more
equal footing with Unix/Linux with regard to all the
scripted utilities that are part of a typical TgX installation.

Both the included Ghostscript and the included Perl
are hidden, i.e. TgX Live knows that they are there, but
the rest of the system doesn’t. They are not on the search
path, and there are no environment variables or registry
settings created for them. Therefore, they shouldn’t inter-
fere with pre-installed copies. The only disadvantage is
the disk space they take up. But this is hardly significant
with today’s hard disk sizes.

Creating the installation
I emulate the university networking setup by setting up a
Samba server on my Linux machine. Its clients are virtual

E87



E88

MAPS 39

machines.

Samba has been set up for roaming profiles. There is
a share for the profiles, an X:-share for home directories
and a Z:-share with applications, in exactly the same
layout as the university.

Iinstall TgX Live into the right position on the Z:-share
by running the installer on my own Linux system. I select
binaries for both Linux and Windows.

I switch between this and my regular installation sim-
ply by changing environment variables, for which I have
a small shell function. This lets me do much testing and
all maintenance from Linux. I explained already that
configuration files don’t depend on the location of the
installation. So it doesn’t matter that, seen from Linux,
the installation is in a totally different place than it is as
seen from Windows.

I populate the texmf-local directory tree with the uni-
versity house style and some legacy packages. It was
almost a straight copy of the corresponding local tree
from the previous MiKTgX-based installation. For stu-
dents, there is no need for a local tree.

The 2009 installer

The network installer doesn’t have to do much: there
are hardly any options, it doesn’t have to download and
install packages, it just has to add TgX Live to the search
path, create some shortcuts, register an uninstaller and
optionally create some file associations.

For most of this, it can use the library functions of the
installer and the TgX Live Manager, both of which are
written in Perl.

The following code adds TgX Live to the search path
and creates some menu shortcuts:

#!/usr/bin/env perl
BEGIN {
require "tlmgr.pl”;

# Only make user-level changes even if admin
$opts{’w32mode’} = ’user’;

# Note. The action_... functions read
# their arguments from @ARGV.

# Add TeX Live to path
unshift @ARGV, ’add’;
action_path();

# create some shortcuts

unshift @ARGV, ’install’, ’shortcut’,
"dviout.win32’, ’texworks’, ’texlive-en’,
"tlpsv.win32’;

Siep Kroonenberg

action_postaction();

File associations can be done similarly. A corresponding
uninstaller script:

BEGIN {
require "tlmgr.pl”;
3

$opts{’w32mode’} = ’user’;

# remove shortcuts

unshift @ARGV, ’remove’, ’shortcut’,
’dviout.win32’, ’texworks’, ’texlive-en’,
’tlpsv.win32’;

action_postaction();

# Remove TeX Live from path
unshift @ARGV, ’remove’;
action_path();

Registering and unregistering the uninstaller. However,
it is a bit more complicated to register one’s custom unin-
staller. The TgX Live modules in tlpkg/TeXLive, and the
modules they load, contain everything needed, but the
interface is comparatively low-level. Here is the code, for
what it is worth:

# don’t need to re-require modules but

# do need to re-import names
Win32::TieRegistry->import(qw($Registry));
$Registry->Delimiter(’/’);
$Registry->ArrayValues(0);
$Registry->FixSzNulls(1);

# register uninstaller. Failure not fatal.
my $Master_bsl = $Master;
$Master_bsl =~ s,/,\\,g;

my $rootkey = $Registry -> Open("CUser”,
{Access =>
Win32::TieRegistry: :KEY_ALL_ACCESSO)});
my $k;
if ($rootkey) {
$k = $rootkey->CreateKey(
"software/microsoft/windows/" .
"currentversion/uninstall/OurTeXLive/");
if ($k) {
$k->{"/DisplayName"”} = "OurTeXLive 2009";
$k->{"/UninstallString"} =
"\"$Master_bsl\\w32unclient.bat\"";
$k->{’/DisplayVersion’} = "2009";
$k->{’ /URLInfoAbout’} =
"http://ourwebsite.edu/ourtexlive”;



A network TEX Live installation

warn "Failed to register uninstaller\n”
unless $k;
and for unregistering the uninstaller:
my $rootkey = $Registry -> Open(”CUser”,
{Access =>
Win32::TieRegistry: :KEY_ALL_ACCESS()1});
if ($rootkey) { # otherwise fail silently
my $k = $rootkey->Open(
"software/microsoft/windows/" .
"currentversion/uninstall/");
TeXLive: :TLWinGoo: :reg_delete_recurse($k,
"OurTexLive/’) if $k;
}

Prototype installer scripts are available at http://tug.
org/texlive/w32client.html.

ZENWorks. Novell has a tool zENworks for repackaging
applications for NAL. It tracks changes in the registry
and the filesystem during installation. The zZEN-generated
installer of the repackaged application duplicates those
changes. However, for me it was more practical to use a
Perl script, and I am grateful to the 1cT people that they
let me.

Directory layout
We assume the standard TgX Live directory layout, with
texmf-local one level higher than the other trees:

parent —— 2009
bin win32
texmf
texmf-dist

texmf-config

texmf-var

— tlpkg

texmf-local

It is possible to choose another layout, e.g. without the
year level, but then the components of TgX Live need a
bit more help to find their support files.

Batch wrappers

We also need a wrapper batchfile to make sure that the
Perl from TgX Live is used rather than a locally installed
Perl, and to take care that tlmgr.pl, the TgX Live Man-
ager Perl script, is found. This file is used as a library
by our custom installer. Below is a bare-bones wrapper
batchfile; in the standard TgX Live we use much more
involved wrappers, with various safeguards.

set this=%~dp0

rem Use TL Perl

EUROTEX 2009 E89

o
& @

1N [>]
100% page 4 o 6

V]
Line 1 0f 212; col 0

Figure 4. TeXworks for Windows is included in TEX Live

path %this%tlpkg\tlperl\bin;%this%bin\win32;
%path%

rem (one line)

set PERLSLIB=%this%tlpkg\tlperl\lib;
%thisktlpkg;%thisktexmf\scripts\texlive

rem (one line)

rem Start Perl script of the same name

perl "%~dpn0" %x

rem Give user opportunity to scan output msgs
pause

Note the first line, where the batchfile finds its own di-
rectory: set this=%~dp0. This syntax has been available
since Windows NT.

The w32client and w32unclient scripts assume that
they are in the root of the installation, ie. in <par-
ent>/2009. However, this is easy to change.

Getting TgX Live on the network

The first step was asking the 1cT department for a direc-
tory to install into, preferably with write access for me,
so that I can do maintenance without having to involve
ICT every time.

The next step was copying everything to that direc-
tory. For transport, I nowadays make a giant zip of the
installation and put it on a UsB stick.

Finally, the installer is integrated into the Novell NAL
menu; see figure 3 on page 87. This is done by 1cT staff.

The installer places the TgX Live menu itself under
Start / Programs, just as the native installer does.

For maintenance, I used to do small changes manually
and do larger changes by wholesale replacement. For the
future, rsync looks like a better way.



E90

MAPS 39

Additional software

TgX Live by itself is pretty complete. For Windows, it
includes the TgXworks cross-platform editor (figure 4),
and the ps_View PostScript viewer, which can also read
pdf. As mentioned earlier, it also contains private copies
of Unix mainstays such as Perl and Ghostscript that many
TEX Live components depend upon.

Nevertheless, some additions would be desirable: an-
other editor besides TgXworks, more graphics support,
maybe a bibliography editor.

But there are requirements for such add-ons:

O Free (as in beer)
O Per-user configuration
O Usable for non-geeks

Several programs looked interesting, but didn’t meet these
requirements or had other problems. They include alter-
native BIgX editors TgXmaker and WinShell, bibliogra-
phy editors JabRef (Java-based) and BibEdt, and a couple
of draw programs, 1PE and TpX. So I followed the example
of previous TgX Live pvDs and put installers for them in
a support subdirectory. Frankly, I don’t know whether
anybody has made use of these installers.

Editor. For 2008, I decided to stick with TgXnicCenter as
editor. I wrote some fairly elaborate code to configure
it for TgX Live, since the automatic configuration didn’t
work as nicely for TgX Live as it did for MiKTgX. I also
looked at TgXmaker. It would have been much easier to
configure, but at that time it still lacked some important
features.

For the 2009 release I'll keep TgXnicCenter, if only
because many users dislike change, but I'll also include
TpXworks, which is already part of standard TgX Live.

Documentation. The TgX Live menu contains various
shortcuts to manuals, such as the Uk FaQ and the ‘not
so short introduction’. There are also links to the cTaAN
catalogue and to my own web page for this installation,
http://tex.aanhet.net/miktex/ (!).

Vista and Windows 7

Strictly speaking, this topic doesn’t belong here: the net-
work installation only targets xp machines. However, for
the standard TgX Live we had to make sure it would work
properly with Vista and Windows 7. Testing this, we ran
into some interesting problems.

UAC. Vista introduced User Account Control, or UAC in
short. This means, among other things, that only admin-
istrators are allowed to install software under Program
Files, and only administrators are allowed to change the
more important system settings in the registry.

Siep Kroonenberg

A new slightly annoying twist is that even administra-
tors don’t have these privileges automatically. To start
a program with admin privileges, you can right-click
the shortcut, which usually gives you an option ‘Run as
administrator’. An administrator has to confirm his inten-
tions, a non-administrator has to provide administrator
credentials at this point.

Virtualization. But there is another, more insidious twist:
Vista/Win7 may guess that a program needs administra-
tive privileges, e.g. because it has ‘install’ or ‘setup’ in
its name. If such a program wasn’t started with admin-
istrative privileges, Vista may fake them. In particular,
attempts to write to Program Files might result in writ-
ings to user\appdata\local\virtualstore. For registry
access, similar virtualization might be applied.4

Installing TgX Live with real admin privileges and
adding packages with faked admin privileges is not
healthy for a TgX Live installation.

This compatibility mode can be avoided by the addi-
tion of a manifest which is a bit of xMmL that explicitly
tells Windows under which privileges the program needs
to be run. The options are (explanations literally taken
from msdn.microsoft.com):

asInvoker The application runs with the same access
token as the parent process.

highestAvailable The application runs with the
highest privileges the current user can obtain.

requireAdministrator The application runs only
for administrators and requires that the applica-
tion be launched with the full access token of an
administrator.

This xML can be embedded into the binary or added as
a separate file with the same name as the program, but
with .manifest appended.

This is our manifest file for the Windows Perl exe-
cutable:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<assembly xmlns="urn:schemas-microsoft-com:asm.v1"
manifestVersion="1.0">
<assemblyIdentity
version="1.0.0.0"
processorArchitecture="*"
name="perl.exe"
type="win32"/>
<trustInfo xmlns="urn:schemas-microsoft-com:asm.v3">
<security>
<requestedPrivileges>
<requestedExecutionLevel level="asInvoker"/>
</requestedPrivileges>
</security>
</trustInfo>
</assembly>

We believe that, with the addition of a couple of manifest



A network TEX Live installation

files and some tests on admin privileges, TgX Live 2009
has become Vista-safe.

Conclusion

So you see that maintaining a TgX installation has little
to do with TgX, slightly more with programming, but is
mostly a matter of tying disparate pieces together.

EUROTEX 2009

Notes

1. MAPS 33 pp. 59-64 and TUGboat 27:1 pp. 22-27.

2. MIiKTEX 2.8 may be easier to deal with, but I didn’t check
this out.

3. TgX Live even uses a second, binary wrapper around the
batch wrapper because some programs handle batchfiles badly.
4. This only happens on 32-bit Vista/Win7.

Siep Kroonenberg
n.s.kroonenberg@rug.nl

E91



E92 MAPS 39

Jean-Michel Hufflen

Using TEX's language within a course
about functional programming

Abstract

We are in charge of a teaching unit, entitled Advanced
Functional Programming, for 4th-year university
students in Computer Science. This unit is optional
within the curriculum, so students attending it are
especially interested in programming. The main
language studied in this unit is Scheme, but an
important part is devoted to general features, e.g.,
lexical vs. dynamic scoping, limited vs. unlimited extent,
call by value vs. call by name or need, etc. As an
alternative to other programming languages, TEX allows
us to show a language where dynamic and lexical
scoping—\def vs. \edef—coexist. In addition, we can
show how dynamic scoping allows users to customise
TEX's behaviour. Other commands related to strategies
are shown, too, e.g., \expandafter, \noexpand. More
generally, TEX commands are related to macros in more
classical programming languages, and we can both
emphasise difficulty related to macros and show
non-artificial examples. So TEX is not our unit's main
focus, but provides significant help to illustrate some
difficult notions.

Keywords
Functional programming, TEX programming, lexical vs.
dynamic scope, macros, evaluation strategies.

Introduction

If we consider programming in TgX [17], we have to
admit that this language is old-fashioned, and programs
are often viewed as rebuses, as shown in the Pearls of TgX
programming demonstrated at BachoTgX conferences.!
Some interesting applications exemplifying this language
can be found in [19, 30], but as noticed in [5], ‘some of
these programming tricks are ingenious and even elegant.
However [...] it is time for a change’.

So, at first glance, it may be strange to use some ex-
amples of TgX programming within a present-day course
devoted to Functional programming. Let us recall that
this programming paradigm treats computation as the
evaluation of mathematical functions, avoiding state and
mutable data as much as possible. Functional program-
ming emphasises functions’ application, whereas imper-

ative programming—the paradigm implemented within
more ‘traditional” languages, such as C [16]—emphasises
changes in state. Many universities include courses about
functional programming, examples being reported in [35].
Besides, such languages are sometimes taught as first
programming languages, according to an approach com-
parable to [1, 8, 32] in the case of Scheme.

Let us remark that some tools developed as part of
TEX’s galaxy have already met functional programming;:
cl-bibtex [18], an extension of BiBIzpX—the bibliography
processor [26] usually associated with the KIEX word
processor [20]—is written using ANs1?2 ComMMON Lisp [7];

x?ndy, a multilingual index processor for documents writ-
ten using BIEX [24, § 11.3] is based on CommoN Lisp, too;
BiBTpX2HTML [4], a converter from .bib format—used by
the bibliography database files of BIBIgX—to HTML,? is
written in camr4 [21]; MIBIBTRX,>, a re-implementation
of BiBIEX focusing on multilingual features [11] is writ-
ten in Scheme [15]; as another example, Haskell® [28]
has been used in [38]; last but not at least, there were
proposals for developing AJS7—a re-implementation of
TpX—using cLos,® an object-oriented system based on
CommoN Lisp [39].

The unit we mentioned above is entitled Advanced
Functional Programming.® 1t is an optional unit for 4th-
year university students in Computer Science, part of the
curriculum proposed at the University of Franche-Comté,
at the Faculty of Science and Technics, located at Besan-
con, in the east of France. Most of these students already
know a functional programming language: Scheme, be-
cause they attended a unit introducing this language in
the 2nd academic year in Computer Science.l® Other
students, who attended the first two university years at
Belfort, know camL. So this unit is not an introductory
course; we delve thoroughly into functional program-
ming.

In the next section, we expose the ‘philosophy’ of our
unit. Then we summarise the features of TgX that are
useful within this unit and discuss our choice of TgX.
Reading this article only requires basic knowledge of
programming; readers who would like to go thoroughly



Using TEX's language within a course about functional programming

(define (factorial x)
;5 Returns x! if x is a natural number, the ‘false’
;3 value otherwise.
(and (integer? x) (not (negative? x))
(let tr-fact ((counter x)
(acc 1))
;3 Returns acc * counter!.
(if (zero? counter)
acc
(tr-fact (- counter 1)
(*x acc counter))))))

Figure 1. The factorial function, written using Scheme.

into Scheme constructs we have used throughout our
examples can refer to [32], very didactic. Of course, the
indisputable reference about TgX commands is [17].

Our unit’s purpose

Functional programming languages have a common root
in the A-calculus, a formal system developed in the 1930s
by Alonzo Church to investigate function definition, func-
tion application, and recursion [3]. However, these pro-
gramming languages are very diverse, some—e.g., the Lisp
dialects!!—are dynamically typed,!? some—e.g., Stan-
dard ML13 [27], camL, Haskell—are strongly typed!4 and
include a type inference mechanism: end-users do not
have to make precise the types of the variables they use,
they are inferred by the type-checker; in practice, end-
users have to conceive a program using a strongly typed
approach because if the type-checker does not succeed in
associating a type with an expression, this expression is
proclaimed incorrect. As examples, Fig. 1 (resp. 2) show
how to program the factorial function in Scheme (resp.
CommonN Lisp). In both cases, the factorial function we
give can be applied to any value, but returns the factorial
of this value only if it is a non-negative integer, otherwise,
the result is the ‘false’ value. Fig. 3 gives the same func-
tion in Standard ML: it can only be applied to an integer,
as reported by the type-checker (see the line beginning
with >’).

A course explaining the general principles of func-
tional programming with an overview of some existing
functional programming languages would be indigestible
for most students, since they could only with difficulty be-
come familiar with several languages, due to the amount
of time that can be allocated to each unit. In addition, the-
oretical notions without practice would not be very useful.
So, our unit’s first part is devoted to the A-calculus’ bases
[10]. Then, all the practical exercises are performed with
only one language, Scheme, which most students already

(defun factorial (x)
"Behaves like the namesake function in Scheme
(cf- Fig. 1).”
(and
(integerp x) (not (minusp x))
(labels ((tr-fact (counter acc)
;5 The labels special form of
;; CoMMON Lisp introduces local
;; recursive functions [33, § 7.5].
(if (zerop counter)
acc
(tr-fact (- counter 1)
(* acc counter)))))
(tr-fact x 1))))

Figure 2. The factorial function in COMMON Lisp.

know. Besides, this unit ends with some advanced fea-
tures of this language: delayed evaluation, continuations,
hygienic macros [9]. In addition, this choice allows us
to perform a demonstration of pDsssL! [13], initially de-
signed as the stylesheet language for sGML16 texts. These
students attended a unit about xmL and xsLT!7 [36] the
year before, and DsssL—which may be viewed as XSLT’s
ancestor—is based on a subset of Scheme, enriched by
specialised libraries.

When we begin to program, the language we are learn-
ing is always shown as finite product. It has precise rules,
precise semantics, and is consistent. According to the
language used, some applications may be easy or difficult
to implement. When you put down a statement, running
it often results in something predictable. That hides an
important point: a language results from some important
choices: does it use lexical or dynamic scoping, or both?
To illustrate this notion with some examples in TgX, that
is the difference between the commands \firstquestion
and \secondquestion in Fig. 4. The former can be related
to lexical scoping, because it uses the value associated
with the \state command at definition-time and pro-
duces:

You’re happy, ain’t U?

whereas the latter can be related to dynamic scoping,
because it uses the value of the \state command at run-
time and yields:

You're afraid, ain’t U?

Students find this notion difficult: some know that
they can redefine a variable by means of a let form
in Emacs Lisp [22], but they do not realise that this
would be impossible within lexically-scoped languages
such as C or Scheme. In other words, they do not have
transversal culture concerning programming languages,

EUROTEX 2009 E93



E94 MAPS 39

fun factorial x =
(x Ifx is a negative integer, the predefined
exception Domain is raised [27, §§ 4.5-4.7]. The
internal function tr_fact is defined by means of
pattern matching [27, § 4.4].
*)
if x < 0 then raise Domain
else let fun tr_fact 0 acc = acc |
tr_fact counter acc =
tr_fact (counter - 1)
acc * counter
in tr_fact x 1
end ;
> val factorial = fn : int -> int

Figure 3. The factorial function in Standard ML.

they see each of them as an independent cell, a kind of

black box.

The central part of our unit aims to emphasise these
choices: what are the consequences of a lexical (resp. dy-
namic) scope? If the language is lexical (resp. dynamic),
what kinds of applications are easier to be implemented?
Likewise, what are the advantages and drawbacks of the
call-by-valuel® strategy vs. call-by-name? In the lan-
guage you are using, what is variables’ extent?1® Of
course, all the answers depend on the programming lan-
guages considered. But our point of view is that a course
based on Scheme and using other examples in TgX may

be of interest.

TEX’s features shown

As mentioned above, \def and \edef allow us to illustrate
the difference between lexical and dynamic scope. Most
present-day programming languages are lexical, but we
can observe that the dynamic scoping allows most TgX
commands to be redefined by end-users. The dynamic
scope is known to cause variable captures,?® but TgX is
protected against undesirable redefinitions by its internal
commands, whose names contains the ‘@’ character. Of
course, forcing these internal commands’ redefinition is
allowed by the \makeatletter command, and restoring
TeX’s original behaviour is done by the \makeatother

command.

If we are interested in implementation considerations,
the commands within an \edef’s body are expanded, so
this body is evaluated as far as possible.2! To show this
point, we can get dynamic scope with an \edef com-
mand by preventing command expansion by means of

\noexpand:
\edef\thirdquestion{%

Jean-Michel Hufflen

\def\state{happy?}
\edef\firstquestion{You’re \state, ain’t U?\par}
\def\secondquestion{You’re \state, ain’t U?\par}
\def\state{afraid}

Figure 4. Lexical and dynamic scope within TEX.

{\def\firsttwodigits{20}
\def\lasttwodigits{09}
\global\edef\thisyear{%

\firsttwodigits\lasttwodigits}}

Figure 5. Using TeX's \global command.

You’re \noexpand\state, ain’t U?\par}

and this command \thirdquestion behaves exactly like
\secondquestion (cf. Fig. 4).

A second construct, useful for a point of view related
to conception, is \global, shown in Fig. 5, because it
allows ‘global’ commands to be defined within local en-
vironments. There is an equivalent method in Scheme,
but not naturally: see Appendix. Let us go on with this
figure; any TgXnician knows that \thisyear no longer
works if “\edef” is replaced by “\def’. This illustrates that
TgX commands have limited extent.

Nuances related to notion of equality exist in TgX: let
\a be a command already defined:

\let\b\a
\def\c{\a}

the former expresses that \a and \b are ‘physically’ equal,
it allows us to retain \a’s definition, even it is changed
afterwards; the latter expresses an equality at run-time,
ensuring that the commands \c and \a are identical, even
if \a changes.2?

Scheme’s standard does not allow end-users to know
whether or not a variable x is bound.?3 A TgXnician
would use:

\expandafter\ifx\csname x\endcsname\relax...%
\else...%

\fi

For beginners in programming with TgX, this is quite a

complicated statement requiring the commands \relax

and \ifx to be introduced. However, that leads us to

introduce not only the construct \csname. . . \endcsname,

but also \expandafter, which may be viewed as kind of

call by value. A simpler example of using this strategy is

given by:

\uppercase\expandafter{\romannumeral 2009}

—which yields ‘MMIX’—since this predefined command
\uppercase is given its only argument as it is; so



Using TEX's language within a course about functional programming

putting the \expandafter command causes this argu-
ment to be expanded, whereas removing it would pro-
duce ‘mmix’, because \uppercase would leave the group
{\romannumeral 2009} untouched, then \romannumeral
would just be applied to 2009. That is, TgX commands are
macros®* in the sense of ‘more classical’ programming
languages.

The last feature we are concerned with is mixfixed
terms, related to parsing problems and priorities. TgX can
put mixfixed terms into action by means of delimiters in
a command’s argument, as in:

\def\put (#1,#2)#3{...}

Discussion

As shown in the previous section, we use TgX as
a ‘cultural complement’ for alternative constructs
and implementations. Sometimes, we explain dif-
ferences by historical considerations: for example,
the difference between \def and \long\def—that is,
the difference in BIEX between \textbf{. ..} and
\begin{bfseries}...\end{bfseries}—comes from per-
formance considerations, since at the time TgX came out,
computers were not as efficient as today. Nevertheless,
are there other languages that could be successfully used
as support of our unit? Yes and no.

An interesting example could be Common Lisp. Nev-
ertheless, this language is less used now than some years
ago, and it is complexified by the use of several name-
spaces.>> Besides, this language’s initial library is as big
as possible; it uses old constructs.?6 That is why we give
some examples in CoMMON Lisp, but prefer for our course
to be based on Scheme, which is ‘the’ modern Lisp dialect,
from our point of view.

Concerning the coexistence of lexical and dynamic
variables, the Perl 27 language [37] provides it. In addi-
tion, it has been successfully used to develop large soft-
ware packages, so examples could be credible. However, it
seems to us that dynamic variables in Perl are rarely used
in practice. In fact, the two dynamic languages mainly
used are Emacs Lisp and TgX, in the sense that end-users
may perceive this point. From our point of view, using
examples in Emacs Lisp requires good knowledge about
the emacs?? editor, whereas we can isolate, among TgX’s
features, the parts that suit us, omitting additional details
about TgX’s tasks. Likewise, such an approach would be
more difficult with Perl.

Conclusion

Our unit is viewed as theoretical, whereas other optional
units are more practical, so only a few students attend
ours. But in general, students who choose it do not regret
it, and in fact enjoy it. They say that they have clear ideas
about programming after attending it. Some students
view our examples in TgX as a historical curiosity since
this language is quite old and originates from the 1980s,
but they are surprised by its expressive power. Some, that
are interested in using TgX more intensively, can connect
programming in TgX to concepts present in more modern
languages.

Acknowledgements

When I decided to use TgX to demonstrate ‘alternative’
implementations of some features related to program-
ming, I was quite doubtful about the result, even if I
knew that some were interested. But feedback was pos-
itive, some students were encouraged to go thoroughly
into implementing new TgX commands for their reports
and asked me for some questions about that. Thanks to
them, they encouraged me to go on with this way in turn.

Appendix: \global in Scheme

In this appendix, we show that a construct like \global in
TeX may be needed. Then we will explain why it cannot
be implemented in Scheme in a ‘natural’ way.

Let us consider that we are handling dimensions, that
is, anumber and a measurement unit—given as a symbol—
like in TgX or DssSL. A robust solution consists of using a
list prefixed by a marker—e.g., ((*dimensionx) 1609344
mm)—such that all the lists representing dimensions—of
type dimension—share the same head element, defined
once. To put this marker only when the components—a
number and a unit?°—are well-formed, it is better for
the access to this marker to be restricted to the functions
interfacing this structure. So here is a proposal for an
implementation of functions dealing with dimensions:

(let ((*markerx ’ (*dimensionx)))
(define (mk-dimension r unit)
;3 Performs some checks and creates an
;5 object of type dimension, whose
;3 components arer and unit.
o)
(define (dimension? x)
;5 Returns #t if x is of type dimension, #f
;; otherwise.
)

(define (dimension->mm dimension-0)

EUROTEX 2009 E95



E96 MAPS 39

(define mk-dimension)
(define dimension?)
(define dimension->mm)

(let ((*markerx ’(*dimension*)) ; Only the cell’s address is relevant.

(allowed-unit-alist
‘((cm .
(mm . ,values))))

(set! mk-dimension

(let ((allowed-units (map car allowed-unit-alist)))

(lambda (r unit)

Jean-Michel Hufflen

,(lambda (r) (x 10 r))) ; Each recognised unit is associated with a function giving the
; corresponding length in millimeters.

(and (real? r) (>=r 0) (memg unit allowed-units) (list *markerx r unit)))))
(set! dimension? (lambda (x) (and (pair? x) (eq? (car x) *marker=))))

(set! dimension->mm

(lambda (dimension-0) ; dimension-0 is supposed to be of type dimension.
((cdr (assq (caddr dimension-0) allowed-unit-alist)) (cadr dimension-0)))))

Figure 6. Global definitions sharing a common lexical environment in Scheme.

;5 Returns the value of dimension-0,
;5 expressed in millimiters.

D))

Unfortunately, this does not work, because define special
forms inside the scope of a let special form are viewed
as local definitions, like \def inside a group in TgX. So,
mk-dimension, dimension?, and dimension->mm become
inaccessible as soon as this let form is processed. The
solution is to define these three variables globally, and
modify them inside a local environment, as shown in
Fig. 6.

This modus operandi is quite artificial, because it uses
side effects, whereas functional programming aims to
avoid such as far as possible. But in reality, from a
point of view related to conception, there is no ‘actual’
side effect, in the sense that variables like mk-dimension,
dimension?, and dimension->mm would have been first
given values, and then modified. The first bindings may
be viewed as preliminary declarations;3® however, using
‘global’ declarations for variables introduced within a
local environment would be clearer, as in TgX. To sum up,
such an example illustrates that some use of assignment
forms are not related to actual side effects, and TgX’s
\global command allows us to explain how this example
could appear using a ‘more functional’ form, without any
side effect.31

References
[1]

Harold ABELson and Gerald Jay Sussman, with
Julie SussMAN: Structure and Interpretation of
Computer Programs. The MIT Press, McGraw-

Hill Book Company. 1985.

[12]

[13]

Neil BRaDLEY: The Concise sGML Companion.
Addison-Wesley. 1997.

Alonzo CuurcH: The Calculi of Lambda-
Conversion. Princeton University Press. 1941.
Jean-Christophe FILLIATRE and Claude MARCHE:
The BBIpX2nTML Home Page. June 2006. http:
//www.1lri.fr/~filliatr/bibtex2html/.
Jonathan FinEe: “TgX as a Callable Function”. In:
EuroTgX 2002, pp. 26-30. Bachotek, Poland. April
2002.

Michael J. GorpoN, Arthur J. MIiLNER and
Christopher P. WaDsworTH: Edinburgh LCF.
No. 78 in LNcs. Springer-Verlag. 1979.

Paul GRAHAM: ANsI COMMON Lisp. Series in
Artificial Intelligence. Prentice Hall, Englewood
Cliffs, New Jersey. 1996.

Jean-Michel HUFFLEN : Programmation fonction-
nelle en Scheme. De la conception a la mise en
ceuvre. Masson. Mars 1996.

Jean-Michel HUFFLEN : Programmation fonc-
tionnelle avancée. Notes de cours et exercices.
Polycopié. Besancon. Juillet 1997.

Jean-Michel HUFFLEN : Introduction au A-calcul
(version révisée et étendue). Polycopié. Besangon.
Février 1998.

Jean-Michel HUFFLEN: “A Tour around MIBIBIEX
and Its Implementation(s)”. Biuletyn GUST,
Vol. 20, pp. 21-28. In BachoTgX 2004 conference.
April 2004.

Jean-Michel HUFFLEN: “Managing Languages
within MIBIBTEX”. TUGboat, Vol. 30, no. 1,
pp. 49-57. July 2009.

International Standard 1s0/1EC 10179:1996(E):
DSSSL. 1996.



Using TEX's language within a course about functional programming

[14]

[15]

[16]

[17]

[19]

[20]

[21]

[23]

[24]

Java Technology. March 2008. http://java.sun.
com.

Richard KeLsey, William D. CLINGER, Jonathan A.
REES, Harold ABELSON, Norman I. ADAMS 1V,
David H. BARTLEY, Gary Brooks, R. Kent DyBvig,
Daniel P. FRiEDMAN, Robert HALSTEAD, Chris
Hanson, Christopher T. HAYNES, Eugene Edmund
KOHLBECKER, JR, Donald OxLEY, Kent M. PITMAN,
Guillermo J. Rozas, Guy Lewis STEELE, Jr, Ger-
ald Jay SussmAN and Mitchell WAND: “Revised®
Report on the Algorithmic Language Scheme”.
Hosc, Vol. 11, no. 1, pp. 7-105. August 1998.
Brian W. KERNIGHAN and Dennis M. RrtcHIE: The
C Programming Language. 2nd edition. Prentice
Hall. 1988.

Donald Ervin KnuTH: Computers & Typesetting.
Vol. A: The TgXbook. Addison-Wesley Publishing
Company, Reading, Massachusetts. 1984.
Matthias Koppe: A BIBTEX System in Common
Lisp. January 2003. http://www.nongnu.org/
cl-bibtex.

Thomas LACHAND-ROBERT : La maitrise de TgX et
BIEX. Masson. 1995.

Leslie LamporT: BEIgX: A Document Preparation
System. User’s Guide and Reference Manual.
Addison-Wesley Publishing Company, Reading,
Massachusetts. 1994.

Xavier LErRoOY, Damien DoLIGEZ, Jacques GAR-
RIGUE, Didier REMY and Jéréme VouiLLON: The
Objective Caml System. Release 0.9. Documen-
tation and User’s Manual. 2004. http://caml.
inria.fr/pub/docs/manual-ocaml/index.html.
Bill LEwis, Dan LALIBERTE, Richard M. STALLMAN
and THE GNU ManuAaL Group: GNU Emacs
Lisp Reference Manual for Emacs Version 21.
Revision 2.8. January 2002. http://www.gnu.
org/software/emacs/elisp-manual/.

John McCartHY: “Recursive Functions of
Symbolic Expressions and Their Computation by
Machine, Part I”. Communications of the ACM,
Vol. 3, no. 4, pp. 184—195. April 1960.

Frank MrtTELBACH and Michel GoosseNs, with
Johannes BRaams, David CARLISLE, Chris A. Row-
LEY, Christine DETIG and Joachim Scurop: The
BIgX Companion. 2nd edition. Addison-Wesley
Publishing Company, Reading, Massachusetts.
August 2004.

Chuck Musciano and Bill KENNEDY: HTML

& xHTML: The Definitive Guide. 5th edition.
O’Reilly & Associates, Inc. August 2002.

Oren PATASHNIK: BiBTpXing. February 1988. Part
of the BIBTgX distribution.

[27]

(28]

[29]

[30]

[31]

[34]

[35]

[36]

[37]

[38]

[39]

EUROTEX 2009

Lawrence C. PAuLson: ML for the Working
Programmer. 2nd edition. Cambridge University
Press. 1996.

Simon PEYTON JONES, ed.: Haskell 98 Language
and Libraries. The Revised Report. Cambridge
University Press. April 2003.

Erik T. Ray: Learning xmL. O’Reilly & Associates,
Inc. January 2001.

Denis B. ROEGEL : « Anatomie d’'une macro » .
Cahiers GUTenberg, Vol. 31, p. 19-27. Décembre
1998.

Michael SPErRBER, William CLINGER, R. Kent
DyBviG, Matthew FLATT, Anton VAN STRAATEN,
Richard KELSEY, Jonathan REEs, Robert Bruce
FINDLER and Jacob MATTHEWS: Revised® Report
on the Algorithmic Language Scheme. September
2007. hhtp://www.rérs.org.

George SPRINGER and Daniel P. FRIEDMAN:
Scheme and the Art of Programming. The mIT
Press, McGraw-Hill Book Company. 1989.

Guy Lewis STEELE, JRr., with Scott E. FAHLMAN,
Richard P. GaBRrIEL, David A. MooN, Daniel L.
WEINREB, Daniel Gureasko BoBrow, Linda G.
DeMicHIEL, Sonya E. KEeNE, Gregor KICZALEs,
Crispin PERDUE, Kent M. PrrmaN, Richard
WATERS and Jon L WHiTE: CoMMON Lisp. The
Language. Second Edition. Digital Press. 1990.
“TgX Beauties and Oddities. A Permanent Call
for TgX Pearls”. In TgX: at a turning point, or at
the crossroads? BachoTEX 2009, pp. 59-65. April
2009.

Simon THoMPsoON and Steve HiLi: “Functional
Programming through the Curriculum”. In:
FPLE °95, pp. 85-102. Nijmegen, The Netherlands.
December 1995.

W3C: xsL Transformations (XsLT). Version 2.0.
w3c Recommendation. Edited by Michael H. Kay.
January 2007. http://www.w3.org/TR/2007/
WD-xs1t20-20070123.

Larry WALL, Tom CHRISTIANSEN and Jon ORWANT:
Programming Perl. 3rd edition. O’Reilly

& Associates, Inc. July 2000.

Halina WATROBSKA i Ryszard Kusiak: ,,0d xML-a
do TgX-a, uzywajac Emacsa i Haskella“. Biuletyn
GUST, tom 23, strony 35-39. In BachoTgX 2006
conference. kweicien 2006.

Jifi ZLaTuska: “M7S: Programming Languages
and Paradigms”. In: EuroTgX 1999, pp. 241-245.
Heidelberg (Germany). September 1999.

E97



E98

MAPS 39

Notes

1. The most recent pearls can be found in [34].

2. American National Standards Institute.

3. HyperText Markup Language, the language of Web pages.
[25] is a good introduction to it.

4. Categorical Abstract Machine Language.

5. MultiLingual BIBTpX.

6. This language was named after logician Haskell Brooks Curry
(1900-1982).

7. New Typesetting System. It was finally developed using Java
[14].

8. CoMmMON Lisp Object System.

9. ‘Programmation fonctionnelle avancée’ in French. In 2009, it
has been renamed to ‘Outils pour le développement’ (Tools for
Development), but changes in the contents are slight.

10. The program of this 2nd academic year unit can be found
in French in [8].

11. ‘Lisp’ stands for ‘LISt Processing, because Lisp dialects’
major structure is linked lists. Their syntax is common and
based on fully-parenthesised prefixed expressions. Lisp’s first
version, designed by John McCarthy, came out in 1958 [23].
This language has many descendants, the most used nowadays
being ComMoN Lisp and Scheme.

12. ‘Dynamically typed’ means that we can know the type of
an object at run-time. Examples are given in Figs. 1 & 2.

13. ‘ML’ stands for ‘MetaLanguage’ and has been initially devel-
oped within the formal proof system LcF (Logic for Computable
Functions) [6]. Later on, it appears as an actual programming
language, usable outside this system, and its standardisation
resulted in the Standard ML language.

14. There are several definitions of strong typing. The most used
within functional programming is that the variables are typed
at compile-time. Some courses at the same level are based on
a strongly typed functional programming language, examples
being camL or Haskell. Is that choice better than Scheme? This
is a lively debate. .. but it is certain that these courses do not
empbhasise the same notions as a course based on a Lisp dialect.
15. Document Style Semantics Specification Language.

16. Standard Generalised Markup Language. Ancestor of XML
(eXtensible Markup Language); it is only of historical interest
now. Readers interested in SGML (resp. XML) can refer to [2]
(resp. [29]).

17. eXtensible Stylesheet Language Transformations.

18. Nowadays, the call by value is the most commonly used
strategy—in particular, in C and in Scheme—the argument ex-
pression(s) of a function are evaluated before applying the func-
tion. For example, the evaluation of the expression (factorial
(+ 1 9))—see Fig. 1—begins with evaluating (+ 9 1) into 10,
and then factorial is applied to 10. In other strategies, such as
call by name or call by need, argument expressions are evaluated
whilst the function is applied.

19. The extent of a variable may be viewed as its lifetime: if it is
limited, the variable disappears as soon as the execution of the
block establishing it terminates; if it is unlimited, the variable
exists as long as the possibility of reference remains. In Scheme,
variables have unlimited extent.

20. A variable capture occurs when a binding other than the
expected one is used.

21. On the contrary, Scheme interpreters do not evaluate a

Jean-Michel Hufflen

lambda expression’s body. They use a technique—so-called
lexical closure—allowing the function to retrieve its definition
environment.

22. There is another distinction in Scheme, between ‘physi-
cal’ (function eq?) and ‘visual’ equality (function equal?) [31,
§ 11.5].

23. ComMmoN Lisp allows that about variables and functions, by
means of the functions boundp and fboundp [33, 7.1.1].

24. Macros exist in Scheme: the best way to implement them
is the use of hygienic macros, working by pattern-matching [31,
§§ 11.2.2 & 11.19].

25. As an example of handling several namespaces in CoMMON
Lisp, let is used for local variables, whereas local recursive
functions are introduced by labels, as shown in Fig. 2.

26. For example, there is no hygienic macro in CoMMoON Lisp.
27. Practical Extraction Report Language.

28. Editing MACros.

29. ... although we consider only centimeters and millimeters
in the example given in Fig. 6, for sake of simplicity.

30. In Scheme’s last version, a variable can be defined without
an associated value [31, § 11.2.1]. That was not the case in the
version before [15, § 5.2], so such a variable declaration was
given a dummy value, which enforced the use of side effects.
31. Many data structures, comparable with our type
dimension, are used within MIBIBTgX’s implementation, as
briefly sketched in [12]. Another technique, based on message-
passing, allows us to avoid side effects. Only one function
would be defined to manage dimensions, and the three func-
tionalities implemented by mk-dimension, dimension?, and
dimension->mm would be implemented by messages sent to the
general function, the result being itself a function.

Jean-Michel Hufflen

LIFC (EA CNRS 4157),

University of Franche-Comté, 16, route de Gray,
25030 Besancon Cedex, France



A.-M. Aebischer, B. Aebischer, J.-M. Hufflen, F. Pétiard

Introducing new French-speaking users
to BTEX quickly and convincingly

Abstract

For four university years, we had to introduce 2nd-year
university students in Mathematics to BTEX. An
important goal was to make them able to use KTEX
when they are given some long homework in
Mathematics the year after (3rd-year university). This
teaching unit only included lab classes and was 15 hours
long. We present our approach in detail and explain
how it was perceived by students.

Keywords
Teaching IATEX, successive steps of a course,
lab-class-based curriculum, students’ perception

Introduction

When KETEX [23] came out, it was sometimes viewed as a
program hard to use, except for computer scientists famil-
iar with hermetic programming languages. However this
word processor has become more and more well-known
as a powerful tool that produces high-quality print out-
put. Besides, beginners can learn it now with many books
introducing it, in many languages, some—non-limitative—
examples are [13] in English, [4, 22, 30] in French, [27] in
German, [5, 34] in Hungarian, [3] in Italian, [7] in Polish,
[31] in modern Greek, ... In addition, some universities
propose introductions to BIEX within their curricula. An
example is a unit—entitled Scientific Tools—we taught for
four academic years (2004-2008), at the Faculty of Science
and Technics, part of the University of Franche-Comté
and located at Besancon, in the east of France.

Students who attended this unit were in the 2nd aca-
demic year of Mathematics.! One goal of this teaching
unit was to ease the writing of an important homework
the year after, that is, within the 3rd academic year in
Mathematics, so a substantial part of this unit was de-
voted to KTEX’s math mode. Let us be precise that this
teaching unit was not optional; that is, all the students
had to attend it, even if they were not convinced of BIgX
a priori. Of course, some had heard about it, some had
not. This unit only included lab classes and was 15 hours
long. So students actually practised exercises in KIEX,

but we did not have enough time to show very advanced
features.

We think that the approach we follow is interesting.
In a first section, we make explicit our requirements and
the pitfalls we wanted to avoid. Then we show the broad
outlines of the steps of our unit and summarise the experi-
ence we got. Of course, reading this article only requires
basic knowledge about KTEX.

What to do? What to avoid?

Many introductions to BIEX begin with typing a small
text and enriching it; some examples are [5, 22]. Our
starting point is that this modus operandi has too many
drawbacks, especially for non-English-speaking future
users, in particular for French-speaking ones. First, only
a few students are familiar with typing texts quickly
and intensively, even if some have already used comput-
ers. They may make some typing mistakes in command
names. Of course, any KIgX teacher is able to fix them,
but the price to pay is loss of time and dynamic. Besides,
students need to be convinced of BIgX from their first
experiments. They should see that this word processor
is suitable for large-sized texts, at the beginning, they
should be able to observe that it is easy with KIgX to ap-
ply some changes related to layout: changing characters’
basic size, switching one-column and two-column lay-
outs, ... All these goals can be reached only if students
are given a text already typed and ready to be processed.
That is, compiling this text should be successful the first
time, so there is no anxiety about this point.

Besides, let us not forget that the most natural choice
for a text to be typed by French students is a text in
French. But some typographical rules are different from
English ones: for example, a thin space—produced by
the BTEX command ‘\, ’—is to be put just before a ‘high’
punctuation sign,? such as an exclamation or question
mark:3

Joie, bonheur et délectation !

whereas the same signs are glued to the preceding text in
English:

EUROTEX 2009 E99



E100 MAPS 39

there was a lot of fun!

That is, such punctuation signs should be active* within
French fragments. Of course, the simplest solution to
this problem is to use the babel package’s french option
[25, Ch. 9]. So, end-users can type ‘Vous_comprenez?’
or ‘Vous_comprenez_?’ and the results will be typeset
correctly in both cases:

Vous comprenez ?

This point may seem to be a digression, but our purpose
is to show how difficult the beginning of an introduction
to BIEX for non-English-speaking people is. Teachers
are placed in a dilemma: either students have to type-
set texts peppered with commands such as “\’ * or ‘\,’,
or they should be given a big preamble, consisting of
many \usepackage directives, with the advice “You will
understand later’> In the case of the French language,
this point is enforced because of accented letters: the
most frequently used are directly provided by French
keyboards—for example, ‘¢’ or ‘¢’, very frequent within
French words—but the keys are unusable if the inputenc
package has not been loaded with the latinl option [25,
§ 7.11.3]. If French students begin to learn EKIgX by typing
their own texts, there is no doubt that these texts will
contain accented letters.

Anyway, the best solution seems to be a complete text—
in French or in English—and students can perform first
exercises by changing some sentences or adding some
short fragments. Students can put down some simple
sentences in English, so writing in this language avoids
some problems related to French typography. When they
have become familiar with the commands of KIEX and its
‘philosophy’, the tools making it practical to write in the
French language—the babel and inputenc packages—will
be introduced. From our point of view, a ‘good’ text,
usable as a starting point, should provide the following
features:

O a title, author, and date identified, so students can
learn about commands such as \title, \author,
\date, and \maketitle; an annotation may be a
pretext for introducing the \thanks command;

O an average-sized text;

O acommand used without argument, in order to show
that a space character following a command’s name
without explicit delimiter is gobbled up;

O aword hyphenated incorrectly, so students can realise
that some words may be hyphenated, and learn how
to fix such a mistake, even if that is rare;

O apretext for introducing a new command in ETEX,

O a pretext for introducing cross-references.

A.-M. Aebischer, B. Aebischer, J.-M. Hufflen, F. Pétiard

The steps of our unit

The source text given to students is [10]. More precisely,
the first version, giavitto.tex, does not use the babel
package, even though this text is in French, with a short
introduction we wrote in English. The inputenc package
is not used, either, so we used TgX accent commands, and
‘high’ punctuation signs are explicitly preceded by a thin
space, e.g.:

Joie, bonheur et d\’{e}lectation\,!

This text, a criticism about a book, came out in a
forum. It has seemed to us to be very suitable for such an
introduction to BIEX, because:

O it is 3 pages long, that is, a small-sized text, but not
too short;
O the introduction’s second paragraph reads:

. using the \LaTeX\ word processor...

O without the babel package’s french option, there
is a word hyphenated between a consonant and
the following vowel, which is incorrect in French:®
‘ex-emple’ (for ‘example’, hyphenated as ‘ex-ample’
in English) should be hyphenated as ‘exem-ple’;?

O in this text, some words need an emphasis stronger
than what is usually expressed by italicised characters:
in the original text, typeset using only the standard
typewriter font,? these words were written using
capital letters:

Comment pouvait-IL savoir cela?
The source text reads:
Comment pouvait-\superemph{il}...

and we can illustrate the use of variants of this new
command \superemph:

\newcommand{\superemph}[11{\uppercase{#1}}

\newcommand{\superemph}[11{%
*x\uppercase{#1}*x*}

\newcommand{\superemph}[1]{x*\textsc{#1}*x*}

That allows a kind of ‘semantic markup’ [17], in the
sense that this markup is related to a semantic notion,
rather than some layout.

The first exercise is to compile the source text of this
first version giavitto.tex, the second is to play with some
options of the \documentclass command: twocolumn,



Introducing new French-speaking users to IKTEX quickly and convincingly

12pt, ... so students can see that adapting a document to
different layouts is easy. Guidelines are given in [15]. To
sum up the order we follow:

O basic notions: commands, environments, preamble;

O sectioning commands: \part, \chapter, ...

O parsing problem regarding commands without a right
delimiter (cf. supra);

O formatting environments: center, flushleft,
flushright;

O changing characters’ look: commands and environ-
ments such as \textbf and bfseries, \textsf and
sffamily, ...

O introducing and redefining new commands:
\newcommand and \renewcommand, use of ‘semantic’
markup, by means of commands such as \superemph
(¢f- supra), ‘local’ definitions—surrounded by addi-
tional braces—vs. global ones;

O changing size: commands and environments small,
footnotesize, ...

O list environments: itemize, description, enumerate;
counters controlling enumerate environments,
difference between redefining values and look—
e.g., as done respectively by the commands \enumi
and \labelenumi—insertion of footnotes;

O introducing packages: examples are indentfirst® [25,
p- 32] and eurosym [25, pp. 408-409];

O notion of dimensions, how the page layout parameters
are defined [25, Fig. 4.1] and how to customise them;

O how sequence of words (resp. successive lines) are
split into lines (resp. pages), useful commands such as
\-, \linebreak, \pagebreak, \smallskip, \medskip,
\bigskip, putting unbreakable space characters by
means of the ~” input character;

O management of cross-references and introduction
of auxiliary (.aux) files, commands \label, \ref,
\pageref; use of an additional .toc file for a table of
contents and \tableofcontents command;

O introducing some basic differences between French
and English typography; then we show how the
babel package allows KIEX to typeset texts written in
many languages, possibly within the same document;
introducing some useful commands of the babel
package’s french option; the ‘standard’ preamble of a
ETEX document written in French is given:

\documentclass{...}
\usepackagel...,french]{babel}

\usepackage[T1]{fontenc}
\usepackage[latin1]{inputenc}

(see [25, 8§ 7.11.3 & 7.11.4] about the packages fontenc

EUROTEX 2009

and inputenc); as an example taking advantage of

KIEX’s multilingual features as much as possible, a
second version of [10], giavitto-plus.tex, is given to
students;

O the document’s end is devoted to some complements
not demonstrated in lab classes: some converters to
HTMLIO (BIEX2HTML [11, Ch. 3], TgX4ht [11, Ch. 4],
HyperBIEX [19]), BIBTgX [28].

Of course, students are not required to master all these
items: we make precise the points students must know,
and other information is given as a memorandum, e.g.,
the list of commands changing characters’ look. A second
document [16] is devoted to math mode and is organised
as follows:

O math mode vs. text mode;

O spacing in math mode;

O commands changing characters’ look in math mode,
e.g., \mathrm, \mathit, ..., additional packages such
as amssymb or euscript;!!

O commands producing Greek letters for mathematical
purpose (\alpha, ...) and symbols (\leftarrow, ...)
in math mode;

O subscripts, superscripts, fractions, radicals;

O adjustments: commands \displaystyle,
\textstyle, ..., operators taking limits or not,
horizontal and vertical struts, the amsmath package’s
\text command;

O definition of operator names, by means of
the commands \mathop, \DeclareMathOperator,
\DeclareMathOperatorx*, \mathbin, \mathrel;

O delimiter management, by means of the commands
\left, \middle, and \right;

O environments cases and equation; more features
belonging to the amsmath package, such as the
environments multline, split, gather, and the
commands \tag, \intertext;

O environments belonging to BIEX: egnarray,
eqgnarrayx;

O environments useful for general matrices
(Cblplv|VImatrix) and arrays ([subJarray), pack-
ages multirow, [del]array;

O back to BIgX’s text mode and introduction of the
tabular environment.

Two other documents gently bring this unit to its
end:

O [29] introduces pdfIATEX and the hyperref package
[11, Ch. 2], taking as much advantage as possible of
the features of the pPDF12 format related to hyperlinks;



E102 MAPS 39

O [1] is devoted to image insertion, by means of the
packages graphic(s|x) [25, § 10.2].

Of course, all these documents include references—
possibly on-line—that allow readers to learn more.

Lessons learned

Teaching this unit gave good results: it actually seemed
to us that students really enjoy discovering BIEX and
using it. Generally they got nice outputs. In addition,
practising KIEX’s math mode caused them to realise how
diverse ‘graphical’ expressions of Mathematics are. For
example, ‘modulo’ is both an infixed and prefixed opera-
tor, as reflected by the two commands \bmod and \pmod.
Likewise, the notion of operators taking limits separates
the layout—the location of each piece of information—
and the common notion—an interval’s endpoints. That is,
the commands of KIEX’s math mode may be viewed as
presentation markup, comparable to the namesake notion
in MathML13 [33, § 2.1.2].

Anyway, let us recall that we taught students in Math-
ematics. Such students learned the basics of a program-
ming language,'# but do not plan to become computer
scientists. So, they did not get used to presenting pro-
grams nicely, by indenting them, as students in Computer
Science learn to do, in order to be able to work on them
again. A good exercise to emphasise this point is first to
give students a complicated formula to be typeset, then
to ask them to change it.

Teachers have to give some advice about organising
ETEX source texts. For example, there should be no other
word on a line containing \begin or \end commands de-
limiting environments, and nesting environments should
be made clear by indenting them:

text before.
\begin{itemize}
N\item ...
_\begin{itemize}
_o\item . ..

\end{itemize}
\end{itemize}
Text after. . .

Some notations should be avoided when a more sys-
tematic markup is available. For example, we think that
it is better for students to get used to writing:

\begin{small}

\end{small}

than ‘{\small ...}. Of course, the latter may appear

A.-M. Aebischer, B. Aebischer, J.-M. Hufflen, F. Pétiard

as simpler for short fragments, but any TgXnician knows
that it is possible to use a command like \small without
additional braces, in which case, this size change runs
until the next size change command. If the markup as-
sociated with a command is not clearly expressed, some
students may be baffled. Besides, let us consider three
versions of an end-user defined command typesetting a
note using small-sized characters:

\newcommand{\note}[11{%
\begin{small}#1\end{small}}

\newcommand{\noteone}[1]1{\small#1} % Wrong!

\newcommand{\notetwo}[11{{\small#1}}

Of course, any KIEX teacher can explain why the
\noteone command does not work as expected, and how
to fix this wrong definition as done for the \notetwo
command. However, a user who is used to small as an
environment—rather than ‘{\small ...} —would proba-
bly put down this \note command as we did, and that is
indisputably the simplest solution.

The commands and environments introduced by the
KIEX format have homogeneous taxonomy about de-
limiting arguments and effects. That is, the markup is
very clear, in particular for beginners. That may not
be the case for commands originating from TgX’s ba-
sis: for example, if you would like to put a vertical
strut whose length is given, we can use the construct
\vbox to 1.1\baselineskip{} [16, § 2.7], that is, using
a kind of mixfixed markup. Of course, dealing with such
a command is rare. But other commands belonging to
plain TgX’s math mode, such as \over or \atop, are error-
prone since they have no argument and are only related
to positional relationships. Let us compare plain TgX’s
\over command with BTgX’s \frac, that has 2 arguments:
the source texts for the numerator and denominator.1

Last but not least, we notice some points related to
the implementation we used: TgXnicCenter [32], built on
top of the MiKTgX typesetting engine [24], and running
under the Windows operating system. This graphic inter-
face is very good, especially the correspondence between
the editor’s cursor and a marker in the resulting .dvil®
file. The main drawback is that MiKTgX runs in non-stop
mode. As a consequence, students may get almost com-
plete texts in case of recoverable errors. So they do not
have to be aware of their errors and they perceive only
‘serious’ ones. It is needed to introduce them to .log files,
and ask them to tolerate only warning messages.

Conclusion

KIEX being extensible because of its numerous packages,
it is impossible for an introductory course to give all the



Introducing new French-speaking users to IKTEX quickly and convincingly

functionalities that already exist. In fact, teachers also
have to show how to use KIgX’s documentation—good
documents exist in French—to learn more on their own.
But it is essential for students to understand EIEX’s phi-
losophy and get good methods. We think our method
fulfills these goals. From 2003 to 2005, J.-M. Hufflen taught
4th-year university students enrolled in ‘Digital Publish-
ing’ program!’ at the Letter Faculty of Besancon, and
got initial experiences for writing [15]. A more concise
document [2] has been used by A.-M. Aebischer for anal-
ogous introductory courses given at the IREM!8 institute
for future teachers in Mathematics.

Acknowledgements

Sincere thanks to Karl Berry and Barbara Beeton, who
proofread the first version of this article.

References
[1]

Anne-Marie AEBISCHER : Insertion d’images.
Document de support de travaux pratiques. Avril
2008.

Anne-Marie AEBISCHER : Créer des documents
scientifiques avec BIgX. Stage 2008 a I'IREmM de
Franche-Comté. 2008.

Claudio Beccarr: Introduzione all’arte della
composizione tipographica con BIgX. September
2009. Gurr.

Denis Brtouzt et Jean-Come CHARPENTIER : BTEX.
Pearson Education. 2006.

Bujposé Gyongyi — Fazekas Attila: TgX ker-
délépések. Tertia Kiadd, Budapest. aprilis
1997.

The Chicago Manual of Style. The University of
Chicago Press. The 14th edition of a manual of
style revised and expanded. 1993.

Antoni DiLLER: BIEX wiersz po wierszu. Wy-
dawnictwo Helio, Gliwice. Polish translation of
BIEX Line by Line with an additional annex by
Jan Jelowicki. 2001.

Bernard GAULLE : Notice d’utilisation de I’exten-
sion frenchpro pour BIgX. Version V5,995. Avril
2005. http://www.frenchpro6.com/frenchpro/
french/ALIRE.pdf.

Bernard GAULLE : L’extension frenchle pour BIgX.
Notice d’utilisation. Version V5,9993. Février 2007.
http://www.tug.org/texlive/Contents/live/
texmf-dist/doc/latex/frenchle/frenchle.
pdf.

Jean-Louis GiaviTTo : Ouverture des veines et
autres distractions. Documents de support de

[2]

[9]

[10]

[11]

[12]

[13]

[14]

[16]

[17]

(18]

[19]
[20]
[21]

[22]
[23]

EUROTEX 2009

travaux pratiques. http://1lifc.univ-fcomte.
fr/home/~jmhufflen/12s/giavitto.pdf et http:
//1lifc.univ-fcomte.fr/home/~jmhufflen/12s/
giavitto-plus.pdf. Octobre 1986.

Michel Goossens and Sebastian RaHTZ, with
Eitan M. GURARI, Ross MOORE and Robert S.
Sutor: The EIgX Web Companion. Addison-
Wesley Longman, Inc., Reading, Massachusetts.
May 1999.

Maurice GREVISSE : Le bon usage. Duculot.
Grammaire francaise. 12¢ édition refondue par
André Goosse. 1988.

David GrirriTHS and Desmond HiGHAM: Learn-
ing BIgX. SIAM. 1997.

Jean-Michel HUFFLEN : « Typographie : les
conventions, la tradition, les gofits, ... et BIgX ».
Cahiers GUTenberg, Vol. 35-36, p. 169-214. In
Actes du congrés GUTenberg 2000, Toulouse.
Mai 2000.

Jean-Michel HUFFLEN : Premier contact avec BIEX.
Document de support de travaux pratiques. http:
//1lifc.univ-fcomte.fr/home/~jmhufflen/12s/
to-do.pdf. Janvier 2006.

Jean-Michel HUFFLEN : Mode mathématique.
Document de support de travaux pratiques. http:
//1lifc.univ-fcomte.fr/home/~jmhufflen/12s/
to-do-math.pdf. Février 2006.

Jean-Michel HUFFLEN: “Writing Structured and
Semantics-Oriented Documents: TgX vs. XML”.
Biuletyn cusTt, Vol. 23, pp. 104-108. In BachoTgX
2006 conference. April 2006.

Jean-Michel HUFFLEN : C++... et d’autres
outils. .. pour ’étudiant mathématicien. Polycopié.
Besancon. Janvier 2008.

HyperBIgX. February 2004. http://hyperlatex.
sourceforge.net.

Java Technology. March 2008. http://java.sun.
com.

Donald Ervin KnutH: Computers & Typesetting.
Vol. A: The TgXbook. Addison-Wesley Publishing
Company, Reading, Massachusetts. 1984.
Thomas LACHAND-ROBERT : La maitrise de TgX et
BIEX. Masson. 1995.

Leslie LampoRrT: BIgX: A Document Preparation
System. User’s Guide and Reference Manual.
Addison-Wesley Publishing Company, Reading,
Massachusetts. 1994.

MiKTgX... Typesetting Beautiful Documents.
2009. http://miktex.org/.

Frank MrrTELBACH and Michel GoosseNs, with
Johannes BRaams, David CARLISLE, Chris A. Row-
LEY, Christine DETIG and Joachim ScHroD: The



E104 MAPS 39

BIgX Companion. 2nd edition. Addison-Wesley
Publishing Company, Reading, Massachusetts.
August 2004.

Chuck Musciano and Bill KENNEDY: HTML:
The Definitive Guide. 6th edition. O’Reilly

& Associates, Inc. October 2006.

Elke NIEDERMAIR und Michael NIEDERMAIR:
BIgX—Das Praxisbuch. 3. Auflage. Franzis. 2006.
Oren PATASHNIK: BiBIpXing. February 1988. Part
of the BIBTpX distribution.

Francois PETIARD : Le package hyperref. Docu-
ment de travaux pratiques. Mai 2005.

Christian RoLLAND : BEIgX par la pratique.
O’Reilly France, Paris. 1999.

Apostolos SyrorouLos: ETEX. Evoc IThneng vy
v Expadnon tov Yuotnuatog Xtouyeiode-
otag BIEX. Tapatnentng. 1998.

TgXnicCenter. 2008. http://www.texniccenter.
org/.

W3C: Mathematical Markup Language (MathML)
Version 2.0, 2nd edition. w3c Recommendation.
Edited by David CARLISLE, Patrick Ion, Robert
MINER, and Nico PoppELIER. October 2003. http:
//www.w3.0rg/TR/2003/REC-MathML2-20031021.
WETTL Ferenc — MaYER Gyula — SzaB6 Péter:
BIEX kézikonyv. Panem. 2004.

[27]
[28]
[29]
[30]

[31]

[34]

Notes

1. ‘License 2, parcours Mathématiques et Mathématiques appli-
quées’, w.r.t. French terminology.

2. This notion of ‘high’ sign of punctuation belongs to French
typography’s terminology. A short survey of these rules is given
in [6, §§ 9.21-9.33], a more complete reference is [14], in French.
3. The following quotations come from [10].

4. This notion is explained in [21, Ch. 7].

5. So do [4, 7, 27, 31] The first example of [34] does not use any
package, the \usepackage command being introduced immedi-
ately after. In addition, examples given at first are small-sized,
so introducing some variants—e.g., twocolumn vs. onecolumn—
would not be very convincing. On another subject, French texts
can be typeset using the packages french(prolle) [8, 9], as al-
ternatives to the babel package, but the problem of introducing
such a package at the course’s beginning remains the same.

6. Except for etymological hyphenation, now hardly used in
practice.

7. In fact, this point is debatable, because some French typogra-
phy manuals consider that a word should not be hyphenated
before a silent syllable—‘exemple’ sounds as [egzapl]. (That
is why this word is not hyphenated in the version processed
with the babel package’s french option.) But these typography
manuals mention that this convention is difficult to follow, in
particular when text columns are narrow, as in daily newspa-
pers, for example. More details about this point can be found in

[12].

A.-M. Aebischer, B. Aebischer, J.-M. Hufflen, F. Pétiard

8. Let us recall that this text came out in October 1986; the
interfaces used within these forums were not comparable to the
Web.

9. Indenting the first paragraph after a display heading is more
customary in French text than in English, so introducing this
indentfirst package is relevant in our unit.

10. HyperText Markup Language, the language of Web pages.
[26] is a good introduction to it.

11. Most of the math mode’s advanced features are described in
detail in [25, Ch. 8].

12. Portable Document Format, Adobe’s format.

13. MATHematical Markup Language [33] is an XML
(eXtensible Markup Language) application for describing math-
ematical notation regarding either its structure or its content.
Let us mention that MathML’s broad outlines are taught to
5th-year students in Statistical Modelling (‘Master 2 de Ma-
thématiques, mention Modélisation statistique’, in French) [18,
ch. 9], as part of a unit entitled ‘Software Engineering’.

14. Java [20], in the curricula of the Faculty of Science and
Technics located at Besancon.

15. As mentioned in Note 13, there is an introduction to
MathML for some 5th-year university students in Mathemat-
ics. MathML’s content model [33, § 2.1.3], more related to the
semantics of mathematical expressions, is easier to understand
for these students than the presentation model.

16. DeVice-Independent.

17. ‘Master 1 d’Edition numérique’, in French.

18. ‘Institut de Recherche sur IEnseignement des Mathéma-
tiques’, that is, ‘Research Institute about teaching Mathematics’.

Anne-Marie Aebischer?

Bruno Aebischer?

Jean-Michel Hufflen?

Francois Pétiard!

! Department of Mathematics (UMR CNRS 6623),
University of Franche-Comté, 16, route de Gray,
25030 Besancon Cedex, France.

2 LIFC (EA CNRS 4157),

University of Franche-Comté, 16, route de Gray,
25030 Besancon Cedex, France.



Hans Hagen EUROTEX 2009

Oriental TEX by a dummy

Abstract
This article is converted from the slides presented at the conference.

What is Oriental TEX

O It is a project by Idris Samawi Hamid, Taco Hoekwater and Hans Hagen.

O The project started shortly after we started the LuaTgX project.

O It boosted development of LuaTgX thanks to a grant that paid for coding LuaTgX.

O It also boosted the development of ConTgXt MKIV and was a real good torture test
for OpenType font support.

O This project also costs us a whole lot of time.

O The main objective is to let TgX typeset high quality (traditional) Arabic.

O Closely related to this is to extend ConTgXt capabilities to deal with advanced crit-
ical editions.

O In the meantime a high quality Arabic OpenType font has become part of the
package.

How we proceed

O Of course we were a bit too optimistic when setting the time schedule for this
project.

O This is because we need to have quite some bits and pieces in place beforehand.

O For instance, making the font and perfecting OpenType support involves a lot of
trial and error and testing.

O This is mostly due to lack of specifications, benchmarks and limitations in tools.

O We have identified the needs for critital editions but have postponed some of that
till we have opened up more of LuaTgX.

O We are also getting a better picture of what is needed for advanced right-to-left
typesetting, especially in mixed directionality.

Simple OpenType fonts

O In Latin scripts we have mostly one-to-one and many-to-one substitutions.

O This can happen in sequence (multiple passes).

O Sometimes surrounding characters (or shapes) play a role.

O In some cases glyphs have to be (re)positioned relative to each other.

O Often the substitution logic is flawed and it is assumed that features are applied
selectively (DTP: select and apply).

O Of course this is unacceptable for what we have in mind.

The Oriental TEX approach

O We put as much logic in the font as possible, but also provide a dedicated para-
graph builder (written in Lua).

O The so-called First-Order Analysis puts a given character into isolated, initial, mid-
dle, or final state.

O The Second-order Analysis looks at the characters and relates this state to what
characters precede or succeed it.

E105



E106 MAPS 39 Hans Hagen

O Based on that state we do character substitutions. There can be multiple analysis
and replacements in sequence.

O We can do some simple aesthetic stretching and additional related replacements.

O We need to attach identity marks and vowels in proper but nice looking places.

O In most cases we’re then done. Contrary to other fonts we don’t use many liga-
tures but compose characters.

But we go further

O The previous steps already give reasonable results and implementing it also nicely
went along with the development of LuaTgX and ConTEXt MKIV.

O Currently we’re working on extending and perfecting the font to support what we
call Third-Order Contextual Analysis.

O This boils down to an interplay between the paragraph builder and additional font
features.

O In order to get pleasing spacing we apply further substitutions, this time with
wider or narrower shapes.

O When this is done we need to reattach identity marks and vowels.

O Optionally we can apply HZ-like stretching as a finishing touch.

Look at luatex (kheetawul)

'ngd)bd

O no order (khitaw [u] 1)

2
. I
L.
O first order
2
* b4
&5
O second order
. z }
£l
O second order (Jeem-stacking)
L] z }
£l
L] z }
£l
O maximal stretching (level 3)
N 2

O chopped letter khaa (for e.g. underlining) ﬁ \jj

Hans Hagen
Pragma ADE, Hasselt

O minimal stretching



Stanislav Jan Sarman

EUROTEX 2009

Writing Pitman shorthand with

Metafont and BTEX

Abstract

With pen shorthand, the traditional speech-recording
method, unwritten speech is at first manually captured
and then transliterated into a digital text. We have
built programs which reverse the second step of this
process, i.e. transform text into shorthand.

Here we present as a special case an online system,
which converts English text into Pitman 2000 shorthand
using Metafont and TEX. The impact of our system
on pattern recognition of handwritten shorthand and on
stenography teaching is discussed.

In order to approximate the speed of speech, alphabet
based shorthand systems make use of phonetic writing,
abbreviations and simplified writing, thus reducing the
redundancy of the orthographic code and the graphic
redundancy of longhand characters.

In the following sections we exemplify these principles
with the Pitman shorthand language (abbreviated as PsL)
and describe how the Pitman 2000 shorthand system can
be implemented in Metafont [4].

Elements of PSL
A glyph of one or more words as denoted with psL, the
so-called stenem is composed of

an outline consisting of joined consonant signs,
written without lifting the pen from the paper, and
diacritics corresponding to vowel phonemes.

The stenem components are written in this order.

An example: The stenem of the word ‘rote’ Al, pro-
nounced as T * ou t is built of the outline /1, formed
by joining the strokes (r)=,"and (t)=|, the signs! of
the consonant phonemes r and t and the heavy dash sign
[oul, the diacritical mark of the vowel ou, following /.

The signs of consonant phonemes. These signs, also called
strokes, are either line segments or quarter circles:

NN | I —
(p) () (¢) (d) (ch) (jh) (k) (g)
(£) (v) (th) (dh) (s) (z) (sh) (zh)

“\ ( ( )) S J

Though invented in 1837, the psL design is guided by

modern phonological classifications and principles [7, 8].

Thus the signs of voiced consonants are more firmly
written variants of their unvoiced counterparts. Friction
vs. occlusion of a consonant is denoted by rounding the
corresponding sign (cf. the rows). A change of the place
of articulation causes a change of slant in consonant signs
(cf. the columns).

Remaining strokes? are:

nasals ‘ liquids
~  —— a /0
m (@ (mg) | (1) (@ ()
The signs —~ -~ ~ _ — are horizontals, (~ / are

upstrokes;3 all other consonant signs are downstrokes.

Vowel, diphthong and triphone signs. These diacritical
signs are placed alongside a consonant sign, before or
after it, depending on whether the vowel is read before
or after the consonant, i.e. going from the beginning of a
stroke on the left-hand or the right-hand side of upstrokes
and horizontals if the vowel is read before or after the
consonant. Places are changed for downstrokes.

1 .
before ﬂ'?) 2) after ‘f ;
1 3 ell

Twelve vowel diacritics are realized in psL. They are
differentiated by their glyph (light or heavy, dot or dash)
and its position. Any consonant sign has three places for
a vowel sign to be located according to the direction in
which the consonant stroke is written: at the beginning
(1%), in the middle (274) or at the end (34 place).

R

Qoo 65 <
lay’ ‘us’ ‘so

>

E107



E108 MAPS 39

place ‘
[a]l [ah] [o] [oo]
1st | \ _I )
‘at’ ‘pa’ ‘odd” ‘saw’
[e]l [ei]l [uh] [oul
2nd I I \ ~
‘ed’ ‘aid’ ‘up’ ‘no’
[i] [ii] [ul [uu]
N L —
Gl ‘eel’ ‘took’ ‘coup’

It can be seen from this table that the light vowel signs
are reserved for the short vowels and are put in the same
places as the heavy vowel signs for the long vowels.

The table proceeds row-wise (over the position) from
signs for opened vowels to signs for closed vowels and
column-wise from dots for front vowels to dashes*) for
back vowels. Compare a such as in ‘at’, which is an
opened front vowel with the closed back vowel uu, such
as the one in ‘coup’ at the opposite vertices of the table.?

There are four diphthong signs at 15t and 314 places:

place
1st [ai] ‘my’ [oi] Yoy’
—~ r
3rd [ow] ‘out’ [yuul “few’
1 &

The triphone signs, indicated by a small tick attached
to a diphthong sign, represent any vowel following the
diphthong, as in:

Z ‘diary’, /

There is also a special diphone sign for other vowel
combinations put in the place of the first vowel. Consider

1

the second mark for the diphone ia in ‘idea’ * put at the
31d place - the place of [i].

Observe also, that the first vowel in a word decides
where the first upstroke or downstroke of the outline will
be written —above, on or through the line.

RN
‘pa’ ‘pay’  ‘pea’

‘loyal’ |~ ‘towel” and R ‘fewer’.

Stenems
We propose here a complete psL grammar and describe
it by means of syntax diagrams.® A terminal result-

Stanislav Jan Sarman

ing from grammar productions is called metaform, e.g.
(r) [oul&(t) is the metaform” corresponding to A, the
stenem of the word ‘rote’.

Stenems are composed of segments with (mostly)
joined (&-Notation) outline.

~“un/com/n|h

Segment

“ing/e 5000

Stenems can start with a morphological prefix such as
~com, ~con, ... and they can end with a verbal suffix,
such as “ing. Both are realized by a mark, such as a
light dot, before the first and/or after the last segment
outline, respectively. Last suffix +Upp indicates proper
names, whose glyphs are underlined in psL.

A

-
~—

~com[o] () (g) [oul~ing [al (n)+Upp

Segments. The core of a segment

is built of an obligatory consonant sign (C) framed by
optional vowel signs [V]. The strokes of Section 1 can
be modified to express the frequent case of a consonant
followed by an r or an 1 — written by an initial right or
left hook,? respectively:

N . AN &

(p,r)[eil (£,r) [ii] (p,1)[eil (£,1) [ii]

The segments are the counterparts of the syllables,
hence there is a provision for vowel signs occurring be-
tween two strokes — 15t and 27 place vowel signs are writ-
ten after the first stroke whereas the otherwise ambiguous
3rd place vowel signs are written before the second stroke:

(t) [el&(x)&[i] (t) [oul&(x) [i]

t*xe. ri. tour . r iy

13
3 A
13

The following syntax diagram completes the definition
of a PsL segment

;nlvlf :tld
t
S

,s/Vs/s
,st/r/s




Writing Pitman shorthand with Metafont and IKTEX

At first psL strokes come at three sizes — half-sized (suffix
:t/d), normal or double-sized (suffix :tr/dr/dhr), e.g.:

/

~ -
(D [eil:t (D) [ei]l (1) [eil:tr
(m) [iil:t () [1i] (m) [ii]:tr

Additionally strokes can be prefixed and/or suffixed
by left or right, small or larger hooks, circles, loops and
cracknels,® for example:

L AN N
,s[ul (p) ,stlel(p) ,s(p,r)[eil
N N “
,s[uh]l (p,1) (p)[iil,s (p)[iil,sis
A 'S AN
(p) [oul,st (p) [oul,sts (p)[oul,str
N N N
(p)lelsn (p)lel;n,s  (p)[uhl;f

N N R
(p) [uhl;f,s (p)[al;shn (p)[al;shn,s

Observe also how the (not previously mentioned) signs
of the consonants w, hw, y and y are defined:

/ d / 7
(w)=(r,1) (w=(r,w) (y)=(r,r) (h)=,s(r,r)

Joining and disjoining the segments. Stenem outlines
are written mostly without lifting the pen; typically the
segments are joined at obtuse outer angles, e.g.:

1 get or | ‘tick’.

Special care must be taken for ,s-circles. As an ,s-
circle is normally written within the curves or as a left
circle otherwise, and as writing the circle outside an angle
is the simplest way of joining two segments — the circle
direction must be sometimes reversed:

left ,s ‘ right , s
= = | = \T
‘cassette’  ‘unsafe’ | ‘task’ ‘bestow’

However there are singular cases, where a continuous
connection is not possible, consider

\,/=\+°'/ (‘be+half”) J=u+/° (‘sense+less’)

Also when writing numbers or when writing the end-
ings t or d in past tense of regular verbs, the segments
are disjoined:10

EUROTEX 2009

24 1 4
(_two_) (_four_) [aal (s)&(k)/(t) (sh) [oul/(d)

Metafont implementation. Elementary strokes (circle arcs
or straight lines) and the circles, hooks, ... used for pre-
fixes/suffixes are realized as splines with curvature=0 at
both ends. Thus trivially consonantal parts of segments,
when joined tangent continuously are curvature continu-
ous, too [5].

Technically speaking the diacritics are an array of dis-
continuous marker paths, while the outline is an array of
(mostly) continuous only!! Metafont-paths.12

Besides the circled connections also the m/n joinings
were made curvature continuous; joinings with cusps
exist, too:

‘name’  ‘number’  ‘reply’ ‘figure’
Abbreviations
In pst, short forms, phrases and intersections are used for
frequently occurring words.

Short forms are either arbitrary strokes or shortened

outlines largely without diacritics:

Ve ° AN \"
. o N NN
‘the’ ‘a/n’ ‘and’ ‘i’ ‘as’ ‘of’ ‘you’ T ‘to’ ‘too’
NN |
. A

PPN

it’ ‘today’ ‘be’ ‘being’ ‘do’ ‘doing’ ‘in

EIS

thing’

Phrases in psL are simply stenems of two and more
words connected together:13

L Lo b
‘itis’ ‘it is possible’ ‘do you’ ‘youare’ ‘thank you’

Also one stroke may be struck through a preceding
one in commonly used collocations. Examples of such
intersections are:14

L

‘tax form’

=7

‘successful company’

N~

‘company boom’

Short forms, phrases and intersections are to be learned
by heart. Our system maintains an abbreviation dictio-
nary of (word, metaform) tuples written in lexc [1].

text2Pitman

text2Pitman is an online system,!> which records input
text as Pitman 2000 shorthand. Just as in [5, 6] the con-
version is done in four steps:



E110 MAPS 39

1.

4.

The input is tokenized. Tokens with a metaform entry
in the abbreviation dictionary are separated from
other words.

For a word in the latter category we find its
pronunciation in Unisyn accent-independent keyword
lexicon [2]. The non/writing of minor vowels, the
so-called schwas (@),1° is guided by special psL rules:
in secondary stress syllables most of them are ignored
(‘poster’), rhotic schwas are written out (‘work’) and
some others are to be back-transformed!” (‘data’ vs.

‘date’):
s gy

‘poster’  ‘work’  ‘data’ vs. ‘date’

The pronunciation string is then transformed to a
metaform by the stenemizer —a program coded as
the tokenizer above in the XEROX-FST tool xfst [1].
The transformation is carried out by a series of
cascaded context dependent rewrite rules, realized
by finite state transducers (FsTs). Decomposition of
a stenem into its constituent segments as done by
the stenemizer is unique, but as the underlying psL
grammar allows ambiguities,!8 the metaform found

is not always the one commonly used:1®

Fl_vs.~ and \'| vs. %

In a mf run for each of the tokens using the code

resulting from its metaform a Metafont character is

generated.

The text is then set with BIgX, rendered with dvips,
. and sent as an image to the browser.

Remarks on pattern recognition
text2Pitman can provide test samples for the reversed

procedure — the pattern recognition of handwritten psL.

This task is done in three major steps:2

1.

Shape recognition yielding the metaform.

This step requires at first the recognition of the mid
points of segments and of the slope as well of the
curvature sign there. Then the prefixes and suffixes
have to be found and classified.

Conversion of the metaform into pronunciation
strings.

As our stenemizer is a two-level?! xfst transducer,
this could be accomplished by reversing its order of
operation, but it is more elaborate. Shorthand writers
often omit vowel diacritics in some words, such as:

Stanislav Jan Sarman

Figure 1.
‘territories’ ‘tortures’  ‘traitors’

It is not harmful in long outlines,?2 but for short

stenems the correct use of diacritics and observing
the right overall position is essential. Consider an
example of words with nearly the same psL outline:

Al A A

‘rote/wrote’  ‘rode/road’  ‘rot’

As most recognizers do not detect line thickness,
still more shorthand homographs result. Thus,
this complex task can be handled only by taking
into account the word frequencies and using a
weighted transducer. Nevertheless our system could
automatically create a knowledge base of (metaform,
pronunciation string(s)) entries.

The transliteration of the pronunciation strings into
English with correct orthography is difficult because
of the numerous and very frequent English language
homophones.?3



Writing Pitman shorthand with Metafont and IKTEX

Educational uses of the software

A novel dvitype-based DjVu-backend of our software
to produce a text-annotated and searchable shorthand
record, which can be viewed with a standard DjVu-plugin
to a browser or a standalone viewer. Moving with the
mouse over a stenem displays the originating word(s), as
can be seen in figure 1.

Compare our “live” record with a printed textbook,
where the writing or reading “Exercises” are separated
from the “Keys to Exercises”.

It is probable that as shorthand usage declines, publish-
ers of shorthand books will not, as in the past, insist on
their proprietary solutions. In any case, our web server
based software suggests a future with centralized dic-
tionaries and textbooks utilized and maintained by an
interested user community.

References

[1] Kenneth R. Beesley and Lauri Karttunen. Finite
State Morphology. cstL1 Publications, Stanford,
2003.

Susan Fitt. Unisyn multi-accent lexicon, 2006.
http://www.cstr.ed.ac.uk/projects/
unisyn/.

Swe Myo Htwe, Colin Higgins, Graham Leedham,
and Ma Yang. Knowledge based transcription
of handwritten Pitman’s Shorthand using word
frequency and context. In 7th International
Conference on Development and Application
Systems, pages 508-512, Suceava, Romania, 2004.
Donald E. Knuth. The Metafontbook, volume C
of Computers and Typesetting. Addison-Wesley
Publishing Company, Reading, Mass., 5t edition,
1990.

Stanislav J. Sarman. Writing Gregg Shorthand
with Metafont and BIEX. TUGboat, 29(3):458-461,
2008. TUG 2008 Conference Proceedings.
Stanislav J. Sarman. DEk-Verkehrsschrift mit
Metafont und BIgX. Die TgXnische Komddie,
21(1):7-20, 2009.

Bohumil Trnka. A Phonological Analysis of
Present-day Standard English. Prague, 1935.
Revised Edition, 1966.

Bohumil Trnka. Pokus o védeckou teorii a
praktickou reformu tésnopisu. An Attempt at the
Theory of Shorthand and its Practical Application
to the Czech Language. Facultas Philosophica
Universitatis Carolinge Pragensis, Sbirka pojednani
arozprav XX, Prague, 1937.

[2]

EUROTEX 2009

Notes

1. In the following, phonemes are denoted in typewriter type,
the corresponding consonant signs are parenthesized, and vowel,
diphthong and triphone signs are bracketed.

2. There are two signs for r. For the signs of h, w, wh and y see
Section 2.1.

3. (1) can be written in both directions.

4. Dashes are written at right angles to the stroke at the point
where they are placed.

5. which is nearly Jones’ IPA vowel quadrilateral reflected.

6. Optional vs. obligatory parts are enclosed in rounded boxes;
nonterminals are written in cursive, terminals in typewriter
type.

7. The metaform without intervening non-letters corresponds
linearly (stress and schwas excluded), to the pronunciation of a
word, e.g. (r) [ou]&(t) <> * ou t

8. ,r is written within the rounded curves while ,1 is symbol-
ized by a larger hook.

9. Not all of the 3 x 2* x 2* thinkable prefix/suffix combinations
can actually occur, e.g. at the beginning of English words only
the following three consonant sequences spr, str, skr, spl
and skw are possible [7]. Segments starting/ending with ,s-
circles are very common.

10. then the notation , or / is used

11. PSL is classified as one of the so-called geometric short-
hand systems, which contrast with cursive systems resembling
smooth longhand writing.

12. drawn either with thick or thin Metafont pens or filled.

13. The most common “consonant sign” is the word space.

14. With strokes (£) for ‘form’ and (k) for ‘company’, resp.
15. See our project web site, and also DEK . php for the German
shorthand pex and Gregg. php for Gregg shorthand counter-
parts.

16. the most frequent “(non)vowels”

17. both to their spelling equivalent

18. ‘LaTeX’ as (1) [eil&(t) [el& (k) V.
(1) [ei] : t&[el (k) and ‘computer’ as
~com(p) [yuul&(t,r) vs. ~com(p) [yuu]:tr. The
metaform can be interactively adjusted.

19. here the first variant

20. See [3] and the references there. We comment on these steps
using our terminology.

21. Lexical transducers carry out both (e.g. morphological) anal-
ysis and synthesis.

22. Although the words shown have the same sequence of con-
sonants, their outlines are distinct.

23. ‘L, eye’, ‘wright, right, rite, write’, ‘hear, here’, ‘by, buy, bye’
are the most frequent.

NN

Stanislav Jan Sarman

Computing Centre

Clausthal University of Technology

Erzstr. 51

38678 Clausthal

Germany

Sarman (at) rz dot tu-clausthal dot de
http://www3.rz.tu-clausthal.de/"rzsjs/steno/
Pitman.php

E111



